qemu/target/arm/mte_helper.c
<<
>>
Prefs
   1/*
   2 * ARM v8.5-MemTag Operations
   3 *
   4 * Copyright (c) 2020 Linaro, Ltd.
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "internals.h"
  23#include "exec/exec-all.h"
  24#include "exec/ram_addr.h"
  25#include "exec/cpu_ldst.h"
  26#include "exec/helper-proto.h"
  27#include "qapi/error.h"
  28#include "qemu/guest-random.h"
  29
  30
  31static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
  32{
  33    if (exclude == 0xffff) {
  34        return 0;
  35    }
  36    if (offset == 0) {
  37        while (exclude & (1 << tag)) {
  38            tag = (tag + 1) & 15;
  39        }
  40    } else {
  41        do {
  42            do {
  43                tag = (tag + 1) & 15;
  44            } while (exclude & (1 << tag));
  45        } while (--offset > 0);
  46    }
  47    return tag;
  48}
  49
  50/**
  51 * allocation_tag_mem:
  52 * @env: the cpu environment
  53 * @ptr_mmu_idx: the addressing regime to use for the virtual address
  54 * @ptr: the virtual address for which to look up tag memory
  55 * @ptr_access: the access to use for the virtual address
  56 * @ptr_size: the number of bytes in the normal memory access
  57 * @tag_access: the access to use for the tag memory
  58 * @tag_size: the number of bytes in the tag memory access
  59 * @ra: the return address for exception handling
  60 *
  61 * Our tag memory is formatted as a sequence of little-endian nibbles.
  62 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
  63 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
  64 * for the higher addr.
  65 *
  66 * Here, resolve the physical address from the virtual address, and return
  67 * a pointer to the corresponding tag byte.  Exit with exception if the
  68 * virtual address is not accessible for @ptr_access.
  69 *
  70 * The @ptr_size and @tag_size values may not have an obvious relation
  71 * due to the alignment of @ptr, and the number of tag checks required.
  72 *
  73 * If there is no tag storage corresponding to @ptr, return NULL.
  74 */
  75static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
  76                                   uint64_t ptr, MMUAccessType ptr_access,
  77                                   int ptr_size, MMUAccessType tag_access,
  78                                   int tag_size, uintptr_t ra)
  79{
  80#ifdef CONFIG_USER_ONLY
  81    /* Tag storage not implemented.  */
  82    return NULL;
  83#else
  84    uintptr_t index;
  85    CPUIOTLBEntry *iotlbentry;
  86    int in_page, flags;
  87    ram_addr_t ptr_ra;
  88    hwaddr ptr_paddr, tag_paddr, xlat;
  89    MemoryRegion *mr;
  90    ARMASIdx tag_asi;
  91    AddressSpace *tag_as;
  92    void *host;
  93
  94    /*
  95     * Probe the first byte of the virtual address.  This raises an
  96     * exception for inaccessible pages, and resolves the virtual address
  97     * into the softmmu tlb.
  98     *
  99     * When RA == 0, this is for mte_probe1.  The page is expected to be
 100     * valid.  Indicate to probe_access_flags no-fault, then assert that
 101     * we received a valid page.
 102     */
 103    flags = probe_access_flags(env, ptr, ptr_access, ptr_mmu_idx,
 104                               ra == 0, &host, ra);
 105    assert(!(flags & TLB_INVALID_MASK));
 106
 107    /*
 108     * Find the iotlbentry for ptr.  This *must* be present in the TLB
 109     * because we just found the mapping.
 110     * TODO: Perhaps there should be a cputlb helper that returns a
 111     * matching tlb entry + iotlb entry.
 112     */
 113    index = tlb_index(env, ptr_mmu_idx, ptr);
 114# ifdef CONFIG_DEBUG_TCG
 115    {
 116        CPUTLBEntry *entry = tlb_entry(env, ptr_mmu_idx, ptr);
 117        target_ulong comparator = (ptr_access == MMU_DATA_LOAD
 118                                   ? entry->addr_read
 119                                   : tlb_addr_write(entry));
 120        g_assert(tlb_hit(comparator, ptr));
 121    }
 122# endif
 123    iotlbentry = &env_tlb(env)->d[ptr_mmu_idx].iotlb[index];
 124
 125    /* If the virtual page MemAttr != Tagged, access unchecked. */
 126    if (!arm_tlb_mte_tagged(&iotlbentry->attrs)) {
 127        return NULL;
 128    }
 129
 130    /*
 131     * If not backed by host ram, there is no tag storage: access unchecked.
 132     * This is probably a guest os bug though, so log it.
 133     */
 134    if (unlikely(flags & TLB_MMIO)) {
 135        qemu_log_mask(LOG_GUEST_ERROR,
 136                      "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
 137                      "but is not backed by host ram\n", ptr);
 138        return NULL;
 139    }
 140
 141    /*
 142     * The Normal memory access can extend to the next page.  E.g. a single
 143     * 8-byte access to the last byte of a page will check only the last
 144     * tag on the first page.
 145     * Any page access exception has priority over tag check exception.
 146     */
 147    in_page = -(ptr | TARGET_PAGE_MASK);
 148    if (unlikely(ptr_size > in_page)) {
 149        void *ignore;
 150        flags |= probe_access_flags(env, ptr + in_page, ptr_access,
 151                                    ptr_mmu_idx, ra == 0, &ignore, ra);
 152        assert(!(flags & TLB_INVALID_MASK));
 153    }
 154
 155    /* Any debug exception has priority over a tag check exception. */
 156    if (unlikely(flags & TLB_WATCHPOINT)) {
 157        int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
 158        assert(ra != 0);
 159        cpu_check_watchpoint(env_cpu(env), ptr, ptr_size,
 160                             iotlbentry->attrs, wp, ra);
 161    }
 162
 163    /*
 164     * Find the physical address within the normal mem space.
 165     * The memory region lookup must succeed because TLB_MMIO was
 166     * not set in the cputlb lookup above.
 167     */
 168    mr = memory_region_from_host(host, &ptr_ra);
 169    tcg_debug_assert(mr != NULL);
 170    tcg_debug_assert(memory_region_is_ram(mr));
 171    ptr_paddr = ptr_ra;
 172    do {
 173        ptr_paddr += mr->addr;
 174        mr = mr->container;
 175    } while (mr);
 176
 177    /* Convert to the physical address in tag space.  */
 178    tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
 179
 180    /* Look up the address in tag space. */
 181    tag_asi = iotlbentry->attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
 182    tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
 183    mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
 184                                 tag_access == MMU_DATA_STORE,
 185                                 iotlbentry->attrs);
 186
 187    /*
 188     * Note that @mr will never be NULL.  If there is nothing in the address
 189     * space at @tag_paddr, the translation will return the unallocated memory
 190     * region.  For our purposes, the result must be ram.
 191     */
 192    if (unlikely(!memory_region_is_ram(mr))) {
 193        /* ??? Failure is a board configuration error. */
 194        qemu_log_mask(LOG_UNIMP,
 195                      "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
 196                      "Normal Memory @ 0x%" HWADDR_PRIx "\n",
 197                      tag_paddr, ptr_paddr);
 198        return NULL;
 199    }
 200
 201    /*
 202     * Ensure the tag memory is dirty on write, for migration.
 203     * Tag memory can never contain code or display memory (vga).
 204     */
 205    if (tag_access == MMU_DATA_STORE) {
 206        ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
 207        cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
 208    }
 209
 210    return memory_region_get_ram_ptr(mr) + xlat;
 211#endif
 212}
 213
 214uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
 215{
 216    uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
 217    int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
 218    int start = extract32(env->cp15.rgsr_el1, 0, 4);
 219    int seed = extract32(env->cp15.rgsr_el1, 8, 16);
 220    int offset, i, rtag;
 221
 222    /*
 223     * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
 224     * deterministic algorithm.  Except that with RRND==1 the kernel is
 225     * not required to have set RGSR_EL1.SEED != 0, which is required for
 226     * the deterministic algorithm to function.  So we force a non-zero
 227     * SEED for that case.
 228     */
 229    if (unlikely(seed == 0) && rrnd) {
 230        do {
 231            Error *err = NULL;
 232            uint16_t two;
 233
 234            if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
 235                /*
 236                 * Failed, for unknown reasons in the crypto subsystem.
 237                 * Best we can do is log the reason and use a constant seed.
 238                 */
 239                qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
 240                              error_get_pretty(err));
 241                error_free(err);
 242                two = 1;
 243            }
 244            seed = two;
 245        } while (seed == 0);
 246    }
 247
 248    /* RandomTag */
 249    for (i = offset = 0; i < 4; ++i) {
 250        /* NextRandomTagBit */
 251        int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
 252                   extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
 253        seed = (top << 15) | (seed >> 1);
 254        offset |= top << i;
 255    }
 256    rtag = choose_nonexcluded_tag(start, offset, exclude);
 257    env->cp15.rgsr_el1 = rtag | (seed << 8);
 258
 259    return address_with_allocation_tag(rn, rtag);
 260}
 261
 262uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
 263                         int32_t offset, uint32_t tag_offset)
 264{
 265    int start_tag = allocation_tag_from_addr(ptr);
 266    uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
 267    int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
 268
 269    return address_with_allocation_tag(ptr + offset, rtag);
 270}
 271
 272static int load_tag1(uint64_t ptr, uint8_t *mem)
 273{
 274    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 275    return extract32(*mem, ofs, 4);
 276}
 277
 278uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 279{
 280    int mmu_idx = cpu_mmu_index(env, false);
 281    uint8_t *mem;
 282    int rtag = 0;
 283
 284    /* Trap if accessing an invalid page.  */
 285    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
 286                             MMU_DATA_LOAD, 1, GETPC());
 287
 288    /* Load if page supports tags. */
 289    if (mem) {
 290        rtag = load_tag1(ptr, mem);
 291    }
 292
 293    return address_with_allocation_tag(xt, rtag);
 294}
 295
 296static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
 297{
 298    if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
 299        arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
 300                                    cpu_mmu_index(env, false), ra);
 301        g_assert_not_reached();
 302    }
 303}
 304
 305/* For use in a non-parallel context, store to the given nibble.  */
 306static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
 307{
 308    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 309    *mem = deposit32(*mem, ofs, 4, tag);
 310}
 311
 312/* For use in a parallel context, atomically store to the given nibble.  */
 313static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
 314{
 315    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 316    uint8_t old = qatomic_read(mem);
 317
 318    while (1) {
 319        uint8_t new = deposit32(old, ofs, 4, tag);
 320        uint8_t cmp = qatomic_cmpxchg(mem, old, new);
 321        if (likely(cmp == old)) {
 322            return;
 323        }
 324        old = cmp;
 325    }
 326}
 327
 328typedef void stg_store1(uint64_t, uint8_t *, int);
 329
 330static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
 331                          uintptr_t ra, stg_store1 store1)
 332{
 333    int mmu_idx = cpu_mmu_index(env, false);
 334    uint8_t *mem;
 335
 336    check_tag_aligned(env, ptr, ra);
 337
 338    /* Trap if accessing an invalid page.  */
 339    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
 340                             MMU_DATA_STORE, 1, ra);
 341
 342    /* Store if page supports tags. */
 343    if (mem) {
 344        store1(ptr, mem, allocation_tag_from_addr(xt));
 345    }
 346}
 347
 348void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 349{
 350    do_stg(env, ptr, xt, GETPC(), store_tag1);
 351}
 352
 353void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 354{
 355    do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
 356}
 357
 358void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
 359{
 360    int mmu_idx = cpu_mmu_index(env, false);
 361    uintptr_t ra = GETPC();
 362
 363    check_tag_aligned(env, ptr, ra);
 364    probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 365}
 366
 367static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
 368                           uintptr_t ra, stg_store1 store1)
 369{
 370    int mmu_idx = cpu_mmu_index(env, false);
 371    int tag = allocation_tag_from_addr(xt);
 372    uint8_t *mem1, *mem2;
 373
 374    check_tag_aligned(env, ptr, ra);
 375
 376    /*
 377     * Trap if accessing an invalid page(s).
 378     * This takes priority over !allocation_tag_access_enabled.
 379     */
 380    if (ptr & TAG_GRANULE) {
 381        /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
 382        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 383                                  TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 384        mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
 385                                  MMU_DATA_STORE, TAG_GRANULE,
 386                                  MMU_DATA_STORE, 1, ra);
 387
 388        /* Store if page(s) support tags. */
 389        if (mem1) {
 390            store1(TAG_GRANULE, mem1, tag);
 391        }
 392        if (mem2) {
 393            store1(0, mem2, tag);
 394        }
 395    } else {
 396        /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
 397        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 398                                  2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 399        if (mem1) {
 400            tag |= tag << 4;
 401            qatomic_set(mem1, tag);
 402        }
 403    }
 404}
 405
 406void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 407{
 408    do_st2g(env, ptr, xt, GETPC(), store_tag1);
 409}
 410
 411void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 412{
 413    do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
 414}
 415
 416void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
 417{
 418    int mmu_idx = cpu_mmu_index(env, false);
 419    uintptr_t ra = GETPC();
 420    int in_page = -(ptr | TARGET_PAGE_MASK);
 421
 422    check_tag_aligned(env, ptr, ra);
 423
 424    if (likely(in_page >= 2 * TAG_GRANULE)) {
 425        probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
 426    } else {
 427        probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 428        probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
 429    }
 430}
 431
 432#define LDGM_STGM_SIZE  (4 << GMID_EL1_BS)
 433
 434uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
 435{
 436    int mmu_idx = cpu_mmu_index(env, false);
 437    uintptr_t ra = GETPC();
 438    void *tag_mem;
 439
 440    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 441
 442    /* Trap if accessing an invalid page.  */
 443    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
 444                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
 445                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 446
 447    /* The tag is squashed to zero if the page does not support tags.  */
 448    if (!tag_mem) {
 449        return 0;
 450    }
 451
 452    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 453    /*
 454     * We are loading 64-bits worth of tags.  The ordering of elements
 455     * within the word corresponds to a 64-bit little-endian operation.
 456     */
 457    return ldq_le_p(tag_mem);
 458}
 459
 460void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
 461{
 462    int mmu_idx = cpu_mmu_index(env, false);
 463    uintptr_t ra = GETPC();
 464    void *tag_mem;
 465
 466    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 467
 468    /* Trap if accessing an invalid page.  */
 469    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 470                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
 471                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 472
 473    /*
 474     * Tag store only happens if the page support tags,
 475     * and if the OS has enabled access to the tags.
 476     */
 477    if (!tag_mem) {
 478        return;
 479    }
 480
 481    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 482    /*
 483     * We are storing 64-bits worth of tags.  The ordering of elements
 484     * within the word corresponds to a 64-bit little-endian operation.
 485     */
 486    stq_le_p(tag_mem, val);
 487}
 488
 489void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
 490{
 491    uintptr_t ra = GETPC();
 492    int mmu_idx = cpu_mmu_index(env, false);
 493    int log2_dcz_bytes, log2_tag_bytes;
 494    intptr_t dcz_bytes, tag_bytes;
 495    uint8_t *mem;
 496
 497    /*
 498     * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
 499     * i.e. 32 bytes, which is an unreasonably small dcz anyway,
 500     * to make sure that we can access one complete tag byte here.
 501     */
 502    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 503    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 504    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 505    tag_bytes = (intptr_t)1 << log2_tag_bytes;
 506    ptr &= -dcz_bytes;
 507
 508    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
 509                             MMU_DATA_STORE, tag_bytes, ra);
 510    if (mem) {
 511        int tag_pair = (val & 0xf) * 0x11;
 512        memset(mem, tag_pair, tag_bytes);
 513    }
 514}
 515
 516/* Record a tag check failure.  */
 517static void mte_check_fail(CPUARMState *env, uint32_t desc,
 518                           uint64_t dirty_ptr, uintptr_t ra)
 519{
 520    int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 521    ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
 522    int el, reg_el, tcf, select, is_write, syn;
 523    uint64_t sctlr;
 524
 525    reg_el = regime_el(env, arm_mmu_idx);
 526    sctlr = env->cp15.sctlr_el[reg_el];
 527
 528    el = arm_current_el(env);
 529    if (el == 0) {
 530        tcf = extract64(sctlr, 38, 2);
 531    } else {
 532        tcf = extract64(sctlr, 40, 2);
 533    }
 534
 535    switch (tcf) {
 536    case 1:
 537        /*
 538         * Tag check fail causes a synchronous exception.
 539         *
 540         * In restore_state_to_opc, we set the exception syndrome
 541         * for the load or store operation.  Unwind first so we
 542         * may overwrite that with the syndrome for the tag check.
 543         */
 544        cpu_restore_state(env_cpu(env), ra, true);
 545        env->exception.vaddress = dirty_ptr;
 546
 547        is_write = FIELD_EX32(desc, MTEDESC, WRITE);
 548        syn = syn_data_abort_no_iss(el != 0, 0, 0, 0, 0, is_write, 0x11);
 549        raise_exception(env, EXCP_DATA_ABORT, syn, exception_target_el(env));
 550        /* noreturn, but fall through to the assert anyway */
 551
 552    case 0:
 553        /*
 554         * Tag check fail does not affect the PE.
 555         * We eliminate this case by not setting MTE_ACTIVE
 556         * in tb_flags, so that we never make this runtime call.
 557         */
 558        g_assert_not_reached();
 559
 560    case 2:
 561        /* Tag check fail causes asynchronous flag set.  */
 562        if (regime_has_2_ranges(arm_mmu_idx)) {
 563            select = extract64(dirty_ptr, 55, 1);
 564        } else {
 565            select = 0;
 566        }
 567        env->cp15.tfsr_el[el] |= 1 << select;
 568        break;
 569
 570    default:
 571        /* Case 3: Reserved. */
 572        qemu_log_mask(LOG_GUEST_ERROR,
 573                      "Tag check failure with SCTLR_EL%d.TCF%s "
 574                      "set to reserved value %d\n",
 575                      reg_el, el ? "" : "0", tcf);
 576        break;
 577    }
 578}
 579
 580/*
 581 * Perform an MTE checked access for a single logical or atomic access.
 582 */
 583static bool mte_probe1_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
 584                           uintptr_t ra, int bit55)
 585{
 586    int mem_tag, mmu_idx, ptr_tag, size;
 587    MMUAccessType type;
 588    uint8_t *mem;
 589
 590    ptr_tag = allocation_tag_from_addr(ptr);
 591
 592    if (tcma_check(desc, bit55, ptr_tag)) {
 593        return true;
 594    }
 595
 596    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 597    type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
 598    size = FIELD_EX32(desc, MTEDESC, ESIZE);
 599
 600    mem = allocation_tag_mem(env, mmu_idx, ptr, type, size,
 601                             MMU_DATA_LOAD, 1, ra);
 602    if (!mem) {
 603        return true;
 604    }
 605
 606    mem_tag = load_tag1(ptr, mem);
 607    return ptr_tag == mem_tag;
 608}
 609
 610/*
 611 * No-fault version of mte_check1, to be used by SVE for MemSingleNF.
 612 * Returns false if the access is Checked and the check failed.  This
 613 * is only intended to probe the tag -- the validity of the page must
 614 * be checked beforehand.
 615 */
 616bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr)
 617{
 618    int bit55 = extract64(ptr, 55, 1);
 619
 620    /* If TBI is disabled, the access is unchecked. */
 621    if (unlikely(!tbi_check(desc, bit55))) {
 622        return true;
 623    }
 624
 625    return mte_probe1_int(env, desc, ptr, 0, bit55);
 626}
 627
 628uint64_t mte_check1(CPUARMState *env, uint32_t desc,
 629                    uint64_t ptr, uintptr_t ra)
 630{
 631    int bit55 = extract64(ptr, 55, 1);
 632
 633    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 634    if (unlikely(!tbi_check(desc, bit55))) {
 635        return ptr;
 636    }
 637
 638    if (unlikely(!mte_probe1_int(env, desc, ptr, ra, bit55))) {
 639        mte_check_fail(env, desc, ptr, ra);
 640    }
 641
 642    return useronly_clean_ptr(ptr);
 643}
 644
 645uint64_t HELPER(mte_check1)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 646{
 647    return mte_check1(env, desc, ptr, GETPC());
 648}
 649
 650/*
 651 * Perform an MTE checked access for multiple logical accesses.
 652 */
 653
 654/**
 655 * checkN:
 656 * @tag: tag memory to test
 657 * @odd: true to begin testing at tags at odd nibble
 658 * @cmp: the tag to compare against
 659 * @count: number of tags to test
 660 *
 661 * Return the number of successful tests.
 662 * Thus a return value < @count indicates a failure.
 663 *
 664 * A note about sizes: count is expected to be small.
 665 *
 666 * The most common use will be LDP/STP of two integer registers,
 667 * which means 16 bytes of memory touching at most 2 tags, but
 668 * often the access is aligned and thus just 1 tag.
 669 *
 670 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
 671 * touching at most 5 tags.  SVE LDR/STR (vector) with the default
 672 * vector length is also 64 bytes; the maximum architectural length
 673 * is 256 bytes touching at most 9 tags.
 674 *
 675 * The loop below uses 7 logical operations and 1 memory operation
 676 * per tag pair.  An implementation that loads an aligned word and
 677 * uses masking to ignore adjacent tags requires 18 logical operations
 678 * and thus does not begin to pay off until 6 tags.
 679 * Which, according to the survey above, is unlikely to be common.
 680 */
 681static int checkN(uint8_t *mem, int odd, int cmp, int count)
 682{
 683    int n = 0, diff;
 684
 685    /* Replicate the test tag and compare.  */
 686    cmp *= 0x11;
 687    diff = *mem++ ^ cmp;
 688
 689    if (odd) {
 690        goto start_odd;
 691    }
 692
 693    while (1) {
 694        /* Test even tag. */
 695        if (unlikely((diff) & 0x0f)) {
 696            break;
 697        }
 698        if (++n == count) {
 699            break;
 700        }
 701
 702    start_odd:
 703        /* Test odd tag. */
 704        if (unlikely((diff) & 0xf0)) {
 705            break;
 706        }
 707        if (++n == count) {
 708            break;
 709        }
 710
 711        diff = *mem++ ^ cmp;
 712    }
 713    return n;
 714}
 715
 716uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
 717                    uint64_t ptr, uintptr_t ra)
 718{
 719    int mmu_idx, ptr_tag, bit55;
 720    uint64_t ptr_last, ptr_end, prev_page, next_page;
 721    uint64_t tag_first, tag_end;
 722    uint64_t tag_byte_first, tag_byte_end;
 723    uint32_t esize, total, tag_count, tag_size, n, c;
 724    uint8_t *mem1, *mem2;
 725    MMUAccessType type;
 726
 727    bit55 = extract64(ptr, 55, 1);
 728
 729    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 730    if (unlikely(!tbi_check(desc, bit55))) {
 731        return ptr;
 732    }
 733
 734    ptr_tag = allocation_tag_from_addr(ptr);
 735
 736    if (tcma_check(desc, bit55, ptr_tag)) {
 737        goto done;
 738    }
 739
 740    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 741    type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
 742    esize = FIELD_EX32(desc, MTEDESC, ESIZE);
 743    total = FIELD_EX32(desc, MTEDESC, TSIZE);
 744
 745    /* Find the addr of the end of the access, and of the last element. */
 746    ptr_end = ptr + total;
 747    ptr_last = ptr_end - esize;
 748
 749    /* Round the bounds to the tag granule, and compute the number of tags. */
 750    tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
 751    tag_end = QEMU_ALIGN_UP(ptr_last, TAG_GRANULE);
 752    tag_count = (tag_end - tag_first) / TAG_GRANULE;
 753
 754    /* Round the bounds to twice the tag granule, and compute the bytes. */
 755    tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
 756    tag_byte_end = QEMU_ALIGN_UP(ptr_last, 2 * TAG_GRANULE);
 757
 758    /* Locate the page boundaries. */
 759    prev_page = ptr & TARGET_PAGE_MASK;
 760    next_page = prev_page + TARGET_PAGE_SIZE;
 761
 762    if (likely(tag_end - prev_page <= TARGET_PAGE_SIZE)) {
 763        /* Memory access stays on one page. */
 764        tag_size = (tag_byte_end - tag_byte_first) / (2 * TAG_GRANULE);
 765        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, total,
 766                                  MMU_DATA_LOAD, tag_size, ra);
 767        if (!mem1) {
 768            goto done;
 769        }
 770        /* Perform all of the comparisons. */
 771        n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
 772    } else {
 773        /* Memory access crosses to next page. */
 774        tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
 775        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
 776                                  MMU_DATA_LOAD, tag_size, ra);
 777
 778        tag_size = (tag_byte_end - next_page) / (2 * TAG_GRANULE);
 779        mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
 780                                  ptr_end - next_page,
 781                                  MMU_DATA_LOAD, tag_size, ra);
 782
 783        /*
 784         * Perform all of the comparisons.
 785         * Note the possible but unlikely case of the operation spanning
 786         * two pages that do not both have tagging enabled.
 787         */
 788        n = c = (next_page - tag_first) / TAG_GRANULE;
 789        if (mem1) {
 790            n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
 791        }
 792        if (n == c) {
 793            if (!mem2) {
 794                goto done;
 795            }
 796            n += checkN(mem2, 0, ptr_tag, tag_count - c);
 797        }
 798    }
 799
 800    /*
 801     * If we failed, we know which granule.  Compute the element that
 802     * is first in that granule, and signal failure on that element.
 803     */
 804    if (unlikely(n < tag_count)) {
 805        uint64_t fail_ofs;
 806
 807        fail_ofs = tag_first + n * TAG_GRANULE - ptr;
 808        fail_ofs = ROUND_UP(fail_ofs, esize);
 809        mte_check_fail(env, desc, ptr + fail_ofs, ra);
 810    }
 811
 812 done:
 813    return useronly_clean_ptr(ptr);
 814}
 815
 816uint64_t HELPER(mte_checkN)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 817{
 818    return mte_checkN(env, desc, ptr, GETPC());
 819}
 820
 821/*
 822 * Perform an MTE checked access for DC_ZVA.
 823 */
 824uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 825{
 826    uintptr_t ra = GETPC();
 827    int log2_dcz_bytes, log2_tag_bytes;
 828    int mmu_idx, bit55;
 829    intptr_t dcz_bytes, tag_bytes, i;
 830    void *mem;
 831    uint64_t ptr_tag, mem_tag, align_ptr;
 832
 833    bit55 = extract64(ptr, 55, 1);
 834
 835    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 836    if (unlikely(!tbi_check(desc, bit55))) {
 837        return ptr;
 838    }
 839
 840    ptr_tag = allocation_tag_from_addr(ptr);
 841
 842    if (tcma_check(desc, bit55, ptr_tag)) {
 843        goto done;
 844    }
 845
 846    /*
 847     * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
 848     * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
 849     * sure that we can access one complete tag byte here.
 850     */
 851    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 852    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 853    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 854    tag_bytes = (intptr_t)1 << log2_tag_bytes;
 855    align_ptr = ptr & -dcz_bytes;
 856
 857    /*
 858     * Trap if accessing an invalid page.  DC_ZVA requires that we supply
 859     * the original pointer for an invalid page.  But watchpoints require
 860     * that we probe the actual space.  So do both.
 861     */
 862    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 863    (void) probe_write(env, ptr, 1, mmu_idx, ra);
 864    mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
 865                             dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
 866    if (!mem) {
 867        goto done;
 868    }
 869
 870    /*
 871     * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
 872     * it is quite easy to perform all of the comparisons at once without
 873     * any extra masking.
 874     *
 875     * The most common zva block size is 64; some of the thunderx cpus use
 876     * a block size of 128.  For user-only, aarch64_max_initfn will set the
 877     * block size to 512.  Fill out the other cases for future-proofing.
 878     *
 879     * In order to be able to find the first miscompare later, we want the
 880     * tag bytes to be in little-endian order.
 881     */
 882    switch (log2_tag_bytes) {
 883    case 0: /* zva_blocksize 32 */
 884        mem_tag = *(uint8_t *)mem;
 885        ptr_tag *= 0x11u;
 886        break;
 887    case 1: /* zva_blocksize 64 */
 888        mem_tag = cpu_to_le16(*(uint16_t *)mem);
 889        ptr_tag *= 0x1111u;
 890        break;
 891    case 2: /* zva_blocksize 128 */
 892        mem_tag = cpu_to_le32(*(uint32_t *)mem);
 893        ptr_tag *= 0x11111111u;
 894        break;
 895    case 3: /* zva_blocksize 256 */
 896        mem_tag = cpu_to_le64(*(uint64_t *)mem);
 897        ptr_tag *= 0x1111111111111111ull;
 898        break;
 899
 900    default: /* zva_blocksize 512, 1024, 2048 */
 901        ptr_tag *= 0x1111111111111111ull;
 902        i = 0;
 903        do {
 904            mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
 905            if (unlikely(mem_tag != ptr_tag)) {
 906                goto fail;
 907            }
 908            i += 8;
 909            align_ptr += 16 * TAG_GRANULE;
 910        } while (i < tag_bytes);
 911        goto done;
 912    }
 913
 914    if (likely(mem_tag == ptr_tag)) {
 915        goto done;
 916    }
 917
 918 fail:
 919    /* Locate the first nibble that differs. */
 920    i = ctz64(mem_tag ^ ptr_tag) >> 4;
 921    mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
 922
 923 done:
 924    return useronly_clean_ptr(ptr);
 925}
 926