qemu/accel/kvm/kvm-all.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright IBM, Corp. 2008
   5 *           Red Hat, Inc. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *  Glauber Costa     <gcosta@redhat.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 *
  14 */
  15
  16#include "qemu/osdep.h"
  17#include <sys/ioctl.h>
  18
  19#include <linux/kvm.h>
  20
  21#include "qemu/atomic.h"
  22#include "qemu/option.h"
  23#include "qemu/config-file.h"
  24#include "qemu/error-report.h"
  25#include "qapi/error.h"
  26#include "hw/pci/msi.h"
  27#include "hw/pci/msix.h"
  28#include "hw/s390x/adapter.h"
  29#include "exec/gdbstub.h"
  30#include "sysemu/kvm_int.h"
  31#include "sysemu/runstate.h"
  32#include "sysemu/cpus.h"
  33#include "sysemu/sysemu.h"
  34#include "qemu/bswap.h"
  35#include "exec/memory.h"
  36#include "exec/ram_addr.h"
  37#include "exec/address-spaces.h"
  38#include "qemu/event_notifier.h"
  39#include "qemu/main-loop.h"
  40#include "trace.h"
  41#include "hw/irq.h"
  42#include "qapi/visitor.h"
  43#include "qapi/qapi-types-common.h"
  44#include "qapi/qapi-visit-common.h"
  45#include "sysemu/reset.h"
  46#include "qemu/guest-random.h"
  47#include "sysemu/hw_accel.h"
  48#include "kvm-cpus.h"
  49
  50#include "hw/boards.h"
  51
  52/* This check must be after config-host.h is included */
  53#ifdef CONFIG_EVENTFD
  54#include <sys/eventfd.h>
  55#endif
  56
  57/* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
  58 * need to use the real host PAGE_SIZE, as that's what KVM will use.
  59 */
  60#ifdef PAGE_SIZE
  61#undef PAGE_SIZE
  62#endif
  63#define PAGE_SIZE qemu_real_host_page_size
  64
  65//#define DEBUG_KVM
  66
  67#ifdef DEBUG_KVM
  68#define DPRINTF(fmt, ...) \
  69    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  70#else
  71#define DPRINTF(fmt, ...) \
  72    do { } while (0)
  73#endif
  74
  75#define KVM_MSI_HASHTAB_SIZE    256
  76
  77struct KVMParkedVcpu {
  78    unsigned long vcpu_id;
  79    int kvm_fd;
  80    QLIST_ENTRY(KVMParkedVcpu) node;
  81};
  82
  83struct KVMState
  84{
  85    AccelState parent_obj;
  86
  87    int nr_slots;
  88    int fd;
  89    int vmfd;
  90    int coalesced_mmio;
  91    int coalesced_pio;
  92    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  93    bool coalesced_flush_in_progress;
  94    int vcpu_events;
  95    int robust_singlestep;
  96    int debugregs;
  97#ifdef KVM_CAP_SET_GUEST_DEBUG
  98    QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
  99#endif
 100    int max_nested_state_len;
 101    int many_ioeventfds;
 102    int intx_set_mask;
 103    int kvm_shadow_mem;
 104    bool kernel_irqchip_allowed;
 105    bool kernel_irqchip_required;
 106    OnOffAuto kernel_irqchip_split;
 107    bool sync_mmu;
 108    uint64_t manual_dirty_log_protect;
 109    /* The man page (and posix) say ioctl numbers are signed int, but
 110     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
 111     * unsigned, and treating them as signed here can break things */
 112    unsigned irq_set_ioctl;
 113    unsigned int sigmask_len;
 114    GHashTable *gsimap;
 115#ifdef KVM_CAP_IRQ_ROUTING
 116    struct kvm_irq_routing *irq_routes;
 117    int nr_allocated_irq_routes;
 118    unsigned long *used_gsi_bitmap;
 119    unsigned int gsi_count;
 120    QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
 121#endif
 122    KVMMemoryListener memory_listener;
 123    QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
 124
 125    /* For "info mtree -f" to tell if an MR is registered in KVM */
 126    int nr_as;
 127    struct KVMAs {
 128        KVMMemoryListener *ml;
 129        AddressSpace *as;
 130    } *as;
 131};
 132
 133KVMState *kvm_state;
 134bool kvm_kernel_irqchip;
 135bool kvm_split_irqchip;
 136bool kvm_async_interrupts_allowed;
 137bool kvm_halt_in_kernel_allowed;
 138bool kvm_eventfds_allowed;
 139bool kvm_irqfds_allowed;
 140bool kvm_resamplefds_allowed;
 141bool kvm_msi_via_irqfd_allowed;
 142bool kvm_gsi_routing_allowed;
 143bool kvm_gsi_direct_mapping;
 144bool kvm_allowed;
 145bool kvm_readonly_mem_allowed;
 146bool kvm_vm_attributes_allowed;
 147bool kvm_direct_msi_allowed;
 148bool kvm_ioeventfd_any_length_allowed;
 149bool kvm_msi_use_devid;
 150static bool kvm_immediate_exit;
 151static hwaddr kvm_max_slot_size = ~0;
 152
 153static const KVMCapabilityInfo kvm_required_capabilites[] = {
 154    KVM_CAP_INFO(USER_MEMORY),
 155    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 156    KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
 157    KVM_CAP_LAST_INFO
 158};
 159
 160static NotifierList kvm_irqchip_change_notifiers =
 161    NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
 162
 163struct KVMResampleFd {
 164    int gsi;
 165    EventNotifier *resample_event;
 166    QLIST_ENTRY(KVMResampleFd) node;
 167};
 168typedef struct KVMResampleFd KVMResampleFd;
 169
 170/*
 171 * Only used with split irqchip where we need to do the resample fd
 172 * kick for the kernel from userspace.
 173 */
 174static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
 175    QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
 176
 177#define kvm_slots_lock(kml)      qemu_mutex_lock(&(kml)->slots_lock)
 178#define kvm_slots_unlock(kml)    qemu_mutex_unlock(&(kml)->slots_lock)
 179
 180static inline void kvm_resample_fd_remove(int gsi)
 181{
 182    KVMResampleFd *rfd;
 183
 184    QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
 185        if (rfd->gsi == gsi) {
 186            QLIST_REMOVE(rfd, node);
 187            g_free(rfd);
 188            break;
 189        }
 190    }
 191}
 192
 193static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
 194{
 195    KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
 196
 197    rfd->gsi = gsi;
 198    rfd->resample_event = event;
 199
 200    QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
 201}
 202
 203void kvm_resample_fd_notify(int gsi)
 204{
 205    KVMResampleFd *rfd;
 206
 207    QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
 208        if (rfd->gsi == gsi) {
 209            event_notifier_set(rfd->resample_event);
 210            trace_kvm_resample_fd_notify(gsi);
 211            return;
 212        }
 213    }
 214}
 215
 216int kvm_get_max_memslots(void)
 217{
 218    KVMState *s = KVM_STATE(current_accel());
 219
 220    return s->nr_slots;
 221}
 222
 223/* Called with KVMMemoryListener.slots_lock held */
 224static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
 225{
 226    KVMState *s = kvm_state;
 227    int i;
 228
 229    for (i = 0; i < s->nr_slots; i++) {
 230        if (kml->slots[i].memory_size == 0) {
 231            return &kml->slots[i];
 232        }
 233    }
 234
 235    return NULL;
 236}
 237
 238bool kvm_has_free_slot(MachineState *ms)
 239{
 240    KVMState *s = KVM_STATE(ms->accelerator);
 241    bool result;
 242    KVMMemoryListener *kml = &s->memory_listener;
 243
 244    kvm_slots_lock(kml);
 245    result = !!kvm_get_free_slot(kml);
 246    kvm_slots_unlock(kml);
 247
 248    return result;
 249}
 250
 251/* Called with KVMMemoryListener.slots_lock held */
 252static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
 253{
 254    KVMSlot *slot = kvm_get_free_slot(kml);
 255
 256    if (slot) {
 257        return slot;
 258    }
 259
 260    fprintf(stderr, "%s: no free slot available\n", __func__);
 261    abort();
 262}
 263
 264static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
 265                                         hwaddr start_addr,
 266                                         hwaddr size)
 267{
 268    KVMState *s = kvm_state;
 269    int i;
 270
 271    for (i = 0; i < s->nr_slots; i++) {
 272        KVMSlot *mem = &kml->slots[i];
 273
 274        if (start_addr == mem->start_addr && size == mem->memory_size) {
 275            return mem;
 276        }
 277    }
 278
 279    return NULL;
 280}
 281
 282/*
 283 * Calculate and align the start address and the size of the section.
 284 * Return the size. If the size is 0, the aligned section is empty.
 285 */
 286static hwaddr kvm_align_section(MemoryRegionSection *section,
 287                                hwaddr *start)
 288{
 289    hwaddr size = int128_get64(section->size);
 290    hwaddr delta, aligned;
 291
 292    /* kvm works in page size chunks, but the function may be called
 293       with sub-page size and unaligned start address. Pad the start
 294       address to next and truncate size to previous page boundary. */
 295    aligned = ROUND_UP(section->offset_within_address_space,
 296                       qemu_real_host_page_size);
 297    delta = aligned - section->offset_within_address_space;
 298    *start = aligned;
 299    if (delta > size) {
 300        return 0;
 301    }
 302
 303    return (size - delta) & qemu_real_host_page_mask;
 304}
 305
 306int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 307                                       hwaddr *phys_addr)
 308{
 309    KVMMemoryListener *kml = &s->memory_listener;
 310    int i, ret = 0;
 311
 312    kvm_slots_lock(kml);
 313    for (i = 0; i < s->nr_slots; i++) {
 314        KVMSlot *mem = &kml->slots[i];
 315
 316        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 317            *phys_addr = mem->start_addr + (ram - mem->ram);
 318            ret = 1;
 319            break;
 320        }
 321    }
 322    kvm_slots_unlock(kml);
 323
 324    return ret;
 325}
 326
 327static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
 328{
 329    KVMState *s = kvm_state;
 330    struct kvm_userspace_memory_region mem;
 331    int ret;
 332
 333    mem.slot = slot->slot | (kml->as_id << 16);
 334    mem.guest_phys_addr = slot->start_addr;
 335    mem.userspace_addr = (unsigned long)slot->ram;
 336    mem.flags = slot->flags;
 337
 338    if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
 339        /* Set the slot size to 0 before setting the slot to the desired
 340         * value. This is needed based on KVM commit 75d61fbc. */
 341        mem.memory_size = 0;
 342        ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 343        if (ret < 0) {
 344            goto err;
 345        }
 346    }
 347    mem.memory_size = slot->memory_size;
 348    ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 349    slot->old_flags = mem.flags;
 350err:
 351    trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
 352                              mem.memory_size, mem.userspace_addr, ret);
 353    if (ret < 0) {
 354        error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
 355                     " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
 356                     __func__, mem.slot, slot->start_addr,
 357                     (uint64_t)mem.memory_size, strerror(errno));
 358    }
 359    return ret;
 360}
 361
 362static int do_kvm_destroy_vcpu(CPUState *cpu)
 363{
 364    KVMState *s = kvm_state;
 365    long mmap_size;
 366    struct KVMParkedVcpu *vcpu = NULL;
 367    int ret = 0;
 368
 369    DPRINTF("kvm_destroy_vcpu\n");
 370
 371    ret = kvm_arch_destroy_vcpu(cpu);
 372    if (ret < 0) {
 373        goto err;
 374    }
 375
 376    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 377    if (mmap_size < 0) {
 378        ret = mmap_size;
 379        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 380        goto err;
 381    }
 382
 383    ret = munmap(cpu->kvm_run, mmap_size);
 384    if (ret < 0) {
 385        goto err;
 386    }
 387
 388    vcpu = g_malloc0(sizeof(*vcpu));
 389    vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
 390    vcpu->kvm_fd = cpu->kvm_fd;
 391    QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
 392err:
 393    return ret;
 394}
 395
 396void kvm_destroy_vcpu(CPUState *cpu)
 397{
 398    if (do_kvm_destroy_vcpu(cpu) < 0) {
 399        error_report("kvm_destroy_vcpu failed");
 400        exit(EXIT_FAILURE);
 401    }
 402}
 403
 404static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
 405{
 406    struct KVMParkedVcpu *cpu;
 407
 408    QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
 409        if (cpu->vcpu_id == vcpu_id) {
 410            int kvm_fd;
 411
 412            QLIST_REMOVE(cpu, node);
 413            kvm_fd = cpu->kvm_fd;
 414            g_free(cpu);
 415            return kvm_fd;
 416        }
 417    }
 418
 419    return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
 420}
 421
 422int kvm_init_vcpu(CPUState *cpu, Error **errp)
 423{
 424    KVMState *s = kvm_state;
 425    long mmap_size;
 426    int ret;
 427
 428    trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
 429
 430    ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
 431    if (ret < 0) {
 432        error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
 433                         kvm_arch_vcpu_id(cpu));
 434        goto err;
 435    }
 436
 437    cpu->kvm_fd = ret;
 438    cpu->kvm_state = s;
 439    cpu->vcpu_dirty = true;
 440
 441    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 442    if (mmap_size < 0) {
 443        ret = mmap_size;
 444        error_setg_errno(errp, -mmap_size,
 445                         "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
 446        goto err;
 447    }
 448
 449    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 450                        cpu->kvm_fd, 0);
 451    if (cpu->kvm_run == MAP_FAILED) {
 452        ret = -errno;
 453        error_setg_errno(errp, ret,
 454                         "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
 455                         kvm_arch_vcpu_id(cpu));
 456        goto err;
 457    }
 458
 459    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 460        s->coalesced_mmio_ring =
 461            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 462    }
 463
 464    ret = kvm_arch_init_vcpu(cpu);
 465    if (ret < 0) {
 466        error_setg_errno(errp, -ret,
 467                         "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
 468                         kvm_arch_vcpu_id(cpu));
 469    }
 470err:
 471    return ret;
 472}
 473
 474/*
 475 * dirty pages logging control
 476 */
 477
 478static int kvm_mem_flags(MemoryRegion *mr)
 479{
 480    bool readonly = mr->readonly || memory_region_is_romd(mr);
 481    int flags = 0;
 482
 483    if (memory_region_get_dirty_log_mask(mr) != 0) {
 484        flags |= KVM_MEM_LOG_DIRTY_PAGES;
 485    }
 486    if (readonly && kvm_readonly_mem_allowed) {
 487        flags |= KVM_MEM_READONLY;
 488    }
 489    return flags;
 490}
 491
 492/* Called with KVMMemoryListener.slots_lock held */
 493static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
 494                                 MemoryRegion *mr)
 495{
 496    mem->flags = kvm_mem_flags(mr);
 497
 498    /* If nothing changed effectively, no need to issue ioctl */
 499    if (mem->flags == mem->old_flags) {
 500        return 0;
 501    }
 502
 503    return kvm_set_user_memory_region(kml, mem, false);
 504}
 505
 506static int kvm_section_update_flags(KVMMemoryListener *kml,
 507                                    MemoryRegionSection *section)
 508{
 509    hwaddr start_addr, size, slot_size;
 510    KVMSlot *mem;
 511    int ret = 0;
 512
 513    size = kvm_align_section(section, &start_addr);
 514    if (!size) {
 515        return 0;
 516    }
 517
 518    kvm_slots_lock(kml);
 519
 520    while (size && !ret) {
 521        slot_size = MIN(kvm_max_slot_size, size);
 522        mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
 523        if (!mem) {
 524            /* We don't have a slot if we want to trap every access. */
 525            goto out;
 526        }
 527
 528        ret = kvm_slot_update_flags(kml, mem, section->mr);
 529        start_addr += slot_size;
 530        size -= slot_size;
 531    }
 532
 533out:
 534    kvm_slots_unlock(kml);
 535    return ret;
 536}
 537
 538static void kvm_log_start(MemoryListener *listener,
 539                          MemoryRegionSection *section,
 540                          int old, int new)
 541{
 542    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 543    int r;
 544
 545    if (old != 0) {
 546        return;
 547    }
 548
 549    r = kvm_section_update_flags(kml, section);
 550    if (r < 0) {
 551        abort();
 552    }
 553}
 554
 555static void kvm_log_stop(MemoryListener *listener,
 556                          MemoryRegionSection *section,
 557                          int old, int new)
 558{
 559    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 560    int r;
 561
 562    if (new != 0) {
 563        return;
 564    }
 565
 566    r = kvm_section_update_flags(kml, section);
 567    if (r < 0) {
 568        abort();
 569    }
 570}
 571
 572/* get kvm's dirty pages bitmap and update qemu's */
 573static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
 574                                         unsigned long *bitmap)
 575{
 576    ram_addr_t start = section->offset_within_region +
 577                       memory_region_get_ram_addr(section->mr);
 578    ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
 579
 580    cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
 581    return 0;
 582}
 583
 584#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 585
 586/* Allocate the dirty bitmap for a slot  */
 587static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
 588{
 589    /*
 590     * XXX bad kernel interface alert
 591     * For dirty bitmap, kernel allocates array of size aligned to
 592     * bits-per-long.  But for case when the kernel is 64bits and
 593     * the userspace is 32bits, userspace can't align to the same
 594     * bits-per-long, since sizeof(long) is different between kernel
 595     * and user space.  This way, userspace will provide buffer which
 596     * may be 4 bytes less than the kernel will use, resulting in
 597     * userspace memory corruption (which is not detectable by valgrind
 598     * too, in most cases).
 599     * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 600     * a hope that sizeof(long) won't become >8 any time soon.
 601     *
 602     * Note: the granule of kvm dirty log is qemu_real_host_page_size.
 603     * And mem->memory_size is aligned to it (otherwise this mem can't
 604     * be registered to KVM).
 605     */
 606    hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
 607                                        /*HOST_LONG_BITS*/ 64) / 8;
 608    mem->dirty_bmap = g_malloc0(bitmap_size);
 609}
 610
 611/**
 612 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
 613 *
 614 * This function will first try to fetch dirty bitmap from the kernel,
 615 * and then updates qemu's dirty bitmap.
 616 *
 617 * NOTE: caller must be with kml->slots_lock held.
 618 *
 619 * @kml: the KVM memory listener object
 620 * @section: the memory section to sync the dirty bitmap with
 621 */
 622static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
 623                                          MemoryRegionSection *section)
 624{
 625    KVMState *s = kvm_state;
 626    struct kvm_dirty_log d = {};
 627    KVMSlot *mem;
 628    hwaddr start_addr, size;
 629    hwaddr slot_size, slot_offset = 0;
 630    int ret = 0;
 631
 632    size = kvm_align_section(section, &start_addr);
 633    while (size) {
 634        MemoryRegionSection subsection = *section;
 635
 636        slot_size = MIN(kvm_max_slot_size, size);
 637        mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
 638        if (!mem) {
 639            /* We don't have a slot if we want to trap every access. */
 640            goto out;
 641        }
 642
 643        if (!mem->dirty_bmap) {
 644            /* Allocate on the first log_sync, once and for all */
 645            kvm_memslot_init_dirty_bitmap(mem);
 646        }
 647
 648        d.dirty_bitmap = mem->dirty_bmap;
 649        d.slot = mem->slot | (kml->as_id << 16);
 650        ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
 651        if (ret == -ENOENT) {
 652            /* kernel does not have dirty bitmap in this slot */
 653            ret = 0;
 654        } else if (ret < 0) {
 655            error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno);
 656            goto out;
 657        } else {
 658            subsection.offset_within_region += slot_offset;
 659            subsection.size = int128_make64(slot_size);
 660            kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
 661        }
 662
 663        slot_offset += slot_size;
 664        start_addr += slot_size;
 665        size -= slot_size;
 666    }
 667out:
 668    return ret;
 669}
 670
 671/* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
 672#define KVM_CLEAR_LOG_SHIFT  6
 673#define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
 674#define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
 675
 676static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
 677                                  uint64_t size)
 678{
 679    KVMState *s = kvm_state;
 680    uint64_t end, bmap_start, start_delta, bmap_npages;
 681    struct kvm_clear_dirty_log d;
 682    unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
 683    int ret;
 684
 685    /*
 686     * We need to extend either the start or the size or both to
 687     * satisfy the KVM interface requirement.  Firstly, do the start
 688     * page alignment on 64 host pages
 689     */
 690    bmap_start = start & KVM_CLEAR_LOG_MASK;
 691    start_delta = start - bmap_start;
 692    bmap_start /= psize;
 693
 694    /*
 695     * The kernel interface has restriction on the size too, that either:
 696     *
 697     * (1) the size is 64 host pages aligned (just like the start), or
 698     * (2) the size fills up until the end of the KVM memslot.
 699     */
 700    bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
 701        << KVM_CLEAR_LOG_SHIFT;
 702    end = mem->memory_size / psize;
 703    if (bmap_npages > end - bmap_start) {
 704        bmap_npages = end - bmap_start;
 705    }
 706    start_delta /= psize;
 707
 708    /*
 709     * Prepare the bitmap to clear dirty bits.  Here we must guarantee
 710     * that we won't clear any unknown dirty bits otherwise we might
 711     * accidentally clear some set bits which are not yet synced from
 712     * the kernel into QEMU's bitmap, then we'll lose track of the
 713     * guest modifications upon those pages (which can directly lead
 714     * to guest data loss or panic after migration).
 715     *
 716     * Layout of the KVMSlot.dirty_bmap:
 717     *
 718     *                   |<-------- bmap_npages -----------..>|
 719     *                                                     [1]
 720     *                     start_delta         size
 721     *  |----------------|-------------|------------------|------------|
 722     *  ^                ^             ^                               ^
 723     *  |                |             |                               |
 724     * start          bmap_start     (start)                         end
 725     * of memslot                                             of memslot
 726     *
 727     * [1] bmap_npages can be aligned to either 64 pages or the end of slot
 728     */
 729
 730    assert(bmap_start % BITS_PER_LONG == 0);
 731    /* We should never do log_clear before log_sync */
 732    assert(mem->dirty_bmap);
 733    if (start_delta || bmap_npages - size / psize) {
 734        /* Slow path - we need to manipulate a temp bitmap */
 735        bmap_clear = bitmap_new(bmap_npages);
 736        bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
 737                                    bmap_start, start_delta + size / psize);
 738        /*
 739         * We need to fill the holes at start because that was not
 740         * specified by the caller and we extended the bitmap only for
 741         * 64 pages alignment
 742         */
 743        bitmap_clear(bmap_clear, 0, start_delta);
 744        d.dirty_bitmap = bmap_clear;
 745    } else {
 746        /*
 747         * Fast path - both start and size align well with BITS_PER_LONG
 748         * (or the end of memory slot)
 749         */
 750        d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
 751    }
 752
 753    d.first_page = bmap_start;
 754    /* It should never overflow.  If it happens, say something */
 755    assert(bmap_npages <= UINT32_MAX);
 756    d.num_pages = bmap_npages;
 757    d.slot = mem->slot | (as_id << 16);
 758
 759    ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
 760    if (ret < 0 && ret != -ENOENT) {
 761        error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
 762                     "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
 763                     __func__, d.slot, (uint64_t)d.first_page,
 764                     (uint32_t)d.num_pages, ret);
 765    } else {
 766        ret = 0;
 767        trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
 768    }
 769
 770    /*
 771     * After we have updated the remote dirty bitmap, we update the
 772     * cached bitmap as well for the memslot, then if another user
 773     * clears the same region we know we shouldn't clear it again on
 774     * the remote otherwise it's data loss as well.
 775     */
 776    bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
 777                 size / psize);
 778    /* This handles the NULL case well */
 779    g_free(bmap_clear);
 780    return ret;
 781}
 782
 783
 784/**
 785 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
 786 *
 787 * NOTE: this will be a no-op if we haven't enabled manual dirty log
 788 * protection in the host kernel because in that case this operation
 789 * will be done within log_sync().
 790 *
 791 * @kml:     the kvm memory listener
 792 * @section: the memory range to clear dirty bitmap
 793 */
 794static int kvm_physical_log_clear(KVMMemoryListener *kml,
 795                                  MemoryRegionSection *section)
 796{
 797    KVMState *s = kvm_state;
 798    uint64_t start, size, offset, count;
 799    KVMSlot *mem;
 800    int ret = 0, i;
 801
 802    if (!s->manual_dirty_log_protect) {
 803        /* No need to do explicit clear */
 804        return ret;
 805    }
 806
 807    start = section->offset_within_address_space;
 808    size = int128_get64(section->size);
 809
 810    if (!size) {
 811        /* Nothing more we can do... */
 812        return ret;
 813    }
 814
 815    kvm_slots_lock(kml);
 816
 817    for (i = 0; i < s->nr_slots; i++) {
 818        mem = &kml->slots[i];
 819        /* Discard slots that are empty or do not overlap the section */
 820        if (!mem->memory_size ||
 821            mem->start_addr > start + size - 1 ||
 822            start > mem->start_addr + mem->memory_size - 1) {
 823            continue;
 824        }
 825
 826        if (start >= mem->start_addr) {
 827            /* The slot starts before section or is aligned to it.  */
 828            offset = start - mem->start_addr;
 829            count = MIN(mem->memory_size - offset, size);
 830        } else {
 831            /* The slot starts after section.  */
 832            offset = 0;
 833            count = MIN(mem->memory_size, size - (mem->start_addr - start));
 834        }
 835        ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
 836        if (ret < 0) {
 837            break;
 838        }
 839    }
 840
 841    kvm_slots_unlock(kml);
 842
 843    return ret;
 844}
 845
 846static void kvm_coalesce_mmio_region(MemoryListener *listener,
 847                                     MemoryRegionSection *secion,
 848                                     hwaddr start, hwaddr size)
 849{
 850    KVMState *s = kvm_state;
 851
 852    if (s->coalesced_mmio) {
 853        struct kvm_coalesced_mmio_zone zone;
 854
 855        zone.addr = start;
 856        zone.size = size;
 857        zone.pad = 0;
 858
 859        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 860    }
 861}
 862
 863static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
 864                                       MemoryRegionSection *secion,
 865                                       hwaddr start, hwaddr size)
 866{
 867    KVMState *s = kvm_state;
 868
 869    if (s->coalesced_mmio) {
 870        struct kvm_coalesced_mmio_zone zone;
 871
 872        zone.addr = start;
 873        zone.size = size;
 874        zone.pad = 0;
 875
 876        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 877    }
 878}
 879
 880static void kvm_coalesce_pio_add(MemoryListener *listener,
 881                                MemoryRegionSection *section,
 882                                hwaddr start, hwaddr size)
 883{
 884    KVMState *s = kvm_state;
 885
 886    if (s->coalesced_pio) {
 887        struct kvm_coalesced_mmio_zone zone;
 888
 889        zone.addr = start;
 890        zone.size = size;
 891        zone.pio = 1;
 892
 893        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 894    }
 895}
 896
 897static void kvm_coalesce_pio_del(MemoryListener *listener,
 898                                MemoryRegionSection *section,
 899                                hwaddr start, hwaddr size)
 900{
 901    KVMState *s = kvm_state;
 902
 903    if (s->coalesced_pio) {
 904        struct kvm_coalesced_mmio_zone zone;
 905
 906        zone.addr = start;
 907        zone.size = size;
 908        zone.pio = 1;
 909
 910        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 911     }
 912}
 913
 914static MemoryListener kvm_coalesced_pio_listener = {
 915    .coalesced_io_add = kvm_coalesce_pio_add,
 916    .coalesced_io_del = kvm_coalesce_pio_del,
 917};
 918
 919int kvm_check_extension(KVMState *s, unsigned int extension)
 920{
 921    int ret;
 922
 923    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 924    if (ret < 0) {
 925        ret = 0;
 926    }
 927
 928    return ret;
 929}
 930
 931int kvm_vm_check_extension(KVMState *s, unsigned int extension)
 932{
 933    int ret;
 934
 935    ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 936    if (ret < 0) {
 937        /* VM wide version not implemented, use global one instead */
 938        ret = kvm_check_extension(s, extension);
 939    }
 940
 941    return ret;
 942}
 943
 944typedef struct HWPoisonPage {
 945    ram_addr_t ram_addr;
 946    QLIST_ENTRY(HWPoisonPage) list;
 947} HWPoisonPage;
 948
 949static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
 950    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
 951
 952static void kvm_unpoison_all(void *param)
 953{
 954    HWPoisonPage *page, *next_page;
 955
 956    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
 957        QLIST_REMOVE(page, list);
 958        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
 959        g_free(page);
 960    }
 961}
 962
 963void kvm_hwpoison_page_add(ram_addr_t ram_addr)
 964{
 965    HWPoisonPage *page;
 966
 967    QLIST_FOREACH(page, &hwpoison_page_list, list) {
 968        if (page->ram_addr == ram_addr) {
 969            return;
 970        }
 971    }
 972    page = g_new(HWPoisonPage, 1);
 973    page->ram_addr = ram_addr;
 974    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
 975}
 976
 977static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
 978{
 979#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
 980    /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
 981     * endianness, but the memory core hands them in target endianness.
 982     * For example, PPC is always treated as big-endian even if running
 983     * on KVM and on PPC64LE.  Correct here.
 984     */
 985    switch (size) {
 986    case 2:
 987        val = bswap16(val);
 988        break;
 989    case 4:
 990        val = bswap32(val);
 991        break;
 992    }
 993#endif
 994    return val;
 995}
 996
 997static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
 998                                  bool assign, uint32_t size, bool datamatch)
 999{
1000    int ret;
1001    struct kvm_ioeventfd iofd = {
1002        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1003        .addr = addr,
1004        .len = size,
1005        .flags = 0,
1006        .fd = fd,
1007    };
1008
1009    trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1010                                 datamatch);
1011    if (!kvm_enabled()) {
1012        return -ENOSYS;
1013    }
1014
1015    if (datamatch) {
1016        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1017    }
1018    if (!assign) {
1019        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1020    }
1021
1022    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1023
1024    if (ret < 0) {
1025        return -errno;
1026    }
1027
1028    return 0;
1029}
1030
1031static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1032                                 bool assign, uint32_t size, bool datamatch)
1033{
1034    struct kvm_ioeventfd kick = {
1035        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1036        .addr = addr,
1037        .flags = KVM_IOEVENTFD_FLAG_PIO,
1038        .len = size,
1039        .fd = fd,
1040    };
1041    int r;
1042    trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1043    if (!kvm_enabled()) {
1044        return -ENOSYS;
1045    }
1046    if (datamatch) {
1047        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1048    }
1049    if (!assign) {
1050        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1051    }
1052    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1053    if (r < 0) {
1054        return r;
1055    }
1056    return 0;
1057}
1058
1059
1060static int kvm_check_many_ioeventfds(void)
1061{
1062    /* Userspace can use ioeventfd for io notification.  This requires a host
1063     * that supports eventfd(2) and an I/O thread; since eventfd does not
1064     * support SIGIO it cannot interrupt the vcpu.
1065     *
1066     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1067     * can avoid creating too many ioeventfds.
1068     */
1069#if defined(CONFIG_EVENTFD)
1070    int ioeventfds[7];
1071    int i, ret = 0;
1072    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1073        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1074        if (ioeventfds[i] < 0) {
1075            break;
1076        }
1077        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1078        if (ret < 0) {
1079            close(ioeventfds[i]);
1080            break;
1081        }
1082    }
1083
1084    /* Decide whether many devices are supported or not */
1085    ret = i == ARRAY_SIZE(ioeventfds);
1086
1087    while (i-- > 0) {
1088        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1089        close(ioeventfds[i]);
1090    }
1091    return ret;
1092#else
1093    return 0;
1094#endif
1095}
1096
1097static const KVMCapabilityInfo *
1098kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1099{
1100    while (list->name) {
1101        if (!kvm_check_extension(s, list->value)) {
1102            return list;
1103        }
1104        list++;
1105    }
1106    return NULL;
1107}
1108
1109void kvm_set_max_memslot_size(hwaddr max_slot_size)
1110{
1111    g_assert(
1112        ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1113    );
1114    kvm_max_slot_size = max_slot_size;
1115}
1116
1117static void kvm_set_phys_mem(KVMMemoryListener *kml,
1118                             MemoryRegionSection *section, bool add)
1119{
1120    KVMSlot *mem;
1121    int err;
1122    MemoryRegion *mr = section->mr;
1123    bool writeable = !mr->readonly && !mr->rom_device;
1124    hwaddr start_addr, size, slot_size;
1125    void *ram;
1126
1127    if (!memory_region_is_ram(mr)) {
1128        if (writeable || !kvm_readonly_mem_allowed) {
1129            return;
1130        } else if (!mr->romd_mode) {
1131            /* If the memory device is not in romd_mode, then we actually want
1132             * to remove the kvm memory slot so all accesses will trap. */
1133            add = false;
1134        }
1135    }
1136
1137    size = kvm_align_section(section, &start_addr);
1138    if (!size) {
1139        return;
1140    }
1141
1142    /* use aligned delta to align the ram address */
1143    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1144          (start_addr - section->offset_within_address_space);
1145
1146    kvm_slots_lock(kml);
1147
1148    if (!add) {
1149        do {
1150            slot_size = MIN(kvm_max_slot_size, size);
1151            mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1152            if (!mem) {
1153                goto out;
1154            }
1155            if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1156                kvm_physical_sync_dirty_bitmap(kml, section);
1157            }
1158
1159            /* unregister the slot */
1160            g_free(mem->dirty_bmap);
1161            mem->dirty_bmap = NULL;
1162            mem->memory_size = 0;
1163            mem->flags = 0;
1164            err = kvm_set_user_memory_region(kml, mem, false);
1165            if (err) {
1166                fprintf(stderr, "%s: error unregistering slot: %s\n",
1167                        __func__, strerror(-err));
1168                abort();
1169            }
1170            start_addr += slot_size;
1171            size -= slot_size;
1172        } while (size);
1173        goto out;
1174    }
1175
1176    /* register the new slot */
1177    do {
1178        slot_size = MIN(kvm_max_slot_size, size);
1179        mem = kvm_alloc_slot(kml);
1180        mem->memory_size = slot_size;
1181        mem->start_addr = start_addr;
1182        mem->ram = ram;
1183        mem->flags = kvm_mem_flags(mr);
1184
1185        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1186            /*
1187             * Reallocate the bmap; it means it doesn't disappear in
1188             * middle of a migrate.
1189             */
1190            kvm_memslot_init_dirty_bitmap(mem);
1191        }
1192        err = kvm_set_user_memory_region(kml, mem, true);
1193        if (err) {
1194            fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1195                    strerror(-err));
1196            abort();
1197        }
1198        start_addr += slot_size;
1199        ram += slot_size;
1200        size -= slot_size;
1201    } while (size);
1202
1203out:
1204    kvm_slots_unlock(kml);
1205}
1206
1207static void kvm_region_add(MemoryListener *listener,
1208                           MemoryRegionSection *section)
1209{
1210    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1211
1212    memory_region_ref(section->mr);
1213    kvm_set_phys_mem(kml, section, true);
1214}
1215
1216static void kvm_region_del(MemoryListener *listener,
1217                           MemoryRegionSection *section)
1218{
1219    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1220
1221    kvm_set_phys_mem(kml, section, false);
1222    memory_region_unref(section->mr);
1223}
1224
1225static void kvm_log_sync(MemoryListener *listener,
1226                         MemoryRegionSection *section)
1227{
1228    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1229    int r;
1230
1231    kvm_slots_lock(kml);
1232    r = kvm_physical_sync_dirty_bitmap(kml, section);
1233    kvm_slots_unlock(kml);
1234    if (r < 0) {
1235        abort();
1236    }
1237}
1238
1239static void kvm_log_clear(MemoryListener *listener,
1240                          MemoryRegionSection *section)
1241{
1242    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1243    int r;
1244
1245    r = kvm_physical_log_clear(kml, section);
1246    if (r < 0) {
1247        error_report_once("%s: kvm log clear failed: mr=%s "
1248                          "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1249                          section->mr->name, section->offset_within_region,
1250                          int128_get64(section->size));
1251        abort();
1252    }
1253}
1254
1255static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1256                                  MemoryRegionSection *section,
1257                                  bool match_data, uint64_t data,
1258                                  EventNotifier *e)
1259{
1260    int fd = event_notifier_get_fd(e);
1261    int r;
1262
1263    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1264                               data, true, int128_get64(section->size),
1265                               match_data);
1266    if (r < 0) {
1267        fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1268                __func__, strerror(-r), -r);
1269        abort();
1270    }
1271}
1272
1273static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1274                                  MemoryRegionSection *section,
1275                                  bool match_data, uint64_t data,
1276                                  EventNotifier *e)
1277{
1278    int fd = event_notifier_get_fd(e);
1279    int r;
1280
1281    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1282                               data, false, int128_get64(section->size),
1283                               match_data);
1284    if (r < 0) {
1285        fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1286                __func__, strerror(-r), -r);
1287        abort();
1288    }
1289}
1290
1291static void kvm_io_ioeventfd_add(MemoryListener *listener,
1292                                 MemoryRegionSection *section,
1293                                 bool match_data, uint64_t data,
1294                                 EventNotifier *e)
1295{
1296    int fd = event_notifier_get_fd(e);
1297    int r;
1298
1299    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1300                              data, true, int128_get64(section->size),
1301                              match_data);
1302    if (r < 0) {
1303        fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1304                __func__, strerror(-r), -r);
1305        abort();
1306    }
1307}
1308
1309static void kvm_io_ioeventfd_del(MemoryListener *listener,
1310                                 MemoryRegionSection *section,
1311                                 bool match_data, uint64_t data,
1312                                 EventNotifier *e)
1313
1314{
1315    int fd = event_notifier_get_fd(e);
1316    int r;
1317
1318    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1319                              data, false, int128_get64(section->size),
1320                              match_data);
1321    if (r < 0) {
1322        fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1323                __func__, strerror(-r), -r);
1324        abort();
1325    }
1326}
1327
1328void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1329                                  AddressSpace *as, int as_id)
1330{
1331    int i;
1332
1333    qemu_mutex_init(&kml->slots_lock);
1334    kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1335    kml->as_id = as_id;
1336
1337    for (i = 0; i < s->nr_slots; i++) {
1338        kml->slots[i].slot = i;
1339    }
1340
1341    kml->listener.region_add = kvm_region_add;
1342    kml->listener.region_del = kvm_region_del;
1343    kml->listener.log_start = kvm_log_start;
1344    kml->listener.log_stop = kvm_log_stop;
1345    kml->listener.log_sync = kvm_log_sync;
1346    kml->listener.log_clear = kvm_log_clear;
1347    kml->listener.priority = 10;
1348
1349    memory_listener_register(&kml->listener, as);
1350
1351    for (i = 0; i < s->nr_as; ++i) {
1352        if (!s->as[i].as) {
1353            s->as[i].as = as;
1354            s->as[i].ml = kml;
1355            break;
1356        }
1357    }
1358}
1359
1360static MemoryListener kvm_io_listener = {
1361    .eventfd_add = kvm_io_ioeventfd_add,
1362    .eventfd_del = kvm_io_ioeventfd_del,
1363    .priority = 10,
1364};
1365
1366int kvm_set_irq(KVMState *s, int irq, int level)
1367{
1368    struct kvm_irq_level event;
1369    int ret;
1370
1371    assert(kvm_async_interrupts_enabled());
1372
1373    event.level = level;
1374    event.irq = irq;
1375    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1376    if (ret < 0) {
1377        perror("kvm_set_irq");
1378        abort();
1379    }
1380
1381    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1382}
1383
1384#ifdef KVM_CAP_IRQ_ROUTING
1385typedef struct KVMMSIRoute {
1386    struct kvm_irq_routing_entry kroute;
1387    QTAILQ_ENTRY(KVMMSIRoute) entry;
1388} KVMMSIRoute;
1389
1390static void set_gsi(KVMState *s, unsigned int gsi)
1391{
1392    set_bit(gsi, s->used_gsi_bitmap);
1393}
1394
1395static void clear_gsi(KVMState *s, unsigned int gsi)
1396{
1397    clear_bit(gsi, s->used_gsi_bitmap);
1398}
1399
1400void kvm_init_irq_routing(KVMState *s)
1401{
1402    int gsi_count, i;
1403
1404    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1405    if (gsi_count > 0) {
1406        /* Round up so we can search ints using ffs */
1407        s->used_gsi_bitmap = bitmap_new(gsi_count);
1408        s->gsi_count = gsi_count;
1409    }
1410
1411    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1412    s->nr_allocated_irq_routes = 0;
1413
1414    if (!kvm_direct_msi_allowed) {
1415        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1416            QTAILQ_INIT(&s->msi_hashtab[i]);
1417        }
1418    }
1419
1420    kvm_arch_init_irq_routing(s);
1421}
1422
1423void kvm_irqchip_commit_routes(KVMState *s)
1424{
1425    int ret;
1426
1427    if (kvm_gsi_direct_mapping()) {
1428        return;
1429    }
1430
1431    if (!kvm_gsi_routing_enabled()) {
1432        return;
1433    }
1434
1435    s->irq_routes->flags = 0;
1436    trace_kvm_irqchip_commit_routes();
1437    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1438    assert(ret == 0);
1439}
1440
1441static void kvm_add_routing_entry(KVMState *s,
1442                                  struct kvm_irq_routing_entry *entry)
1443{
1444    struct kvm_irq_routing_entry *new;
1445    int n, size;
1446
1447    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1448        n = s->nr_allocated_irq_routes * 2;
1449        if (n < 64) {
1450            n = 64;
1451        }
1452        size = sizeof(struct kvm_irq_routing);
1453        size += n * sizeof(*new);
1454        s->irq_routes = g_realloc(s->irq_routes, size);
1455        s->nr_allocated_irq_routes = n;
1456    }
1457    n = s->irq_routes->nr++;
1458    new = &s->irq_routes->entries[n];
1459
1460    *new = *entry;
1461
1462    set_gsi(s, entry->gsi);
1463}
1464
1465static int kvm_update_routing_entry(KVMState *s,
1466                                    struct kvm_irq_routing_entry *new_entry)
1467{
1468    struct kvm_irq_routing_entry *entry;
1469    int n;
1470
1471    for (n = 0; n < s->irq_routes->nr; n++) {
1472        entry = &s->irq_routes->entries[n];
1473        if (entry->gsi != new_entry->gsi) {
1474            continue;
1475        }
1476
1477        if(!memcmp(entry, new_entry, sizeof *entry)) {
1478            return 0;
1479        }
1480
1481        *entry = *new_entry;
1482
1483        return 0;
1484    }
1485
1486    return -ESRCH;
1487}
1488
1489void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1490{
1491    struct kvm_irq_routing_entry e = {};
1492
1493    assert(pin < s->gsi_count);
1494
1495    e.gsi = irq;
1496    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1497    e.flags = 0;
1498    e.u.irqchip.irqchip = irqchip;
1499    e.u.irqchip.pin = pin;
1500    kvm_add_routing_entry(s, &e);
1501}
1502
1503void kvm_irqchip_release_virq(KVMState *s, int virq)
1504{
1505    struct kvm_irq_routing_entry *e;
1506    int i;
1507
1508    if (kvm_gsi_direct_mapping()) {
1509        return;
1510    }
1511
1512    for (i = 0; i < s->irq_routes->nr; i++) {
1513        e = &s->irq_routes->entries[i];
1514        if (e->gsi == virq) {
1515            s->irq_routes->nr--;
1516            *e = s->irq_routes->entries[s->irq_routes->nr];
1517        }
1518    }
1519    clear_gsi(s, virq);
1520    kvm_arch_release_virq_post(virq);
1521    trace_kvm_irqchip_release_virq(virq);
1522}
1523
1524void kvm_irqchip_add_change_notifier(Notifier *n)
1525{
1526    notifier_list_add(&kvm_irqchip_change_notifiers, n);
1527}
1528
1529void kvm_irqchip_remove_change_notifier(Notifier *n)
1530{
1531    notifier_remove(n);
1532}
1533
1534void kvm_irqchip_change_notify(void)
1535{
1536    notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1537}
1538
1539static unsigned int kvm_hash_msi(uint32_t data)
1540{
1541    /* This is optimized for IA32 MSI layout. However, no other arch shall
1542     * repeat the mistake of not providing a direct MSI injection API. */
1543    return data & 0xff;
1544}
1545
1546static void kvm_flush_dynamic_msi_routes(KVMState *s)
1547{
1548    KVMMSIRoute *route, *next;
1549    unsigned int hash;
1550
1551    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1552        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1553            kvm_irqchip_release_virq(s, route->kroute.gsi);
1554            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1555            g_free(route);
1556        }
1557    }
1558}
1559
1560static int kvm_irqchip_get_virq(KVMState *s)
1561{
1562    int next_virq;
1563
1564    /*
1565     * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1566     * GSI numbers are more than the number of IRQ route. Allocating a GSI
1567     * number can succeed even though a new route entry cannot be added.
1568     * When this happens, flush dynamic MSI entries to free IRQ route entries.
1569     */
1570    if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1571        kvm_flush_dynamic_msi_routes(s);
1572    }
1573
1574    /* Return the lowest unused GSI in the bitmap */
1575    next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1576    if (next_virq >= s->gsi_count) {
1577        return -ENOSPC;
1578    } else {
1579        return next_virq;
1580    }
1581}
1582
1583static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1584{
1585    unsigned int hash = kvm_hash_msi(msg.data);
1586    KVMMSIRoute *route;
1587
1588    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1589        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1590            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1591            route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1592            return route;
1593        }
1594    }
1595    return NULL;
1596}
1597
1598int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1599{
1600    struct kvm_msi msi;
1601    KVMMSIRoute *route;
1602
1603    if (kvm_direct_msi_allowed) {
1604        msi.address_lo = (uint32_t)msg.address;
1605        msi.address_hi = msg.address >> 32;
1606        msi.data = le32_to_cpu(msg.data);
1607        msi.flags = 0;
1608        memset(msi.pad, 0, sizeof(msi.pad));
1609
1610        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1611    }
1612
1613    route = kvm_lookup_msi_route(s, msg);
1614    if (!route) {
1615        int virq;
1616
1617        virq = kvm_irqchip_get_virq(s);
1618        if (virq < 0) {
1619            return virq;
1620        }
1621
1622        route = g_malloc0(sizeof(KVMMSIRoute));
1623        route->kroute.gsi = virq;
1624        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1625        route->kroute.flags = 0;
1626        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1627        route->kroute.u.msi.address_hi = msg.address >> 32;
1628        route->kroute.u.msi.data = le32_to_cpu(msg.data);
1629
1630        kvm_add_routing_entry(s, &route->kroute);
1631        kvm_irqchip_commit_routes(s);
1632
1633        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1634                           entry);
1635    }
1636
1637    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1638
1639    return kvm_set_irq(s, route->kroute.gsi, 1);
1640}
1641
1642int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1643{
1644    struct kvm_irq_routing_entry kroute = {};
1645    int virq;
1646    MSIMessage msg = {0, 0};
1647
1648    if (pci_available && dev) {
1649        msg = pci_get_msi_message(dev, vector);
1650    }
1651
1652    if (kvm_gsi_direct_mapping()) {
1653        return kvm_arch_msi_data_to_gsi(msg.data);
1654    }
1655
1656    if (!kvm_gsi_routing_enabled()) {
1657        return -ENOSYS;
1658    }
1659
1660    virq = kvm_irqchip_get_virq(s);
1661    if (virq < 0) {
1662        return virq;
1663    }
1664
1665    kroute.gsi = virq;
1666    kroute.type = KVM_IRQ_ROUTING_MSI;
1667    kroute.flags = 0;
1668    kroute.u.msi.address_lo = (uint32_t)msg.address;
1669    kroute.u.msi.address_hi = msg.address >> 32;
1670    kroute.u.msi.data = le32_to_cpu(msg.data);
1671    if (pci_available && kvm_msi_devid_required()) {
1672        kroute.flags = KVM_MSI_VALID_DEVID;
1673        kroute.u.msi.devid = pci_requester_id(dev);
1674    }
1675    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1676        kvm_irqchip_release_virq(s, virq);
1677        return -EINVAL;
1678    }
1679
1680    trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1681                                    vector, virq);
1682
1683    kvm_add_routing_entry(s, &kroute);
1684    kvm_arch_add_msi_route_post(&kroute, vector, dev);
1685    kvm_irqchip_commit_routes(s);
1686
1687    return virq;
1688}
1689
1690int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1691                                 PCIDevice *dev)
1692{
1693    struct kvm_irq_routing_entry kroute = {};
1694
1695    if (kvm_gsi_direct_mapping()) {
1696        return 0;
1697    }
1698
1699    if (!kvm_irqchip_in_kernel()) {
1700        return -ENOSYS;
1701    }
1702
1703    kroute.gsi = virq;
1704    kroute.type = KVM_IRQ_ROUTING_MSI;
1705    kroute.flags = 0;
1706    kroute.u.msi.address_lo = (uint32_t)msg.address;
1707    kroute.u.msi.address_hi = msg.address >> 32;
1708    kroute.u.msi.data = le32_to_cpu(msg.data);
1709    if (pci_available && kvm_msi_devid_required()) {
1710        kroute.flags = KVM_MSI_VALID_DEVID;
1711        kroute.u.msi.devid = pci_requester_id(dev);
1712    }
1713    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1714        return -EINVAL;
1715    }
1716
1717    trace_kvm_irqchip_update_msi_route(virq);
1718
1719    return kvm_update_routing_entry(s, &kroute);
1720}
1721
1722static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1723                                    EventNotifier *resample, int virq,
1724                                    bool assign)
1725{
1726    int fd = event_notifier_get_fd(event);
1727    int rfd = resample ? event_notifier_get_fd(resample) : -1;
1728
1729    struct kvm_irqfd irqfd = {
1730        .fd = fd,
1731        .gsi = virq,
1732        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1733    };
1734
1735    if (rfd != -1) {
1736        assert(assign);
1737        if (kvm_irqchip_is_split()) {
1738            /*
1739             * When the slow irqchip (e.g. IOAPIC) is in the
1740             * userspace, KVM kernel resamplefd will not work because
1741             * the EOI of the interrupt will be delivered to userspace
1742             * instead, so the KVM kernel resamplefd kick will be
1743             * skipped.  The userspace here mimics what the kernel
1744             * provides with resamplefd, remember the resamplefd and
1745             * kick it when we receive EOI of this IRQ.
1746             *
1747             * This is hackery because IOAPIC is mostly bypassed
1748             * (except EOI broadcasts) when irqfd is used.  However
1749             * this can bring much performance back for split irqchip
1750             * with INTx IRQs (for VFIO, this gives 93% perf of the
1751             * full fast path, which is 46% perf boost comparing to
1752             * the INTx slow path).
1753             */
1754            kvm_resample_fd_insert(virq, resample);
1755        } else {
1756            irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1757            irqfd.resamplefd = rfd;
1758        }
1759    } else if (!assign) {
1760        if (kvm_irqchip_is_split()) {
1761            kvm_resample_fd_remove(virq);
1762        }
1763    }
1764
1765    if (!kvm_irqfds_enabled()) {
1766        return -ENOSYS;
1767    }
1768
1769    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1770}
1771
1772int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1773{
1774    struct kvm_irq_routing_entry kroute = {};
1775    int virq;
1776
1777    if (!kvm_gsi_routing_enabled()) {
1778        return -ENOSYS;
1779    }
1780
1781    virq = kvm_irqchip_get_virq(s);
1782    if (virq < 0) {
1783        return virq;
1784    }
1785
1786    kroute.gsi = virq;
1787    kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1788    kroute.flags = 0;
1789    kroute.u.adapter.summary_addr = adapter->summary_addr;
1790    kroute.u.adapter.ind_addr = adapter->ind_addr;
1791    kroute.u.adapter.summary_offset = adapter->summary_offset;
1792    kroute.u.adapter.ind_offset = adapter->ind_offset;
1793    kroute.u.adapter.adapter_id = adapter->adapter_id;
1794
1795    kvm_add_routing_entry(s, &kroute);
1796
1797    return virq;
1798}
1799
1800int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1801{
1802    struct kvm_irq_routing_entry kroute = {};
1803    int virq;
1804
1805    if (!kvm_gsi_routing_enabled()) {
1806        return -ENOSYS;
1807    }
1808    if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1809        return -ENOSYS;
1810    }
1811    virq = kvm_irqchip_get_virq(s);
1812    if (virq < 0) {
1813        return virq;
1814    }
1815
1816    kroute.gsi = virq;
1817    kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1818    kroute.flags = 0;
1819    kroute.u.hv_sint.vcpu = vcpu;
1820    kroute.u.hv_sint.sint = sint;
1821
1822    kvm_add_routing_entry(s, &kroute);
1823    kvm_irqchip_commit_routes(s);
1824
1825    return virq;
1826}
1827
1828#else /* !KVM_CAP_IRQ_ROUTING */
1829
1830void kvm_init_irq_routing(KVMState *s)
1831{
1832}
1833
1834void kvm_irqchip_release_virq(KVMState *s, int virq)
1835{
1836}
1837
1838int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1839{
1840    abort();
1841}
1842
1843int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1844{
1845    return -ENOSYS;
1846}
1847
1848int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1849{
1850    return -ENOSYS;
1851}
1852
1853int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1854{
1855    return -ENOSYS;
1856}
1857
1858static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1859                                    EventNotifier *resample, int virq,
1860                                    bool assign)
1861{
1862    abort();
1863}
1864
1865int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1866{
1867    return -ENOSYS;
1868}
1869#endif /* !KVM_CAP_IRQ_ROUTING */
1870
1871int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1872                                       EventNotifier *rn, int virq)
1873{
1874    return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1875}
1876
1877int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1878                                          int virq)
1879{
1880    return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1881}
1882
1883int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1884                                   EventNotifier *rn, qemu_irq irq)
1885{
1886    gpointer key, gsi;
1887    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1888
1889    if (!found) {
1890        return -ENXIO;
1891    }
1892    return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1893}
1894
1895int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1896                                      qemu_irq irq)
1897{
1898    gpointer key, gsi;
1899    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1900
1901    if (!found) {
1902        return -ENXIO;
1903    }
1904    return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1905}
1906
1907void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1908{
1909    g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1910}
1911
1912static void kvm_irqchip_create(KVMState *s)
1913{
1914    int ret;
1915
1916    assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1917    if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1918        ;
1919    } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1920        ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1921        if (ret < 0) {
1922            fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1923            exit(1);
1924        }
1925    } else {
1926        return;
1927    }
1928
1929    /* First probe and see if there's a arch-specific hook to create the
1930     * in-kernel irqchip for us */
1931    ret = kvm_arch_irqchip_create(s);
1932    if (ret == 0) {
1933        if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1934            perror("Split IRQ chip mode not supported.");
1935            exit(1);
1936        } else {
1937            ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1938        }
1939    }
1940    if (ret < 0) {
1941        fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1942        exit(1);
1943    }
1944
1945    kvm_kernel_irqchip = true;
1946    /* If we have an in-kernel IRQ chip then we must have asynchronous
1947     * interrupt delivery (though the reverse is not necessarily true)
1948     */
1949    kvm_async_interrupts_allowed = true;
1950    kvm_halt_in_kernel_allowed = true;
1951
1952    kvm_init_irq_routing(s);
1953
1954    s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1955}
1956
1957/* Find number of supported CPUs using the recommended
1958 * procedure from the kernel API documentation to cope with
1959 * older kernels that may be missing capabilities.
1960 */
1961static int kvm_recommended_vcpus(KVMState *s)
1962{
1963    int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1964    return (ret) ? ret : 4;
1965}
1966
1967static int kvm_max_vcpus(KVMState *s)
1968{
1969    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1970    return (ret) ? ret : kvm_recommended_vcpus(s);
1971}
1972
1973static int kvm_max_vcpu_id(KVMState *s)
1974{
1975    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1976    return (ret) ? ret : kvm_max_vcpus(s);
1977}
1978
1979bool kvm_vcpu_id_is_valid(int vcpu_id)
1980{
1981    KVMState *s = KVM_STATE(current_accel());
1982    return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1983}
1984
1985static int kvm_init(MachineState *ms)
1986{
1987    MachineClass *mc = MACHINE_GET_CLASS(ms);
1988    static const char upgrade_note[] =
1989        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1990        "(see http://sourceforge.net/projects/kvm).\n";
1991    struct {
1992        const char *name;
1993        int num;
1994    } num_cpus[] = {
1995        { "SMP",          ms->smp.cpus },
1996        { "hotpluggable", ms->smp.max_cpus },
1997        { NULL, }
1998    }, *nc = num_cpus;
1999    int soft_vcpus_limit, hard_vcpus_limit;
2000    KVMState *s;
2001    const KVMCapabilityInfo *missing_cap;
2002    int ret;
2003    int type = 0;
2004    uint64_t dirty_log_manual_caps;
2005
2006    s = KVM_STATE(ms->accelerator);
2007
2008    /*
2009     * On systems where the kernel can support different base page
2010     * sizes, host page size may be different from TARGET_PAGE_SIZE,
2011     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2012     * page size for the system though.
2013     */
2014    assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2015
2016    s->sigmask_len = 8;
2017
2018#ifdef KVM_CAP_SET_GUEST_DEBUG
2019    QTAILQ_INIT(&s->kvm_sw_breakpoints);
2020#endif
2021    QLIST_INIT(&s->kvm_parked_vcpus);
2022    s->vmfd = -1;
2023    s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2024    if (s->fd == -1) {
2025        fprintf(stderr, "Could not access KVM kernel module: %m\n");
2026        ret = -errno;
2027        goto err;
2028    }
2029
2030    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2031    if (ret < KVM_API_VERSION) {
2032        if (ret >= 0) {
2033            ret = -EINVAL;
2034        }
2035        fprintf(stderr, "kvm version too old\n");
2036        goto err;
2037    }
2038
2039    if (ret > KVM_API_VERSION) {
2040        ret = -EINVAL;
2041        fprintf(stderr, "kvm version not supported\n");
2042        goto err;
2043    }
2044
2045    kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2046    s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2047
2048    /* If unspecified, use the default value */
2049    if (!s->nr_slots) {
2050        s->nr_slots = 32;
2051    }
2052
2053    s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2054    if (s->nr_as <= 1) {
2055        s->nr_as = 1;
2056    }
2057    s->as = g_new0(struct KVMAs, s->nr_as);
2058
2059    if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2060        g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2061                                                            "kvm-type",
2062                                                            &error_abort);
2063        type = mc->kvm_type(ms, kvm_type);
2064    } else if (mc->kvm_type) {
2065        type = mc->kvm_type(ms, NULL);
2066    }
2067
2068    do {
2069        ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2070    } while (ret == -EINTR);
2071
2072    if (ret < 0) {
2073        fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2074                strerror(-ret));
2075
2076#ifdef TARGET_S390X
2077        if (ret == -EINVAL) {
2078            fprintf(stderr,
2079                    "Host kernel setup problem detected. Please verify:\n");
2080            fprintf(stderr, "- for kernels supporting the switch_amode or"
2081                    " user_mode parameters, whether\n");
2082            fprintf(stderr,
2083                    "  user space is running in primary address space\n");
2084            fprintf(stderr,
2085                    "- for kernels supporting the vm.allocate_pgste sysctl, "
2086                    "whether it is enabled\n");
2087        }
2088#endif
2089        goto err;
2090    }
2091
2092    s->vmfd = ret;
2093
2094    /* check the vcpu limits */
2095    soft_vcpus_limit = kvm_recommended_vcpus(s);
2096    hard_vcpus_limit = kvm_max_vcpus(s);
2097
2098    while (nc->name) {
2099        if (nc->num > soft_vcpus_limit) {
2100            warn_report("Number of %s cpus requested (%d) exceeds "
2101                        "the recommended cpus supported by KVM (%d)",
2102                        nc->name, nc->num, soft_vcpus_limit);
2103
2104            if (nc->num > hard_vcpus_limit) {
2105                fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2106                        "the maximum cpus supported by KVM (%d)\n",
2107                        nc->name, nc->num, hard_vcpus_limit);
2108                exit(1);
2109            }
2110        }
2111        nc++;
2112    }
2113
2114    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2115    if (!missing_cap) {
2116        missing_cap =
2117            kvm_check_extension_list(s, kvm_arch_required_capabilities);
2118    }
2119    if (missing_cap) {
2120        ret = -EINVAL;
2121        fprintf(stderr, "kvm does not support %s\n%s",
2122                missing_cap->name, upgrade_note);
2123        goto err;
2124    }
2125
2126    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2127    s->coalesced_pio = s->coalesced_mmio &&
2128                       kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2129
2130    dirty_log_manual_caps =
2131        kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2132    dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2133                              KVM_DIRTY_LOG_INITIALLY_SET);
2134    s->manual_dirty_log_protect = dirty_log_manual_caps;
2135    if (dirty_log_manual_caps) {
2136        ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2137                                   dirty_log_manual_caps);
2138        if (ret) {
2139            warn_report("Trying to enable capability %"PRIu64" of "
2140                        "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2141                        "Falling back to the legacy mode. ",
2142                        dirty_log_manual_caps);
2143            s->manual_dirty_log_protect = 0;
2144        }
2145    }
2146
2147#ifdef KVM_CAP_VCPU_EVENTS
2148    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2149#endif
2150
2151    s->robust_singlestep =
2152        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2153
2154#ifdef KVM_CAP_DEBUGREGS
2155    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2156#endif
2157
2158    s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2159
2160#ifdef KVM_CAP_IRQ_ROUTING
2161    kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2162#endif
2163
2164    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2165
2166    s->irq_set_ioctl = KVM_IRQ_LINE;
2167    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2168        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2169    }
2170
2171    kvm_readonly_mem_allowed =
2172        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2173
2174    kvm_eventfds_allowed =
2175        (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2176
2177    kvm_irqfds_allowed =
2178        (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2179
2180    kvm_resamplefds_allowed =
2181        (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2182
2183    kvm_vm_attributes_allowed =
2184        (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2185
2186    kvm_ioeventfd_any_length_allowed =
2187        (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2188
2189    kvm_state = s;
2190
2191    ret = kvm_arch_init(ms, s);
2192    if (ret < 0) {
2193        goto err;
2194    }
2195
2196    if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2197        s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2198    }
2199
2200    qemu_register_reset(kvm_unpoison_all, NULL);
2201
2202    if (s->kernel_irqchip_allowed) {
2203        kvm_irqchip_create(s);
2204    }
2205
2206    if (kvm_eventfds_allowed) {
2207        s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2208        s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2209    }
2210    s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2211    s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2212
2213    kvm_memory_listener_register(s, &s->memory_listener,
2214                                 &address_space_memory, 0);
2215    if (kvm_eventfds_allowed) {
2216        memory_listener_register(&kvm_io_listener,
2217                                 &address_space_io);
2218    }
2219    memory_listener_register(&kvm_coalesced_pio_listener,
2220                             &address_space_io);
2221
2222    s->many_ioeventfds = kvm_check_many_ioeventfds();
2223
2224    s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2225    if (!s->sync_mmu) {
2226        ret = ram_block_discard_disable(true);
2227        assert(!ret);
2228    }
2229    return 0;
2230
2231err:
2232    assert(ret < 0);
2233    if (s->vmfd >= 0) {
2234        close(s->vmfd);
2235    }
2236    if (s->fd != -1) {
2237        close(s->fd);
2238    }
2239    g_free(s->memory_listener.slots);
2240
2241    return ret;
2242}
2243
2244void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2245{
2246    s->sigmask_len = sigmask_len;
2247}
2248
2249static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2250                          int size, uint32_t count)
2251{
2252    int i;
2253    uint8_t *ptr = data;
2254
2255    for (i = 0; i < count; i++) {
2256        address_space_rw(&address_space_io, port, attrs,
2257                         ptr, size,
2258                         direction == KVM_EXIT_IO_OUT);
2259        ptr += size;
2260    }
2261}
2262
2263static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2264{
2265    fprintf(stderr, "KVM internal error. Suberror: %d\n",
2266            run->internal.suberror);
2267
2268    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2269        int i;
2270
2271        for (i = 0; i < run->internal.ndata; ++i) {
2272            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2273                    i, (uint64_t)run->internal.data[i]);
2274        }
2275    }
2276    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2277        fprintf(stderr, "emulation failure\n");
2278        if (!kvm_arch_stop_on_emulation_error(cpu)) {
2279            cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2280            return EXCP_INTERRUPT;
2281        }
2282    }
2283    /* FIXME: Should trigger a qmp message to let management know
2284     * something went wrong.
2285     */
2286    return -1;
2287}
2288
2289void kvm_flush_coalesced_mmio_buffer(void)
2290{
2291    KVMState *s = kvm_state;
2292
2293    if (s->coalesced_flush_in_progress) {
2294        return;
2295    }
2296
2297    s->coalesced_flush_in_progress = true;
2298
2299    if (s->coalesced_mmio_ring) {
2300        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2301        while (ring->first != ring->last) {
2302            struct kvm_coalesced_mmio *ent;
2303
2304            ent = &ring->coalesced_mmio[ring->first];
2305
2306            if (ent->pio == 1) {
2307                address_space_write(&address_space_io, ent->phys_addr,
2308                                    MEMTXATTRS_UNSPECIFIED, ent->data,
2309                                    ent->len);
2310            } else {
2311                cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2312            }
2313            smp_wmb();
2314            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2315        }
2316    }
2317
2318    s->coalesced_flush_in_progress = false;
2319}
2320
2321bool kvm_cpu_check_are_resettable(void)
2322{
2323    return kvm_arch_cpu_check_are_resettable();
2324}
2325
2326static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2327{
2328    if (!cpu->vcpu_dirty) {
2329        kvm_arch_get_registers(cpu);
2330        cpu->vcpu_dirty = true;
2331    }
2332}
2333
2334void kvm_cpu_synchronize_state(CPUState *cpu)
2335{
2336    if (!cpu->vcpu_dirty) {
2337        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2338    }
2339}
2340
2341static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2342{
2343    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2344    cpu->vcpu_dirty = false;
2345}
2346
2347void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2348{
2349    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2350}
2351
2352static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2353{
2354    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2355    cpu->vcpu_dirty = false;
2356}
2357
2358void kvm_cpu_synchronize_post_init(CPUState *cpu)
2359{
2360    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2361}
2362
2363static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2364{
2365    cpu->vcpu_dirty = true;
2366}
2367
2368void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2369{
2370    run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2371}
2372
2373#ifdef KVM_HAVE_MCE_INJECTION
2374static __thread void *pending_sigbus_addr;
2375static __thread int pending_sigbus_code;
2376static __thread bool have_sigbus_pending;
2377#endif
2378
2379static void kvm_cpu_kick(CPUState *cpu)
2380{
2381    qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2382}
2383
2384static void kvm_cpu_kick_self(void)
2385{
2386    if (kvm_immediate_exit) {
2387        kvm_cpu_kick(current_cpu);
2388    } else {
2389        qemu_cpu_kick_self();
2390    }
2391}
2392
2393static void kvm_eat_signals(CPUState *cpu)
2394{
2395    struct timespec ts = { 0, 0 };
2396    siginfo_t siginfo;
2397    sigset_t waitset;
2398    sigset_t chkset;
2399    int r;
2400
2401    if (kvm_immediate_exit) {
2402        qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2403        /* Write kvm_run->immediate_exit before the cpu->exit_request
2404         * write in kvm_cpu_exec.
2405         */
2406        smp_wmb();
2407        return;
2408    }
2409
2410    sigemptyset(&waitset);
2411    sigaddset(&waitset, SIG_IPI);
2412
2413    do {
2414        r = sigtimedwait(&waitset, &siginfo, &ts);
2415        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2416            perror("sigtimedwait");
2417            exit(1);
2418        }
2419
2420        r = sigpending(&chkset);
2421        if (r == -1) {
2422            perror("sigpending");
2423            exit(1);
2424        }
2425    } while (sigismember(&chkset, SIG_IPI));
2426}
2427
2428int kvm_cpu_exec(CPUState *cpu)
2429{
2430    struct kvm_run *run = cpu->kvm_run;
2431    int ret, run_ret;
2432
2433    DPRINTF("kvm_cpu_exec()\n");
2434
2435    if (kvm_arch_process_async_events(cpu)) {
2436        qatomic_set(&cpu->exit_request, 0);
2437        return EXCP_HLT;
2438    }
2439
2440    qemu_mutex_unlock_iothread();
2441    cpu_exec_start(cpu);
2442
2443    do {
2444        MemTxAttrs attrs;
2445
2446        if (cpu->vcpu_dirty) {
2447            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2448            cpu->vcpu_dirty = false;
2449        }
2450
2451        kvm_arch_pre_run(cpu, run);
2452        if (qatomic_read(&cpu->exit_request)) {
2453            DPRINTF("interrupt exit requested\n");
2454            /*
2455             * KVM requires us to reenter the kernel after IO exits to complete
2456             * instruction emulation. This self-signal will ensure that we
2457             * leave ASAP again.
2458             */
2459            kvm_cpu_kick_self();
2460        }
2461
2462        /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2463         * Matching barrier in kvm_eat_signals.
2464         */
2465        smp_rmb();
2466
2467        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2468
2469        attrs = kvm_arch_post_run(cpu, run);
2470
2471#ifdef KVM_HAVE_MCE_INJECTION
2472        if (unlikely(have_sigbus_pending)) {
2473            qemu_mutex_lock_iothread();
2474            kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2475                                    pending_sigbus_addr);
2476            have_sigbus_pending = false;
2477            qemu_mutex_unlock_iothread();
2478        }
2479#endif
2480
2481        if (run_ret < 0) {
2482            if (run_ret == -EINTR || run_ret == -EAGAIN) {
2483                DPRINTF("io window exit\n");
2484                kvm_eat_signals(cpu);
2485                ret = EXCP_INTERRUPT;
2486                break;
2487            }
2488            fprintf(stderr, "error: kvm run failed %s\n",
2489                    strerror(-run_ret));
2490#ifdef TARGET_PPC
2491            if (run_ret == -EBUSY) {
2492                fprintf(stderr,
2493                        "This is probably because your SMT is enabled.\n"
2494                        "VCPU can only run on primary threads with all "
2495                        "secondary threads offline.\n");
2496            }
2497#endif
2498            ret = -1;
2499            break;
2500        }
2501
2502        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2503        switch (run->exit_reason) {
2504        case KVM_EXIT_IO:
2505            DPRINTF("handle_io\n");
2506            /* Called outside BQL */
2507            kvm_handle_io(run->io.port, attrs,
2508                          (uint8_t *)run + run->io.data_offset,
2509                          run->io.direction,
2510                          run->io.size,
2511                          run->io.count);
2512            ret = 0;
2513            break;
2514        case KVM_EXIT_MMIO:
2515            DPRINTF("handle_mmio\n");
2516            /* Called outside BQL */
2517            address_space_rw(&address_space_memory,
2518                             run->mmio.phys_addr, attrs,
2519                             run->mmio.data,
2520                             run->mmio.len,
2521                             run->mmio.is_write);
2522            ret = 0;
2523            break;
2524        case KVM_EXIT_IRQ_WINDOW_OPEN:
2525            DPRINTF("irq_window_open\n");
2526            ret = EXCP_INTERRUPT;
2527            break;
2528        case KVM_EXIT_SHUTDOWN:
2529            DPRINTF("shutdown\n");
2530            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2531            ret = EXCP_INTERRUPT;
2532            break;
2533        case KVM_EXIT_UNKNOWN:
2534            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2535                    (uint64_t)run->hw.hardware_exit_reason);
2536            ret = -1;
2537            break;
2538        case KVM_EXIT_INTERNAL_ERROR:
2539            ret = kvm_handle_internal_error(cpu, run);
2540            break;
2541        case KVM_EXIT_SYSTEM_EVENT:
2542            switch (run->system_event.type) {
2543            case KVM_SYSTEM_EVENT_SHUTDOWN:
2544                qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2545                ret = EXCP_INTERRUPT;
2546                break;
2547            case KVM_SYSTEM_EVENT_RESET:
2548                qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2549                ret = EXCP_INTERRUPT;
2550                break;
2551            case KVM_SYSTEM_EVENT_CRASH:
2552                kvm_cpu_synchronize_state(cpu);
2553                qemu_mutex_lock_iothread();
2554                qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2555                qemu_mutex_unlock_iothread();
2556                ret = 0;
2557                break;
2558            default:
2559                DPRINTF("kvm_arch_handle_exit\n");
2560                ret = kvm_arch_handle_exit(cpu, run);
2561                break;
2562            }
2563            break;
2564        default:
2565            DPRINTF("kvm_arch_handle_exit\n");
2566            ret = kvm_arch_handle_exit(cpu, run);
2567            break;
2568        }
2569    } while (ret == 0);
2570
2571    cpu_exec_end(cpu);
2572    qemu_mutex_lock_iothread();
2573
2574    if (ret < 0) {
2575        cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2576        vm_stop(RUN_STATE_INTERNAL_ERROR);
2577    }
2578
2579    qatomic_set(&cpu->exit_request, 0);
2580    return ret;
2581}
2582
2583int kvm_ioctl(KVMState *s, int type, ...)
2584{
2585    int ret;
2586    void *arg;
2587    va_list ap;
2588
2589    va_start(ap, type);
2590    arg = va_arg(ap, void *);
2591    va_end(ap);
2592
2593    trace_kvm_ioctl(type, arg);
2594    ret = ioctl(s->fd, type, arg);
2595    if (ret == -1) {
2596        ret = -errno;
2597    }
2598    return ret;
2599}
2600
2601int kvm_vm_ioctl(KVMState *s, int type, ...)
2602{
2603    int ret;
2604    void *arg;
2605    va_list ap;
2606
2607    va_start(ap, type);
2608    arg = va_arg(ap, void *);
2609    va_end(ap);
2610
2611    trace_kvm_vm_ioctl(type, arg);
2612    ret = ioctl(s->vmfd, type, arg);
2613    if (ret == -1) {
2614        ret = -errno;
2615    }
2616    return ret;
2617}
2618
2619int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2620{
2621    int ret;
2622    void *arg;
2623    va_list ap;
2624
2625    va_start(ap, type);
2626    arg = va_arg(ap, void *);
2627    va_end(ap);
2628
2629    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2630    ret = ioctl(cpu->kvm_fd, type, arg);
2631    if (ret == -1) {
2632        ret = -errno;
2633    }
2634    return ret;
2635}
2636
2637int kvm_device_ioctl(int fd, int type, ...)
2638{
2639    int ret;
2640    void *arg;
2641    va_list ap;
2642
2643    va_start(ap, type);
2644    arg = va_arg(ap, void *);
2645    va_end(ap);
2646
2647    trace_kvm_device_ioctl(fd, type, arg);
2648    ret = ioctl(fd, type, arg);
2649    if (ret == -1) {
2650        ret = -errno;
2651    }
2652    return ret;
2653}
2654
2655int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2656{
2657    int ret;
2658    struct kvm_device_attr attribute = {
2659        .group = group,
2660        .attr = attr,
2661    };
2662
2663    if (!kvm_vm_attributes_allowed) {
2664        return 0;
2665    }
2666
2667    ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2668    /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2669    return ret ? 0 : 1;
2670}
2671
2672int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2673{
2674    struct kvm_device_attr attribute = {
2675        .group = group,
2676        .attr = attr,
2677        .flags = 0,
2678    };
2679
2680    return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2681}
2682
2683int kvm_device_access(int fd, int group, uint64_t attr,
2684                      void *val, bool write, Error **errp)
2685{
2686    struct kvm_device_attr kvmattr;
2687    int err;
2688
2689    kvmattr.flags = 0;
2690    kvmattr.group = group;
2691    kvmattr.attr = attr;
2692    kvmattr.addr = (uintptr_t)val;
2693
2694    err = kvm_device_ioctl(fd,
2695                           write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2696                           &kvmattr);
2697    if (err < 0) {
2698        error_setg_errno(errp, -err,
2699                         "KVM_%s_DEVICE_ATTR failed: Group %d "
2700                         "attr 0x%016" PRIx64,
2701                         write ? "SET" : "GET", group, attr);
2702    }
2703    return err;
2704}
2705
2706bool kvm_has_sync_mmu(void)
2707{
2708    return kvm_state->sync_mmu;
2709}
2710
2711int kvm_has_vcpu_events(void)
2712{
2713    return kvm_state->vcpu_events;
2714}
2715
2716int kvm_has_robust_singlestep(void)
2717{
2718    return kvm_state->robust_singlestep;
2719}
2720
2721int kvm_has_debugregs(void)
2722{
2723    return kvm_state->debugregs;
2724}
2725
2726int kvm_max_nested_state_length(void)
2727{
2728    return kvm_state->max_nested_state_len;
2729}
2730
2731int kvm_has_many_ioeventfds(void)
2732{
2733    if (!kvm_enabled()) {
2734        return 0;
2735    }
2736    return kvm_state->many_ioeventfds;
2737}
2738
2739int kvm_has_gsi_routing(void)
2740{
2741#ifdef KVM_CAP_IRQ_ROUTING
2742    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2743#else
2744    return false;
2745#endif
2746}
2747
2748int kvm_has_intx_set_mask(void)
2749{
2750    return kvm_state->intx_set_mask;
2751}
2752
2753bool kvm_arm_supports_user_irq(void)
2754{
2755    return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2756}
2757
2758#ifdef KVM_CAP_SET_GUEST_DEBUG
2759struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2760                                                 target_ulong pc)
2761{
2762    struct kvm_sw_breakpoint *bp;
2763
2764    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2765        if (bp->pc == pc) {
2766            return bp;
2767        }
2768    }
2769    return NULL;
2770}
2771
2772int kvm_sw_breakpoints_active(CPUState *cpu)
2773{
2774    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2775}
2776
2777struct kvm_set_guest_debug_data {
2778    struct kvm_guest_debug dbg;
2779    int err;
2780};
2781
2782static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2783{
2784    struct kvm_set_guest_debug_data *dbg_data =
2785        (struct kvm_set_guest_debug_data *) data.host_ptr;
2786
2787    dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2788                                   &dbg_data->dbg);
2789}
2790
2791int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2792{
2793    struct kvm_set_guest_debug_data data;
2794
2795    data.dbg.control = reinject_trap;
2796
2797    if (cpu->singlestep_enabled) {
2798        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2799    }
2800    kvm_arch_update_guest_debug(cpu, &data.dbg);
2801
2802    run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2803               RUN_ON_CPU_HOST_PTR(&data));
2804    return data.err;
2805}
2806
2807int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2808                          target_ulong len, int type)
2809{
2810    struct kvm_sw_breakpoint *bp;
2811    int err;
2812
2813    if (type == GDB_BREAKPOINT_SW) {
2814        bp = kvm_find_sw_breakpoint(cpu, addr);
2815        if (bp) {
2816            bp->use_count++;
2817            return 0;
2818        }
2819
2820        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2821        bp->pc = addr;
2822        bp->use_count = 1;
2823        err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2824        if (err) {
2825            g_free(bp);
2826            return err;
2827        }
2828
2829        QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2830    } else {
2831        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2832        if (err) {
2833            return err;
2834        }
2835    }
2836
2837    CPU_FOREACH(cpu) {
2838        err = kvm_update_guest_debug(cpu, 0);
2839        if (err) {
2840            return err;
2841        }
2842    }
2843    return 0;
2844}
2845
2846int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2847                          target_ulong len, int type)
2848{
2849    struct kvm_sw_breakpoint *bp;
2850    int err;
2851
2852    if (type == GDB_BREAKPOINT_SW) {
2853        bp = kvm_find_sw_breakpoint(cpu, addr);
2854        if (!bp) {
2855            return -ENOENT;
2856        }
2857
2858        if (bp->use_count > 1) {
2859            bp->use_count--;
2860            return 0;
2861        }
2862
2863        err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2864        if (err) {
2865            return err;
2866        }
2867
2868        QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2869        g_free(bp);
2870    } else {
2871        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2872        if (err) {
2873            return err;
2874        }
2875    }
2876
2877    CPU_FOREACH(cpu) {
2878        err = kvm_update_guest_debug(cpu, 0);
2879        if (err) {
2880            return err;
2881        }
2882    }
2883    return 0;
2884}
2885
2886void kvm_remove_all_breakpoints(CPUState *cpu)
2887{
2888    struct kvm_sw_breakpoint *bp, *next;
2889    KVMState *s = cpu->kvm_state;
2890    CPUState *tmpcpu;
2891
2892    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2893        if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2894            /* Try harder to find a CPU that currently sees the breakpoint. */
2895            CPU_FOREACH(tmpcpu) {
2896                if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2897                    break;
2898                }
2899            }
2900        }
2901        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2902        g_free(bp);
2903    }
2904    kvm_arch_remove_all_hw_breakpoints();
2905
2906    CPU_FOREACH(cpu) {
2907        kvm_update_guest_debug(cpu, 0);
2908    }
2909}
2910
2911#else /* !KVM_CAP_SET_GUEST_DEBUG */
2912
2913int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2914{
2915    return -EINVAL;
2916}
2917
2918int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2919                          target_ulong len, int type)
2920{
2921    return -EINVAL;
2922}
2923
2924int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2925                          target_ulong len, int type)
2926{
2927    return -EINVAL;
2928}
2929
2930void kvm_remove_all_breakpoints(CPUState *cpu)
2931{
2932}
2933#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2934
2935static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2936{
2937    KVMState *s = kvm_state;
2938    struct kvm_signal_mask *sigmask;
2939    int r;
2940
2941    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2942
2943    sigmask->len = s->sigmask_len;
2944    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2945    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2946    g_free(sigmask);
2947
2948    return r;
2949}
2950
2951static void kvm_ipi_signal(int sig)
2952{
2953    if (current_cpu) {
2954        assert(kvm_immediate_exit);
2955        kvm_cpu_kick(current_cpu);
2956    }
2957}
2958
2959void kvm_init_cpu_signals(CPUState *cpu)
2960{
2961    int r;
2962    sigset_t set;
2963    struct sigaction sigact;
2964
2965    memset(&sigact, 0, sizeof(sigact));
2966    sigact.sa_handler = kvm_ipi_signal;
2967    sigaction(SIG_IPI, &sigact, NULL);
2968
2969    pthread_sigmask(SIG_BLOCK, NULL, &set);
2970#if defined KVM_HAVE_MCE_INJECTION
2971    sigdelset(&set, SIGBUS);
2972    pthread_sigmask(SIG_SETMASK, &set, NULL);
2973#endif
2974    sigdelset(&set, SIG_IPI);
2975    if (kvm_immediate_exit) {
2976        r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2977    } else {
2978        r = kvm_set_signal_mask(cpu, &set);
2979    }
2980    if (r) {
2981        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2982        exit(1);
2983    }
2984}
2985
2986/* Called asynchronously in VCPU thread.  */
2987int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2988{
2989#ifdef KVM_HAVE_MCE_INJECTION
2990    if (have_sigbus_pending) {
2991        return 1;
2992    }
2993    have_sigbus_pending = true;
2994    pending_sigbus_addr = addr;
2995    pending_sigbus_code = code;
2996    qatomic_set(&cpu->exit_request, 1);
2997    return 0;
2998#else
2999    return 1;
3000#endif
3001}
3002
3003/* Called synchronously (via signalfd) in main thread.  */
3004int kvm_on_sigbus(int code, void *addr)
3005{
3006#ifdef KVM_HAVE_MCE_INJECTION
3007    /* Action required MCE kills the process if SIGBUS is blocked.  Because
3008     * that's what happens in the I/O thread, where we handle MCE via signalfd,
3009     * we can only get action optional here.
3010     */
3011    assert(code != BUS_MCEERR_AR);
3012    kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3013    return 0;
3014#else
3015    return 1;
3016#endif
3017}
3018
3019int kvm_create_device(KVMState *s, uint64_t type, bool test)
3020{
3021    int ret;
3022    struct kvm_create_device create_dev;
3023
3024    create_dev.type = type;
3025    create_dev.fd = -1;
3026    create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3027
3028    if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3029        return -ENOTSUP;
3030    }
3031
3032    ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3033    if (ret) {
3034        return ret;
3035    }
3036
3037    return test ? 0 : create_dev.fd;
3038}
3039
3040bool kvm_device_supported(int vmfd, uint64_t type)
3041{
3042    struct kvm_create_device create_dev = {
3043        .type = type,
3044        .fd = -1,
3045        .flags = KVM_CREATE_DEVICE_TEST,
3046    };
3047
3048    if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3049        return false;
3050    }
3051
3052    return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3053}
3054
3055int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3056{
3057    struct kvm_one_reg reg;
3058    int r;
3059
3060    reg.id = id;
3061    reg.addr = (uintptr_t) source;
3062    r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3063    if (r) {
3064        trace_kvm_failed_reg_set(id, strerror(-r));
3065    }
3066    return r;
3067}
3068
3069int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3070{
3071    struct kvm_one_reg reg;
3072    int r;
3073
3074    reg.id = id;
3075    reg.addr = (uintptr_t) target;
3076    r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3077    if (r) {
3078        trace_kvm_failed_reg_get(id, strerror(-r));
3079    }
3080    return r;
3081}
3082
3083static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3084                                 hwaddr start_addr, hwaddr size)
3085{
3086    KVMState *kvm = KVM_STATE(ms->accelerator);
3087    int i;
3088
3089    for (i = 0; i < kvm->nr_as; ++i) {
3090        if (kvm->as[i].as == as && kvm->as[i].ml) {
3091            size = MIN(kvm_max_slot_size, size);
3092            return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3093                                                    start_addr, size);
3094        }
3095    }
3096
3097    return false;
3098}
3099
3100static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3101                                   const char *name, void *opaque,
3102                                   Error **errp)
3103{
3104    KVMState *s = KVM_STATE(obj);
3105    int64_t value = s->kvm_shadow_mem;
3106
3107    visit_type_int(v, name, &value, errp);
3108}
3109
3110static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3111                                   const char *name, void *opaque,
3112                                   Error **errp)
3113{
3114    KVMState *s = KVM_STATE(obj);
3115    int64_t value;
3116
3117    if (!visit_type_int(v, name, &value, errp)) {
3118        return;
3119    }
3120
3121    s->kvm_shadow_mem = value;
3122}
3123
3124static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3125                                   const char *name, void *opaque,
3126                                   Error **errp)
3127{
3128    KVMState *s = KVM_STATE(obj);
3129    OnOffSplit mode;
3130
3131    if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3132        return;
3133    }
3134    switch (mode) {
3135    case ON_OFF_SPLIT_ON:
3136        s->kernel_irqchip_allowed = true;
3137        s->kernel_irqchip_required = true;
3138        s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3139        break;
3140    case ON_OFF_SPLIT_OFF:
3141        s->kernel_irqchip_allowed = false;
3142        s->kernel_irqchip_required = false;
3143        s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3144        break;
3145    case ON_OFF_SPLIT_SPLIT:
3146        s->kernel_irqchip_allowed = true;
3147        s->kernel_irqchip_required = true;
3148        s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3149        break;
3150    default:
3151        /* The value was checked in visit_type_OnOffSplit() above. If
3152         * we get here, then something is wrong in QEMU.
3153         */
3154        abort();
3155    }
3156}
3157
3158bool kvm_kernel_irqchip_allowed(void)
3159{
3160    return kvm_state->kernel_irqchip_allowed;
3161}
3162
3163bool kvm_kernel_irqchip_required(void)
3164{
3165    return kvm_state->kernel_irqchip_required;
3166}
3167
3168bool kvm_kernel_irqchip_split(void)
3169{
3170    return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3171}
3172
3173static void kvm_accel_instance_init(Object *obj)
3174{
3175    KVMState *s = KVM_STATE(obj);
3176
3177    s->kvm_shadow_mem = -1;
3178    s->kernel_irqchip_allowed = true;
3179    s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3180}
3181
3182static void kvm_accel_class_init(ObjectClass *oc, void *data)
3183{
3184    AccelClass *ac = ACCEL_CLASS(oc);
3185    ac->name = "KVM";
3186    ac->init_machine = kvm_init;
3187    ac->has_memory = kvm_accel_has_memory;
3188    ac->allowed = &kvm_allowed;
3189
3190    object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3191        NULL, kvm_set_kernel_irqchip,
3192        NULL, NULL);
3193    object_class_property_set_description(oc, "kernel-irqchip",
3194        "Configure KVM in-kernel irqchip");
3195
3196    object_class_property_add(oc, "kvm-shadow-mem", "int",
3197        kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3198        NULL, NULL);
3199    object_class_property_set_description(oc, "kvm-shadow-mem",
3200        "KVM shadow MMU size");
3201}
3202
3203static const TypeInfo kvm_accel_type = {
3204    .name = TYPE_KVM_ACCEL,
3205    .parent = TYPE_ACCEL,
3206    .instance_init = kvm_accel_instance_init,
3207    .class_init = kvm_accel_class_init,
3208    .instance_size = sizeof(KVMState),
3209};
3210
3211static void kvm_type_init(void)
3212{
3213    type_register_static(&kvm_accel_type);
3214}
3215
3216type_init(kvm_type_init);
3217