qemu/target/arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target/arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28#include "hw/registerfields.h"
  29
  30/* register banks for CPU modes */
  31#define BANK_USRSYS 0
  32#define BANK_SVC    1
  33#define BANK_ABT    2
  34#define BANK_UND    3
  35#define BANK_IRQ    4
  36#define BANK_FIQ    5
  37#define BANK_HYP    6
  38#define BANK_MON    7
  39
  40static inline bool excp_is_internal(int excp)
  41{
  42    /* Return true if this exception number represents a QEMU-internal
  43     * exception that will not be passed to the guest.
  44     */
  45    return excp == EXCP_INTERRUPT
  46        || excp == EXCP_HLT
  47        || excp == EXCP_DEBUG
  48        || excp == EXCP_HALTED
  49        || excp == EXCP_EXCEPTION_EXIT
  50        || excp == EXCP_KERNEL_TRAP
  51        || excp == EXCP_SEMIHOST;
  52}
  53
  54/* Scale factor for generic timers, ie number of ns per tick.
  55 * This gives a 62.5MHz timer.
  56 */
  57#define GTIMER_SCALE 16
  58
  59/* Bit definitions for the v7M CONTROL register */
  60FIELD(V7M_CONTROL, NPRIV, 0, 1)
  61FIELD(V7M_CONTROL, SPSEL, 1, 1)
  62FIELD(V7M_CONTROL, FPCA, 2, 1)
  63FIELD(V7M_CONTROL, SFPA, 3, 1)
  64
  65/* Bit definitions for v7M exception return payload */
  66FIELD(V7M_EXCRET, ES, 0, 1)
  67FIELD(V7M_EXCRET, RES0, 1, 1)
  68FIELD(V7M_EXCRET, SPSEL, 2, 1)
  69FIELD(V7M_EXCRET, MODE, 3, 1)
  70FIELD(V7M_EXCRET, FTYPE, 4, 1)
  71FIELD(V7M_EXCRET, DCRS, 5, 1)
  72FIELD(V7M_EXCRET, S, 6, 1)
  73FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
  74
  75/* Minimum value which is a magic number for exception return */
  76#define EXC_RETURN_MIN_MAGIC 0xff000000
  77/* Minimum number which is a magic number for function or exception return
  78 * when using v8M security extension
  79 */
  80#define FNC_RETURN_MIN_MAGIC 0xfefffffe
  81
  82/* We use a few fake FSR values for internal purposes in M profile.
  83 * M profile cores don't have A/R format FSRs, but currently our
  84 * get_phys_addr() code assumes A/R profile and reports failures via
  85 * an A/R format FSR value. We then translate that into the proper
  86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
  87 * Mostly the FSR values we use for this are those defined for v7PMSA,
  88 * since we share some of that codepath. A few kinds of fault are
  89 * only for M profile and have no A/R equivalent, though, so we have
  90 * to pick a value from the reserved range (which we never otherwise
  91 * generate) to use for these.
  92 * These values will never be visible to the guest.
  93 */
  94#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
  95#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
  96
  97/**
  98 * raise_exception: Raise the specified exception.
  99 * Raise a guest exception with the specified value, syndrome register
 100 * and target exception level. This should be called from helper functions,
 101 * and never returns because we will longjump back up to the CPU main loop.
 102 */
 103void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
 104                                   uint32_t syndrome, uint32_t target_el);
 105
 106/*
 107 * Similarly, but also use unwinding to restore cpu state.
 108 */
 109void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
 110                                      uint32_t syndrome, uint32_t target_el,
 111                                      uintptr_t ra);
 112
 113/*
 114 * For AArch64, map a given EL to an index in the banked_spsr array.
 115 * Note that this mapping and the AArch32 mapping defined in bank_number()
 116 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 117 * mandated mapping between each other.
 118 */
 119static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 120{
 121    static const unsigned int map[4] = {
 122        [1] = BANK_SVC, /* EL1.  */
 123        [2] = BANK_HYP, /* EL2.  */
 124        [3] = BANK_MON, /* EL3.  */
 125    };
 126    assert(el >= 1 && el <= 3);
 127    return map[el];
 128}
 129
 130/* Map CPU modes onto saved register banks.  */
 131static inline int bank_number(int mode)
 132{
 133    switch (mode) {
 134    case ARM_CPU_MODE_USR:
 135    case ARM_CPU_MODE_SYS:
 136        return BANK_USRSYS;
 137    case ARM_CPU_MODE_SVC:
 138        return BANK_SVC;
 139    case ARM_CPU_MODE_ABT:
 140        return BANK_ABT;
 141    case ARM_CPU_MODE_UND:
 142        return BANK_UND;
 143    case ARM_CPU_MODE_IRQ:
 144        return BANK_IRQ;
 145    case ARM_CPU_MODE_FIQ:
 146        return BANK_FIQ;
 147    case ARM_CPU_MODE_HYP:
 148        return BANK_HYP;
 149    case ARM_CPU_MODE_MON:
 150        return BANK_MON;
 151    }
 152    g_assert_not_reached();
 153}
 154
 155/**
 156 * r14_bank_number: Map CPU mode onto register bank for r14
 157 *
 158 * Given an AArch32 CPU mode, return the index into the saved register
 159 * banks to use for the R14 (LR) in that mode. This is the same as
 160 * bank_number(), except for the special case of Hyp mode, where
 161 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
 162 * This should be used as the index into env->banked_r14[], and
 163 * bank_number() used for the index into env->banked_r13[] and
 164 * env->banked_spsr[].
 165 */
 166static inline int r14_bank_number(int mode)
 167{
 168    return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
 169}
 170
 171void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 172void arm_translate_init(void);
 173
 174enum arm_fprounding {
 175    FPROUNDING_TIEEVEN,
 176    FPROUNDING_POSINF,
 177    FPROUNDING_NEGINF,
 178    FPROUNDING_ZERO,
 179    FPROUNDING_TIEAWAY,
 180    FPROUNDING_ODD
 181};
 182
 183int arm_rmode_to_sf(int rmode);
 184
 185static inline void aarch64_save_sp(CPUARMState *env, int el)
 186{
 187    if (env->pstate & PSTATE_SP) {
 188        env->sp_el[el] = env->xregs[31];
 189    } else {
 190        env->sp_el[0] = env->xregs[31];
 191    }
 192}
 193
 194static inline void aarch64_restore_sp(CPUARMState *env, int el)
 195{
 196    if (env->pstate & PSTATE_SP) {
 197        env->xregs[31] = env->sp_el[el];
 198    } else {
 199        env->xregs[31] = env->sp_el[0];
 200    }
 201}
 202
 203static inline void update_spsel(CPUARMState *env, uint32_t imm)
 204{
 205    unsigned int cur_el = arm_current_el(env);
 206    /* Update PSTATE SPSel bit; this requires us to update the
 207     * working stack pointer in xregs[31].
 208     */
 209    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 210        return;
 211    }
 212    aarch64_save_sp(env, cur_el);
 213    env->pstate = deposit32(env->pstate, 0, 1, imm);
 214
 215    /* We rely on illegal updates to SPsel from EL0 to get trapped
 216     * at translation time.
 217     */
 218    assert(cur_el >= 1 && cur_el <= 3);
 219    aarch64_restore_sp(env, cur_el);
 220}
 221
 222/*
 223 * arm_pamax
 224 * @cpu: ARMCPU
 225 *
 226 * Returns the implementation defined bit-width of physical addresses.
 227 * The ARMv8 reference manuals refer to this as PAMax().
 228 */
 229static inline unsigned int arm_pamax(ARMCPU *cpu)
 230{
 231    static const unsigned int pamax_map[] = {
 232        [0] = 32,
 233        [1] = 36,
 234        [2] = 40,
 235        [3] = 42,
 236        [4] = 44,
 237        [5] = 48,
 238    };
 239    unsigned int parange =
 240        FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
 241
 242    /* id_aa64mmfr0 is a read-only register so values outside of the
 243     * supported mappings can be considered an implementation error.  */
 244    assert(parange < ARRAY_SIZE(pamax_map));
 245    return pamax_map[parange];
 246}
 247
 248/* Return true if extended addresses are enabled.
 249 * This is always the case if our translation regime is 64 bit,
 250 * but depends on TTBCR.EAE for 32 bit.
 251 */
 252static inline bool extended_addresses_enabled(CPUARMState *env)
 253{
 254    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 255    return arm_el_is_aa64(env, 1) ||
 256           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 257}
 258
 259/* Valid Syndrome Register EC field values */
 260enum arm_exception_class {
 261    EC_UNCATEGORIZED          = 0x00,
 262    EC_WFX_TRAP               = 0x01,
 263    EC_CP15RTTRAP             = 0x03,
 264    EC_CP15RRTTRAP            = 0x04,
 265    EC_CP14RTTRAP             = 0x05,
 266    EC_CP14DTTRAP             = 0x06,
 267    EC_ADVSIMDFPACCESSTRAP    = 0x07,
 268    EC_FPIDTRAP               = 0x08,
 269    EC_PACTRAP                = 0x09,
 270    EC_CP14RRTTRAP            = 0x0c,
 271    EC_BTITRAP                = 0x0d,
 272    EC_ILLEGALSTATE           = 0x0e,
 273    EC_AA32_SVC               = 0x11,
 274    EC_AA32_HVC               = 0x12,
 275    EC_AA32_SMC               = 0x13,
 276    EC_AA64_SVC               = 0x15,
 277    EC_AA64_HVC               = 0x16,
 278    EC_AA64_SMC               = 0x17,
 279    EC_SYSTEMREGISTERTRAP     = 0x18,
 280    EC_SVEACCESSTRAP          = 0x19,
 281    EC_INSNABORT              = 0x20,
 282    EC_INSNABORT_SAME_EL      = 0x21,
 283    EC_PCALIGNMENT            = 0x22,
 284    EC_DATAABORT              = 0x24,
 285    EC_DATAABORT_SAME_EL      = 0x25,
 286    EC_SPALIGNMENT            = 0x26,
 287    EC_AA32_FPTRAP            = 0x28,
 288    EC_AA64_FPTRAP            = 0x2c,
 289    EC_SERROR                 = 0x2f,
 290    EC_BREAKPOINT             = 0x30,
 291    EC_BREAKPOINT_SAME_EL     = 0x31,
 292    EC_SOFTWARESTEP           = 0x32,
 293    EC_SOFTWARESTEP_SAME_EL   = 0x33,
 294    EC_WATCHPOINT             = 0x34,
 295    EC_WATCHPOINT_SAME_EL     = 0x35,
 296    EC_AA32_BKPT              = 0x38,
 297    EC_VECTORCATCH            = 0x3a,
 298    EC_AA64_BKPT              = 0x3c,
 299};
 300
 301#define ARM_EL_EC_SHIFT 26
 302#define ARM_EL_IL_SHIFT 25
 303#define ARM_EL_ISV_SHIFT 24
 304#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 305#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
 306
 307static inline uint32_t syn_get_ec(uint32_t syn)
 308{
 309    return syn >> ARM_EL_EC_SHIFT;
 310}
 311
 312/* Utility functions for constructing various kinds of syndrome value.
 313 * Note that in general we follow the AArch64 syndrome values; in a
 314 * few cases the value in HSR for exceptions taken to AArch32 Hyp
 315 * mode differs slightly, and we fix this up when populating HSR in
 316 * arm_cpu_do_interrupt_aarch32_hyp().
 317 * The exception is FP/SIMD access traps -- these report extra information
 318 * when taking an exception to AArch32. For those we include the extra coproc
 319 * and TA fields, and mask them out when taking the exception to AArch64.
 320 */
 321static inline uint32_t syn_uncategorized(void)
 322{
 323    return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 324}
 325
 326static inline uint32_t syn_aa64_svc(uint32_t imm16)
 327{
 328    return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 329}
 330
 331static inline uint32_t syn_aa64_hvc(uint32_t imm16)
 332{
 333    return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 334}
 335
 336static inline uint32_t syn_aa64_smc(uint32_t imm16)
 337{
 338    return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 339}
 340
 341static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
 342{
 343    return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 344        | (is_16bit ? 0 : ARM_EL_IL);
 345}
 346
 347static inline uint32_t syn_aa32_hvc(uint32_t imm16)
 348{
 349    return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 350}
 351
 352static inline uint32_t syn_aa32_smc(void)
 353{
 354    return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 355}
 356
 357static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
 358{
 359    return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 360}
 361
 362static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
 363{
 364    return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 365        | (is_16bit ? 0 : ARM_EL_IL);
 366}
 367
 368static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
 369                                           int crn, int crm, int rt,
 370                                           int isread)
 371{
 372    return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
 373        | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
 374        | (crm << 1) | isread;
 375}
 376
 377static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
 378                                        int crn, int crm, int rt, int isread,
 379                                        bool is_16bit)
 380{
 381    return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
 382        | (is_16bit ? 0 : ARM_EL_IL)
 383        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 384        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 385}
 386
 387static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
 388                                        int crn, int crm, int rt, int isread,
 389                                        bool is_16bit)
 390{
 391    return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
 392        | (is_16bit ? 0 : ARM_EL_IL)
 393        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 394        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 395}
 396
 397static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
 398                                         int rt, int rt2, int isread,
 399                                         bool is_16bit)
 400{
 401    return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
 402        | (is_16bit ? 0 : ARM_EL_IL)
 403        | (cv << 24) | (cond << 20) | (opc1 << 16)
 404        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 405}
 406
 407static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
 408                                         int rt, int rt2, int isread,
 409                                         bool is_16bit)
 410{
 411    return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
 412        | (is_16bit ? 0 : ARM_EL_IL)
 413        | (cv << 24) | (cond << 20) | (opc1 << 16)
 414        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 415}
 416
 417static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
 418{
 419    /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
 420    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 421        | (is_16bit ? 0 : ARM_EL_IL)
 422        | (cv << 24) | (cond << 20) | 0xa;
 423}
 424
 425static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
 426{
 427    /* AArch32 SIMD trap: TA == 1 coproc == 0 */
 428    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 429        | (is_16bit ? 0 : ARM_EL_IL)
 430        | (cv << 24) | (cond << 20) | (1 << 5);
 431}
 432
 433static inline uint32_t syn_sve_access_trap(void)
 434{
 435    return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
 436}
 437
 438static inline uint32_t syn_pactrap(void)
 439{
 440    return EC_PACTRAP << ARM_EL_EC_SHIFT;
 441}
 442
 443static inline uint32_t syn_btitrap(int btype)
 444{
 445    return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype;
 446}
 447
 448static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
 449{
 450    return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 451        | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
 452}
 453
 454static inline uint32_t syn_data_abort_no_iss(int same_el, int fnv,
 455                                             int ea, int cm, int s1ptw,
 456                                             int wnr, int fsc)
 457{
 458    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 459           | ARM_EL_IL
 460           | (fnv << 10) | (ea << 9) | (cm << 8) | (s1ptw << 7)
 461           | (wnr << 6) | fsc;
 462}
 463
 464static inline uint32_t syn_data_abort_with_iss(int same_el,
 465                                               int sas, int sse, int srt,
 466                                               int sf, int ar,
 467                                               int ea, int cm, int s1ptw,
 468                                               int wnr, int fsc,
 469                                               bool is_16bit)
 470{
 471    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 472           | (is_16bit ? 0 : ARM_EL_IL)
 473           | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
 474           | (sf << 15) | (ar << 14)
 475           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 476}
 477
 478static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 479{
 480    return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 481        | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
 482}
 483
 484static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
 485{
 486    return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 487        | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
 488}
 489
 490static inline uint32_t syn_breakpoint(int same_el)
 491{
 492    return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 493        | ARM_EL_IL | 0x22;
 494}
 495
 496static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
 497{
 498    return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
 499           (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
 500           (cv << 24) | (cond << 20) | ti;
 501}
 502
 503/* Update a QEMU watchpoint based on the information the guest has set in the
 504 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 505 */
 506void hw_watchpoint_update(ARMCPU *cpu, int n);
 507/* Update the QEMU watchpoints for every guest watchpoint. This does a
 508 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 509 * suitable for use after migration or on reset.
 510 */
 511void hw_watchpoint_update_all(ARMCPU *cpu);
 512/* Update a QEMU breakpoint based on the information the guest has set in the
 513 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 514 */
 515void hw_breakpoint_update(ARMCPU *cpu, int n);
 516/* Update the QEMU breakpoints for every guest breakpoint. This does a
 517 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 518 * suitable for use after migration or on reset.
 519 */
 520void hw_breakpoint_update_all(ARMCPU *cpu);
 521
 522/* Callback function for checking if a watchpoint should trigger. */
 523bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 524
 525/* Adjust addresses (in BE32 mode) before testing against watchpoint
 526 * addresses.
 527 */
 528vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 529
 530/* Callback function for when a watchpoint or breakpoint triggers. */
 531void arm_debug_excp_handler(CPUState *cs);
 532
 533#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
 534static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 535{
 536    return false;
 537}
 538static inline void arm_handle_psci_call(ARMCPU *cpu)
 539{
 540    g_assert_not_reached();
 541}
 542#else
 543/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 544bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 545/* Actually handle a PSCI call */
 546void arm_handle_psci_call(ARMCPU *cpu);
 547#endif
 548
 549/**
 550 * arm_clear_exclusive: clear the exclusive monitor
 551 * @env: CPU env
 552 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
 553 */
 554static inline void arm_clear_exclusive(CPUARMState *env)
 555{
 556    env->exclusive_addr = -1;
 557}
 558
 559/**
 560 * ARMFaultType: type of an ARM MMU fault
 561 * This corresponds to the v8A pseudocode's Fault enumeration,
 562 * with extensions for QEMU internal conditions.
 563 */
 564typedef enum ARMFaultType {
 565    ARMFault_None,
 566    ARMFault_AccessFlag,
 567    ARMFault_Alignment,
 568    ARMFault_Background,
 569    ARMFault_Domain,
 570    ARMFault_Permission,
 571    ARMFault_Translation,
 572    ARMFault_AddressSize,
 573    ARMFault_SyncExternal,
 574    ARMFault_SyncExternalOnWalk,
 575    ARMFault_SyncParity,
 576    ARMFault_SyncParityOnWalk,
 577    ARMFault_AsyncParity,
 578    ARMFault_AsyncExternal,
 579    ARMFault_Debug,
 580    ARMFault_TLBConflict,
 581    ARMFault_Lockdown,
 582    ARMFault_Exclusive,
 583    ARMFault_ICacheMaint,
 584    ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
 585    ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
 586} ARMFaultType;
 587
 588/**
 589 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 590 * @type: Type of fault
 591 * @level: Table walk level (for translation, access flag and permission faults)
 592 * @domain: Domain of the fault address (for non-LPAE CPUs only)
 593 * @s2addr: Address that caused a fault at stage 2
 594 * @stage2: True if we faulted at stage 2
 595 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 596 * @ea: True if we should set the EA (external abort type) bit in syndrome
 597 */
 598typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 599struct ARMMMUFaultInfo {
 600    ARMFaultType type;
 601    target_ulong s2addr;
 602    int level;
 603    int domain;
 604    bool stage2;
 605    bool s1ptw;
 606    bool ea;
 607};
 608
 609/**
 610 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
 611 * Compare pseudocode EncodeSDFSC(), though unlike that function
 612 * we set up a whole FSR-format code including domain field and
 613 * putting the high bit of the FSC into bit 10.
 614 */
 615static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
 616{
 617    uint32_t fsc;
 618
 619    switch (fi->type) {
 620    case ARMFault_None:
 621        return 0;
 622    case ARMFault_AccessFlag:
 623        fsc = fi->level == 1 ? 0x3 : 0x6;
 624        break;
 625    case ARMFault_Alignment:
 626        fsc = 0x1;
 627        break;
 628    case ARMFault_Permission:
 629        fsc = fi->level == 1 ? 0xd : 0xf;
 630        break;
 631    case ARMFault_Domain:
 632        fsc = fi->level == 1 ? 0x9 : 0xb;
 633        break;
 634    case ARMFault_Translation:
 635        fsc = fi->level == 1 ? 0x5 : 0x7;
 636        break;
 637    case ARMFault_SyncExternal:
 638        fsc = 0x8 | (fi->ea << 12);
 639        break;
 640    case ARMFault_SyncExternalOnWalk:
 641        fsc = fi->level == 1 ? 0xc : 0xe;
 642        fsc |= (fi->ea << 12);
 643        break;
 644    case ARMFault_SyncParity:
 645        fsc = 0x409;
 646        break;
 647    case ARMFault_SyncParityOnWalk:
 648        fsc = fi->level == 1 ? 0x40c : 0x40e;
 649        break;
 650    case ARMFault_AsyncParity:
 651        fsc = 0x408;
 652        break;
 653    case ARMFault_AsyncExternal:
 654        fsc = 0x406 | (fi->ea << 12);
 655        break;
 656    case ARMFault_Debug:
 657        fsc = 0x2;
 658        break;
 659    case ARMFault_TLBConflict:
 660        fsc = 0x400;
 661        break;
 662    case ARMFault_Lockdown:
 663        fsc = 0x404;
 664        break;
 665    case ARMFault_Exclusive:
 666        fsc = 0x405;
 667        break;
 668    case ARMFault_ICacheMaint:
 669        fsc = 0x4;
 670        break;
 671    case ARMFault_Background:
 672        fsc = 0x0;
 673        break;
 674    case ARMFault_QEMU_NSCExec:
 675        fsc = M_FAKE_FSR_NSC_EXEC;
 676        break;
 677    case ARMFault_QEMU_SFault:
 678        fsc = M_FAKE_FSR_SFAULT;
 679        break;
 680    default:
 681        /* Other faults can't occur in a context that requires a
 682         * short-format status code.
 683         */
 684        g_assert_not_reached();
 685    }
 686
 687    fsc |= (fi->domain << 4);
 688    return fsc;
 689}
 690
 691/**
 692 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
 693 * Compare pseudocode EncodeLDFSC(), though unlike that function
 694 * we fill in also the LPAE bit 9 of a DFSR format.
 695 */
 696static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
 697{
 698    uint32_t fsc;
 699
 700    switch (fi->type) {
 701    case ARMFault_None:
 702        return 0;
 703    case ARMFault_AddressSize:
 704        fsc = fi->level & 3;
 705        break;
 706    case ARMFault_AccessFlag:
 707        fsc = (fi->level & 3) | (0x2 << 2);
 708        break;
 709    case ARMFault_Permission:
 710        fsc = (fi->level & 3) | (0x3 << 2);
 711        break;
 712    case ARMFault_Translation:
 713        fsc = (fi->level & 3) | (0x1 << 2);
 714        break;
 715    case ARMFault_SyncExternal:
 716        fsc = 0x10 | (fi->ea << 12);
 717        break;
 718    case ARMFault_SyncExternalOnWalk:
 719        fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
 720        break;
 721    case ARMFault_SyncParity:
 722        fsc = 0x18;
 723        break;
 724    case ARMFault_SyncParityOnWalk:
 725        fsc = (fi->level & 3) | (0x7 << 2);
 726        break;
 727    case ARMFault_AsyncParity:
 728        fsc = 0x19;
 729        break;
 730    case ARMFault_AsyncExternal:
 731        fsc = 0x11 | (fi->ea << 12);
 732        break;
 733    case ARMFault_Alignment:
 734        fsc = 0x21;
 735        break;
 736    case ARMFault_Debug:
 737        fsc = 0x22;
 738        break;
 739    case ARMFault_TLBConflict:
 740        fsc = 0x30;
 741        break;
 742    case ARMFault_Lockdown:
 743        fsc = 0x34;
 744        break;
 745    case ARMFault_Exclusive:
 746        fsc = 0x35;
 747        break;
 748    default:
 749        /* Other faults can't occur in a context that requires a
 750         * long-format status code.
 751         */
 752        g_assert_not_reached();
 753    }
 754
 755    fsc |= 1 << 9;
 756    return fsc;
 757}
 758
 759static inline bool arm_extabort_type(MemTxResult result)
 760{
 761    /* The EA bit in syndromes and fault status registers is an
 762     * IMPDEF classification of external aborts. ARM implementations
 763     * usually use this to indicate AXI bus Decode error (0) or
 764     * Slave error (1); in QEMU we follow that.
 765     */
 766    return result != MEMTX_DECODE_ERROR;
 767}
 768
 769bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 770                      MMUAccessType access_type, int mmu_idx,
 771                      bool probe, uintptr_t retaddr);
 772
 773static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
 774{
 775    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
 776}
 777
 778static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
 779{
 780    if (arm_feature(env, ARM_FEATURE_M)) {
 781        return mmu_idx | ARM_MMU_IDX_M;
 782    } else {
 783        return mmu_idx | ARM_MMU_IDX_A;
 784    }
 785}
 786
 787static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
 788{
 789    /* AArch64 is always a-profile. */
 790    return mmu_idx | ARM_MMU_IDX_A;
 791}
 792
 793int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
 794
 795/*
 796 * Return the MMU index for a v7M CPU with all relevant information
 797 * manually specified.
 798 */
 799ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
 800                              bool secstate, bool priv, bool negpri);
 801
 802/*
 803 * Return the MMU index for a v7M CPU in the specified security and
 804 * privilege state.
 805 */
 806ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
 807                                                bool secstate, bool priv);
 808
 809/* Return the MMU index for a v7M CPU in the specified security state */
 810ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
 811
 812/* Return true if the stage 1 translation regime is using LPAE format page
 813 * tables */
 814bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 815
 816/* Raise a data fault alignment exception for the specified virtual address */
 817void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 818                                 MMUAccessType access_type,
 819                                 int mmu_idx, uintptr_t retaddr);
 820
 821/* arm_cpu_do_transaction_failed: handle a memory system error response
 822 * (eg "no device/memory present at address") by raising an external abort
 823 * exception
 824 */
 825void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 826                                   vaddr addr, unsigned size,
 827                                   MMUAccessType access_type,
 828                                   int mmu_idx, MemTxAttrs attrs,
 829                                   MemTxResult response, uintptr_t retaddr);
 830
 831/* Call any registered EL change hooks */
 832static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
 833{
 834    ARMELChangeHook *hook, *next;
 835    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 836        hook->hook(cpu, hook->opaque);
 837    }
 838}
 839static inline void arm_call_el_change_hook(ARMCPU *cpu)
 840{
 841    ARMELChangeHook *hook, *next;
 842    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 843        hook->hook(cpu, hook->opaque);
 844    }
 845}
 846
 847/* Return true if this address translation regime has two ranges.  */
 848static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
 849{
 850    switch (mmu_idx) {
 851    case ARMMMUIdx_Stage1_E0:
 852    case ARMMMUIdx_Stage1_E1:
 853    case ARMMMUIdx_Stage1_E1_PAN:
 854    case ARMMMUIdx_E10_0:
 855    case ARMMMUIdx_E10_1:
 856    case ARMMMUIdx_E10_1_PAN:
 857    case ARMMMUIdx_E20_0:
 858    case ARMMMUIdx_E20_2:
 859    case ARMMMUIdx_E20_2_PAN:
 860    case ARMMMUIdx_SE10_0:
 861    case ARMMMUIdx_SE10_1:
 862    case ARMMMUIdx_SE10_1_PAN:
 863        return true;
 864    default:
 865        return false;
 866    }
 867}
 868
 869/* Return true if this address translation regime is secure */
 870static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
 871{
 872    switch (mmu_idx) {
 873    case ARMMMUIdx_E10_0:
 874    case ARMMMUIdx_E10_1:
 875    case ARMMMUIdx_E10_1_PAN:
 876    case ARMMMUIdx_E20_0:
 877    case ARMMMUIdx_E20_2:
 878    case ARMMMUIdx_E20_2_PAN:
 879    case ARMMMUIdx_Stage1_E0:
 880    case ARMMMUIdx_Stage1_E1:
 881    case ARMMMUIdx_Stage1_E1_PAN:
 882    case ARMMMUIdx_E2:
 883    case ARMMMUIdx_Stage2:
 884    case ARMMMUIdx_MPrivNegPri:
 885    case ARMMMUIdx_MUserNegPri:
 886    case ARMMMUIdx_MPriv:
 887    case ARMMMUIdx_MUser:
 888        return false;
 889    case ARMMMUIdx_SE3:
 890    case ARMMMUIdx_SE10_0:
 891    case ARMMMUIdx_SE10_1:
 892    case ARMMMUIdx_SE10_1_PAN:
 893    case ARMMMUIdx_MSPrivNegPri:
 894    case ARMMMUIdx_MSUserNegPri:
 895    case ARMMMUIdx_MSPriv:
 896    case ARMMMUIdx_MSUser:
 897        return true;
 898    default:
 899        g_assert_not_reached();
 900    }
 901}
 902
 903static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
 904{
 905    switch (mmu_idx) {
 906    case ARMMMUIdx_Stage1_E1_PAN:
 907    case ARMMMUIdx_E10_1_PAN:
 908    case ARMMMUIdx_E20_2_PAN:
 909    case ARMMMUIdx_SE10_1_PAN:
 910        return true;
 911    default:
 912        return false;
 913    }
 914}
 915
 916/* Return the exception level which controls this address translation regime */
 917static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
 918{
 919    switch (mmu_idx) {
 920    case ARMMMUIdx_E20_0:
 921    case ARMMMUIdx_E20_2:
 922    case ARMMMUIdx_E20_2_PAN:
 923    case ARMMMUIdx_Stage2:
 924    case ARMMMUIdx_E2:
 925        return 2;
 926    case ARMMMUIdx_SE3:
 927        return 3;
 928    case ARMMMUIdx_SE10_0:
 929        return arm_el_is_aa64(env, 3) ? 1 : 3;
 930    case ARMMMUIdx_SE10_1:
 931    case ARMMMUIdx_SE10_1_PAN:
 932    case ARMMMUIdx_Stage1_E0:
 933    case ARMMMUIdx_Stage1_E1:
 934    case ARMMMUIdx_Stage1_E1_PAN:
 935    case ARMMMUIdx_E10_0:
 936    case ARMMMUIdx_E10_1:
 937    case ARMMMUIdx_E10_1_PAN:
 938    case ARMMMUIdx_MPrivNegPri:
 939    case ARMMMUIdx_MUserNegPri:
 940    case ARMMMUIdx_MPriv:
 941    case ARMMMUIdx_MUser:
 942    case ARMMMUIdx_MSPrivNegPri:
 943    case ARMMMUIdx_MSUserNegPri:
 944    case ARMMMUIdx_MSPriv:
 945    case ARMMMUIdx_MSUser:
 946        return 1;
 947    default:
 948        g_assert_not_reached();
 949    }
 950}
 951
 952/* Return the TCR controlling this translation regime */
 953static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
 954{
 955    if (mmu_idx == ARMMMUIdx_Stage2) {
 956        return &env->cp15.vtcr_el2;
 957    }
 958    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
 959}
 960
 961/* Return the FSR value for a debug exception (watchpoint, hardware
 962 * breakpoint or BKPT insn) targeting the specified exception level.
 963 */
 964static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
 965{
 966    ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
 967    int target_el = arm_debug_target_el(env);
 968    bool using_lpae = false;
 969
 970    if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
 971        using_lpae = true;
 972    } else {
 973        if (arm_feature(env, ARM_FEATURE_LPAE) &&
 974            (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
 975            using_lpae = true;
 976        }
 977    }
 978
 979    if (using_lpae) {
 980        return arm_fi_to_lfsc(&fi);
 981    } else {
 982        return arm_fi_to_sfsc(&fi);
 983    }
 984}
 985
 986/**
 987 * arm_num_brps: Return number of implemented breakpoints.
 988 * Note that the ID register BRPS field is "number of bps - 1",
 989 * and we return the actual number of breakpoints.
 990 */
 991static inline int arm_num_brps(ARMCPU *cpu)
 992{
 993    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 994        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
 995    } else {
 996        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
 997    }
 998}
 999
1000/**
1001 * arm_num_wrps: Return number of implemented watchpoints.
1002 * Note that the ID register WRPS field is "number of wps - 1",
1003 * and we return the actual number of watchpoints.
1004 */
1005static inline int arm_num_wrps(ARMCPU *cpu)
1006{
1007    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1008        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1009    } else {
1010        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1011    }
1012}
1013
1014/**
1015 * arm_num_ctx_cmps: Return number of implemented context comparators.
1016 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1017 * and we return the actual number of comparators.
1018 */
1019static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1020{
1021    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1022        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1023    } else {
1024        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1025    }
1026}
1027
1028/**
1029 * v7m_using_psp: Return true if using process stack pointer
1030 * Return true if the CPU is currently using the process stack
1031 * pointer, or false if it is using the main stack pointer.
1032 */
1033static inline bool v7m_using_psp(CPUARMState *env)
1034{
1035    /* Handler mode always uses the main stack; for thread mode
1036     * the CONTROL.SPSEL bit determines the answer.
1037     * Note that in v7M it is not possible to be in Handler mode with
1038     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1039     */
1040    return !arm_v7m_is_handler_mode(env) &&
1041        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1042}
1043
1044/**
1045 * v7m_sp_limit: Return SP limit for current CPU state
1046 * Return the SP limit value for the current CPU security state
1047 * and stack pointer.
1048 */
1049static inline uint32_t v7m_sp_limit(CPUARMState *env)
1050{
1051    if (v7m_using_psp(env)) {
1052        return env->v7m.psplim[env->v7m.secure];
1053    } else {
1054        return env->v7m.msplim[env->v7m.secure];
1055    }
1056}
1057
1058/**
1059 * v7m_cpacr_pass:
1060 * Return true if the v7M CPACR permits access to the FPU for the specified
1061 * security state and privilege level.
1062 */
1063static inline bool v7m_cpacr_pass(CPUARMState *env,
1064                                  bool is_secure, bool is_priv)
1065{
1066    switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1067    case 0:
1068    case 2: /* UNPREDICTABLE: we treat like 0 */
1069        return false;
1070    case 1:
1071        return is_priv;
1072    case 3:
1073        return true;
1074    default:
1075        g_assert_not_reached();
1076    }
1077}
1078
1079/**
1080 * aarch32_mode_name(): Return name of the AArch32 CPU mode
1081 * @psr: Program Status Register indicating CPU mode
1082 *
1083 * Returns, for debug logging purposes, a printable representation
1084 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1085 * the low bits of the specified PSR.
1086 */
1087static inline const char *aarch32_mode_name(uint32_t psr)
1088{
1089    static const char cpu_mode_names[16][4] = {
1090        "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1091        "???", "???", "hyp", "und", "???", "???", "???", "sys"
1092    };
1093
1094    return cpu_mode_names[psr & 0xf];
1095}
1096
1097/**
1098 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1099 *
1100 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1101 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1102 * Must be called with the iothread lock held.
1103 */
1104void arm_cpu_update_virq(ARMCPU *cpu);
1105
1106/**
1107 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1108 *
1109 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1110 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1111 * Must be called with the iothread lock held.
1112 */
1113void arm_cpu_update_vfiq(ARMCPU *cpu);
1114
1115/**
1116 * arm_mmu_idx_el:
1117 * @env: The cpu environment
1118 * @el: The EL to use.
1119 *
1120 * Return the full ARMMMUIdx for the translation regime for EL.
1121 */
1122ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1123
1124/**
1125 * arm_mmu_idx:
1126 * @env: The cpu environment
1127 *
1128 * Return the full ARMMMUIdx for the current translation regime.
1129 */
1130ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1131
1132/**
1133 * arm_stage1_mmu_idx:
1134 * @env: The cpu environment
1135 *
1136 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1137 */
1138#ifdef CONFIG_USER_ONLY
1139static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1140{
1141    return ARMMMUIdx_Stage1_E0;
1142}
1143#else
1144ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1145#endif
1146
1147/**
1148 * arm_mmu_idx_is_stage1_of_2:
1149 * @mmu_idx: The ARMMMUIdx to test
1150 *
1151 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1152 * first stage of a two stage regime.
1153 */
1154static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1155{
1156    switch (mmu_idx) {
1157    case ARMMMUIdx_Stage1_E0:
1158    case ARMMMUIdx_Stage1_E1:
1159    case ARMMMUIdx_Stage1_E1_PAN:
1160        return true;
1161    default:
1162        return false;
1163    }
1164}
1165
1166static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1167                                               const ARMISARegisters *id)
1168{
1169    uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1170
1171    if ((features >> ARM_FEATURE_V4T) & 1) {
1172        valid |= CPSR_T;
1173    }
1174    if ((features >> ARM_FEATURE_V5) & 1) {
1175        valid |= CPSR_Q; /* V5TE in reality*/
1176    }
1177    if ((features >> ARM_FEATURE_V6) & 1) {
1178        valid |= CPSR_E | CPSR_GE;
1179    }
1180    if ((features >> ARM_FEATURE_THUMB2) & 1) {
1181        valid |= CPSR_IT;
1182    }
1183    if (isar_feature_aa32_jazelle(id)) {
1184        valid |= CPSR_J;
1185    }
1186    if (isar_feature_aa32_pan(id)) {
1187        valid |= CPSR_PAN;
1188    }
1189
1190    return valid;
1191}
1192
1193static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1194{
1195    uint32_t valid;
1196
1197    valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1198    if (isar_feature_aa64_bti(id)) {
1199        valid |= PSTATE_BTYPE;
1200    }
1201    if (isar_feature_aa64_pan(id)) {
1202        valid |= PSTATE_PAN;
1203    }
1204    if (isar_feature_aa64_uao(id)) {
1205        valid |= PSTATE_UAO;
1206    }
1207    if (isar_feature_aa64_mte(id)) {
1208        valid |= PSTATE_TCO;
1209    }
1210
1211    return valid;
1212}
1213
1214/*
1215 * Parameters of a given virtual address, as extracted from the
1216 * translation control register (TCR) for a given regime.
1217 */
1218typedef struct ARMVAParameters {
1219    unsigned tsz    : 8;
1220    unsigned select : 1;
1221    bool tbi        : 1;
1222    bool epd        : 1;
1223    bool hpd        : 1;
1224    bool using16k   : 1;
1225    bool using64k   : 1;
1226} ARMVAParameters;
1227
1228ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1229                                   ARMMMUIdx mmu_idx, bool data);
1230
1231static inline int exception_target_el(CPUARMState *env)
1232{
1233    int target_el = MAX(1, arm_current_el(env));
1234
1235    /*
1236     * No such thing as secure EL1 if EL3 is aarch32,
1237     * so update the target EL to EL3 in this case.
1238     */
1239    if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1240        target_el = 3;
1241    }
1242
1243    return target_el;
1244}
1245
1246/* Determine if allocation tags are available.  */
1247static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1248                                                 uint64_t sctlr)
1249{
1250    if (el < 3
1251        && arm_feature(env, ARM_FEATURE_EL3)
1252        && !(env->cp15.scr_el3 & SCR_ATA)) {
1253        return false;
1254    }
1255    if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1256        uint64_t hcr = arm_hcr_el2_eff(env);
1257        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1258            return false;
1259        }
1260    }
1261    sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1262    return sctlr != 0;
1263}
1264
1265#ifndef CONFIG_USER_ONLY
1266
1267/* Security attributes for an address, as returned by v8m_security_lookup. */
1268typedef struct V8M_SAttributes {
1269    bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1270    bool ns;
1271    bool nsc;
1272    uint8_t sregion;
1273    bool srvalid;
1274    uint8_t iregion;
1275    bool irvalid;
1276} V8M_SAttributes;
1277
1278void v8m_security_lookup(CPUARMState *env, uint32_t address,
1279                         MMUAccessType access_type, ARMMMUIdx mmu_idx,
1280                         V8M_SAttributes *sattrs);
1281
1282bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1283                       MMUAccessType access_type, ARMMMUIdx mmu_idx,
1284                       hwaddr *phys_ptr, MemTxAttrs *txattrs,
1285                       int *prot, bool *is_subpage,
1286                       ARMMMUFaultInfo *fi, uint32_t *mregion);
1287
1288/* Cacheability and shareability attributes for a memory access */
1289typedef struct ARMCacheAttrs {
1290    unsigned int attrs:8; /* as in the MAIR register encoding */
1291    unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1292} ARMCacheAttrs;
1293
1294bool get_phys_addr(CPUARMState *env, target_ulong address,
1295                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
1296                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1297                   target_ulong *page_size,
1298                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1299    __attribute__((nonnull));
1300
1301void arm_log_exception(int idx);
1302
1303#endif /* !CONFIG_USER_ONLY */
1304
1305/*
1306 * The log2 of the words in the tag block, for GMID_EL1.BS.
1307 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1308 */
1309#define GMID_EL1_BS  6
1310
1311/* We associate one allocation tag per 16 bytes, the minimum.  */
1312#define LOG2_TAG_GRANULE 4
1313#define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1314
1315/*
1316 * The SVE simd_data field, for memory ops, contains either
1317 * rd (5 bits) or a shift count (2 bits).
1318 */
1319#define SVE_MTEDESC_SHIFT 5
1320
1321/* Bits within a descriptor passed to the helper_mte_check* functions. */
1322FIELD(MTEDESC, MIDX,  0, 4)
1323FIELD(MTEDESC, TBI,   4, 2)
1324FIELD(MTEDESC, TCMA,  6, 2)
1325FIELD(MTEDESC, WRITE, 8, 1)
1326FIELD(MTEDESC, ESIZE, 9, 5)
1327FIELD(MTEDESC, TSIZE, 14, 10)  /* mte_checkN only */
1328
1329bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr);
1330uint64_t mte_check1(CPUARMState *env, uint32_t desc,
1331                    uint64_t ptr, uintptr_t ra);
1332uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
1333                    uint64_t ptr, uintptr_t ra);
1334
1335static inline int allocation_tag_from_addr(uint64_t ptr)
1336{
1337    return extract64(ptr, 56, 4);
1338}
1339
1340static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1341{
1342    return deposit64(ptr, 56, 4, rtag);
1343}
1344
1345/* Return true if tbi bits mean that the access is checked.  */
1346static inline bool tbi_check(uint32_t desc, int bit55)
1347{
1348    return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1349}
1350
1351/* Return true if tcma bits mean that the access is unchecked.  */
1352static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1353{
1354    /*
1355     * We had extracted bit55 and ptr_tag for other reasons, so fold
1356     * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1357     */
1358    bool match = ((ptr_tag + bit55) & 0xf) == 0;
1359    bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1360    return tcma && match;
1361}
1362
1363/*
1364 * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1365 * for the tag to be present in the FAR_ELx register.  But for user-only
1366 * mode, we do not have a TLB with which to implement this, so we must
1367 * remove the top byte.
1368 */
1369static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1370{
1371    /* TBI is known to be enabled. */
1372#ifdef CONFIG_USER_ONLY
1373    ptr = sextract64(ptr, 0, 56);
1374#endif
1375    return ptr;
1376}
1377
1378static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1379{
1380#ifdef CONFIG_USER_ONLY
1381    int64_t clean_ptr = sextract64(ptr, 0, 56);
1382    if (tbi_check(desc, clean_ptr < 0)) {
1383        ptr = clean_ptr;
1384    }
1385#endif
1386    return ptr;
1387}
1388
1389#endif
1390