qemu/accel/tcg/translate-all.c
<<
>>
Prefs
   1/*
   2 *  Host code generation
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/units.h"
  22#include "qemu-common.h"
  23
  24#define NO_CPU_IO_DEFS
  25#include "cpu.h"
  26#include "trace.h"
  27#include "disas/disas.h"
  28#include "exec/exec-all.h"
  29#include "tcg/tcg.h"
  30#if defined(CONFIG_USER_ONLY)
  31#include "qemu.h"
  32#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
  33#include <sys/param.h>
  34#if __FreeBSD_version >= 700104
  35#define HAVE_KINFO_GETVMMAP
  36#define sigqueue sigqueue_freebsd  /* avoid redefinition */
  37#include <sys/proc.h>
  38#include <machine/profile.h>
  39#define _KERNEL
  40#include <sys/user.h>
  41#undef _KERNEL
  42#undef sigqueue
  43#include <libutil.h>
  44#endif
  45#endif
  46#else
  47#include "exec/ram_addr.h"
  48#endif
  49
  50#include "exec/cputlb.h"
  51#include "exec/tb-hash.h"
  52#include "exec/translate-all.h"
  53#include "qemu/bitmap.h"
  54#include "qemu/error-report.h"
  55#include "qemu/qemu-print.h"
  56#include "qemu/timer.h"
  57#include "qemu/main-loop.h"
  58#include "exec/log.h"
  59#include "sysemu/cpus.h"
  60#include "sysemu/cpu-timers.h"
  61#include "sysemu/tcg.h"
  62#include "qapi/error.h"
  63#include "hw/core/tcg-cpu-ops.h"
  64#include "internal.h"
  65
  66/* #define DEBUG_TB_INVALIDATE */
  67/* #define DEBUG_TB_FLUSH */
  68/* make various TB consistency checks */
  69/* #define DEBUG_TB_CHECK */
  70
  71#ifdef DEBUG_TB_INVALIDATE
  72#define DEBUG_TB_INVALIDATE_GATE 1
  73#else
  74#define DEBUG_TB_INVALIDATE_GATE 0
  75#endif
  76
  77#ifdef DEBUG_TB_FLUSH
  78#define DEBUG_TB_FLUSH_GATE 1
  79#else
  80#define DEBUG_TB_FLUSH_GATE 0
  81#endif
  82
  83#if !defined(CONFIG_USER_ONLY)
  84/* TB consistency checks only implemented for usermode emulation.  */
  85#undef DEBUG_TB_CHECK
  86#endif
  87
  88#ifdef DEBUG_TB_CHECK
  89#define DEBUG_TB_CHECK_GATE 1
  90#else
  91#define DEBUG_TB_CHECK_GATE 0
  92#endif
  93
  94/* Access to the various translations structures need to be serialised via locks
  95 * for consistency.
  96 * In user-mode emulation access to the memory related structures are protected
  97 * with mmap_lock.
  98 * In !user-mode we use per-page locks.
  99 */
 100#ifdef CONFIG_SOFTMMU
 101#define assert_memory_lock()
 102#else
 103#define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
 104#endif
 105
 106#define SMC_BITMAP_USE_THRESHOLD 10
 107
 108typedef struct PageDesc {
 109    /* list of TBs intersecting this ram page */
 110    uintptr_t first_tb;
 111#ifdef CONFIG_SOFTMMU
 112    /* in order to optimize self modifying code, we count the number
 113       of lookups we do to a given page to use a bitmap */
 114    unsigned long *code_bitmap;
 115    unsigned int code_write_count;
 116#else
 117    unsigned long flags;
 118    void *target_data;
 119#endif
 120#ifndef CONFIG_USER_ONLY
 121    QemuSpin lock;
 122#endif
 123} PageDesc;
 124
 125/**
 126 * struct page_entry - page descriptor entry
 127 * @pd:     pointer to the &struct PageDesc of the page this entry represents
 128 * @index:  page index of the page
 129 * @locked: whether the page is locked
 130 *
 131 * This struct helps us keep track of the locked state of a page, without
 132 * bloating &struct PageDesc.
 133 *
 134 * A page lock protects accesses to all fields of &struct PageDesc.
 135 *
 136 * See also: &struct page_collection.
 137 */
 138struct page_entry {
 139    PageDesc *pd;
 140    tb_page_addr_t index;
 141    bool locked;
 142};
 143
 144/**
 145 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
 146 * @tree:   Binary search tree (BST) of the pages, with key == page index
 147 * @max:    Pointer to the page in @tree with the highest page index
 148 *
 149 * To avoid deadlock we lock pages in ascending order of page index.
 150 * When operating on a set of pages, we need to keep track of them so that
 151 * we can lock them in order and also unlock them later. For this we collect
 152 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
 153 * @tree implementation we use does not provide an O(1) operation to obtain the
 154 * highest-ranked element, we use @max to keep track of the inserted page
 155 * with the highest index. This is valuable because if a page is not in
 156 * the tree and its index is higher than @max's, then we can lock it
 157 * without breaking the locking order rule.
 158 *
 159 * Note on naming: 'struct page_set' would be shorter, but we already have a few
 160 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
 161 *
 162 * See also: page_collection_lock().
 163 */
 164struct page_collection {
 165    GTree *tree;
 166    struct page_entry *max;
 167};
 168
 169/* list iterators for lists of tagged pointers in TranslationBlock */
 170#define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
 171    for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
 172         tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
 173             tb = (TranslationBlock *)((uintptr_t)tb & ~1))
 174
 175#define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
 176    TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
 177
 178#define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
 179    TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
 180
 181/*
 182 * In system mode we want L1_MAP to be based on ram offsets,
 183 * while in user mode we want it to be based on virtual addresses.
 184 *
 185 * TODO: For user mode, see the caveat re host vs guest virtual
 186 * address spaces near GUEST_ADDR_MAX.
 187 */
 188#if !defined(CONFIG_USER_ONLY)
 189#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
 190# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
 191#else
 192# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
 193#endif
 194#else
 195# define L1_MAP_ADDR_SPACE_BITS  MIN(HOST_LONG_BITS, TARGET_ABI_BITS)
 196#endif
 197
 198/* Size of the L2 (and L3, etc) page tables.  */
 199#define V_L2_BITS 10
 200#define V_L2_SIZE (1 << V_L2_BITS)
 201
 202/* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
 203QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
 204                  sizeof_field(TranslationBlock, trace_vcpu_dstate)
 205                  * BITS_PER_BYTE);
 206
 207/*
 208 * L1 Mapping properties
 209 */
 210static int v_l1_size;
 211static int v_l1_shift;
 212static int v_l2_levels;
 213
 214/* The bottom level has pointers to PageDesc, and is indexed by
 215 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
 216 */
 217#define V_L1_MIN_BITS 4
 218#define V_L1_MAX_BITS (V_L2_BITS + 3)
 219#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
 220
 221static void *l1_map[V_L1_MAX_SIZE];
 222
 223/* code generation context */
 224TCGContext tcg_init_ctx;
 225__thread TCGContext *tcg_ctx;
 226TBContext tb_ctx;
 227
 228static void page_table_config_init(void)
 229{
 230    uint32_t v_l1_bits;
 231
 232    assert(TARGET_PAGE_BITS);
 233    /* The bits remaining after N lower levels of page tables.  */
 234    v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
 235    if (v_l1_bits < V_L1_MIN_BITS) {
 236        v_l1_bits += V_L2_BITS;
 237    }
 238
 239    v_l1_size = 1 << v_l1_bits;
 240    v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
 241    v_l2_levels = v_l1_shift / V_L2_BITS - 1;
 242
 243    assert(v_l1_bits <= V_L1_MAX_BITS);
 244    assert(v_l1_shift % V_L2_BITS == 0);
 245    assert(v_l2_levels >= 0);
 246}
 247
 248static void cpu_gen_init(void)
 249{
 250    tcg_context_init(&tcg_init_ctx);
 251}
 252
 253/* Encode VAL as a signed leb128 sequence at P.
 254   Return P incremented past the encoded value.  */
 255static uint8_t *encode_sleb128(uint8_t *p, target_long val)
 256{
 257    int more, byte;
 258
 259    do {
 260        byte = val & 0x7f;
 261        val >>= 7;
 262        more = !((val == 0 && (byte & 0x40) == 0)
 263                 || (val == -1 && (byte & 0x40) != 0));
 264        if (more) {
 265            byte |= 0x80;
 266        }
 267        *p++ = byte;
 268    } while (more);
 269
 270    return p;
 271}
 272
 273/* Decode a signed leb128 sequence at *PP; increment *PP past the
 274   decoded value.  Return the decoded value.  */
 275static target_long decode_sleb128(const uint8_t **pp)
 276{
 277    const uint8_t *p = *pp;
 278    target_long val = 0;
 279    int byte, shift = 0;
 280
 281    do {
 282        byte = *p++;
 283        val |= (target_ulong)(byte & 0x7f) << shift;
 284        shift += 7;
 285    } while (byte & 0x80);
 286    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
 287        val |= -(target_ulong)1 << shift;
 288    }
 289
 290    *pp = p;
 291    return val;
 292}
 293
 294/* Encode the data collected about the instructions while compiling TB.
 295   Place the data at BLOCK, and return the number of bytes consumed.
 296
 297   The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
 298   which come from the target's insn_start data, followed by a uintptr_t
 299   which comes from the host pc of the end of the code implementing the insn.
 300
 301   Each line of the table is encoded as sleb128 deltas from the previous
 302   line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
 303   That is, the first column is seeded with the guest pc, the last column
 304   with the host pc, and the middle columns with zeros.  */
 305
 306static int encode_search(TranslationBlock *tb, uint8_t *block)
 307{
 308    uint8_t *highwater = tcg_ctx->code_gen_highwater;
 309    uint8_t *p = block;
 310    int i, j, n;
 311
 312    for (i = 0, n = tb->icount; i < n; ++i) {
 313        target_ulong prev;
 314
 315        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
 316            if (i == 0) {
 317                prev = (j == 0 ? tb->pc : 0);
 318            } else {
 319                prev = tcg_ctx->gen_insn_data[i - 1][j];
 320            }
 321            p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
 322        }
 323        prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
 324        p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
 325
 326        /* Test for (pending) buffer overflow.  The assumption is that any
 327           one row beginning below the high water mark cannot overrun
 328           the buffer completely.  Thus we can test for overflow after
 329           encoding a row without having to check during encoding.  */
 330        if (unlikely(p > highwater)) {
 331            return -1;
 332        }
 333    }
 334
 335    return p - block;
 336}
 337
 338/* The cpu state corresponding to 'searched_pc' is restored.
 339 * When reset_icount is true, current TB will be interrupted and
 340 * icount should be recalculated.
 341 */
 342static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
 343                                     uintptr_t searched_pc, bool reset_icount)
 344{
 345    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
 346    uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
 347    CPUArchState *env = cpu->env_ptr;
 348    const uint8_t *p = tb->tc.ptr + tb->tc.size;
 349    int i, j, num_insns = tb->icount;
 350#ifdef CONFIG_PROFILER
 351    TCGProfile *prof = &tcg_ctx->prof;
 352    int64_t ti = profile_getclock();
 353#endif
 354
 355    searched_pc -= GETPC_ADJ;
 356
 357    if (searched_pc < host_pc) {
 358        return -1;
 359    }
 360
 361    /* Reconstruct the stored insn data while looking for the point at
 362       which the end of the insn exceeds the searched_pc.  */
 363    for (i = 0; i < num_insns; ++i) {
 364        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
 365            data[j] += decode_sleb128(&p);
 366        }
 367        host_pc += decode_sleb128(&p);
 368        if (host_pc > searched_pc) {
 369            goto found;
 370        }
 371    }
 372    return -1;
 373
 374 found:
 375    if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
 376        assert(icount_enabled());
 377        /* Reset the cycle counter to the start of the block
 378           and shift if to the number of actually executed instructions */
 379        cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
 380    }
 381    restore_state_to_opc(env, tb, data);
 382
 383#ifdef CONFIG_PROFILER
 384    qatomic_set(&prof->restore_time,
 385                prof->restore_time + profile_getclock() - ti);
 386    qatomic_set(&prof->restore_count, prof->restore_count + 1);
 387#endif
 388    return 0;
 389}
 390
 391void tb_destroy(TranslationBlock *tb)
 392{
 393    qemu_spin_destroy(&tb->jmp_lock);
 394}
 395
 396bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
 397{
 398    /*
 399     * The host_pc has to be in the rx region of the code buffer.
 400     * If it is not we will not be able to resolve it here.
 401     * The two cases where host_pc will not be correct are:
 402     *
 403     *  - fault during translation (instruction fetch)
 404     *  - fault from helper (not using GETPC() macro)
 405     *
 406     * Either way we need return early as we can't resolve it here.
 407     */
 408    if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
 409        TranslationBlock *tb = tcg_tb_lookup(host_pc);
 410        if (tb) {
 411            cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
 412            return true;
 413        }
 414    }
 415    return false;
 416}
 417
 418static void page_init(void)
 419{
 420    page_size_init();
 421    page_table_config_init();
 422
 423#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 424    {
 425#ifdef HAVE_KINFO_GETVMMAP
 426        struct kinfo_vmentry *freep;
 427        int i, cnt;
 428
 429        freep = kinfo_getvmmap(getpid(), &cnt);
 430        if (freep) {
 431            mmap_lock();
 432            for (i = 0; i < cnt; i++) {
 433                unsigned long startaddr, endaddr;
 434
 435                startaddr = freep[i].kve_start;
 436                endaddr = freep[i].kve_end;
 437                if (h2g_valid(startaddr)) {
 438                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
 439
 440                    if (h2g_valid(endaddr)) {
 441                        endaddr = h2g(endaddr);
 442                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 443                    } else {
 444#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
 445                        endaddr = ~0ul;
 446                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 447#endif
 448                    }
 449                }
 450            }
 451            free(freep);
 452            mmap_unlock();
 453        }
 454#else
 455        FILE *f;
 456
 457        last_brk = (unsigned long)sbrk(0);
 458
 459        f = fopen("/compat/linux/proc/self/maps", "r");
 460        if (f) {
 461            mmap_lock();
 462
 463            do {
 464                unsigned long startaddr, endaddr;
 465                int n;
 466
 467                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
 468
 469                if (n == 2 && h2g_valid(startaddr)) {
 470                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
 471
 472                    if (h2g_valid(endaddr)) {
 473                        endaddr = h2g(endaddr);
 474                    } else {
 475                        endaddr = ~0ul;
 476                    }
 477                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 478                }
 479            } while (!feof(f));
 480
 481            fclose(f);
 482            mmap_unlock();
 483        }
 484#endif
 485    }
 486#endif
 487}
 488
 489static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
 490{
 491    PageDesc *pd;
 492    void **lp;
 493    int i;
 494
 495    /* Level 1.  Always allocated.  */
 496    lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
 497
 498    /* Level 2..N-1.  */
 499    for (i = v_l2_levels; i > 0; i--) {
 500        void **p = qatomic_rcu_read(lp);
 501
 502        if (p == NULL) {
 503            void *existing;
 504
 505            if (!alloc) {
 506                return NULL;
 507            }
 508            p = g_new0(void *, V_L2_SIZE);
 509            existing = qatomic_cmpxchg(lp, NULL, p);
 510            if (unlikely(existing)) {
 511                g_free(p);
 512                p = existing;
 513            }
 514        }
 515
 516        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
 517    }
 518
 519    pd = qatomic_rcu_read(lp);
 520    if (pd == NULL) {
 521        void *existing;
 522
 523        if (!alloc) {
 524            return NULL;
 525        }
 526        pd = g_new0(PageDesc, V_L2_SIZE);
 527#ifndef CONFIG_USER_ONLY
 528        {
 529            int i;
 530
 531            for (i = 0; i < V_L2_SIZE; i++) {
 532                qemu_spin_init(&pd[i].lock);
 533            }
 534        }
 535#endif
 536        existing = qatomic_cmpxchg(lp, NULL, pd);
 537        if (unlikely(existing)) {
 538#ifndef CONFIG_USER_ONLY
 539            {
 540                int i;
 541
 542                for (i = 0; i < V_L2_SIZE; i++) {
 543                    qemu_spin_destroy(&pd[i].lock);
 544                }
 545            }
 546#endif
 547            g_free(pd);
 548            pd = existing;
 549        }
 550    }
 551
 552    return pd + (index & (V_L2_SIZE - 1));
 553}
 554
 555static inline PageDesc *page_find(tb_page_addr_t index)
 556{
 557    return page_find_alloc(index, 0);
 558}
 559
 560static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
 561                           PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
 562
 563/* In user-mode page locks aren't used; mmap_lock is enough */
 564#ifdef CONFIG_USER_ONLY
 565
 566#define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
 567
 568static inline void page_lock(PageDesc *pd)
 569{ }
 570
 571static inline void page_unlock(PageDesc *pd)
 572{ }
 573
 574static inline void page_lock_tb(const TranslationBlock *tb)
 575{ }
 576
 577static inline void page_unlock_tb(const TranslationBlock *tb)
 578{ }
 579
 580struct page_collection *
 581page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
 582{
 583    return NULL;
 584}
 585
 586void page_collection_unlock(struct page_collection *set)
 587{ }
 588#else /* !CONFIG_USER_ONLY */
 589
 590#ifdef CONFIG_DEBUG_TCG
 591
 592static __thread GHashTable *ht_pages_locked_debug;
 593
 594static void ht_pages_locked_debug_init(void)
 595{
 596    if (ht_pages_locked_debug) {
 597        return;
 598    }
 599    ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
 600}
 601
 602static bool page_is_locked(const PageDesc *pd)
 603{
 604    PageDesc *found;
 605
 606    ht_pages_locked_debug_init();
 607    found = g_hash_table_lookup(ht_pages_locked_debug, pd);
 608    return !!found;
 609}
 610
 611static void page_lock__debug(PageDesc *pd)
 612{
 613    ht_pages_locked_debug_init();
 614    g_assert(!page_is_locked(pd));
 615    g_hash_table_insert(ht_pages_locked_debug, pd, pd);
 616}
 617
 618static void page_unlock__debug(const PageDesc *pd)
 619{
 620    bool removed;
 621
 622    ht_pages_locked_debug_init();
 623    g_assert(page_is_locked(pd));
 624    removed = g_hash_table_remove(ht_pages_locked_debug, pd);
 625    g_assert(removed);
 626}
 627
 628static void
 629do_assert_page_locked(const PageDesc *pd, const char *file, int line)
 630{
 631    if (unlikely(!page_is_locked(pd))) {
 632        error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
 633                     pd, file, line);
 634        abort();
 635    }
 636}
 637
 638#define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
 639
 640void assert_no_pages_locked(void)
 641{
 642    ht_pages_locked_debug_init();
 643    g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
 644}
 645
 646#else /* !CONFIG_DEBUG_TCG */
 647
 648#define assert_page_locked(pd)
 649
 650static inline void page_lock__debug(const PageDesc *pd)
 651{
 652}
 653
 654static inline void page_unlock__debug(const PageDesc *pd)
 655{
 656}
 657
 658#endif /* CONFIG_DEBUG_TCG */
 659
 660static inline void page_lock(PageDesc *pd)
 661{
 662    page_lock__debug(pd);
 663    qemu_spin_lock(&pd->lock);
 664}
 665
 666static inline void page_unlock(PageDesc *pd)
 667{
 668    qemu_spin_unlock(&pd->lock);
 669    page_unlock__debug(pd);
 670}
 671
 672/* lock the page(s) of a TB in the correct acquisition order */
 673static inline void page_lock_tb(const TranslationBlock *tb)
 674{
 675    page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
 676}
 677
 678static inline void page_unlock_tb(const TranslationBlock *tb)
 679{
 680    PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
 681
 682    page_unlock(p1);
 683    if (unlikely(tb->page_addr[1] != -1)) {
 684        PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
 685
 686        if (p2 != p1) {
 687            page_unlock(p2);
 688        }
 689    }
 690}
 691
 692static inline struct page_entry *
 693page_entry_new(PageDesc *pd, tb_page_addr_t index)
 694{
 695    struct page_entry *pe = g_malloc(sizeof(*pe));
 696
 697    pe->index = index;
 698    pe->pd = pd;
 699    pe->locked = false;
 700    return pe;
 701}
 702
 703static void page_entry_destroy(gpointer p)
 704{
 705    struct page_entry *pe = p;
 706
 707    g_assert(pe->locked);
 708    page_unlock(pe->pd);
 709    g_free(pe);
 710}
 711
 712/* returns false on success */
 713static bool page_entry_trylock(struct page_entry *pe)
 714{
 715    bool busy;
 716
 717    busy = qemu_spin_trylock(&pe->pd->lock);
 718    if (!busy) {
 719        g_assert(!pe->locked);
 720        pe->locked = true;
 721        page_lock__debug(pe->pd);
 722    }
 723    return busy;
 724}
 725
 726static void do_page_entry_lock(struct page_entry *pe)
 727{
 728    page_lock(pe->pd);
 729    g_assert(!pe->locked);
 730    pe->locked = true;
 731}
 732
 733static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
 734{
 735    struct page_entry *pe = value;
 736
 737    do_page_entry_lock(pe);
 738    return FALSE;
 739}
 740
 741static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
 742{
 743    struct page_entry *pe = value;
 744
 745    if (pe->locked) {
 746        pe->locked = false;
 747        page_unlock(pe->pd);
 748    }
 749    return FALSE;
 750}
 751
 752/*
 753 * Trylock a page, and if successful, add the page to a collection.
 754 * Returns true ("busy") if the page could not be locked; false otherwise.
 755 */
 756static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
 757{
 758    tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
 759    struct page_entry *pe;
 760    PageDesc *pd;
 761
 762    pe = g_tree_lookup(set->tree, &index);
 763    if (pe) {
 764        return false;
 765    }
 766
 767    pd = page_find(index);
 768    if (pd == NULL) {
 769        return false;
 770    }
 771
 772    pe = page_entry_new(pd, index);
 773    g_tree_insert(set->tree, &pe->index, pe);
 774
 775    /*
 776     * If this is either (1) the first insertion or (2) a page whose index
 777     * is higher than any other so far, just lock the page and move on.
 778     */
 779    if (set->max == NULL || pe->index > set->max->index) {
 780        set->max = pe;
 781        do_page_entry_lock(pe);
 782        return false;
 783    }
 784    /*
 785     * Try to acquire out-of-order lock; if busy, return busy so that we acquire
 786     * locks in order.
 787     */
 788    return page_entry_trylock(pe);
 789}
 790
 791static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
 792{
 793    tb_page_addr_t a = *(const tb_page_addr_t *)ap;
 794    tb_page_addr_t b = *(const tb_page_addr_t *)bp;
 795
 796    if (a == b) {
 797        return 0;
 798    } else if (a < b) {
 799        return -1;
 800    }
 801    return 1;
 802}
 803
 804/*
 805 * Lock a range of pages ([@start,@end[) as well as the pages of all
 806 * intersecting TBs.
 807 * Locking order: acquire locks in ascending order of page index.
 808 */
 809struct page_collection *
 810page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
 811{
 812    struct page_collection *set = g_malloc(sizeof(*set));
 813    tb_page_addr_t index;
 814    PageDesc *pd;
 815
 816    start >>= TARGET_PAGE_BITS;
 817    end   >>= TARGET_PAGE_BITS;
 818    g_assert(start <= end);
 819
 820    set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
 821                                page_entry_destroy);
 822    set->max = NULL;
 823    assert_no_pages_locked();
 824
 825 retry:
 826    g_tree_foreach(set->tree, page_entry_lock, NULL);
 827
 828    for (index = start; index <= end; index++) {
 829        TranslationBlock *tb;
 830        int n;
 831
 832        pd = page_find(index);
 833        if (pd == NULL) {
 834            continue;
 835        }
 836        if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
 837            g_tree_foreach(set->tree, page_entry_unlock, NULL);
 838            goto retry;
 839        }
 840        assert_page_locked(pd);
 841        PAGE_FOR_EACH_TB(pd, tb, n) {
 842            if (page_trylock_add(set, tb->page_addr[0]) ||
 843                (tb->page_addr[1] != -1 &&
 844                 page_trylock_add(set, tb->page_addr[1]))) {
 845                /* drop all locks, and reacquire in order */
 846                g_tree_foreach(set->tree, page_entry_unlock, NULL);
 847                goto retry;
 848            }
 849        }
 850    }
 851    return set;
 852}
 853
 854void page_collection_unlock(struct page_collection *set)
 855{
 856    /* entries are unlocked and freed via page_entry_destroy */
 857    g_tree_destroy(set->tree);
 858    g_free(set);
 859}
 860
 861#endif /* !CONFIG_USER_ONLY */
 862
 863static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
 864                           PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
 865{
 866    PageDesc *p1, *p2;
 867    tb_page_addr_t page1;
 868    tb_page_addr_t page2;
 869
 870    assert_memory_lock();
 871    g_assert(phys1 != -1);
 872
 873    page1 = phys1 >> TARGET_PAGE_BITS;
 874    page2 = phys2 >> TARGET_PAGE_BITS;
 875
 876    p1 = page_find_alloc(page1, alloc);
 877    if (ret_p1) {
 878        *ret_p1 = p1;
 879    }
 880    if (likely(phys2 == -1)) {
 881        page_lock(p1);
 882        return;
 883    } else if (page1 == page2) {
 884        page_lock(p1);
 885        if (ret_p2) {
 886            *ret_p2 = p1;
 887        }
 888        return;
 889    }
 890    p2 = page_find_alloc(page2, alloc);
 891    if (ret_p2) {
 892        *ret_p2 = p2;
 893    }
 894    if (page1 < page2) {
 895        page_lock(p1);
 896        page_lock(p2);
 897    } else {
 898        page_lock(p2);
 899        page_lock(p1);
 900    }
 901}
 902
 903/* Minimum size of the code gen buffer.  This number is randomly chosen,
 904   but not so small that we can't have a fair number of TB's live.  */
 905#define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
 906
 907/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
 908   indicated, this is constrained by the range of direct branches on the
 909   host cpu, as used by the TCG implementation of goto_tb.  */
 910#if defined(__x86_64__)
 911# define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
 912#elif defined(__sparc__)
 913# define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
 914#elif defined(__powerpc64__)
 915# define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
 916#elif defined(__powerpc__)
 917# define MAX_CODE_GEN_BUFFER_SIZE  (32 * MiB)
 918#elif defined(__aarch64__)
 919# define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
 920#elif defined(__s390x__)
 921  /* We have a +- 4GB range on the branches; leave some slop.  */
 922# define MAX_CODE_GEN_BUFFER_SIZE  (3 * GiB)
 923#elif defined(__mips__)
 924  /* We have a 256MB branch region, but leave room to make sure the
 925     main executable is also within that region.  */
 926# define MAX_CODE_GEN_BUFFER_SIZE  (128 * MiB)
 927#else
 928# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
 929#endif
 930
 931#if TCG_TARGET_REG_BITS == 32
 932#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
 933#ifdef CONFIG_USER_ONLY
 934/*
 935 * For user mode on smaller 32 bit systems we may run into trouble
 936 * allocating big chunks of data in the right place. On these systems
 937 * we utilise a static code generation buffer directly in the binary.
 938 */
 939#define USE_STATIC_CODE_GEN_BUFFER
 940#endif
 941#else /* TCG_TARGET_REG_BITS == 64 */
 942#ifdef CONFIG_USER_ONLY
 943/*
 944 * As user-mode emulation typically means running multiple instances
 945 * of the translator don't go too nuts with our default code gen
 946 * buffer lest we make things too hard for the OS.
 947 */
 948#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
 949#else
 950/*
 951 * We expect most system emulation to run one or two guests per host.
 952 * Users running large scale system emulation may want to tweak their
 953 * runtime setup via the tb-size control on the command line.
 954 */
 955#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
 956#endif
 957#endif
 958
 959#define DEFAULT_CODE_GEN_BUFFER_SIZE \
 960  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
 961   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
 962
 963static size_t size_code_gen_buffer(size_t tb_size)
 964{
 965    /* Size the buffer.  */
 966    if (tb_size == 0) {
 967        size_t phys_mem = qemu_get_host_physmem();
 968        if (phys_mem == 0) {
 969            tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
 970        } else {
 971            tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, phys_mem / 8);
 972        }
 973    }
 974    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
 975        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
 976    }
 977    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
 978        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
 979    }
 980    return tb_size;
 981}
 982
 983#ifdef __mips__
 984/* In order to use J and JAL within the code_gen_buffer, we require
 985   that the buffer not cross a 256MB boundary.  */
 986static inline bool cross_256mb(void *addr, size_t size)
 987{
 988    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
 989}
 990
 991/* We weren't able to allocate a buffer without crossing that boundary,
 992   so make do with the larger portion of the buffer that doesn't cross.
 993   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
 994static inline void *split_cross_256mb(void *buf1, size_t size1)
 995{
 996    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
 997    size_t size2 = buf1 + size1 - buf2;
 998
 999    size1 = buf2 - buf1;
1000    if (size1 < size2) {
1001        size1 = size2;
1002        buf1 = buf2;
1003    }
1004
1005    tcg_ctx->code_gen_buffer_size = size1;
1006    return buf1;
1007}
1008#endif
1009
1010#ifdef USE_STATIC_CODE_GEN_BUFFER
1011static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
1012    __attribute__((aligned(CODE_GEN_ALIGN)));
1013
1014static bool alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
1015{
1016    void *buf, *end;
1017    size_t size;
1018
1019    if (splitwx > 0) {
1020        error_setg(errp, "jit split-wx not supported");
1021        return false;
1022    }
1023
1024    /* page-align the beginning and end of the buffer */
1025    buf = static_code_gen_buffer;
1026    end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1027    buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1028    end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1029
1030    size = end - buf;
1031
1032    /* Honor a command-line option limiting the size of the buffer.  */
1033    if (size > tb_size) {
1034        size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
1035    }
1036    tcg_ctx->code_gen_buffer_size = size;
1037
1038#ifdef __mips__
1039    if (cross_256mb(buf, size)) {
1040        buf = split_cross_256mb(buf, size);
1041        size = tcg_ctx->code_gen_buffer_size;
1042    }
1043#endif
1044
1045    if (qemu_mprotect_rwx(buf, size)) {
1046        error_setg_errno(errp, errno, "mprotect of jit buffer");
1047        return false;
1048    }
1049    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1050
1051    tcg_ctx->code_gen_buffer = buf;
1052    return true;
1053}
1054#elif defined(_WIN32)
1055static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1056{
1057    void *buf;
1058
1059    if (splitwx > 0) {
1060        error_setg(errp, "jit split-wx not supported");
1061        return false;
1062    }
1063
1064    buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1065                             PAGE_EXECUTE_READWRITE);
1066    if (buf == NULL) {
1067        error_setg_win32(errp, GetLastError(),
1068                         "allocate %zu bytes for jit buffer", size);
1069        return false;
1070    }
1071
1072    tcg_ctx->code_gen_buffer = buf;
1073    tcg_ctx->code_gen_buffer_size = size;
1074    return true;
1075}
1076#else
1077static bool alloc_code_gen_buffer_anon(size_t size, int prot,
1078                                       int flags, Error **errp)
1079{
1080    void *buf;
1081
1082    buf = mmap(NULL, size, prot, flags, -1, 0);
1083    if (buf == MAP_FAILED) {
1084        error_setg_errno(errp, errno,
1085                         "allocate %zu bytes for jit buffer", size);
1086        return false;
1087    }
1088    tcg_ctx->code_gen_buffer_size = size;
1089
1090#ifdef __mips__
1091    if (cross_256mb(buf, size)) {
1092        /*
1093         * Try again, with the original still mapped, to avoid re-acquiring
1094         * the same 256mb crossing.
1095         */
1096        size_t size2;
1097        void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1098        switch ((int)(buf2 != MAP_FAILED)) {
1099        case 1:
1100            if (!cross_256mb(buf2, size)) {
1101                /* Success!  Use the new buffer.  */
1102                munmap(buf, size);
1103                break;
1104            }
1105            /* Failure.  Work with what we had.  */
1106            munmap(buf2, size);
1107            /* fallthru */
1108        default:
1109            /* Split the original buffer.  Free the smaller half.  */
1110            buf2 = split_cross_256mb(buf, size);
1111            size2 = tcg_ctx->code_gen_buffer_size;
1112            if (buf == buf2) {
1113                munmap(buf + size2, size - size2);
1114            } else {
1115                munmap(buf, size - size2);
1116            }
1117            size = size2;
1118            break;
1119        }
1120        buf = buf2;
1121    }
1122#endif
1123
1124    /* Request large pages for the buffer.  */
1125    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1126
1127    tcg_ctx->code_gen_buffer = buf;
1128    return true;
1129}
1130
1131#ifndef CONFIG_TCG_INTERPRETER
1132#ifdef CONFIG_POSIX
1133#include "qemu/memfd.h"
1134
1135static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
1136{
1137    void *buf_rw = NULL, *buf_rx = MAP_FAILED;
1138    int fd = -1;
1139
1140#ifdef __mips__
1141    /* Find space for the RX mapping, vs the 256MiB regions. */
1142    if (!alloc_code_gen_buffer_anon(size, PROT_NONE,
1143                                    MAP_PRIVATE | MAP_ANONYMOUS |
1144                                    MAP_NORESERVE, errp)) {
1145        return false;
1146    }
1147    /* The size of the mapping may have been adjusted. */
1148    size = tcg_ctx->code_gen_buffer_size;
1149    buf_rx = tcg_ctx->code_gen_buffer;
1150#endif
1151
1152    buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
1153    if (buf_rw == NULL) {
1154        goto fail;
1155    }
1156
1157#ifdef __mips__
1158    void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC,
1159                     MAP_SHARED | MAP_FIXED, fd, 0);
1160    if (tmp != buf_rx) {
1161        goto fail_rx;
1162    }
1163#else
1164    buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
1165    if (buf_rx == MAP_FAILED) {
1166        goto fail_rx;
1167    }
1168#endif
1169
1170    close(fd);
1171    tcg_ctx->code_gen_buffer = buf_rw;
1172    tcg_ctx->code_gen_buffer_size = size;
1173    tcg_splitwx_diff = buf_rx - buf_rw;
1174
1175    /* Request large pages for the buffer and the splitwx.  */
1176    qemu_madvise(buf_rw, size, QEMU_MADV_HUGEPAGE);
1177    qemu_madvise(buf_rx, size, QEMU_MADV_HUGEPAGE);
1178    return true;
1179
1180 fail_rx:
1181    error_setg_errno(errp, errno, "failed to map shared memory for execute");
1182 fail:
1183    if (buf_rx != MAP_FAILED) {
1184        munmap(buf_rx, size);
1185    }
1186    if (buf_rw) {
1187        munmap(buf_rw, size);
1188    }
1189    if (fd >= 0) {
1190        close(fd);
1191    }
1192    return false;
1193}
1194#endif /* CONFIG_POSIX */
1195
1196#ifdef CONFIG_DARWIN
1197#include <mach/mach.h>
1198
1199extern kern_return_t mach_vm_remap(vm_map_t target_task,
1200                                   mach_vm_address_t *target_address,
1201                                   mach_vm_size_t size,
1202                                   mach_vm_offset_t mask,
1203                                   int flags,
1204                                   vm_map_t src_task,
1205                                   mach_vm_address_t src_address,
1206                                   boolean_t copy,
1207                                   vm_prot_t *cur_protection,
1208                                   vm_prot_t *max_protection,
1209                                   vm_inherit_t inheritance);
1210
1211static bool alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
1212{
1213    kern_return_t ret;
1214    mach_vm_address_t buf_rw, buf_rx;
1215    vm_prot_t cur_prot, max_prot;
1216
1217    /* Map the read-write portion via normal anon memory. */
1218    if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
1219                                    MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
1220        return false;
1221    }
1222
1223    buf_rw = (mach_vm_address_t)tcg_ctx->code_gen_buffer;
1224    buf_rx = 0;
1225    ret = mach_vm_remap(mach_task_self(),
1226                        &buf_rx,
1227                        size,
1228                        0,
1229                        VM_FLAGS_ANYWHERE,
1230                        mach_task_self(),
1231                        buf_rw,
1232                        false,
1233                        &cur_prot,
1234                        &max_prot,
1235                        VM_INHERIT_NONE);
1236    if (ret != KERN_SUCCESS) {
1237        /* TODO: Convert "ret" to a human readable error message. */
1238        error_setg(errp, "vm_remap for jit splitwx failed");
1239        munmap((void *)buf_rw, size);
1240        return false;
1241    }
1242
1243    if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
1244        error_setg_errno(errp, errno, "mprotect for jit splitwx");
1245        munmap((void *)buf_rx, size);
1246        munmap((void *)buf_rw, size);
1247        return false;
1248    }
1249
1250    tcg_splitwx_diff = buf_rx - buf_rw;
1251    return true;
1252}
1253#endif /* CONFIG_DARWIN */
1254#endif /* CONFIG_TCG_INTERPRETER */
1255
1256static bool alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
1257{
1258#ifndef CONFIG_TCG_INTERPRETER
1259# ifdef CONFIG_DARWIN
1260    return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
1261# endif
1262# ifdef CONFIG_POSIX
1263    return alloc_code_gen_buffer_splitwx_memfd(size, errp);
1264# endif
1265#endif
1266    error_setg(errp, "jit split-wx not supported");
1267    return false;
1268}
1269
1270static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1271{
1272    ERRP_GUARD();
1273    int prot, flags;
1274
1275    if (splitwx) {
1276        if (alloc_code_gen_buffer_splitwx(size, errp)) {
1277            return true;
1278        }
1279        /*
1280         * If splitwx force-on (1), fail;
1281         * if splitwx default-on (-1), fall through to splitwx off.
1282         */
1283        if (splitwx > 0) {
1284            return false;
1285        }
1286        error_free_or_abort(errp);
1287    }
1288
1289    prot = PROT_READ | PROT_WRITE | PROT_EXEC;
1290    flags = MAP_PRIVATE | MAP_ANONYMOUS;
1291#ifdef CONFIG_TCG_INTERPRETER
1292    /* The tcg interpreter does not need execute permission. */
1293    prot = PROT_READ | PROT_WRITE;
1294#elif defined(CONFIG_DARWIN)
1295    /* Applicable to both iOS and macOS (Apple Silicon). */
1296    if (!splitwx) {
1297        flags |= MAP_JIT;
1298    }
1299#endif
1300
1301    return alloc_code_gen_buffer_anon(size, prot, flags, errp);
1302}
1303#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1304
1305static bool tb_cmp(const void *ap, const void *bp)
1306{
1307    const TranslationBlock *a = ap;
1308    const TranslationBlock *b = bp;
1309
1310    return a->pc == b->pc &&
1311        a->cs_base == b->cs_base &&
1312        a->flags == b->flags &&
1313        (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
1314        a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1315        a->page_addr[0] == b->page_addr[0] &&
1316        a->page_addr[1] == b->page_addr[1];
1317}
1318
1319static void tb_htable_init(void)
1320{
1321    unsigned int mode = QHT_MODE_AUTO_RESIZE;
1322
1323    qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1324}
1325
1326/* Must be called before using the QEMU cpus. 'tb_size' is the size
1327   (in bytes) allocated to the translation buffer. Zero means default
1328   size. */
1329void tcg_exec_init(unsigned long tb_size, int splitwx)
1330{
1331    bool ok;
1332
1333    tcg_allowed = true;
1334    cpu_gen_init();
1335    page_init();
1336    tb_htable_init();
1337
1338    ok = alloc_code_gen_buffer(size_code_gen_buffer(tb_size),
1339                               splitwx, &error_fatal);
1340    assert(ok);
1341
1342#if defined(CONFIG_SOFTMMU)
1343    /* There's no guest base to take into account, so go ahead and
1344       initialize the prologue now.  */
1345    tcg_prologue_init(tcg_ctx);
1346#endif
1347}
1348
1349/* call with @p->lock held */
1350static inline void invalidate_page_bitmap(PageDesc *p)
1351{
1352    assert_page_locked(p);
1353#ifdef CONFIG_SOFTMMU
1354    g_free(p->code_bitmap);
1355    p->code_bitmap = NULL;
1356    p->code_write_count = 0;
1357#endif
1358}
1359
1360/* Set to NULL all the 'first_tb' fields in all PageDescs. */
1361static void page_flush_tb_1(int level, void **lp)
1362{
1363    int i;
1364
1365    if (*lp == NULL) {
1366        return;
1367    }
1368    if (level == 0) {
1369        PageDesc *pd = *lp;
1370
1371        for (i = 0; i < V_L2_SIZE; ++i) {
1372            page_lock(&pd[i]);
1373            pd[i].first_tb = (uintptr_t)NULL;
1374            invalidate_page_bitmap(pd + i);
1375            page_unlock(&pd[i]);
1376        }
1377    } else {
1378        void **pp = *lp;
1379
1380        for (i = 0; i < V_L2_SIZE; ++i) {
1381            page_flush_tb_1(level - 1, pp + i);
1382        }
1383    }
1384}
1385
1386static void page_flush_tb(void)
1387{
1388    int i, l1_sz = v_l1_size;
1389
1390    for (i = 0; i < l1_sz; i++) {
1391        page_flush_tb_1(v_l2_levels, l1_map + i);
1392    }
1393}
1394
1395static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1396{
1397    const TranslationBlock *tb = value;
1398    size_t *size = data;
1399
1400    *size += tb->tc.size;
1401    return false;
1402}
1403
1404/* flush all the translation blocks */
1405static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1406{
1407    bool did_flush = false;
1408
1409    mmap_lock();
1410    /* If it is already been done on request of another CPU,
1411     * just retry.
1412     */
1413    if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1414        goto done;
1415    }
1416    did_flush = true;
1417
1418    if (DEBUG_TB_FLUSH_GATE) {
1419        size_t nb_tbs = tcg_nb_tbs();
1420        size_t host_size = 0;
1421
1422        tcg_tb_foreach(tb_host_size_iter, &host_size);
1423        printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1424               tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1425    }
1426
1427    CPU_FOREACH(cpu) {
1428        cpu_tb_jmp_cache_clear(cpu);
1429    }
1430
1431    qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1432    page_flush_tb();
1433
1434    tcg_region_reset_all();
1435    /* XXX: flush processor icache at this point if cache flush is
1436       expensive */
1437    qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1438
1439done:
1440    mmap_unlock();
1441    if (did_flush) {
1442        qemu_plugin_flush_cb();
1443    }
1444}
1445
1446void tb_flush(CPUState *cpu)
1447{
1448    if (tcg_enabled()) {
1449        unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
1450
1451        if (cpu_in_exclusive_context(cpu)) {
1452            do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1453        } else {
1454            async_safe_run_on_cpu(cpu, do_tb_flush,
1455                                  RUN_ON_CPU_HOST_INT(tb_flush_count));
1456        }
1457    }
1458}
1459
1460/*
1461 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1462 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1463 * and let the optimizer get rid of them by wrapping their user-only callers
1464 * with if (DEBUG_TB_CHECK_GATE).
1465 */
1466#ifdef CONFIG_USER_ONLY
1467
1468static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1469{
1470    TranslationBlock *tb = p;
1471    target_ulong addr = *(target_ulong *)userp;
1472
1473    if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1474        printf("ERROR invalidate: address=" TARGET_FMT_lx
1475               " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1476    }
1477}
1478
1479/* verify that all the pages have correct rights for code
1480 *
1481 * Called with mmap_lock held.
1482 */
1483static void tb_invalidate_check(target_ulong address)
1484{
1485    address &= TARGET_PAGE_MASK;
1486    qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1487}
1488
1489static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1490{
1491    TranslationBlock *tb = p;
1492    int flags1, flags2;
1493
1494    flags1 = page_get_flags(tb->pc);
1495    flags2 = page_get_flags(tb->pc + tb->size - 1);
1496    if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1497        printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1498               (long)tb->pc, tb->size, flags1, flags2);
1499    }
1500}
1501
1502/* verify that all the pages have correct rights for code */
1503static void tb_page_check(void)
1504{
1505    qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1506}
1507
1508#endif /* CONFIG_USER_ONLY */
1509
1510/*
1511 * user-mode: call with mmap_lock held
1512 * !user-mode: call with @pd->lock held
1513 */
1514static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1515{
1516    TranslationBlock *tb1;
1517    uintptr_t *pprev;
1518    unsigned int n1;
1519
1520    assert_page_locked(pd);
1521    pprev = &pd->first_tb;
1522    PAGE_FOR_EACH_TB(pd, tb1, n1) {
1523        if (tb1 == tb) {
1524            *pprev = tb1->page_next[n1];
1525            return;
1526        }
1527        pprev = &tb1->page_next[n1];
1528    }
1529    g_assert_not_reached();
1530}
1531
1532/* remove @orig from its @n_orig-th jump list */
1533static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1534{
1535    uintptr_t ptr, ptr_locked;
1536    TranslationBlock *dest;
1537    TranslationBlock *tb;
1538    uintptr_t *pprev;
1539    int n;
1540
1541    /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1542    ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1543    dest = (TranslationBlock *)(ptr & ~1);
1544    if (dest == NULL) {
1545        return;
1546    }
1547
1548    qemu_spin_lock(&dest->jmp_lock);
1549    /*
1550     * While acquiring the lock, the jump might have been removed if the
1551     * destination TB was invalidated; check again.
1552     */
1553    ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
1554    if (ptr_locked != ptr) {
1555        qemu_spin_unlock(&dest->jmp_lock);
1556        /*
1557         * The only possibility is that the jump was unlinked via
1558         * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1559         * because we set the LSB above.
1560         */
1561        g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1562        return;
1563    }
1564    /*
1565     * We first acquired the lock, and since the destination pointer matches,
1566     * we know for sure that @orig is in the jmp list.
1567     */
1568    pprev = &dest->jmp_list_head;
1569    TB_FOR_EACH_JMP(dest, tb, n) {
1570        if (tb == orig && n == n_orig) {
1571            *pprev = tb->jmp_list_next[n];
1572            /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1573            qemu_spin_unlock(&dest->jmp_lock);
1574            return;
1575        }
1576        pprev = &tb->jmp_list_next[n];
1577    }
1578    g_assert_not_reached();
1579}
1580
1581/* reset the jump entry 'n' of a TB so that it is not chained to
1582   another TB */
1583static inline void tb_reset_jump(TranslationBlock *tb, int n)
1584{
1585    uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1586    tb_set_jmp_target(tb, n, addr);
1587}
1588
1589/* remove any jumps to the TB */
1590static inline void tb_jmp_unlink(TranslationBlock *dest)
1591{
1592    TranslationBlock *tb;
1593    int n;
1594
1595    qemu_spin_lock(&dest->jmp_lock);
1596
1597    TB_FOR_EACH_JMP(dest, tb, n) {
1598        tb_reset_jump(tb, n);
1599        qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1600        /* No need to clear the list entry; setting the dest ptr is enough */
1601    }
1602    dest->jmp_list_head = (uintptr_t)NULL;
1603
1604    qemu_spin_unlock(&dest->jmp_lock);
1605}
1606
1607/*
1608 * In user-mode, call with mmap_lock held.
1609 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1610 * locks held.
1611 */
1612static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1613{
1614    CPUState *cpu;
1615    PageDesc *p;
1616    uint32_t h;
1617    tb_page_addr_t phys_pc;
1618    uint32_t orig_cflags = tb_cflags(tb);
1619
1620    assert_memory_lock();
1621
1622    /* make sure no further incoming jumps will be chained to this TB */
1623    qemu_spin_lock(&tb->jmp_lock);
1624    qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1625    qemu_spin_unlock(&tb->jmp_lock);
1626
1627    /* remove the TB from the hash list */
1628    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1629    h = tb_hash_func(phys_pc, tb->pc, tb->flags, orig_cflags,
1630                     tb->trace_vcpu_dstate);
1631    if (!qht_remove(&tb_ctx.htable, tb, h)) {
1632        return;
1633    }
1634
1635    /* remove the TB from the page list */
1636    if (rm_from_page_list) {
1637        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1638        tb_page_remove(p, tb);
1639        invalidate_page_bitmap(p);
1640        if (tb->page_addr[1] != -1) {
1641            p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1642            tb_page_remove(p, tb);
1643            invalidate_page_bitmap(p);
1644        }
1645    }
1646
1647    /* remove the TB from the hash list */
1648    h = tb_jmp_cache_hash_func(tb->pc);
1649    CPU_FOREACH(cpu) {
1650        if (qatomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1651            qatomic_set(&cpu->tb_jmp_cache[h], NULL);
1652        }
1653    }
1654
1655    /* suppress this TB from the two jump lists */
1656    tb_remove_from_jmp_list(tb, 0);
1657    tb_remove_from_jmp_list(tb, 1);
1658
1659    /* suppress any remaining jumps to this TB */
1660    tb_jmp_unlink(tb);
1661
1662    qatomic_set(&tcg_ctx->tb_phys_invalidate_count,
1663               tcg_ctx->tb_phys_invalidate_count + 1);
1664}
1665
1666static void tb_phys_invalidate__locked(TranslationBlock *tb)
1667{
1668    qemu_thread_jit_write();
1669    do_tb_phys_invalidate(tb, true);
1670    qemu_thread_jit_execute();
1671}
1672
1673/* invalidate one TB
1674 *
1675 * Called with mmap_lock held in user-mode.
1676 */
1677void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1678{
1679    if (page_addr == -1 && tb->page_addr[0] != -1) {
1680        page_lock_tb(tb);
1681        do_tb_phys_invalidate(tb, true);
1682        page_unlock_tb(tb);
1683    } else {
1684        do_tb_phys_invalidate(tb, false);
1685    }
1686}
1687
1688#ifdef CONFIG_SOFTMMU
1689/* call with @p->lock held */
1690static void build_page_bitmap(PageDesc *p)
1691{
1692    int n, tb_start, tb_end;
1693    TranslationBlock *tb;
1694
1695    assert_page_locked(p);
1696    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1697
1698    PAGE_FOR_EACH_TB(p, tb, n) {
1699        /* NOTE: this is subtle as a TB may span two physical pages */
1700        if (n == 0) {
1701            /* NOTE: tb_end may be after the end of the page, but
1702               it is not a problem */
1703            tb_start = tb->pc & ~TARGET_PAGE_MASK;
1704            tb_end = tb_start + tb->size;
1705            if (tb_end > TARGET_PAGE_SIZE) {
1706                tb_end = TARGET_PAGE_SIZE;
1707             }
1708        } else {
1709            tb_start = 0;
1710            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1711        }
1712        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1713    }
1714}
1715#endif
1716
1717/* add the tb in the target page and protect it if necessary
1718 *
1719 * Called with mmap_lock held for user-mode emulation.
1720 * Called with @p->lock held in !user-mode.
1721 */
1722static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1723                               unsigned int n, tb_page_addr_t page_addr)
1724{
1725#ifndef CONFIG_USER_ONLY
1726    bool page_already_protected;
1727#endif
1728
1729    assert_page_locked(p);
1730
1731    tb->page_addr[n] = page_addr;
1732    tb->page_next[n] = p->first_tb;
1733#ifndef CONFIG_USER_ONLY
1734    page_already_protected = p->first_tb != (uintptr_t)NULL;
1735#endif
1736    p->first_tb = (uintptr_t)tb | n;
1737    invalidate_page_bitmap(p);
1738
1739#if defined(CONFIG_USER_ONLY)
1740    if (p->flags & PAGE_WRITE) {
1741        target_ulong addr;
1742        PageDesc *p2;
1743        int prot;
1744
1745        /* force the host page as non writable (writes will have a
1746           page fault + mprotect overhead) */
1747        page_addr &= qemu_host_page_mask;
1748        prot = 0;
1749        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1750            addr += TARGET_PAGE_SIZE) {
1751
1752            p2 = page_find(addr >> TARGET_PAGE_BITS);
1753            if (!p2) {
1754                continue;
1755            }
1756            prot |= p2->flags;
1757            p2->flags &= ~PAGE_WRITE;
1758          }
1759        mprotect(g2h_untagged(page_addr), qemu_host_page_size,
1760                 (prot & PAGE_BITS) & ~PAGE_WRITE);
1761        if (DEBUG_TB_INVALIDATE_GATE) {
1762            printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1763        }
1764    }
1765#else
1766    /* if some code is already present, then the pages are already
1767       protected. So we handle the case where only the first TB is
1768       allocated in a physical page */
1769    if (!page_already_protected) {
1770        tlb_protect_code(page_addr);
1771    }
1772#endif
1773}
1774
1775/*
1776 * Add a new TB and link it to the physical page tables. phys_page2 is
1777 * (-1) to indicate that only one page contains the TB.
1778 *
1779 * Called with mmap_lock held for user-mode emulation.
1780 *
1781 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1782 * Note that in !user-mode, another thread might have already added a TB
1783 * for the same block of guest code that @tb corresponds to. In that case,
1784 * the caller should discard the original @tb, and use instead the returned TB.
1785 */
1786static TranslationBlock *
1787tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1788             tb_page_addr_t phys_page2)
1789{
1790    PageDesc *p;
1791    PageDesc *p2 = NULL;
1792    void *existing_tb = NULL;
1793    uint32_t h;
1794
1795    assert_memory_lock();
1796    tcg_debug_assert(!(tb->cflags & CF_INVALID));
1797
1798    /*
1799     * Add the TB to the page list, acquiring first the pages's locks.
1800     * We keep the locks held until after inserting the TB in the hash table,
1801     * so that if the insertion fails we know for sure that the TBs are still
1802     * in the page descriptors.
1803     * Note that inserting into the hash table first isn't an option, since
1804     * we can only insert TBs that are fully initialized.
1805     */
1806    page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1807    tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1808    if (p2) {
1809        tb_page_add(p2, tb, 1, phys_page2);
1810    } else {
1811        tb->page_addr[1] = -1;
1812    }
1813
1814    /* add in the hash table */
1815    h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags,
1816                     tb->trace_vcpu_dstate);
1817    qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1818
1819    /* remove TB from the page(s) if we couldn't insert it */
1820    if (unlikely(existing_tb)) {
1821        tb_page_remove(p, tb);
1822        invalidate_page_bitmap(p);
1823        if (p2) {
1824            tb_page_remove(p2, tb);
1825            invalidate_page_bitmap(p2);
1826        }
1827        tb = existing_tb;
1828    }
1829
1830    if (p2 && p2 != p) {
1831        page_unlock(p2);
1832    }
1833    page_unlock(p);
1834
1835#ifdef CONFIG_USER_ONLY
1836    if (DEBUG_TB_CHECK_GATE) {
1837        tb_page_check();
1838    }
1839#endif
1840    return tb;
1841}
1842
1843/* Called with mmap_lock held for user mode emulation.  */
1844TranslationBlock *tb_gen_code(CPUState *cpu,
1845                              target_ulong pc, target_ulong cs_base,
1846                              uint32_t flags, int cflags)
1847{
1848    CPUArchState *env = cpu->env_ptr;
1849    TranslationBlock *tb, *existing_tb;
1850    tb_page_addr_t phys_pc, phys_page2;
1851    target_ulong virt_page2;
1852    tcg_insn_unit *gen_code_buf;
1853    int gen_code_size, search_size, max_insns;
1854#ifdef CONFIG_PROFILER
1855    TCGProfile *prof = &tcg_ctx->prof;
1856    int64_t ti;
1857#endif
1858
1859    assert_memory_lock();
1860    qemu_thread_jit_write();
1861
1862    phys_pc = get_page_addr_code(env, pc);
1863
1864    if (phys_pc == -1) {
1865        /* Generate a one-shot TB with 1 insn in it */
1866        cflags = (cflags & ~CF_COUNT_MASK) | CF_LAST_IO | 1;
1867    }
1868
1869    max_insns = cflags & CF_COUNT_MASK;
1870    if (max_insns == 0) {
1871        max_insns = CF_COUNT_MASK;
1872    }
1873    if (max_insns > TCG_MAX_INSNS) {
1874        max_insns = TCG_MAX_INSNS;
1875    }
1876    if (cpu->singlestep_enabled || singlestep) {
1877        max_insns = 1;
1878    }
1879
1880 buffer_overflow:
1881    tb = tcg_tb_alloc(tcg_ctx);
1882    if (unlikely(!tb)) {
1883        /* flush must be done */
1884        tb_flush(cpu);
1885        mmap_unlock();
1886        /* Make the execution loop process the flush as soon as possible.  */
1887        cpu->exception_index = EXCP_INTERRUPT;
1888        cpu_loop_exit(cpu);
1889    }
1890
1891    gen_code_buf = tcg_ctx->code_gen_ptr;
1892    tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
1893    tb->pc = pc;
1894    tb->cs_base = cs_base;
1895    tb->flags = flags;
1896    tb->cflags = cflags;
1897    tb->trace_vcpu_dstate = *cpu->trace_dstate;
1898    tcg_ctx->tb_cflags = cflags;
1899 tb_overflow:
1900
1901#ifdef CONFIG_PROFILER
1902    /* includes aborted translations because of exceptions */
1903    qatomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1904    ti = profile_getclock();
1905#endif
1906
1907    gen_code_size = sigsetjmp(tcg_ctx->jmp_trans, 0);
1908    if (unlikely(gen_code_size != 0)) {
1909        goto error_return;
1910    }
1911
1912    tcg_func_start(tcg_ctx);
1913
1914    tcg_ctx->cpu = env_cpu(env);
1915    gen_intermediate_code(cpu, tb, max_insns);
1916    tcg_ctx->cpu = NULL;
1917    max_insns = tb->icount;
1918
1919    trace_translate_block(tb, tb->pc, tb->tc.ptr);
1920
1921    /* generate machine code */
1922    tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1923    tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1924    tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1925    if (TCG_TARGET_HAS_direct_jump) {
1926        tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1927        tcg_ctx->tb_jmp_target_addr = NULL;
1928    } else {
1929        tcg_ctx->tb_jmp_insn_offset = NULL;
1930        tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1931    }
1932
1933#ifdef CONFIG_PROFILER
1934    qatomic_set(&prof->tb_count, prof->tb_count + 1);
1935    qatomic_set(&prof->interm_time,
1936                prof->interm_time + profile_getclock() - ti);
1937    ti = profile_getclock();
1938#endif
1939
1940    gen_code_size = tcg_gen_code(tcg_ctx, tb);
1941    if (unlikely(gen_code_size < 0)) {
1942 error_return:
1943        switch (gen_code_size) {
1944        case -1:
1945            /*
1946             * Overflow of code_gen_buffer, or the current slice of it.
1947             *
1948             * TODO: We don't need to re-do gen_intermediate_code, nor
1949             * should we re-do the tcg optimization currently hidden
1950             * inside tcg_gen_code.  All that should be required is to
1951             * flush the TBs, allocate a new TB, re-initialize it per
1952             * above, and re-do the actual code generation.
1953             */
1954            qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1955                          "Restarting code generation for "
1956                          "code_gen_buffer overflow\n");
1957            goto buffer_overflow;
1958
1959        case -2:
1960            /*
1961             * The code generated for the TranslationBlock is too large.
1962             * The maximum size allowed by the unwind info is 64k.
1963             * There may be stricter constraints from relocations
1964             * in the tcg backend.
1965             *
1966             * Try again with half as many insns as we attempted this time.
1967             * If a single insn overflows, there's a bug somewhere...
1968             */
1969            assert(max_insns > 1);
1970            max_insns /= 2;
1971            qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1972                          "Restarting code generation with "
1973                          "smaller translation block (max %d insns)\n",
1974                          max_insns);
1975            goto tb_overflow;
1976
1977        default:
1978            g_assert_not_reached();
1979        }
1980    }
1981    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1982    if (unlikely(search_size < 0)) {
1983        goto buffer_overflow;
1984    }
1985    tb->tc.size = gen_code_size;
1986
1987#ifdef CONFIG_PROFILER
1988    qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1989    qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1990    qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1991    qatomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1992#endif
1993
1994#ifdef DEBUG_DISAS
1995    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1996        qemu_log_in_addr_range(tb->pc)) {
1997        FILE *logfile = qemu_log_lock();
1998        int code_size, data_size;
1999        const tcg_target_ulong *rx_data_gen_ptr;
2000        size_t chunk_start;
2001        int insn = 0;
2002
2003        if (tcg_ctx->data_gen_ptr) {
2004            rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
2005            code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
2006            data_size = gen_code_size - code_size;
2007        } else {
2008            rx_data_gen_ptr = 0;
2009            code_size = gen_code_size;
2010            data_size = 0;
2011        }
2012
2013        /* Dump header and the first instruction */
2014        qemu_log("OUT: [size=%d]\n", gen_code_size);
2015        qemu_log("  -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n",
2016                 tcg_ctx->gen_insn_data[insn][0]);
2017        chunk_start = tcg_ctx->gen_insn_end_off[insn];
2018        log_disas(tb->tc.ptr, chunk_start);
2019
2020        /*
2021         * Dump each instruction chunk, wrapping up empty chunks into
2022         * the next instruction. The whole array is offset so the
2023         * first entry is the beginning of the 2nd instruction.
2024         */
2025        while (insn < tb->icount) {
2026            size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
2027            if (chunk_end > chunk_start) {
2028                qemu_log("  -- guest addr 0x" TARGET_FMT_lx "\n",
2029                         tcg_ctx->gen_insn_data[insn][0]);
2030                log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start);
2031                chunk_start = chunk_end;
2032            }
2033            insn++;
2034        }
2035
2036        if (chunk_start < code_size) {
2037            qemu_log("  -- tb slow paths + alignment\n");
2038            log_disas(tb->tc.ptr + chunk_start, code_size - chunk_start);
2039        }
2040
2041        /* Finally dump any data we may have after the block */
2042        if (data_size) {
2043            int i;
2044            qemu_log("  data: [size=%d]\n", data_size);
2045            for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
2046                qemu_log("0x%08" PRIxPTR ":  .quad  0x%" TCG_PRIlx "\n",
2047                         (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
2048            }
2049        }
2050        qemu_log("\n");
2051        qemu_log_flush();
2052        qemu_log_unlock(logfile);
2053    }
2054#endif
2055
2056    qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
2057        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
2058                 CODE_GEN_ALIGN));
2059
2060    /* init jump list */
2061    qemu_spin_init(&tb->jmp_lock);
2062    tb->jmp_list_head = (uintptr_t)NULL;
2063    tb->jmp_list_next[0] = (uintptr_t)NULL;
2064    tb->jmp_list_next[1] = (uintptr_t)NULL;
2065    tb->jmp_dest[0] = (uintptr_t)NULL;
2066    tb->jmp_dest[1] = (uintptr_t)NULL;
2067
2068    /* init original jump addresses which have been set during tcg_gen_code() */
2069    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2070        tb_reset_jump(tb, 0);
2071    }
2072    if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2073        tb_reset_jump(tb, 1);
2074    }
2075
2076    /*
2077     * If the TB is not associated with a physical RAM page then
2078     * it must be a temporary one-insn TB, and we have nothing to do
2079     * except fill in the page_addr[] fields. Return early before
2080     * attempting to link to other TBs or add to the lookup table.
2081     */
2082    if (phys_pc == -1) {
2083        tb->page_addr[0] = tb->page_addr[1] = -1;
2084        return tb;
2085    }
2086
2087    /* check next page if needed */
2088    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
2089    phys_page2 = -1;
2090    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
2091        phys_page2 = get_page_addr_code(env, virt_page2);
2092    }
2093    /*
2094     * No explicit memory barrier is required -- tb_link_page() makes the
2095     * TB visible in a consistent state.
2096     */
2097    existing_tb = tb_link_page(tb, phys_pc, phys_page2);
2098    /* if the TB already exists, discard what we just translated */
2099    if (unlikely(existing_tb != tb)) {
2100        uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
2101
2102        orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
2103        qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
2104        tb_destroy(tb);
2105        return existing_tb;
2106    }
2107    tcg_tb_insert(tb);
2108    return tb;
2109}
2110
2111/*
2112 * @p must be non-NULL.
2113 * user-mode: call with mmap_lock held.
2114 * !user-mode: call with all @pages locked.
2115 */
2116static void
2117tb_invalidate_phys_page_range__locked(struct page_collection *pages,
2118                                      PageDesc *p, tb_page_addr_t start,
2119                                      tb_page_addr_t end,
2120                                      uintptr_t retaddr)
2121{
2122    TranslationBlock *tb;
2123    tb_page_addr_t tb_start, tb_end;
2124    int n;
2125#ifdef TARGET_HAS_PRECISE_SMC
2126    CPUState *cpu = current_cpu;
2127    CPUArchState *env = NULL;
2128    bool current_tb_not_found = retaddr != 0;
2129    bool current_tb_modified = false;
2130    TranslationBlock *current_tb = NULL;
2131    target_ulong current_pc = 0;
2132    target_ulong current_cs_base = 0;
2133    uint32_t current_flags = 0;
2134#endif /* TARGET_HAS_PRECISE_SMC */
2135
2136    assert_page_locked(p);
2137
2138#if defined(TARGET_HAS_PRECISE_SMC)
2139    if (cpu != NULL) {
2140        env = cpu->env_ptr;
2141    }
2142#endif
2143
2144    /* we remove all the TBs in the range [start, end[ */
2145    /* XXX: see if in some cases it could be faster to invalidate all
2146       the code */
2147    PAGE_FOR_EACH_TB(p, tb, n) {
2148        assert_page_locked(p);
2149        /* NOTE: this is subtle as a TB may span two physical pages */
2150        if (n == 0) {
2151            /* NOTE: tb_end may be after the end of the page, but
2152               it is not a problem */
2153            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
2154            tb_end = tb_start + tb->size;
2155        } else {
2156            tb_start = tb->page_addr[1];
2157            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
2158        }
2159        if (!(tb_end <= start || tb_start >= end)) {
2160#ifdef TARGET_HAS_PRECISE_SMC
2161            if (current_tb_not_found) {
2162                current_tb_not_found = false;
2163                /* now we have a real cpu fault */
2164                current_tb = tcg_tb_lookup(retaddr);
2165            }
2166            if (current_tb == tb &&
2167                (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2168                /*
2169                 * If we are modifying the current TB, we must stop
2170                 * its execution. We could be more precise by checking
2171                 * that the modification is after the current PC, but it
2172                 * would require a specialized function to partially
2173                 * restore the CPU state.
2174                 */
2175                current_tb_modified = true;
2176                cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
2177                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2178                                     &current_flags);
2179            }
2180#endif /* TARGET_HAS_PRECISE_SMC */
2181            tb_phys_invalidate__locked(tb);
2182        }
2183    }
2184#if !defined(CONFIG_USER_ONLY)
2185    /* if no code remaining, no need to continue to use slow writes */
2186    if (!p->first_tb) {
2187        invalidate_page_bitmap(p);
2188        tlb_unprotect_code(start);
2189    }
2190#endif
2191#ifdef TARGET_HAS_PRECISE_SMC
2192    if (current_tb_modified) {
2193        page_collection_unlock(pages);
2194        /* Force execution of one insn next time.  */
2195        cpu->cflags_next_tb = 1 | curr_cflags(cpu);
2196        mmap_unlock();
2197        cpu_loop_exit_noexc(cpu);
2198    }
2199#endif
2200}
2201
2202/*
2203 * Invalidate all TBs which intersect with the target physical address range
2204 * [start;end[. NOTE: start and end must refer to the *same* physical page.
2205 * 'is_cpu_write_access' should be true if called from a real cpu write
2206 * access: the virtual CPU will exit the current TB if code is modified inside
2207 * this TB.
2208 *
2209 * Called with mmap_lock held for user-mode emulation
2210 */
2211void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
2212{
2213    struct page_collection *pages;
2214    PageDesc *p;
2215
2216    assert_memory_lock();
2217
2218    p = page_find(start >> TARGET_PAGE_BITS);
2219    if (p == NULL) {
2220        return;
2221    }
2222    pages = page_collection_lock(start, end);
2223    tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2224    page_collection_unlock(pages);
2225}
2226
2227/*
2228 * Invalidate all TBs which intersect with the target physical address range
2229 * [start;end[. NOTE: start and end may refer to *different* physical pages.
2230 * 'is_cpu_write_access' should be true if called from a real cpu write
2231 * access: the virtual CPU will exit the current TB if code is modified inside
2232 * this TB.
2233 *
2234 * Called with mmap_lock held for user-mode emulation.
2235 */
2236#ifdef CONFIG_SOFTMMU
2237void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2238#else
2239void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2240#endif
2241{
2242    struct page_collection *pages;
2243    tb_page_addr_t next;
2244
2245    assert_memory_lock();
2246
2247    pages = page_collection_lock(start, end);
2248    for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2249         start < end;
2250         start = next, next += TARGET_PAGE_SIZE) {
2251        PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2252        tb_page_addr_t bound = MIN(next, end);
2253
2254        if (pd == NULL) {
2255            continue;
2256        }
2257        tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2258    }
2259    page_collection_unlock(pages);
2260}
2261
2262#ifdef CONFIG_SOFTMMU
2263/* len must be <= 8 and start must be a multiple of len.
2264 * Called via softmmu_template.h when code areas are written to with
2265 * iothread mutex not held.
2266 *
2267 * Call with all @pages in the range [@start, @start + len[ locked.
2268 */
2269void tb_invalidate_phys_page_fast(struct page_collection *pages,
2270                                  tb_page_addr_t start, int len,
2271                                  uintptr_t retaddr)
2272{
2273    PageDesc *p;
2274
2275    assert_memory_lock();
2276
2277    p = page_find(start >> TARGET_PAGE_BITS);
2278    if (!p) {
2279        return;
2280    }
2281
2282    assert_page_locked(p);
2283    if (!p->code_bitmap &&
2284        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2285        build_page_bitmap(p);
2286    }
2287    if (p->code_bitmap) {
2288        unsigned int nr;
2289        unsigned long b;
2290
2291        nr = start & ~TARGET_PAGE_MASK;
2292        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2293        if (b & ((1 << len) - 1)) {
2294            goto do_invalidate;
2295        }
2296    } else {
2297    do_invalidate:
2298        tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2299                                              retaddr);
2300    }
2301}
2302#else
2303/* Called with mmap_lock held. If pc is not 0 then it indicates the
2304 * host PC of the faulting store instruction that caused this invalidate.
2305 * Returns true if the caller needs to abort execution of the current
2306 * TB (because it was modified by this store and the guest CPU has
2307 * precise-SMC semantics).
2308 */
2309static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2310{
2311    TranslationBlock *tb;
2312    PageDesc *p;
2313    int n;
2314#ifdef TARGET_HAS_PRECISE_SMC
2315    TranslationBlock *current_tb = NULL;
2316    CPUState *cpu = current_cpu;
2317    CPUArchState *env = NULL;
2318    int current_tb_modified = 0;
2319    target_ulong current_pc = 0;
2320    target_ulong current_cs_base = 0;
2321    uint32_t current_flags = 0;
2322#endif
2323
2324    assert_memory_lock();
2325
2326    addr &= TARGET_PAGE_MASK;
2327    p = page_find(addr >> TARGET_PAGE_BITS);
2328    if (!p) {
2329        return false;
2330    }
2331
2332#ifdef TARGET_HAS_PRECISE_SMC
2333    if (p->first_tb && pc != 0) {
2334        current_tb = tcg_tb_lookup(pc);
2335    }
2336    if (cpu != NULL) {
2337        env = cpu->env_ptr;
2338    }
2339#endif
2340    assert_page_locked(p);
2341    PAGE_FOR_EACH_TB(p, tb, n) {
2342#ifdef TARGET_HAS_PRECISE_SMC
2343        if (current_tb == tb &&
2344            (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2345                /* If we are modifying the current TB, we must stop
2346                   its execution. We could be more precise by checking
2347                   that the modification is after the current PC, but it
2348                   would require a specialized function to partially
2349                   restore the CPU state */
2350
2351            current_tb_modified = 1;
2352            cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2353            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2354                                 &current_flags);
2355        }
2356#endif /* TARGET_HAS_PRECISE_SMC */
2357        tb_phys_invalidate(tb, addr);
2358    }
2359    p->first_tb = (uintptr_t)NULL;
2360#ifdef TARGET_HAS_PRECISE_SMC
2361    if (current_tb_modified) {
2362        /* Force execution of one insn next time.  */
2363        cpu->cflags_next_tb = 1 | curr_cflags(cpu);
2364        return true;
2365    }
2366#endif
2367
2368    return false;
2369}
2370#endif
2371
2372/* user-mode: call with mmap_lock held */
2373void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2374{
2375    TranslationBlock *tb;
2376
2377    assert_memory_lock();
2378
2379    tb = tcg_tb_lookup(retaddr);
2380    if (tb) {
2381        /* We can use retranslation to find the PC.  */
2382        cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2383        tb_phys_invalidate(tb, -1);
2384    } else {
2385        /* The exception probably happened in a helper.  The CPU state should
2386           have been saved before calling it. Fetch the PC from there.  */
2387        CPUArchState *env = cpu->env_ptr;
2388        target_ulong pc, cs_base;
2389        tb_page_addr_t addr;
2390        uint32_t flags;
2391
2392        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2393        addr = get_page_addr_code(env, pc);
2394        if (addr != -1) {
2395            tb_invalidate_phys_range(addr, addr + 1);
2396        }
2397    }
2398}
2399
2400#ifndef CONFIG_USER_ONLY
2401/*
2402 * In deterministic execution mode, instructions doing device I/Os
2403 * must be at the end of the TB.
2404 *
2405 * Called by softmmu_template.h, with iothread mutex not held.
2406 */
2407void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2408{
2409    TranslationBlock *tb;
2410    CPUClass *cc;
2411    uint32_t n;
2412
2413    tb = tcg_tb_lookup(retaddr);
2414    if (!tb) {
2415        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2416                  (void *)retaddr);
2417    }
2418    cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2419
2420    /*
2421     * Some guests must re-execute the branch when re-executing a delay
2422     * slot instruction.  When this is the case, adjust icount and N
2423     * to account for the re-execution of the branch.
2424     */
2425    n = 1;
2426    cc = CPU_GET_CLASS(cpu);
2427    if (cc->tcg_ops->io_recompile_replay_branch &&
2428        cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
2429        cpu_neg(cpu)->icount_decr.u16.low++;
2430        n = 2;
2431    }
2432
2433    /*
2434     * Exit the loop and potentially generate a new TB executing the
2435     * just the I/O insns. We also limit instrumentation to memory
2436     * operations only (which execute after completion) so we don't
2437     * double instrument the instruction.
2438     */
2439    cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_LAST_IO | n;
2440
2441    qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
2442                           "cpu_io_recompile: rewound execution of TB to "
2443                           TARGET_FMT_lx "\n", tb->pc);
2444
2445    cpu_loop_exit_noexc(cpu);
2446}
2447
2448static void print_qht_statistics(struct qht_stats hst)
2449{
2450    uint32_t hgram_opts;
2451    size_t hgram_bins;
2452    char *hgram;
2453
2454    if (!hst.head_buckets) {
2455        return;
2456    }
2457    qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2458                hst.used_head_buckets, hst.head_buckets,
2459                (double)hst.used_head_buckets / hst.head_buckets * 100);
2460
2461    hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2462    hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2463    if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2464        hgram_opts |= QDIST_PR_NODECIMAL;
2465    }
2466    hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2467    qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2468                qdist_avg(&hst.occupancy) * 100, hgram);
2469    g_free(hgram);
2470
2471    hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2472    hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2473    if (hgram_bins > 10) {
2474        hgram_bins = 10;
2475    } else {
2476        hgram_bins = 0;
2477        hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2478    }
2479    hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2480    qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2481                qdist_avg(&hst.chain), hgram);
2482    g_free(hgram);
2483}
2484
2485struct tb_tree_stats {
2486    size_t nb_tbs;
2487    size_t host_size;
2488    size_t target_size;
2489    size_t max_target_size;
2490    size_t direct_jmp_count;
2491    size_t direct_jmp2_count;
2492    size_t cross_page;
2493};
2494
2495static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2496{
2497    const TranslationBlock *tb = value;
2498    struct tb_tree_stats *tst = data;
2499
2500    tst->nb_tbs++;
2501    tst->host_size += tb->tc.size;
2502    tst->target_size += tb->size;
2503    if (tb->size > tst->max_target_size) {
2504        tst->max_target_size = tb->size;
2505    }
2506    if (tb->page_addr[1] != -1) {
2507        tst->cross_page++;
2508    }
2509    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2510        tst->direct_jmp_count++;
2511        if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2512            tst->direct_jmp2_count++;
2513        }
2514    }
2515    return false;
2516}
2517
2518void dump_exec_info(void)
2519{
2520    struct tb_tree_stats tst = {};
2521    struct qht_stats hst;
2522    size_t nb_tbs, flush_full, flush_part, flush_elide;
2523
2524    tcg_tb_foreach(tb_tree_stats_iter, &tst);
2525    nb_tbs = tst.nb_tbs;
2526    /* XXX: avoid using doubles ? */
2527    qemu_printf("Translation buffer state:\n");
2528    /*
2529     * Report total code size including the padding and TB structs;
2530     * otherwise users might think "-accel tcg,tb-size" is not honoured.
2531     * For avg host size we use the precise numbers from tb_tree_stats though.
2532     */
2533    qemu_printf("gen code size       %zu/%zu\n",
2534                tcg_code_size(), tcg_code_capacity());
2535    qemu_printf("TB count            %zu\n", nb_tbs);
2536    qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2537                nb_tbs ? tst.target_size / nb_tbs : 0,
2538                tst.max_target_size);
2539    qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2540                nb_tbs ? tst.host_size / nb_tbs : 0,
2541                tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2542    qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2543                nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2544    qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2545                tst.direct_jmp_count,
2546                nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2547                tst.direct_jmp2_count,
2548                nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2549
2550    qht_statistics_init(&tb_ctx.htable, &hst);
2551    print_qht_statistics(hst);
2552    qht_statistics_destroy(&hst);
2553
2554    qemu_printf("\nStatistics:\n");
2555    qemu_printf("TB flush count      %u\n",
2556                qatomic_read(&tb_ctx.tb_flush_count));
2557    qemu_printf("TB invalidate count %zu\n",
2558                tcg_tb_phys_invalidate_count());
2559
2560    tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2561    qemu_printf("TLB full flushes    %zu\n", flush_full);
2562    qemu_printf("TLB partial flushes %zu\n", flush_part);
2563    qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2564    tcg_dump_info();
2565}
2566
2567void dump_opcount_info(void)
2568{
2569    tcg_dump_op_count();
2570}
2571
2572#else /* CONFIG_USER_ONLY */
2573
2574void cpu_interrupt(CPUState *cpu, int mask)
2575{
2576    g_assert(qemu_mutex_iothread_locked());
2577    cpu->interrupt_request |= mask;
2578    qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2579}
2580
2581/*
2582 * Walks guest process memory "regions" one by one
2583 * and calls callback function 'fn' for each region.
2584 */
2585struct walk_memory_regions_data {
2586    walk_memory_regions_fn fn;
2587    void *priv;
2588    target_ulong start;
2589    int prot;
2590};
2591
2592static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2593                                   target_ulong end, int new_prot)
2594{
2595    if (data->start != -1u) {
2596        int rc = data->fn(data->priv, data->start, end, data->prot);
2597        if (rc != 0) {
2598            return rc;
2599        }
2600    }
2601
2602    data->start = (new_prot ? end : -1u);
2603    data->prot = new_prot;
2604
2605    return 0;
2606}
2607
2608static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2609                                 target_ulong base, int level, void **lp)
2610{
2611    target_ulong pa;
2612    int i, rc;
2613
2614    if (*lp == NULL) {
2615        return walk_memory_regions_end(data, base, 0);
2616    }
2617
2618    if (level == 0) {
2619        PageDesc *pd = *lp;
2620
2621        for (i = 0; i < V_L2_SIZE; ++i) {
2622            int prot = pd[i].flags;
2623
2624            pa = base | (i << TARGET_PAGE_BITS);
2625            if (prot != data->prot) {
2626                rc = walk_memory_regions_end(data, pa, prot);
2627                if (rc != 0) {
2628                    return rc;
2629                }
2630            }
2631        }
2632    } else {
2633        void **pp = *lp;
2634
2635        for (i = 0; i < V_L2_SIZE; ++i) {
2636            pa = base | ((target_ulong)i <<
2637                (TARGET_PAGE_BITS + V_L2_BITS * level));
2638            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2639            if (rc != 0) {
2640                return rc;
2641            }
2642        }
2643    }
2644
2645    return 0;
2646}
2647
2648int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2649{
2650    struct walk_memory_regions_data data;
2651    uintptr_t i, l1_sz = v_l1_size;
2652
2653    data.fn = fn;
2654    data.priv = priv;
2655    data.start = -1u;
2656    data.prot = 0;
2657
2658    for (i = 0; i < l1_sz; i++) {
2659        target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2660        int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2661        if (rc != 0) {
2662            return rc;
2663        }
2664    }
2665
2666    return walk_memory_regions_end(&data, 0, 0);
2667}
2668
2669static int dump_region(void *priv, target_ulong start,
2670    target_ulong end, unsigned long prot)
2671{
2672    FILE *f = (FILE *)priv;
2673
2674    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2675        " "TARGET_FMT_lx" %c%c%c\n",
2676        start, end, end - start,
2677        ((prot & PAGE_READ) ? 'r' : '-'),
2678        ((prot & PAGE_WRITE) ? 'w' : '-'),
2679        ((prot & PAGE_EXEC) ? 'x' : '-'));
2680
2681    return 0;
2682}
2683
2684/* dump memory mappings */
2685void page_dump(FILE *f)
2686{
2687    const int length = sizeof(target_ulong) * 2;
2688    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2689            length, "start", length, "end", length, "size", "prot");
2690    walk_memory_regions(f, dump_region);
2691}
2692
2693int page_get_flags(target_ulong address)
2694{
2695    PageDesc *p;
2696
2697    p = page_find(address >> TARGET_PAGE_BITS);
2698    if (!p) {
2699        return 0;
2700    }
2701    return p->flags;
2702}
2703
2704/* Modify the flags of a page and invalidate the code if necessary.
2705   The flag PAGE_WRITE_ORG is positioned automatically depending
2706   on PAGE_WRITE.  The mmap_lock should already be held.  */
2707void page_set_flags(target_ulong start, target_ulong end, int flags)
2708{
2709    target_ulong addr, len;
2710    bool reset_target_data;
2711
2712    /* This function should never be called with addresses outside the
2713       guest address space.  If this assert fires, it probably indicates
2714       a missing call to h2g_valid.  */
2715    assert(end - 1 <= GUEST_ADDR_MAX);
2716    assert(start < end);
2717    /* Only set PAGE_ANON with new mappings. */
2718    assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
2719    assert_memory_lock();
2720
2721    start = start & TARGET_PAGE_MASK;
2722    end = TARGET_PAGE_ALIGN(end);
2723
2724    if (flags & PAGE_WRITE) {
2725        flags |= PAGE_WRITE_ORG;
2726    }
2727    reset_target_data = !(flags & PAGE_VALID) || (flags & PAGE_RESET);
2728    flags &= ~PAGE_RESET;
2729
2730    for (addr = start, len = end - start;
2731         len != 0;
2732         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2733        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2734
2735        /* If the write protection bit is set, then we invalidate
2736           the code inside.  */
2737        if (!(p->flags & PAGE_WRITE) &&
2738            (flags & PAGE_WRITE) &&
2739            p->first_tb) {
2740            tb_invalidate_phys_page(addr, 0);
2741        }
2742        if (reset_target_data) {
2743            g_free(p->target_data);
2744            p->target_data = NULL;
2745            p->flags = flags;
2746        } else {
2747            /* Using mprotect on a page does not change MAP_ANON. */
2748            p->flags = (p->flags & PAGE_ANON) | flags;
2749        }
2750    }
2751}
2752
2753void *page_get_target_data(target_ulong address)
2754{
2755    PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
2756    return p ? p->target_data : NULL;
2757}
2758
2759void *page_alloc_target_data(target_ulong address, size_t size)
2760{
2761    PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
2762    void *ret = NULL;
2763
2764    if (p->flags & PAGE_VALID) {
2765        ret = p->target_data;
2766        if (!ret) {
2767            p->target_data = ret = g_malloc0(size);
2768        }
2769    }
2770    return ret;
2771}
2772
2773int page_check_range(target_ulong start, target_ulong len, int flags)
2774{
2775    PageDesc *p;
2776    target_ulong end;
2777    target_ulong addr;
2778
2779    /* This function should never be called with addresses outside the
2780       guest address space.  If this assert fires, it probably indicates
2781       a missing call to h2g_valid.  */
2782    if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) {
2783        assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2784    }
2785
2786    if (len == 0) {
2787        return 0;
2788    }
2789    if (start + len - 1 < start) {
2790        /* We've wrapped around.  */
2791        return -1;
2792    }
2793
2794    /* must do before we loose bits in the next step */
2795    end = TARGET_PAGE_ALIGN(start + len);
2796    start = start & TARGET_PAGE_MASK;
2797
2798    for (addr = start, len = end - start;
2799         len != 0;
2800         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2801        p = page_find(addr >> TARGET_PAGE_BITS);
2802        if (!p) {
2803            return -1;
2804        }
2805        if (!(p->flags & PAGE_VALID)) {
2806            return -1;
2807        }
2808
2809        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2810            return -1;
2811        }
2812        if (flags & PAGE_WRITE) {
2813            if (!(p->flags & PAGE_WRITE_ORG)) {
2814                return -1;
2815            }
2816            /* unprotect the page if it was put read-only because it
2817               contains translated code */
2818            if (!(p->flags & PAGE_WRITE)) {
2819                if (!page_unprotect(addr, 0)) {
2820                    return -1;
2821                }
2822            }
2823        }
2824    }
2825    return 0;
2826}
2827
2828/* called from signal handler: invalidate the code and unprotect the
2829 * page. Return 0 if the fault was not handled, 1 if it was handled,
2830 * and 2 if it was handled but the caller must cause the TB to be
2831 * immediately exited. (We can only return 2 if the 'pc' argument is
2832 * non-zero.)
2833 */
2834int page_unprotect(target_ulong address, uintptr_t pc)
2835{
2836    unsigned int prot;
2837    bool current_tb_invalidated;
2838    PageDesc *p;
2839    target_ulong host_start, host_end, addr;
2840
2841    /* Technically this isn't safe inside a signal handler.  However we
2842       know this only ever happens in a synchronous SEGV handler, so in
2843       practice it seems to be ok.  */
2844    mmap_lock();
2845
2846    p = page_find(address >> TARGET_PAGE_BITS);
2847    if (!p) {
2848        mmap_unlock();
2849        return 0;
2850    }
2851
2852    /* if the page was really writable, then we change its
2853       protection back to writable */
2854    if (p->flags & PAGE_WRITE_ORG) {
2855        current_tb_invalidated = false;
2856        if (p->flags & PAGE_WRITE) {
2857            /* If the page is actually marked WRITE then assume this is because
2858             * this thread raced with another one which got here first and
2859             * set the page to PAGE_WRITE and did the TB invalidate for us.
2860             */
2861#ifdef TARGET_HAS_PRECISE_SMC
2862            TranslationBlock *current_tb = tcg_tb_lookup(pc);
2863            if (current_tb) {
2864                current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2865            }
2866#endif
2867        } else {
2868            host_start = address & qemu_host_page_mask;
2869            host_end = host_start + qemu_host_page_size;
2870
2871            prot = 0;
2872            for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2873                p = page_find(addr >> TARGET_PAGE_BITS);
2874                p->flags |= PAGE_WRITE;
2875                prot |= p->flags;
2876
2877                /* and since the content will be modified, we must invalidate
2878                   the corresponding translated code. */
2879                current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2880#ifdef CONFIG_USER_ONLY
2881                if (DEBUG_TB_CHECK_GATE) {
2882                    tb_invalidate_check(addr);
2883                }
2884#endif
2885            }
2886            mprotect((void *)g2h_untagged(host_start), qemu_host_page_size,
2887                     prot & PAGE_BITS);
2888        }
2889        mmap_unlock();
2890        /* If current TB was invalidated return to main loop */
2891        return current_tb_invalidated ? 2 : 1;
2892    }
2893    mmap_unlock();
2894    return 0;
2895}
2896#endif /* CONFIG_USER_ONLY */
2897
2898/* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2899void tcg_flush_softmmu_tlb(CPUState *cs)
2900{
2901#ifdef CONFIG_SOFTMMU
2902    tlb_flush(cs);
2903#endif
2904}
2905