qemu/migration/postcopy-ram.c
<<
>>
Prefs
   1/*
   2 * Postcopy migration for RAM
   3 *
   4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Dave Gilbert  <dgilbert@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * Postcopy is a migration technique where the execution flips from the
  16 * source to the destination before all the data has been copied.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "exec/target_page.h"
  21#include "migration.h"
  22#include "qemu-file.h"
  23#include "savevm.h"
  24#include "postcopy-ram.h"
  25#include "ram.h"
  26#include "qapi/error.h"
  27#include "qemu/notify.h"
  28#include "qemu/rcu.h"
  29#include "sysemu/sysemu.h"
  30#include "qemu/error-report.h"
  31#include "trace.h"
  32#include "hw/boards.h"
  33
  34/* Arbitrary limit on size of each discard command,
  35 * keeps them around ~200 bytes
  36 */
  37#define MAX_DISCARDS_PER_COMMAND 12
  38
  39struct PostcopyDiscardState {
  40    const char *ramblock_name;
  41    uint16_t cur_entry;
  42    /*
  43     * Start and length of a discard range (bytes)
  44     */
  45    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
  46    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
  47    unsigned int nsentwords;
  48    unsigned int nsentcmds;
  49};
  50
  51static NotifierWithReturnList postcopy_notifier_list;
  52
  53void postcopy_infrastructure_init(void)
  54{
  55    notifier_with_return_list_init(&postcopy_notifier_list);
  56}
  57
  58void postcopy_add_notifier(NotifierWithReturn *nn)
  59{
  60    notifier_with_return_list_add(&postcopy_notifier_list, nn);
  61}
  62
  63void postcopy_remove_notifier(NotifierWithReturn *n)
  64{
  65    notifier_with_return_remove(n);
  66}
  67
  68int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
  69{
  70    struct PostcopyNotifyData pnd;
  71    pnd.reason = reason;
  72    pnd.errp = errp;
  73
  74    return notifier_with_return_list_notify(&postcopy_notifier_list,
  75                                            &pnd);
  76}
  77
  78/* Postcopy needs to detect accesses to pages that haven't yet been copied
  79 * across, and efficiently map new pages in, the techniques for doing this
  80 * are target OS specific.
  81 */
  82#if defined(__linux__)
  83
  84#include <poll.h>
  85#include <sys/ioctl.h>
  86#include <sys/syscall.h>
  87#include <asm/types.h> /* for __u64 */
  88#endif
  89
  90#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
  91#include <sys/eventfd.h>
  92#include <linux/userfaultfd.h>
  93
  94typedef struct PostcopyBlocktimeContext {
  95    /* time when page fault initiated per vCPU */
  96    uint32_t *page_fault_vcpu_time;
  97    /* page address per vCPU */
  98    uintptr_t *vcpu_addr;
  99    uint32_t total_blocktime;
 100    /* blocktime per vCPU */
 101    uint32_t *vcpu_blocktime;
 102    /* point in time when last page fault was initiated */
 103    uint32_t last_begin;
 104    /* number of vCPU are suspended */
 105    int smp_cpus_down;
 106    uint64_t start_time;
 107
 108    /*
 109     * Handler for exit event, necessary for
 110     * releasing whole blocktime_ctx
 111     */
 112    Notifier exit_notifier;
 113} PostcopyBlocktimeContext;
 114
 115static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
 116{
 117    g_free(ctx->page_fault_vcpu_time);
 118    g_free(ctx->vcpu_addr);
 119    g_free(ctx->vcpu_blocktime);
 120    g_free(ctx);
 121}
 122
 123static void migration_exit_cb(Notifier *n, void *data)
 124{
 125    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
 126                                                 exit_notifier);
 127    destroy_blocktime_context(ctx);
 128}
 129
 130static struct PostcopyBlocktimeContext *blocktime_context_new(void)
 131{
 132    MachineState *ms = MACHINE(qdev_get_machine());
 133    unsigned int smp_cpus = ms->smp.cpus;
 134    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
 135    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
 136    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
 137    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
 138
 139    ctx->exit_notifier.notify = migration_exit_cb;
 140    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 141    qemu_add_exit_notifier(&ctx->exit_notifier);
 142    return ctx;
 143}
 144
 145static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
 146{
 147    MachineState *ms = MACHINE(qdev_get_machine());
 148    uint32List *list = NULL, *entry = NULL;
 149    int i;
 150
 151    for (i = ms->smp.cpus - 1; i >= 0; i--) {
 152        entry = g_new0(uint32List, 1);
 153        entry->value = ctx->vcpu_blocktime[i];
 154        entry->next = list;
 155        list = entry;
 156    }
 157
 158    return list;
 159}
 160
 161/*
 162 * This function just populates MigrationInfo from postcopy's
 163 * blocktime context. It will not populate MigrationInfo,
 164 * unless postcopy-blocktime capability was set.
 165 *
 166 * @info: pointer to MigrationInfo to populate
 167 */
 168void fill_destination_postcopy_migration_info(MigrationInfo *info)
 169{
 170    MigrationIncomingState *mis = migration_incoming_get_current();
 171    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 172
 173    if (!bc) {
 174        return;
 175    }
 176
 177    info->has_postcopy_blocktime = true;
 178    info->postcopy_blocktime = bc->total_blocktime;
 179    info->has_postcopy_vcpu_blocktime = true;
 180    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
 181}
 182
 183static uint32_t get_postcopy_total_blocktime(void)
 184{
 185    MigrationIncomingState *mis = migration_incoming_get_current();
 186    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 187
 188    if (!bc) {
 189        return 0;
 190    }
 191
 192    return bc->total_blocktime;
 193}
 194
 195/**
 196 * receive_ufd_features: check userfault fd features, to request only supported
 197 * features in the future.
 198 *
 199 * Returns: true on success
 200 *
 201 * __NR_userfaultfd - should be checked before
 202 *  @features: out parameter will contain uffdio_api.features provided by kernel
 203 *              in case of success
 204 */
 205static bool receive_ufd_features(uint64_t *features)
 206{
 207    struct uffdio_api api_struct = {0};
 208    int ufd;
 209    bool ret = true;
 210
 211    /* if we are here __NR_userfaultfd should exists */
 212    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 213    if (ufd == -1) {
 214        error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
 215                     strerror(errno));
 216        return false;
 217    }
 218
 219    /* ask features */
 220    api_struct.api = UFFD_API;
 221    api_struct.features = 0;
 222    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 223        error_report("%s: UFFDIO_API failed: %s", __func__,
 224                     strerror(errno));
 225        ret = false;
 226        goto release_ufd;
 227    }
 228
 229    *features = api_struct.features;
 230
 231release_ufd:
 232    close(ufd);
 233    return ret;
 234}
 235
 236/**
 237 * request_ufd_features: this function should be called only once on a newly
 238 * opened ufd, subsequent calls will lead to error.
 239 *
 240 * Returns: true on success
 241 *
 242 * @ufd: fd obtained from userfaultfd syscall
 243 * @features: bit mask see UFFD_API_FEATURES
 244 */
 245static bool request_ufd_features(int ufd, uint64_t features)
 246{
 247    struct uffdio_api api_struct = {0};
 248    uint64_t ioctl_mask;
 249
 250    api_struct.api = UFFD_API;
 251    api_struct.features = features;
 252    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 253        error_report("%s failed: UFFDIO_API failed: %s", __func__,
 254                     strerror(errno));
 255        return false;
 256    }
 257
 258    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
 259                 (__u64)1 << _UFFDIO_UNREGISTER;
 260    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
 261        error_report("Missing userfault features: %" PRIx64,
 262                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
 263        return false;
 264    }
 265
 266    return true;
 267}
 268
 269static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
 270{
 271    uint64_t asked_features = 0;
 272    static uint64_t supported_features;
 273
 274    /*
 275     * it's not possible to
 276     * request UFFD_API twice per one fd
 277     * userfault fd features is persistent
 278     */
 279    if (!supported_features) {
 280        if (!receive_ufd_features(&supported_features)) {
 281            error_report("%s failed", __func__);
 282            return false;
 283        }
 284    }
 285
 286#ifdef UFFD_FEATURE_THREAD_ID
 287    if (migrate_postcopy_blocktime() && mis &&
 288        UFFD_FEATURE_THREAD_ID & supported_features) {
 289        /* kernel supports that feature */
 290        /* don't create blocktime_context if it exists */
 291        if (!mis->blocktime_ctx) {
 292            mis->blocktime_ctx = blocktime_context_new();
 293        }
 294
 295        asked_features |= UFFD_FEATURE_THREAD_ID;
 296    }
 297#endif
 298
 299    /*
 300     * request features, even if asked_features is 0, due to
 301     * kernel expects UFFD_API before UFFDIO_REGISTER, per
 302     * userfault file descriptor
 303     */
 304    if (!request_ufd_features(ufd, asked_features)) {
 305        error_report("%s failed: features %" PRIu64, __func__,
 306                     asked_features);
 307        return false;
 308    }
 309
 310    if (qemu_real_host_page_size != ram_pagesize_summary()) {
 311        bool have_hp = false;
 312        /* We've got a huge page */
 313#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
 314        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
 315#endif
 316        if (!have_hp) {
 317            error_report("Userfault on this host does not support huge pages");
 318            return false;
 319        }
 320    }
 321    return true;
 322}
 323
 324/* Callback from postcopy_ram_supported_by_host block iterator.
 325 */
 326static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
 327{
 328    const char *block_name = qemu_ram_get_idstr(rb);
 329    ram_addr_t length = qemu_ram_get_used_length(rb);
 330    size_t pagesize = qemu_ram_pagesize(rb);
 331
 332    if (length % pagesize) {
 333        error_report("Postcopy requires RAM blocks to be a page size multiple,"
 334                     " block %s is 0x" RAM_ADDR_FMT " bytes with a "
 335                     "page size of 0x%zx", block_name, length, pagesize);
 336        return 1;
 337    }
 338    return 0;
 339}
 340
 341/*
 342 * Note: This has the side effect of munlock'ing all of RAM, that's
 343 * normally fine since if the postcopy succeeds it gets turned back on at the
 344 * end.
 345 */
 346bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
 347{
 348    long pagesize = qemu_real_host_page_size;
 349    int ufd = -1;
 350    bool ret = false; /* Error unless we change it */
 351    void *testarea = NULL;
 352    struct uffdio_register reg_struct;
 353    struct uffdio_range range_struct;
 354    uint64_t feature_mask;
 355    Error *local_err = NULL;
 356
 357    if (qemu_target_page_size() > pagesize) {
 358        error_report("Target page size bigger than host page size");
 359        goto out;
 360    }
 361
 362    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 363    if (ufd == -1) {
 364        error_report("%s: userfaultfd not available: %s", __func__,
 365                     strerror(errno));
 366        goto out;
 367    }
 368
 369    /* Give devices a chance to object */
 370    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
 371        error_report_err(local_err);
 372        goto out;
 373    }
 374
 375    /* Version and features check */
 376    if (!ufd_check_and_apply(ufd, mis)) {
 377        goto out;
 378    }
 379
 380    /* We don't support postcopy with shared RAM yet */
 381    if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
 382        goto out;
 383    }
 384
 385    /*
 386     * userfault and mlock don't go together; we'll put it back later if
 387     * it was enabled.
 388     */
 389    if (munlockall()) {
 390        error_report("%s: munlockall: %s", __func__,  strerror(errno));
 391        goto out;
 392    }
 393
 394    /*
 395     *  We need to check that the ops we need are supported on anon memory
 396     *  To do that we need to register a chunk and see the flags that
 397     *  are returned.
 398     */
 399    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
 400                                    MAP_ANONYMOUS, -1, 0);
 401    if (testarea == MAP_FAILED) {
 402        error_report("%s: Failed to map test area: %s", __func__,
 403                     strerror(errno));
 404        goto out;
 405    }
 406    g_assert(((size_t)testarea & (pagesize - 1)) == 0);
 407
 408    reg_struct.range.start = (uintptr_t)testarea;
 409    reg_struct.range.len = pagesize;
 410    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 411
 412    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
 413        error_report("%s userfault register: %s", __func__, strerror(errno));
 414        goto out;
 415    }
 416
 417    range_struct.start = (uintptr_t)testarea;
 418    range_struct.len = pagesize;
 419    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
 420        error_report("%s userfault unregister: %s", __func__, strerror(errno));
 421        goto out;
 422    }
 423
 424    feature_mask = (__u64)1 << _UFFDIO_WAKE |
 425                   (__u64)1 << _UFFDIO_COPY |
 426                   (__u64)1 << _UFFDIO_ZEROPAGE;
 427    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
 428        error_report("Missing userfault map features: %" PRIx64,
 429                     (uint64_t)(~reg_struct.ioctls & feature_mask));
 430        goto out;
 431    }
 432
 433    /* Success! */
 434    ret = true;
 435out:
 436    if (testarea) {
 437        munmap(testarea, pagesize);
 438    }
 439    if (ufd != -1) {
 440        close(ufd);
 441    }
 442    return ret;
 443}
 444
 445/*
 446 * Setup an area of RAM so that it *can* be used for postcopy later; this
 447 * must be done right at the start prior to pre-copy.
 448 * opaque should be the MIS.
 449 */
 450static int init_range(RAMBlock *rb, void *opaque)
 451{
 452    const char *block_name = qemu_ram_get_idstr(rb);
 453    void *host_addr = qemu_ram_get_host_addr(rb);
 454    ram_addr_t offset = qemu_ram_get_offset(rb);
 455    ram_addr_t length = qemu_ram_get_used_length(rb);
 456    trace_postcopy_init_range(block_name, host_addr, offset, length);
 457
 458    /*
 459     * We need the whole of RAM to be truly empty for postcopy, so things
 460     * like ROMs and any data tables built during init must be zero'd
 461     * - we're going to get the copy from the source anyway.
 462     * (Precopy will just overwrite this data, so doesn't need the discard)
 463     */
 464    if (ram_discard_range(block_name, 0, length)) {
 465        return -1;
 466    }
 467
 468    return 0;
 469}
 470
 471/*
 472 * At the end of migration, undo the effects of init_range
 473 * opaque should be the MIS.
 474 */
 475static int cleanup_range(RAMBlock *rb, void *opaque)
 476{
 477    const char *block_name = qemu_ram_get_idstr(rb);
 478    void *host_addr = qemu_ram_get_host_addr(rb);
 479    ram_addr_t offset = qemu_ram_get_offset(rb);
 480    ram_addr_t length = qemu_ram_get_used_length(rb);
 481    MigrationIncomingState *mis = opaque;
 482    struct uffdio_range range_struct;
 483    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
 484
 485    /*
 486     * We turned off hugepage for the precopy stage with postcopy enabled
 487     * we can turn it back on now.
 488     */
 489    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
 490
 491    /*
 492     * We can also turn off userfault now since we should have all the
 493     * pages.   It can be useful to leave it on to debug postcopy
 494     * if you're not sure it's always getting every page.
 495     */
 496    range_struct.start = (uintptr_t)host_addr;
 497    range_struct.len = length;
 498
 499    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
 500        error_report("%s: userfault unregister %s", __func__, strerror(errno));
 501
 502        return -1;
 503    }
 504
 505    return 0;
 506}
 507
 508/*
 509 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 510 * postcopy later; must be called prior to any precopy.
 511 * called from arch_init's similarly named ram_postcopy_incoming_init
 512 */
 513int postcopy_ram_incoming_init(MigrationIncomingState *mis)
 514{
 515    if (foreach_not_ignored_block(init_range, NULL)) {
 516        return -1;
 517    }
 518
 519    return 0;
 520}
 521
 522/*
 523 * At the end of a migration where postcopy_ram_incoming_init was called.
 524 */
 525int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
 526{
 527    trace_postcopy_ram_incoming_cleanup_entry();
 528
 529    if (mis->have_fault_thread) {
 530        Error *local_err = NULL;
 531
 532        /* Let the fault thread quit */
 533        qatomic_set(&mis->fault_thread_quit, 1);
 534        postcopy_fault_thread_notify(mis);
 535        trace_postcopy_ram_incoming_cleanup_join();
 536        qemu_thread_join(&mis->fault_thread);
 537
 538        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
 539            error_report_err(local_err);
 540            return -1;
 541        }
 542
 543        if (foreach_not_ignored_block(cleanup_range, mis)) {
 544            return -1;
 545        }
 546
 547        trace_postcopy_ram_incoming_cleanup_closeuf();
 548        close(mis->userfault_fd);
 549        close(mis->userfault_event_fd);
 550        mis->have_fault_thread = false;
 551    }
 552
 553    if (enable_mlock) {
 554        if (os_mlock() < 0) {
 555            error_report("mlock: %s", strerror(errno));
 556            /*
 557             * It doesn't feel right to fail at this point, we have a valid
 558             * VM state.
 559             */
 560        }
 561    }
 562
 563    if (mis->postcopy_tmp_page) {
 564        munmap(mis->postcopy_tmp_page, mis->largest_page_size);
 565        mis->postcopy_tmp_page = NULL;
 566    }
 567    if (mis->postcopy_tmp_zero_page) {
 568        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
 569        mis->postcopy_tmp_zero_page = NULL;
 570    }
 571    trace_postcopy_ram_incoming_cleanup_blocktime(
 572            get_postcopy_total_blocktime());
 573
 574    trace_postcopy_ram_incoming_cleanup_exit();
 575    return 0;
 576}
 577
 578/*
 579 * Disable huge pages on an area
 580 */
 581static int nhp_range(RAMBlock *rb, void *opaque)
 582{
 583    const char *block_name = qemu_ram_get_idstr(rb);
 584    void *host_addr = qemu_ram_get_host_addr(rb);
 585    ram_addr_t offset = qemu_ram_get_offset(rb);
 586    ram_addr_t length = qemu_ram_get_used_length(rb);
 587    trace_postcopy_nhp_range(block_name, host_addr, offset, length);
 588
 589    /*
 590     * Before we do discards we need to ensure those discards really
 591     * do delete areas of the page, even if THP thinks a hugepage would
 592     * be a good idea, so force hugepages off.
 593     */
 594    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
 595
 596    return 0;
 597}
 598
 599/*
 600 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 601 * however leaving it until after precopy means that most of the precopy
 602 * data is still THPd
 603 */
 604int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
 605{
 606    if (foreach_not_ignored_block(nhp_range, mis)) {
 607        return -1;
 608    }
 609
 610    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
 611
 612    return 0;
 613}
 614
 615/*
 616 * Mark the given area of RAM as requiring notification to unwritten areas
 617 * Used as a  callback on foreach_not_ignored_block.
 618 *   host_addr: Base of area to mark
 619 *   offset: Offset in the whole ram arena
 620 *   length: Length of the section
 621 *   opaque: MigrationIncomingState pointer
 622 * Returns 0 on success
 623 */
 624static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
 625{
 626    MigrationIncomingState *mis = opaque;
 627    struct uffdio_register reg_struct;
 628
 629    reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
 630    reg_struct.range.len = qemu_ram_get_used_length(rb);
 631    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 632
 633    /* Now tell our userfault_fd that it's responsible for this area */
 634    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
 635        error_report("%s userfault register: %s", __func__, strerror(errno));
 636        return -1;
 637    }
 638    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
 639        error_report("%s userfault: Region doesn't support COPY", __func__);
 640        return -1;
 641    }
 642    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
 643        qemu_ram_set_uf_zeroable(rb);
 644    }
 645
 646    return 0;
 647}
 648
 649int postcopy_wake_shared(struct PostCopyFD *pcfd,
 650                         uint64_t client_addr,
 651                         RAMBlock *rb)
 652{
 653    size_t pagesize = qemu_ram_pagesize(rb);
 654    struct uffdio_range range;
 655    int ret;
 656    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
 657    range.start = client_addr & ~(pagesize - 1);
 658    range.len = pagesize;
 659    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
 660    if (ret) {
 661        error_report("%s: Failed to wake: %zx in %s (%s)",
 662                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
 663                     strerror(errno));
 664    }
 665    return ret;
 666}
 667
 668/*
 669 * Callback from shared fault handlers to ask for a page,
 670 * the page must be specified by a RAMBlock and an offset in that rb
 671 * Note: Only for use by shared fault handlers (in fault thread)
 672 */
 673int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
 674                                 uint64_t client_addr, uint64_t rb_offset)
 675{
 676    size_t pagesize = qemu_ram_pagesize(rb);
 677    uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
 678    MigrationIncomingState *mis = migration_incoming_get_current();
 679
 680    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
 681                                       rb_offset);
 682    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
 683        trace_postcopy_request_shared_page_present(pcfd->idstr,
 684                                        qemu_ram_get_idstr(rb), rb_offset);
 685        return postcopy_wake_shared(pcfd, client_addr, rb);
 686    }
 687    migrate_send_rp_req_pages(mis, rb, aligned_rbo, client_addr);
 688    return 0;
 689}
 690
 691static int get_mem_fault_cpu_index(uint32_t pid)
 692{
 693    CPUState *cpu_iter;
 694
 695    CPU_FOREACH(cpu_iter) {
 696        if (cpu_iter->thread_id == pid) {
 697            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
 698            return cpu_iter->cpu_index;
 699        }
 700    }
 701    trace_get_mem_fault_cpu_index(-1, pid);
 702    return -1;
 703}
 704
 705static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
 706{
 707    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
 708                                    dc->start_time;
 709    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
 710}
 711
 712/*
 713 * This function is being called when pagefault occurs. It
 714 * tracks down vCPU blocking time.
 715 *
 716 * @addr: faulted host virtual address
 717 * @ptid: faulted process thread id
 718 * @rb: ramblock appropriate to addr
 719 */
 720static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
 721                                          RAMBlock *rb)
 722{
 723    int cpu, already_received;
 724    MigrationIncomingState *mis = migration_incoming_get_current();
 725    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 726    uint32_t low_time_offset;
 727
 728    if (!dc || ptid == 0) {
 729        return;
 730    }
 731    cpu = get_mem_fault_cpu_index(ptid);
 732    if (cpu < 0) {
 733        return;
 734    }
 735
 736    low_time_offset = get_low_time_offset(dc);
 737    if (dc->vcpu_addr[cpu] == 0) {
 738        qatomic_inc(&dc->smp_cpus_down);
 739    }
 740
 741    qatomic_xchg(&dc->last_begin, low_time_offset);
 742    qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
 743    qatomic_xchg(&dc->vcpu_addr[cpu], addr);
 744
 745    /*
 746     * check it here, not at the beginning of the function,
 747     * due to, check could occur early than bitmap_set in
 748     * qemu_ufd_copy_ioctl
 749     */
 750    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
 751    if (already_received) {
 752        qatomic_xchg(&dc->vcpu_addr[cpu], 0);
 753        qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
 754        qatomic_dec(&dc->smp_cpus_down);
 755    }
 756    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
 757                                        cpu, already_received);
 758}
 759
 760/*
 761 *  This function just provide calculated blocktime per cpu and trace it.
 762 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 763 *
 764 *
 765 * Assume we have 3 CPU
 766 *
 767 *      S1        E1           S1               E1
 768 * -----***********------------xxx***************------------------------> CPU1
 769 *
 770 *             S2                E2
 771 * ------------****************xxx---------------------------------------> CPU2
 772 *
 773 *                         S3            E3
 774 * ------------------------****xxx********-------------------------------> CPU3
 775 *
 776 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 777 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 778 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 779 *            it's a part of total blocktime.
 780 * S1 - here is last_begin
 781 * Legend of the picture is following:
 782 *              * - means blocktime per vCPU
 783 *              x - means overlapped blocktime (total blocktime)
 784 *
 785 * @addr: host virtual address
 786 */
 787static void mark_postcopy_blocktime_end(uintptr_t addr)
 788{
 789    MigrationIncomingState *mis = migration_incoming_get_current();
 790    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 791    MachineState *ms = MACHINE(qdev_get_machine());
 792    unsigned int smp_cpus = ms->smp.cpus;
 793    int i, affected_cpu = 0;
 794    bool vcpu_total_blocktime = false;
 795    uint32_t read_vcpu_time, low_time_offset;
 796
 797    if (!dc) {
 798        return;
 799    }
 800
 801    low_time_offset = get_low_time_offset(dc);
 802    /* lookup cpu, to clear it,
 803     * that algorithm looks straightforward, but it's not
 804     * optimal, more optimal algorithm is keeping tree or hash
 805     * where key is address value is a list of  */
 806    for (i = 0; i < smp_cpus; i++) {
 807        uint32_t vcpu_blocktime = 0;
 808
 809        read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
 810        if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
 811            read_vcpu_time == 0) {
 812            continue;
 813        }
 814        qatomic_xchg(&dc->vcpu_addr[i], 0);
 815        vcpu_blocktime = low_time_offset - read_vcpu_time;
 816        affected_cpu += 1;
 817        /* we need to know is that mark_postcopy_end was due to
 818         * faulted page, another possible case it's prefetched
 819         * page and in that case we shouldn't be here */
 820        if (!vcpu_total_blocktime &&
 821            qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
 822            vcpu_total_blocktime = true;
 823        }
 824        /* continue cycle, due to one page could affect several vCPUs */
 825        dc->vcpu_blocktime[i] += vcpu_blocktime;
 826    }
 827
 828    qatomic_sub(&dc->smp_cpus_down, affected_cpu);
 829    if (vcpu_total_blocktime) {
 830        dc->total_blocktime += low_time_offset - qatomic_fetch_add(
 831                &dc->last_begin, 0);
 832    }
 833    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
 834                                      affected_cpu);
 835}
 836
 837static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
 838{
 839    trace_postcopy_pause_fault_thread();
 840
 841    qemu_sem_wait(&mis->postcopy_pause_sem_fault);
 842
 843    trace_postcopy_pause_fault_thread_continued();
 844
 845    return true;
 846}
 847
 848/*
 849 * Handle faults detected by the USERFAULT markings
 850 */
 851static void *postcopy_ram_fault_thread(void *opaque)
 852{
 853    MigrationIncomingState *mis = opaque;
 854    struct uffd_msg msg;
 855    int ret;
 856    size_t index;
 857    RAMBlock *rb = NULL;
 858
 859    trace_postcopy_ram_fault_thread_entry();
 860    rcu_register_thread();
 861    mis->last_rb = NULL; /* last RAMBlock we sent part of */
 862    qemu_sem_post(&mis->fault_thread_sem);
 863
 864    struct pollfd *pfd;
 865    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
 866
 867    pfd = g_new0(struct pollfd, pfd_len);
 868
 869    pfd[0].fd = mis->userfault_fd;
 870    pfd[0].events = POLLIN;
 871    pfd[1].fd = mis->userfault_event_fd;
 872    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
 873    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
 874    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
 875        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
 876                                                 struct PostCopyFD, index);
 877        pfd[2 + index].fd = pcfd->fd;
 878        pfd[2 + index].events = POLLIN;
 879        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
 880                                                  pcfd->fd);
 881    }
 882
 883    while (true) {
 884        ram_addr_t rb_offset;
 885        int poll_result;
 886
 887        /*
 888         * We're mainly waiting for the kernel to give us a faulting HVA,
 889         * however we can be told to quit via userfault_quit_fd which is
 890         * an eventfd
 891         */
 892
 893        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
 894        if (poll_result == -1) {
 895            error_report("%s: userfault poll: %s", __func__, strerror(errno));
 896            break;
 897        }
 898
 899        if (!mis->to_src_file) {
 900            /*
 901             * Possibly someone tells us that the return path is
 902             * broken already using the event. We should hold until
 903             * the channel is rebuilt.
 904             */
 905            if (postcopy_pause_fault_thread(mis)) {
 906                /* Continue to read the userfaultfd */
 907            } else {
 908                error_report("%s: paused but don't allow to continue",
 909                             __func__);
 910                break;
 911            }
 912        }
 913
 914        if (pfd[1].revents) {
 915            uint64_t tmp64 = 0;
 916
 917            /* Consume the signal */
 918            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
 919                /* Nothing obviously nicer than posting this error. */
 920                error_report("%s: read() failed", __func__);
 921            }
 922
 923            if (qatomic_read(&mis->fault_thread_quit)) {
 924                trace_postcopy_ram_fault_thread_quit();
 925                break;
 926            }
 927        }
 928
 929        if (pfd[0].revents) {
 930            poll_result--;
 931            ret = read(mis->userfault_fd, &msg, sizeof(msg));
 932            if (ret != sizeof(msg)) {
 933                if (errno == EAGAIN) {
 934                    /*
 935                     * if a wake up happens on the other thread just after
 936                     * the poll, there is nothing to read.
 937                     */
 938                    continue;
 939                }
 940                if (ret < 0) {
 941                    error_report("%s: Failed to read full userfault "
 942                                 "message: %s",
 943                                 __func__, strerror(errno));
 944                    break;
 945                } else {
 946                    error_report("%s: Read %d bytes from userfaultfd "
 947                                 "expected %zd",
 948                                 __func__, ret, sizeof(msg));
 949                    break; /* Lost alignment, don't know what we'd read next */
 950                }
 951            }
 952            if (msg.event != UFFD_EVENT_PAGEFAULT) {
 953                error_report("%s: Read unexpected event %ud from userfaultfd",
 954                             __func__, msg.event);
 955                continue; /* It's not a page fault, shouldn't happen */
 956            }
 957
 958            rb = qemu_ram_block_from_host(
 959                     (void *)(uintptr_t)msg.arg.pagefault.address,
 960                     true, &rb_offset);
 961            if (!rb) {
 962                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
 963                             PRIx64, (uint64_t)msg.arg.pagefault.address);
 964                break;
 965            }
 966
 967            rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
 968            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
 969                                                qemu_ram_get_idstr(rb),
 970                                                rb_offset,
 971                                                msg.arg.pagefault.feat.ptid);
 972            mark_postcopy_blocktime_begin(
 973                    (uintptr_t)(msg.arg.pagefault.address),
 974                                msg.arg.pagefault.feat.ptid, rb);
 975
 976retry:
 977            /*
 978             * Send the request to the source - we want to request one
 979             * of our host page sizes (which is >= TPS)
 980             */
 981            ret = migrate_send_rp_req_pages(mis, rb, rb_offset,
 982                                            msg.arg.pagefault.address);
 983            if (ret) {
 984                /* May be network failure, try to wait for recovery */
 985                if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
 986                    /* We got reconnected somehow, try to continue */
 987                    goto retry;
 988                } else {
 989                    /* This is a unavoidable fault */
 990                    error_report("%s: migrate_send_rp_req_pages() get %d",
 991                                 __func__, ret);
 992                    break;
 993                }
 994            }
 995        }
 996
 997        /* Now handle any requests from external processes on shared memory */
 998        /* TODO: May need to handle devices deregistering during postcopy */
 999        for (index = 2; index < pfd_len && poll_result; index++) {
1000            if (pfd[index].revents) {
1001                struct PostCopyFD *pcfd =
1002                    &g_array_index(mis->postcopy_remote_fds,
1003                                   struct PostCopyFD, index - 2);
1004
1005                poll_result--;
1006                if (pfd[index].revents & POLLERR) {
1007                    error_report("%s: POLLERR on poll %zd fd=%d",
1008                                 __func__, index, pcfd->fd);
1009                    pfd[index].events = 0;
1010                    continue;
1011                }
1012
1013                ret = read(pcfd->fd, &msg, sizeof(msg));
1014                if (ret != sizeof(msg)) {
1015                    if (errno == EAGAIN) {
1016                        /*
1017                         * if a wake up happens on the other thread just after
1018                         * the poll, there is nothing to read.
1019                         */
1020                        continue;
1021                    }
1022                    if (ret < 0) {
1023                        error_report("%s: Failed to read full userfault "
1024                                     "message: %s (shared) revents=%d",
1025                                     __func__, strerror(errno),
1026                                     pfd[index].revents);
1027                        /*TODO: Could just disable this sharer */
1028                        break;
1029                    } else {
1030                        error_report("%s: Read %d bytes from userfaultfd "
1031                                     "expected %zd (shared)",
1032                                     __func__, ret, sizeof(msg));
1033                        /*TODO: Could just disable this sharer */
1034                        break; /*Lost alignment,don't know what we'd read next*/
1035                    }
1036                }
1037                if (msg.event != UFFD_EVENT_PAGEFAULT) {
1038                    error_report("%s: Read unexpected event %ud "
1039                                 "from userfaultfd (shared)",
1040                                 __func__, msg.event);
1041                    continue; /* It's not a page fault, shouldn't happen */
1042                }
1043                /* Call the device handler registered with us */
1044                ret = pcfd->handler(pcfd, &msg);
1045                if (ret) {
1046                    error_report("%s: Failed to resolve shared fault on %zd/%s",
1047                                 __func__, index, pcfd->idstr);
1048                    /* TODO: Fail? Disable this sharer? */
1049                }
1050            }
1051        }
1052    }
1053    rcu_unregister_thread();
1054    trace_postcopy_ram_fault_thread_exit();
1055    g_free(pfd);
1056    return NULL;
1057}
1058
1059int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1060{
1061    /* Open the fd for the kernel to give us userfaults */
1062    mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1063    if (mis->userfault_fd == -1) {
1064        error_report("%s: Failed to open userfault fd: %s", __func__,
1065                     strerror(errno));
1066        return -1;
1067    }
1068
1069    /*
1070     * Although the host check already tested the API, we need to
1071     * do the check again as an ABI handshake on the new fd.
1072     */
1073    if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1074        return -1;
1075    }
1076
1077    /* Now an eventfd we use to tell the fault-thread to quit */
1078    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1079    if (mis->userfault_event_fd == -1) {
1080        error_report("%s: Opening userfault_event_fd: %s", __func__,
1081                     strerror(errno));
1082        close(mis->userfault_fd);
1083        return -1;
1084    }
1085
1086    qemu_sem_init(&mis->fault_thread_sem, 0);
1087    qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1088                       postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1089    qemu_sem_wait(&mis->fault_thread_sem);
1090    qemu_sem_destroy(&mis->fault_thread_sem);
1091    mis->have_fault_thread = true;
1092
1093    /* Mark so that we get notified of accesses to unwritten areas */
1094    if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1095        error_report("ram_block_enable_notify failed");
1096        return -1;
1097    }
1098
1099    mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1100                                  PROT_READ | PROT_WRITE, MAP_PRIVATE |
1101                                  MAP_ANONYMOUS, -1, 0);
1102    if (mis->postcopy_tmp_page == MAP_FAILED) {
1103        mis->postcopy_tmp_page = NULL;
1104        error_report("%s: Failed to map postcopy_tmp_page %s",
1105                     __func__, strerror(errno));
1106        return -1;
1107    }
1108
1109    /*
1110     * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1111     */
1112    mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1113                                       PROT_READ | PROT_WRITE,
1114                                       MAP_PRIVATE | MAP_ANONYMOUS,
1115                                       -1, 0);
1116    if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1117        int e = errno;
1118        mis->postcopy_tmp_zero_page = NULL;
1119        error_report("%s: Failed to map large zero page %s",
1120                     __func__, strerror(e));
1121        return -e;
1122    }
1123    memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1124
1125    trace_postcopy_ram_enable_notify();
1126
1127    return 0;
1128}
1129
1130static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1131                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
1132{
1133    int userfault_fd = mis->userfault_fd;
1134    int ret;
1135
1136    if (from_addr) {
1137        struct uffdio_copy copy_struct;
1138        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1139        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1140        copy_struct.len = pagesize;
1141        copy_struct.mode = 0;
1142        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1143    } else {
1144        struct uffdio_zeropage zero_struct;
1145        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1146        zero_struct.range.len = pagesize;
1147        zero_struct.mode = 0;
1148        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1149    }
1150    if (!ret) {
1151        qemu_mutex_lock(&mis->page_request_mutex);
1152        ramblock_recv_bitmap_set_range(rb, host_addr,
1153                                       pagesize / qemu_target_page_size());
1154        /*
1155         * If this page resolves a page fault for a previous recorded faulted
1156         * address, take a special note to maintain the requested page list.
1157         */
1158        if (g_tree_lookup(mis->page_requested, host_addr)) {
1159            g_tree_remove(mis->page_requested, host_addr);
1160            mis->page_requested_count--;
1161            trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1162        }
1163        qemu_mutex_unlock(&mis->page_request_mutex);
1164        mark_postcopy_blocktime_end((uintptr_t)host_addr);
1165    }
1166    return ret;
1167}
1168
1169int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1170{
1171    int i;
1172    MigrationIncomingState *mis = migration_incoming_get_current();
1173    GArray *pcrfds = mis->postcopy_remote_fds;
1174
1175    for (i = 0; i < pcrfds->len; i++) {
1176        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1177        int ret = cur->waker(cur, rb, offset);
1178        if (ret) {
1179            return ret;
1180        }
1181    }
1182    return 0;
1183}
1184
1185/*
1186 * Place a host page (from) at (host) atomically
1187 * returns 0 on success
1188 */
1189int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1190                        RAMBlock *rb)
1191{
1192    size_t pagesize = qemu_ram_pagesize(rb);
1193
1194    /* copy also acks to the kernel waking the stalled thread up
1195     * TODO: We can inhibit that ack and only do it if it was requested
1196     * which would be slightly cheaper, but we'd have to be careful
1197     * of the order of updating our page state.
1198     */
1199    if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1200        int e = errno;
1201        error_report("%s: %s copy host: %p from: %p (size: %zd)",
1202                     __func__, strerror(e), host, from, pagesize);
1203
1204        return -e;
1205    }
1206
1207    trace_postcopy_place_page(host);
1208    return postcopy_notify_shared_wake(rb,
1209                                       qemu_ram_block_host_offset(rb, host));
1210}
1211
1212/*
1213 * Place a zero page at (host) atomically
1214 * returns 0 on success
1215 */
1216int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1217                             RAMBlock *rb)
1218{
1219    size_t pagesize = qemu_ram_pagesize(rb);
1220    trace_postcopy_place_page_zero(host);
1221
1222    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1223     * but it's not available for everything (e.g. hugetlbpages)
1224     */
1225    if (qemu_ram_is_uf_zeroable(rb)) {
1226        if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1227            int e = errno;
1228            error_report("%s: %s zero host: %p",
1229                         __func__, strerror(e), host);
1230
1231            return -e;
1232        }
1233        return postcopy_notify_shared_wake(rb,
1234                                           qemu_ram_block_host_offset(rb,
1235                                                                      host));
1236    } else {
1237        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1238    }
1239}
1240
1241#else
1242/* No target OS support, stubs just fail */
1243void fill_destination_postcopy_migration_info(MigrationInfo *info)
1244{
1245}
1246
1247bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1248{
1249    error_report("%s: No OS support", __func__);
1250    return false;
1251}
1252
1253int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1254{
1255    error_report("postcopy_ram_incoming_init: No OS support");
1256    return -1;
1257}
1258
1259int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1260{
1261    assert(0);
1262    return -1;
1263}
1264
1265int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1266{
1267    assert(0);
1268    return -1;
1269}
1270
1271int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1272                                 uint64_t client_addr, uint64_t rb_offset)
1273{
1274    assert(0);
1275    return -1;
1276}
1277
1278int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1279{
1280    assert(0);
1281    return -1;
1282}
1283
1284int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1285                        RAMBlock *rb)
1286{
1287    assert(0);
1288    return -1;
1289}
1290
1291int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1292                        RAMBlock *rb)
1293{
1294    assert(0);
1295    return -1;
1296}
1297
1298int postcopy_wake_shared(struct PostCopyFD *pcfd,
1299                         uint64_t client_addr,
1300                         RAMBlock *rb)
1301{
1302    assert(0);
1303    return -1;
1304}
1305#endif
1306
1307/* ------------------------------------------------------------------------- */
1308
1309void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1310{
1311    uint64_t tmp64 = 1;
1312
1313    /*
1314     * Wakeup the fault_thread.  It's an eventfd that should currently
1315     * be at 0, we're going to increment it to 1
1316     */
1317    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1318        /* Not much we can do here, but may as well report it */
1319        error_report("%s: incrementing failed: %s", __func__,
1320                     strerror(errno));
1321    }
1322}
1323
1324/**
1325 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1326 *   asking to discard individual ranges.
1327 *
1328 * @ms: The current migration state.
1329 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1330 * @name: RAMBlock that discards will operate on.
1331 */
1332static PostcopyDiscardState pds = {0};
1333void postcopy_discard_send_init(MigrationState *ms, const char *name)
1334{
1335    pds.ramblock_name = name;
1336    pds.cur_entry = 0;
1337    pds.nsentwords = 0;
1338    pds.nsentcmds = 0;
1339}
1340
1341/**
1342 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1343 *   discard. May send a discard message, may just leave it queued to
1344 *   be sent later.
1345 *
1346 * @ms: Current migration state.
1347 * @start,@length: a range of pages in the migration bitmap in the
1348 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1349 */
1350void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1351                                 unsigned long length)
1352{
1353    size_t tp_size = qemu_target_page_size();
1354    /* Convert to byte offsets within the RAM block */
1355    pds.start_list[pds.cur_entry] = start  * tp_size;
1356    pds.length_list[pds.cur_entry] = length * tp_size;
1357    trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1358    pds.cur_entry++;
1359    pds.nsentwords++;
1360
1361    if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1362        /* Full set, ship it! */
1363        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1364                                              pds.ramblock_name,
1365                                              pds.cur_entry,
1366                                              pds.start_list,
1367                                              pds.length_list);
1368        pds.nsentcmds++;
1369        pds.cur_entry = 0;
1370    }
1371}
1372
1373/**
1374 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1375 * bitmap code. Sends any outstanding discard messages, frees the PDS
1376 *
1377 * @ms: Current migration state.
1378 */
1379void postcopy_discard_send_finish(MigrationState *ms)
1380{
1381    /* Anything unsent? */
1382    if (pds.cur_entry) {
1383        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1384                                              pds.ramblock_name,
1385                                              pds.cur_entry,
1386                                              pds.start_list,
1387                                              pds.length_list);
1388        pds.nsentcmds++;
1389    }
1390
1391    trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1392                                       pds.nsentcmds);
1393}
1394
1395/*
1396 * Current state of incoming postcopy; note this is not part of
1397 * MigrationIncomingState since it's state is used during cleanup
1398 * at the end as MIS is being freed.
1399 */
1400static PostcopyState incoming_postcopy_state;
1401
1402PostcopyState  postcopy_state_get(void)
1403{
1404    return qatomic_mb_read(&incoming_postcopy_state);
1405}
1406
1407/* Set the state and return the old state */
1408PostcopyState postcopy_state_set(PostcopyState new_state)
1409{
1410    return qatomic_xchg(&incoming_postcopy_state, new_state);
1411}
1412
1413/* Register a handler for external shared memory postcopy
1414 * called on the destination.
1415 */
1416void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1417{
1418    MigrationIncomingState *mis = migration_incoming_get_current();
1419
1420    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1421                                                  *pcfd);
1422}
1423
1424/* Unregister a handler for external shared memory postcopy
1425 */
1426void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1427{
1428    guint i;
1429    MigrationIncomingState *mis = migration_incoming_get_current();
1430    GArray *pcrfds = mis->postcopy_remote_fds;
1431
1432    for (i = 0; i < pcrfds->len; i++) {
1433        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1434        if (cur->fd == pcfd->fd) {
1435            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1436            return;
1437        }
1438    }
1439}
1440