qemu/target/avr/helper.c
<<
>>
Prefs
   1/*
   2 * QEMU AVR CPU helpers
   3 *
   4 * Copyright (c) 2016-2020 Michael Rolnik
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see
  18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "cpu.h"
  23#include "exec/exec-all.h"
  24#include "exec/address-spaces.h"
  25#include "exec/helper-proto.h"
  26
  27bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
  28{
  29    bool ret = false;
  30    CPUClass *cc = CPU_GET_CLASS(cs);
  31    AVRCPU *cpu = AVR_CPU(cs);
  32    CPUAVRState *env = &cpu->env;
  33
  34    if (interrupt_request & CPU_INTERRUPT_RESET) {
  35        if (cpu_interrupts_enabled(env)) {
  36            cs->exception_index = EXCP_RESET;
  37            cc->do_interrupt(cs);
  38
  39            cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
  40
  41            ret = true;
  42        }
  43    }
  44    if (interrupt_request & CPU_INTERRUPT_HARD) {
  45        if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
  46            int index = ctz32(env->intsrc);
  47            cs->exception_index = EXCP_INT(index);
  48            cc->do_interrupt(cs);
  49
  50            env->intsrc &= env->intsrc - 1; /* clear the interrupt */
  51            cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
  52
  53            ret = true;
  54        }
  55    }
  56    return ret;
  57}
  58
  59void avr_cpu_do_interrupt(CPUState *cs)
  60{
  61    AVRCPU *cpu = AVR_CPU(cs);
  62    CPUAVRState *env = &cpu->env;
  63
  64    uint32_t ret = env->pc_w;
  65    int vector = 0;
  66    int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
  67    int base = 0;
  68
  69    if (cs->exception_index == EXCP_RESET) {
  70        vector = 0;
  71    } else if (env->intsrc != 0) {
  72        vector = ctz32(env->intsrc) + 1;
  73    }
  74
  75    if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
  76        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
  77        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
  78        cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
  79    } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
  80        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
  81        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
  82    } else {
  83        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
  84    }
  85
  86    env->pc_w = base + vector * size;
  87    env->sregI = 0; /* clear Global Interrupt Flag */
  88
  89    cs->exception_index = -1;
  90}
  91
  92int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
  93                            int len, bool is_write)
  94{
  95    return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
  96}
  97
  98hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
  99{
 100    return addr; /* I assume 1:1 address correspondance */
 101}
 102
 103bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 104                      MMUAccessType access_type, int mmu_idx,
 105                      bool probe, uintptr_t retaddr)
 106{
 107    int prot = 0;
 108    MemTxAttrs attrs = {};
 109    uint32_t paddr;
 110
 111    address &= TARGET_PAGE_MASK;
 112
 113    if (mmu_idx == MMU_CODE_IDX) {
 114        /* access to code in flash */
 115        paddr = OFFSET_CODE + address;
 116        prot = PAGE_READ | PAGE_EXEC;
 117        if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
 118            error_report("execution left flash memory");
 119            abort();
 120        }
 121    } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 122        /*
 123         * access to CPU registers, exit and rebuilt this TB to use full access
 124         * incase it touches specially handled registers like SREG or SP
 125         */
 126        AVRCPU *cpu = AVR_CPU(cs);
 127        CPUAVRState *env = &cpu->env;
 128        env->fullacc = 1;
 129        cpu_loop_exit_restore(cs, retaddr);
 130    } else {
 131        /* access to memory. nothing special */
 132        paddr = OFFSET_DATA + address;
 133        prot = PAGE_READ | PAGE_WRITE;
 134    }
 135
 136    tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
 137                            mmu_idx, TARGET_PAGE_SIZE);
 138
 139    return true;
 140}
 141
 142/*
 143 *  helpers
 144 */
 145
 146void helper_sleep(CPUAVRState *env)
 147{
 148    CPUState *cs = env_cpu(env);
 149
 150    cs->exception_index = EXCP_HLT;
 151    cpu_loop_exit(cs);
 152}
 153
 154void helper_unsupported(CPUAVRState *env)
 155{
 156    CPUState *cs = env_cpu(env);
 157
 158    /*
 159     *  I count not find what happens on the real platform, so
 160     *  it's EXCP_DEBUG for meanwhile
 161     */
 162    cs->exception_index = EXCP_DEBUG;
 163    if (qemu_loglevel_mask(LOG_UNIMP)) {
 164        qemu_log("UNSUPPORTED\n");
 165        cpu_dump_state(cs, stderr, 0);
 166    }
 167    cpu_loop_exit(cs);
 168}
 169
 170void helper_debug(CPUAVRState *env)
 171{
 172    CPUState *cs = env_cpu(env);
 173
 174    cs->exception_index = EXCP_DEBUG;
 175    cpu_loop_exit(cs);
 176}
 177
 178void helper_break(CPUAVRState *env)
 179{
 180    CPUState *cs = env_cpu(env);
 181
 182    cs->exception_index = EXCP_DEBUG;
 183    cpu_loop_exit(cs);
 184}
 185
 186void helper_wdr(CPUAVRState *env)
 187{
 188    CPUState *cs = env_cpu(env);
 189
 190    /* WD is not implemented yet, placeholder */
 191    cs->exception_index = EXCP_DEBUG;
 192    cpu_loop_exit(cs);
 193}
 194
 195/*
 196 * This function implements IN instruction
 197 *
 198 * It does the following
 199 * a.  if an IO register belongs to CPU, its value is read and returned
 200 * b.  otherwise io address is translated to mem address and physical memory
 201 *     is read.
 202 * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
 203 *
 204 */
 205target_ulong helper_inb(CPUAVRState *env, uint32_t port)
 206{
 207    target_ulong data = 0;
 208
 209    switch (port) {
 210    case 0x38: /* RAMPD */
 211        data = 0xff & (env->rampD >> 16);
 212        break;
 213    case 0x39: /* RAMPX */
 214        data = 0xff & (env->rampX >> 16);
 215        break;
 216    case 0x3a: /* RAMPY */
 217        data = 0xff & (env->rampY >> 16);
 218        break;
 219    case 0x3b: /* RAMPZ */
 220        data = 0xff & (env->rampZ >> 16);
 221        break;
 222    case 0x3c: /* EIND */
 223        data = 0xff & (env->eind >> 16);
 224        break;
 225    case 0x3d: /* SPL */
 226        data = env->sp & 0x00ff;
 227        break;
 228    case 0x3e: /* SPH */
 229        data = env->sp >> 8;
 230        break;
 231    case 0x3f: /* SREG */
 232        data = cpu_get_sreg(env);
 233        break;
 234    default:
 235        /* not a special register, pass to normal memory access */
 236        data = address_space_ldub(&address_space_memory,
 237                                  OFFSET_IO_REGISTERS + port,
 238                                  MEMTXATTRS_UNSPECIFIED, NULL);
 239    }
 240
 241    return data;
 242}
 243
 244/*
 245 *  This function implements OUT instruction
 246 *
 247 *  It does the following
 248 *  a.  if an IO register belongs to CPU, its value is written into the register
 249 *  b.  otherwise io address is translated to mem address and physical memory
 250 *      is written.
 251 *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
 252 *
 253 */
 254void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
 255{
 256    data &= 0x000000ff;
 257
 258    switch (port) {
 259    case 0x38: /* RAMPD */
 260        if (avr_feature(env, AVR_FEATURE_RAMPD)) {
 261            env->rampD = (data & 0xff) << 16;
 262        }
 263        break;
 264    case 0x39: /* RAMPX */
 265        if (avr_feature(env, AVR_FEATURE_RAMPX)) {
 266            env->rampX = (data & 0xff) << 16;
 267        }
 268        break;
 269    case 0x3a: /* RAMPY */
 270        if (avr_feature(env, AVR_FEATURE_RAMPY)) {
 271            env->rampY = (data & 0xff) << 16;
 272        }
 273        break;
 274    case 0x3b: /* RAMPZ */
 275        if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
 276            env->rampZ = (data & 0xff) << 16;
 277        }
 278        break;
 279    case 0x3c: /* EIDN */
 280        env->eind = (data & 0xff) << 16;
 281        break;
 282    case 0x3d: /* SPL */
 283        env->sp = (env->sp & 0xff00) | (data);
 284        break;
 285    case 0x3e: /* SPH */
 286        if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
 287            env->sp = (env->sp & 0x00ff) | (data << 8);
 288        }
 289        break;
 290    case 0x3f: /* SREG */
 291        cpu_set_sreg(env, data);
 292        break;
 293    default:
 294        /* not a special register, pass to normal memory access */
 295        address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
 296                          data, MEMTXATTRS_UNSPECIFIED, NULL);
 297    }
 298}
 299
 300/*
 301 *  this function implements LD instruction when there is a posibility to read
 302 *  from a CPU register
 303 */
 304target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
 305{
 306    uint8_t data;
 307
 308    env->fullacc = false;
 309
 310    if (addr < NUMBER_OF_CPU_REGISTERS) {
 311        /* CPU registers */
 312        data = env->r[addr];
 313    } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 314        /* IO registers */
 315        data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
 316    } else {
 317        /* memory */
 318        data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
 319                                  MEMTXATTRS_UNSPECIFIED, NULL);
 320    }
 321    return data;
 322}
 323
 324/*
 325 *  this function implements ST instruction when there is a posibility to write
 326 *  into a CPU register
 327 */
 328void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
 329{
 330    env->fullacc = false;
 331
 332    /* Following logic assumes this: */
 333    assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
 334    assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
 335                                  NUMBER_OF_CPU_REGISTERS);
 336
 337    if (addr < NUMBER_OF_CPU_REGISTERS) {
 338        /* CPU registers */
 339        env->r[addr] = data;
 340    } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 341        /* IO registers */
 342        helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
 343    } else {
 344        /* memory */
 345        address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
 346                          MEMTXATTRS_UNSPECIFIED, NULL);
 347    }
 348}
 349