qemu/block/nvme.c
<<
>>
Prefs
   1/*
   2 * NVMe block driver based on vfio
   3 *
   4 * Copyright 2016 - 2018 Red Hat, Inc.
   5 *
   6 * Authors:
   7 *   Fam Zheng <famz@redhat.com>
   8 *   Paolo Bonzini <pbonzini@redhat.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 */
  13
  14#include "qemu/osdep.h"
  15#include <linux/vfio.h>
  16#include "qapi/error.h"
  17#include "qapi/qmp/qdict.h"
  18#include "qapi/qmp/qstring.h"
  19#include "qemu/error-report.h"
  20#include "qemu/main-loop.h"
  21#include "qemu/module.h"
  22#include "qemu/cutils.h"
  23#include "qemu/option.h"
  24#include "qemu/vfio-helpers.h"
  25#include "block/block_int.h"
  26#include "sysemu/replay.h"
  27#include "trace.h"
  28
  29#include "block/nvme.h"
  30
  31#define NVME_SQ_ENTRY_BYTES 64
  32#define NVME_CQ_ENTRY_BYTES 16
  33#define NVME_QUEUE_SIZE 128
  34#define NVME_DOORBELL_SIZE 4096
  35
  36/*
  37 * We have to leave one slot empty as that is the full queue case where
  38 * head == tail + 1.
  39 */
  40#define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
  41
  42typedef struct BDRVNVMeState BDRVNVMeState;
  43
  44/* Same index is used for queues and IRQs */
  45#define INDEX_ADMIN     0
  46#define INDEX_IO(n)     (1 + n)
  47
  48/* This driver shares a single MSIX IRQ for the admin and I/O queues */
  49enum {
  50    MSIX_SHARED_IRQ_IDX = 0,
  51    MSIX_IRQ_COUNT = 1
  52};
  53
  54typedef struct {
  55    int32_t  head, tail;
  56    uint8_t  *queue;
  57    uint64_t iova;
  58    /* Hardware MMIO register */
  59    volatile uint32_t *doorbell;
  60} NVMeQueue;
  61
  62typedef struct {
  63    BlockCompletionFunc *cb;
  64    void *opaque;
  65    int cid;
  66    void *prp_list_page;
  67    uint64_t prp_list_iova;
  68    int free_req_next; /* q->reqs[] index of next free req */
  69} NVMeRequest;
  70
  71typedef struct {
  72    QemuMutex   lock;
  73
  74    /* Read from I/O code path, initialized under BQL */
  75    BDRVNVMeState   *s;
  76    int             index;
  77
  78    /* Fields protected by BQL */
  79    uint8_t     *prp_list_pages;
  80
  81    /* Fields protected by @lock */
  82    CoQueue     free_req_queue;
  83    NVMeQueue   sq, cq;
  84    int         cq_phase;
  85    int         free_req_head;
  86    NVMeRequest reqs[NVME_NUM_REQS];
  87    int         need_kick;
  88    int         inflight;
  89
  90    /* Thread-safe, no lock necessary */
  91    QEMUBH      *completion_bh;
  92} NVMeQueuePair;
  93
  94struct BDRVNVMeState {
  95    AioContext *aio_context;
  96    QEMUVFIOState *vfio;
  97    void *bar0_wo_map;
  98    /* Memory mapped registers */
  99    volatile struct {
 100        uint32_t sq_tail;
 101        uint32_t cq_head;
 102    } *doorbells;
 103    /* The submission/completion queue pairs.
 104     * [0]: admin queue.
 105     * [1..]: io queues.
 106     */
 107    NVMeQueuePair **queues;
 108    unsigned queue_count;
 109    size_t page_size;
 110    /* How many uint32_t elements does each doorbell entry take. */
 111    size_t doorbell_scale;
 112    bool write_cache_supported;
 113    EventNotifier irq_notifier[MSIX_IRQ_COUNT];
 114
 115    uint64_t nsze; /* Namespace size reported by identify command */
 116    int nsid;      /* The namespace id to read/write data. */
 117    int blkshift;
 118
 119    uint64_t max_transfer;
 120    bool plugged;
 121
 122    bool supports_write_zeroes;
 123    bool supports_discard;
 124
 125    CoMutex dma_map_lock;
 126    CoQueue dma_flush_queue;
 127
 128    /* Total size of mapped qiov, accessed under dma_map_lock */
 129    int dma_map_count;
 130
 131    /* PCI address (required for nvme_refresh_filename()) */
 132    char *device;
 133
 134    struct {
 135        uint64_t completion_errors;
 136        uint64_t aligned_accesses;
 137        uint64_t unaligned_accesses;
 138    } stats;
 139};
 140
 141#define NVME_BLOCK_OPT_DEVICE "device"
 142#define NVME_BLOCK_OPT_NAMESPACE "namespace"
 143
 144static void nvme_process_completion_bh(void *opaque);
 145
 146static QemuOptsList runtime_opts = {
 147    .name = "nvme",
 148    .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
 149    .desc = {
 150        {
 151            .name = NVME_BLOCK_OPT_DEVICE,
 152            .type = QEMU_OPT_STRING,
 153            .help = "NVMe PCI device address",
 154        },
 155        {
 156            .name = NVME_BLOCK_OPT_NAMESPACE,
 157            .type = QEMU_OPT_NUMBER,
 158            .help = "NVMe namespace",
 159        },
 160        { /* end of list */ }
 161    },
 162};
 163
 164/* Returns true on success, false on failure. */
 165static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
 166                            unsigned nentries, size_t entry_bytes, Error **errp)
 167{
 168    size_t bytes;
 169    int r;
 170
 171    bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size);
 172    q->head = q->tail = 0;
 173    q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes);
 174    if (!q->queue) {
 175        error_setg(errp, "Cannot allocate queue");
 176        return false;
 177    }
 178    memset(q->queue, 0, bytes);
 179    r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
 180    if (r) {
 181        error_setg(errp, "Cannot map queue");
 182        return false;
 183    }
 184    return true;
 185}
 186
 187static void nvme_free_queue_pair(NVMeQueuePair *q)
 188{
 189    trace_nvme_free_queue_pair(q->index, q);
 190    if (q->completion_bh) {
 191        qemu_bh_delete(q->completion_bh);
 192    }
 193    qemu_vfree(q->prp_list_pages);
 194    qemu_vfree(q->sq.queue);
 195    qemu_vfree(q->cq.queue);
 196    qemu_mutex_destroy(&q->lock);
 197    g_free(q);
 198}
 199
 200static void nvme_free_req_queue_cb(void *opaque)
 201{
 202    NVMeQueuePair *q = opaque;
 203
 204    qemu_mutex_lock(&q->lock);
 205    while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
 206        /* Retry all pending requests */
 207    }
 208    qemu_mutex_unlock(&q->lock);
 209}
 210
 211static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
 212                                             AioContext *aio_context,
 213                                             unsigned idx, size_t size,
 214                                             Error **errp)
 215{
 216    int i, r;
 217    NVMeQueuePair *q;
 218    uint64_t prp_list_iova;
 219    size_t bytes;
 220
 221    q = g_try_new0(NVMeQueuePair, 1);
 222    if (!q) {
 223        return NULL;
 224    }
 225    trace_nvme_create_queue_pair(idx, q, size, aio_context,
 226                                 event_notifier_get_fd(s->irq_notifier));
 227    bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
 228                          qemu_real_host_page_size);
 229    q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes);
 230    if (!q->prp_list_pages) {
 231        goto fail;
 232    }
 233    memset(q->prp_list_pages, 0, bytes);
 234    qemu_mutex_init(&q->lock);
 235    q->s = s;
 236    q->index = idx;
 237    qemu_co_queue_init(&q->free_req_queue);
 238    q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
 239    r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
 240                          false, &prp_list_iova);
 241    if (r) {
 242        goto fail;
 243    }
 244    q->free_req_head = -1;
 245    for (i = 0; i < NVME_NUM_REQS; i++) {
 246        NVMeRequest *req = &q->reqs[i];
 247        req->cid = i + 1;
 248        req->free_req_next = q->free_req_head;
 249        q->free_req_head = i;
 250        req->prp_list_page = q->prp_list_pages + i * s->page_size;
 251        req->prp_list_iova = prp_list_iova + i * s->page_size;
 252    }
 253
 254    if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
 255        goto fail;
 256    }
 257    q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
 258
 259    if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
 260        goto fail;
 261    }
 262    q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
 263
 264    return q;
 265fail:
 266    nvme_free_queue_pair(q);
 267    return NULL;
 268}
 269
 270/* With q->lock */
 271static void nvme_kick(NVMeQueuePair *q)
 272{
 273    BDRVNVMeState *s = q->s;
 274
 275    if (s->plugged || !q->need_kick) {
 276        return;
 277    }
 278    trace_nvme_kick(s, q->index);
 279    assert(!(q->sq.tail & 0xFF00));
 280    /* Fence the write to submission queue entry before notifying the device. */
 281    smp_wmb();
 282    *q->sq.doorbell = cpu_to_le32(q->sq.tail);
 283    q->inflight += q->need_kick;
 284    q->need_kick = 0;
 285}
 286
 287/* Find a free request element if any, otherwise:
 288 * a) if in coroutine context, try to wait for one to become available;
 289 * b) if not in coroutine, return NULL;
 290 */
 291static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
 292{
 293    NVMeRequest *req;
 294
 295    qemu_mutex_lock(&q->lock);
 296
 297    while (q->free_req_head == -1) {
 298        if (qemu_in_coroutine()) {
 299            trace_nvme_free_req_queue_wait(q->s, q->index);
 300            qemu_co_queue_wait(&q->free_req_queue, &q->lock);
 301        } else {
 302            qemu_mutex_unlock(&q->lock);
 303            return NULL;
 304        }
 305    }
 306
 307    req = &q->reqs[q->free_req_head];
 308    q->free_req_head = req->free_req_next;
 309    req->free_req_next = -1;
 310
 311    qemu_mutex_unlock(&q->lock);
 312    return req;
 313}
 314
 315/* With q->lock */
 316static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
 317{
 318    req->free_req_next = q->free_req_head;
 319    q->free_req_head = req - q->reqs;
 320}
 321
 322/* With q->lock */
 323static void nvme_wake_free_req_locked(NVMeQueuePair *q)
 324{
 325    if (!qemu_co_queue_empty(&q->free_req_queue)) {
 326        replay_bh_schedule_oneshot_event(q->s->aio_context,
 327                nvme_free_req_queue_cb, q);
 328    }
 329}
 330
 331/* Insert a request in the freelist and wake waiters */
 332static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
 333{
 334    qemu_mutex_lock(&q->lock);
 335    nvme_put_free_req_locked(q, req);
 336    nvme_wake_free_req_locked(q);
 337    qemu_mutex_unlock(&q->lock);
 338}
 339
 340static inline int nvme_translate_error(const NvmeCqe *c)
 341{
 342    uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
 343    if (status) {
 344        trace_nvme_error(le32_to_cpu(c->result),
 345                         le16_to_cpu(c->sq_head),
 346                         le16_to_cpu(c->sq_id),
 347                         le16_to_cpu(c->cid),
 348                         le16_to_cpu(status));
 349    }
 350    switch (status) {
 351    case 0:
 352        return 0;
 353    case 1:
 354        return -ENOSYS;
 355    case 2:
 356        return -EINVAL;
 357    default:
 358        return -EIO;
 359    }
 360}
 361
 362/* With q->lock */
 363static bool nvme_process_completion(NVMeQueuePair *q)
 364{
 365    BDRVNVMeState *s = q->s;
 366    bool progress = false;
 367    NVMeRequest *preq;
 368    NVMeRequest req;
 369    NvmeCqe *c;
 370
 371    trace_nvme_process_completion(s, q->index, q->inflight);
 372    if (s->plugged) {
 373        trace_nvme_process_completion_queue_plugged(s, q->index);
 374        return false;
 375    }
 376
 377    /*
 378     * Support re-entrancy when a request cb() function invokes aio_poll().
 379     * Pending completions must be visible to aio_poll() so that a cb()
 380     * function can wait for the completion of another request.
 381     *
 382     * The aio_poll() loop will execute our BH and we'll resume completion
 383     * processing there.
 384     */
 385    qemu_bh_schedule(q->completion_bh);
 386
 387    assert(q->inflight >= 0);
 388    while (q->inflight) {
 389        int ret;
 390        int16_t cid;
 391
 392        c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
 393        if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
 394            break;
 395        }
 396        ret = nvme_translate_error(c);
 397        if (ret) {
 398            s->stats.completion_errors++;
 399        }
 400        q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
 401        if (!q->cq.head) {
 402            q->cq_phase = !q->cq_phase;
 403        }
 404        cid = le16_to_cpu(c->cid);
 405        if (cid == 0 || cid > NVME_QUEUE_SIZE) {
 406            warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
 407                        "queue size: %u", cid, NVME_QUEUE_SIZE);
 408            continue;
 409        }
 410        trace_nvme_complete_command(s, q->index, cid);
 411        preq = &q->reqs[cid - 1];
 412        req = *preq;
 413        assert(req.cid == cid);
 414        assert(req.cb);
 415        nvme_put_free_req_locked(q, preq);
 416        preq->cb = preq->opaque = NULL;
 417        q->inflight--;
 418        qemu_mutex_unlock(&q->lock);
 419        req.cb(req.opaque, ret);
 420        qemu_mutex_lock(&q->lock);
 421        progress = true;
 422    }
 423    if (progress) {
 424        /* Notify the device so it can post more completions. */
 425        smp_mb_release();
 426        *q->cq.doorbell = cpu_to_le32(q->cq.head);
 427        nvme_wake_free_req_locked(q);
 428    }
 429
 430    qemu_bh_cancel(q->completion_bh);
 431
 432    return progress;
 433}
 434
 435static void nvme_process_completion_bh(void *opaque)
 436{
 437    NVMeQueuePair *q = opaque;
 438
 439    /*
 440     * We're being invoked because a nvme_process_completion() cb() function
 441     * called aio_poll(). The callback may be waiting for further completions
 442     * so notify the device that it has space to fill in more completions now.
 443     */
 444    smp_mb_release();
 445    *q->cq.doorbell = cpu_to_le32(q->cq.head);
 446    nvme_wake_free_req_locked(q);
 447
 448    nvme_process_completion(q);
 449}
 450
 451static void nvme_trace_command(const NvmeCmd *cmd)
 452{
 453    int i;
 454
 455    if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
 456        return;
 457    }
 458    for (i = 0; i < 8; ++i) {
 459        uint8_t *cmdp = (uint8_t *)cmd + i * 8;
 460        trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
 461                                      cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
 462    }
 463}
 464
 465static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
 466                                NvmeCmd *cmd, BlockCompletionFunc cb,
 467                                void *opaque)
 468{
 469    assert(!req->cb);
 470    req->cb = cb;
 471    req->opaque = opaque;
 472    cmd->cid = cpu_to_le16(req->cid);
 473
 474    trace_nvme_submit_command(q->s, q->index, req->cid);
 475    nvme_trace_command(cmd);
 476    qemu_mutex_lock(&q->lock);
 477    memcpy((uint8_t *)q->sq.queue +
 478           q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
 479    q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
 480    q->need_kick++;
 481    nvme_kick(q);
 482    nvme_process_completion(q);
 483    qemu_mutex_unlock(&q->lock);
 484}
 485
 486static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
 487{
 488    int *pret = opaque;
 489    *pret = ret;
 490    aio_wait_kick();
 491}
 492
 493static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
 494{
 495    BDRVNVMeState *s = bs->opaque;
 496    NVMeQueuePair *q = s->queues[INDEX_ADMIN];
 497    AioContext *aio_context = bdrv_get_aio_context(bs);
 498    NVMeRequest *req;
 499    int ret = -EINPROGRESS;
 500    req = nvme_get_free_req(q);
 501    if (!req) {
 502        return -EBUSY;
 503    }
 504    nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
 505
 506    AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
 507    return ret;
 508}
 509
 510/* Returns true on success, false on failure. */
 511static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
 512{
 513    BDRVNVMeState *s = bs->opaque;
 514    bool ret = false;
 515    union {
 516        NvmeIdCtrl ctrl;
 517        NvmeIdNs ns;
 518    } *id;
 519    NvmeLBAF *lbaf;
 520    uint16_t oncs;
 521    int r;
 522    uint64_t iova;
 523    NvmeCmd cmd = {
 524        .opcode = NVME_ADM_CMD_IDENTIFY,
 525        .cdw10 = cpu_to_le32(0x1),
 526    };
 527    size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size);
 528
 529    id = qemu_try_memalign(qemu_real_host_page_size, id_size);
 530    if (!id) {
 531        error_setg(errp, "Cannot allocate buffer for identify response");
 532        goto out;
 533    }
 534    r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova);
 535    if (r) {
 536        error_setg(errp, "Cannot map buffer for DMA");
 537        goto out;
 538    }
 539
 540    memset(id, 0, id_size);
 541    cmd.dptr.prp1 = cpu_to_le64(iova);
 542    if (nvme_admin_cmd_sync(bs, &cmd)) {
 543        error_setg(errp, "Failed to identify controller");
 544        goto out;
 545    }
 546
 547    if (le32_to_cpu(id->ctrl.nn) < namespace) {
 548        error_setg(errp, "Invalid namespace");
 549        goto out;
 550    }
 551    s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
 552    s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
 553    /* For now the page list buffer per command is one page, to hold at most
 554     * s->page_size / sizeof(uint64_t) entries. */
 555    s->max_transfer = MIN_NON_ZERO(s->max_transfer,
 556                          s->page_size / sizeof(uint64_t) * s->page_size);
 557
 558    oncs = le16_to_cpu(id->ctrl.oncs);
 559    s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
 560    s->supports_discard = !!(oncs & NVME_ONCS_DSM);
 561
 562    memset(id, 0, id_size);
 563    cmd.cdw10 = 0;
 564    cmd.nsid = cpu_to_le32(namespace);
 565    if (nvme_admin_cmd_sync(bs, &cmd)) {
 566        error_setg(errp, "Failed to identify namespace");
 567        goto out;
 568    }
 569
 570    s->nsze = le64_to_cpu(id->ns.nsze);
 571    lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
 572
 573    if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
 574            NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
 575                    NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
 576        bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
 577    }
 578
 579    if (lbaf->ms) {
 580        error_setg(errp, "Namespaces with metadata are not yet supported");
 581        goto out;
 582    }
 583
 584    if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
 585        (1 << lbaf->ds) > s->page_size)
 586    {
 587        error_setg(errp, "Namespace has unsupported block size (2^%d)",
 588                   lbaf->ds);
 589        goto out;
 590    }
 591
 592    ret = true;
 593    s->blkshift = lbaf->ds;
 594out:
 595    qemu_vfio_dma_unmap(s->vfio, id);
 596    qemu_vfree(id);
 597
 598    return ret;
 599}
 600
 601static bool nvme_poll_queue(NVMeQueuePair *q)
 602{
 603    bool progress = false;
 604
 605    const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
 606    NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
 607
 608    trace_nvme_poll_queue(q->s, q->index);
 609    /*
 610     * Do an early check for completions. q->lock isn't needed because
 611     * nvme_process_completion() only runs in the event loop thread and
 612     * cannot race with itself.
 613     */
 614    if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
 615        return false;
 616    }
 617
 618    qemu_mutex_lock(&q->lock);
 619    while (nvme_process_completion(q)) {
 620        /* Keep polling */
 621        progress = true;
 622    }
 623    qemu_mutex_unlock(&q->lock);
 624
 625    return progress;
 626}
 627
 628static bool nvme_poll_queues(BDRVNVMeState *s)
 629{
 630    bool progress = false;
 631    int i;
 632
 633    for (i = 0; i < s->queue_count; i++) {
 634        if (nvme_poll_queue(s->queues[i])) {
 635            progress = true;
 636        }
 637    }
 638    return progress;
 639}
 640
 641static void nvme_handle_event(EventNotifier *n)
 642{
 643    BDRVNVMeState *s = container_of(n, BDRVNVMeState,
 644                                    irq_notifier[MSIX_SHARED_IRQ_IDX]);
 645
 646    trace_nvme_handle_event(s);
 647    event_notifier_test_and_clear(n);
 648    nvme_poll_queues(s);
 649}
 650
 651static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
 652{
 653    BDRVNVMeState *s = bs->opaque;
 654    unsigned n = s->queue_count;
 655    NVMeQueuePair *q;
 656    NvmeCmd cmd;
 657    unsigned queue_size = NVME_QUEUE_SIZE;
 658
 659    assert(n <= UINT16_MAX);
 660    q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
 661                               n, queue_size, errp);
 662    if (!q) {
 663        return false;
 664    }
 665    cmd = (NvmeCmd) {
 666        .opcode = NVME_ADM_CMD_CREATE_CQ,
 667        .dptr.prp1 = cpu_to_le64(q->cq.iova),
 668        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
 669        .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
 670    };
 671    if (nvme_admin_cmd_sync(bs, &cmd)) {
 672        error_setg(errp, "Failed to create CQ io queue [%u]", n);
 673        goto out_error;
 674    }
 675    cmd = (NvmeCmd) {
 676        .opcode = NVME_ADM_CMD_CREATE_SQ,
 677        .dptr.prp1 = cpu_to_le64(q->sq.iova),
 678        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
 679        .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
 680    };
 681    if (nvme_admin_cmd_sync(bs, &cmd)) {
 682        error_setg(errp, "Failed to create SQ io queue [%u]", n);
 683        goto out_error;
 684    }
 685    s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
 686    s->queues[n] = q;
 687    s->queue_count++;
 688    return true;
 689out_error:
 690    nvme_free_queue_pair(q);
 691    return false;
 692}
 693
 694static bool nvme_poll_cb(void *opaque)
 695{
 696    EventNotifier *e = opaque;
 697    BDRVNVMeState *s = container_of(e, BDRVNVMeState,
 698                                    irq_notifier[MSIX_SHARED_IRQ_IDX]);
 699
 700    return nvme_poll_queues(s);
 701}
 702
 703static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
 704                     Error **errp)
 705{
 706    BDRVNVMeState *s = bs->opaque;
 707    NVMeQueuePair *q;
 708    AioContext *aio_context = bdrv_get_aio_context(bs);
 709    int ret;
 710    uint64_t cap;
 711    uint32_t ver;
 712    uint64_t timeout_ms;
 713    uint64_t deadline, now;
 714    volatile NvmeBar *regs = NULL;
 715
 716    qemu_co_mutex_init(&s->dma_map_lock);
 717    qemu_co_queue_init(&s->dma_flush_queue);
 718    s->device = g_strdup(device);
 719    s->nsid = namespace;
 720    s->aio_context = bdrv_get_aio_context(bs);
 721    ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
 722    if (ret) {
 723        error_setg(errp, "Failed to init event notifier");
 724        return ret;
 725    }
 726
 727    s->vfio = qemu_vfio_open_pci(device, errp);
 728    if (!s->vfio) {
 729        ret = -EINVAL;
 730        goto out;
 731    }
 732
 733    regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
 734                                 PROT_READ | PROT_WRITE, errp);
 735    if (!regs) {
 736        ret = -EINVAL;
 737        goto out;
 738    }
 739    /* Perform initialize sequence as described in NVMe spec "7.6.1
 740     * Initialization". */
 741
 742    cap = le64_to_cpu(regs->cap);
 743    trace_nvme_controller_capability_raw(cap);
 744    trace_nvme_controller_capability("Maximum Queue Entries Supported",
 745                                     1 + NVME_CAP_MQES(cap));
 746    trace_nvme_controller_capability("Contiguous Queues Required",
 747                                     NVME_CAP_CQR(cap));
 748    trace_nvme_controller_capability("Doorbell Stride",
 749                                     1 << (2 + NVME_CAP_DSTRD(cap)));
 750    trace_nvme_controller_capability("Subsystem Reset Supported",
 751                                     NVME_CAP_NSSRS(cap));
 752    trace_nvme_controller_capability("Memory Page Size Minimum",
 753                                     1 << (12 + NVME_CAP_MPSMIN(cap)));
 754    trace_nvme_controller_capability("Memory Page Size Maximum",
 755                                     1 << (12 + NVME_CAP_MPSMAX(cap)));
 756    if (!NVME_CAP_CSS(cap)) {
 757        error_setg(errp, "Device doesn't support NVMe command set");
 758        ret = -EINVAL;
 759        goto out;
 760    }
 761
 762    s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
 763    s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
 764    bs->bl.opt_mem_alignment = s->page_size;
 765    bs->bl.request_alignment = s->page_size;
 766    timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
 767
 768    ver = le32_to_cpu(regs->vs);
 769    trace_nvme_controller_spec_version(extract32(ver, 16, 16),
 770                                       extract32(ver, 8, 8),
 771                                       extract32(ver, 0, 8));
 772
 773    /* Reset device to get a clean state. */
 774    regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
 775    /* Wait for CSTS.RDY = 0. */
 776    deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
 777    while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
 778        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 779            error_setg(errp, "Timeout while waiting for device to reset (%"
 780                             PRId64 " ms)",
 781                       timeout_ms);
 782            ret = -ETIMEDOUT;
 783            goto out;
 784        }
 785    }
 786
 787    s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
 788                                           sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
 789                                           PROT_WRITE, errp);
 790    s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
 791    if (!s->doorbells) {
 792        ret = -EINVAL;
 793        goto out;
 794    }
 795
 796    /* Set up admin queue. */
 797    s->queues = g_new(NVMeQueuePair *, 1);
 798    q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
 799    if (!q) {
 800        ret = -EINVAL;
 801        goto out;
 802    }
 803    s->queues[INDEX_ADMIN] = q;
 804    s->queue_count = 1;
 805    QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
 806    regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
 807                            ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
 808    regs->asq = cpu_to_le64(q->sq.iova);
 809    regs->acq = cpu_to_le64(q->cq.iova);
 810
 811    /* After setting up all control registers we can enable device now. */
 812    regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
 813                           (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
 814                           CC_EN_MASK);
 815    /* Wait for CSTS.RDY = 1. */
 816    now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 817    deadline = now + timeout_ms * SCALE_MS;
 818    while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
 819        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 820            error_setg(errp, "Timeout while waiting for device to start (%"
 821                             PRId64 " ms)",
 822                       timeout_ms);
 823            ret = -ETIMEDOUT;
 824            goto out;
 825        }
 826    }
 827
 828    ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
 829                                 VFIO_PCI_MSIX_IRQ_INDEX, errp);
 830    if (ret) {
 831        goto out;
 832    }
 833    aio_set_event_notifier(bdrv_get_aio_context(bs),
 834                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
 835                           false, nvme_handle_event, nvme_poll_cb);
 836
 837    if (!nvme_identify(bs, namespace, errp)) {
 838        ret = -EIO;
 839        goto out;
 840    }
 841
 842    /* Set up command queues. */
 843    if (!nvme_add_io_queue(bs, errp)) {
 844        ret = -EIO;
 845    }
 846out:
 847    if (regs) {
 848        qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
 849    }
 850
 851    /* Cleaning up is done in nvme_file_open() upon error. */
 852    return ret;
 853}
 854
 855/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
 856 *
 857 *     nvme://0000:44:00.0/1
 858 *
 859 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
 860 * is the PCI address, and the last part is the namespace number starting from
 861 * 1 according to the NVMe spec. */
 862static void nvme_parse_filename(const char *filename, QDict *options,
 863                                Error **errp)
 864{
 865    int pref = strlen("nvme://");
 866
 867    if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
 868        const char *tmp = filename + pref;
 869        char *device;
 870        const char *namespace;
 871        unsigned long ns;
 872        const char *slash = strchr(tmp, '/');
 873        if (!slash) {
 874            qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
 875            return;
 876        }
 877        device = g_strndup(tmp, slash - tmp);
 878        qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
 879        g_free(device);
 880        namespace = slash + 1;
 881        if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
 882            error_setg(errp, "Invalid namespace '%s', positive number expected",
 883                       namespace);
 884            return;
 885        }
 886        qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
 887                      *namespace ? namespace : "1");
 888    }
 889}
 890
 891static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
 892                                           Error **errp)
 893{
 894    int ret;
 895    BDRVNVMeState *s = bs->opaque;
 896    NvmeCmd cmd = {
 897        .opcode = NVME_ADM_CMD_SET_FEATURES,
 898        .nsid = cpu_to_le32(s->nsid),
 899        .cdw10 = cpu_to_le32(0x06),
 900        .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
 901    };
 902
 903    ret = nvme_admin_cmd_sync(bs, &cmd);
 904    if (ret) {
 905        error_setg(errp, "Failed to configure NVMe write cache");
 906    }
 907    return ret;
 908}
 909
 910static void nvme_close(BlockDriverState *bs)
 911{
 912    BDRVNVMeState *s = bs->opaque;
 913
 914    for (unsigned i = 0; i < s->queue_count; ++i) {
 915        nvme_free_queue_pair(s->queues[i]);
 916    }
 917    g_free(s->queues);
 918    aio_set_event_notifier(bdrv_get_aio_context(bs),
 919                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
 920                           false, NULL, NULL);
 921    event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
 922    qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
 923                            0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
 924    qemu_vfio_close(s->vfio);
 925
 926    g_free(s->device);
 927}
 928
 929static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
 930                          Error **errp)
 931{
 932    const char *device;
 933    QemuOpts *opts;
 934    int namespace;
 935    int ret;
 936    BDRVNVMeState *s = bs->opaque;
 937
 938    bs->supported_write_flags = BDRV_REQ_FUA;
 939
 940    opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
 941    qemu_opts_absorb_qdict(opts, options, &error_abort);
 942    device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
 943    if (!device) {
 944        error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
 945        qemu_opts_del(opts);
 946        return -EINVAL;
 947    }
 948
 949    namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
 950    ret = nvme_init(bs, device, namespace, errp);
 951    qemu_opts_del(opts);
 952    if (ret) {
 953        goto fail;
 954    }
 955    if (flags & BDRV_O_NOCACHE) {
 956        if (!s->write_cache_supported) {
 957            error_setg(errp,
 958                       "NVMe controller doesn't support write cache configuration");
 959            ret = -EINVAL;
 960        } else {
 961            ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
 962                                                  errp);
 963        }
 964        if (ret) {
 965            goto fail;
 966        }
 967    }
 968    return 0;
 969fail:
 970    nvme_close(bs);
 971    return ret;
 972}
 973
 974static int64_t nvme_getlength(BlockDriverState *bs)
 975{
 976    BDRVNVMeState *s = bs->opaque;
 977    return s->nsze << s->blkshift;
 978}
 979
 980static uint32_t nvme_get_blocksize(BlockDriverState *bs)
 981{
 982    BDRVNVMeState *s = bs->opaque;
 983    assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
 984    return UINT32_C(1) << s->blkshift;
 985}
 986
 987static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
 988{
 989    uint32_t blocksize = nvme_get_blocksize(bs);
 990    bsz->phys = blocksize;
 991    bsz->log = blocksize;
 992    return 0;
 993}
 994
 995/* Called with s->dma_map_lock */
 996static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
 997                                            QEMUIOVector *qiov)
 998{
 999    int r = 0;
1000    BDRVNVMeState *s = bs->opaque;
1001
1002    s->dma_map_count -= qiov->size;
1003    if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1004        r = qemu_vfio_dma_reset_temporary(s->vfio);
1005        if (!r) {
1006            qemu_co_queue_restart_all(&s->dma_flush_queue);
1007        }
1008    }
1009    return r;
1010}
1011
1012/* Called with s->dma_map_lock */
1013static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1014                                          NVMeRequest *req, QEMUIOVector *qiov)
1015{
1016    BDRVNVMeState *s = bs->opaque;
1017    uint64_t *pagelist = req->prp_list_page;
1018    int i, j, r;
1019    int entries = 0;
1020
1021    assert(qiov->size);
1022    assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1023    assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1024    for (i = 0; i < qiov->niov; ++i) {
1025        bool retry = true;
1026        uint64_t iova;
1027        size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1028                                   qemu_real_host_page_size);
1029try_map:
1030        r = qemu_vfio_dma_map(s->vfio,
1031                              qiov->iov[i].iov_base,
1032                              len, true, &iova);
1033        if (r == -ENOMEM && retry) {
1034            retry = false;
1035            trace_nvme_dma_flush_queue_wait(s);
1036            if (s->dma_map_count) {
1037                trace_nvme_dma_map_flush(s);
1038                qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1039            } else {
1040                r = qemu_vfio_dma_reset_temporary(s->vfio);
1041                if (r) {
1042                    goto fail;
1043                }
1044            }
1045            goto try_map;
1046        }
1047        if (r) {
1048            goto fail;
1049        }
1050
1051        for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1052            pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1053        }
1054        trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1055                                    qiov->iov[i].iov_len / s->page_size);
1056    }
1057
1058    s->dma_map_count += qiov->size;
1059
1060    assert(entries <= s->page_size / sizeof(uint64_t));
1061    switch (entries) {
1062    case 0:
1063        abort();
1064    case 1:
1065        cmd->dptr.prp1 = pagelist[0];
1066        cmd->dptr.prp2 = 0;
1067        break;
1068    case 2:
1069        cmd->dptr.prp1 = pagelist[0];
1070        cmd->dptr.prp2 = pagelist[1];
1071        break;
1072    default:
1073        cmd->dptr.prp1 = pagelist[0];
1074        cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1075        break;
1076    }
1077    trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1078    for (i = 0; i < entries; ++i) {
1079        trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1080    }
1081    return 0;
1082fail:
1083    /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1084     * increment s->dma_map_count. This is okay for fixed mapping memory areas
1085     * because they are already mapped before calling this function; for
1086     * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1087     * calling qemu_vfio_dma_reset_temporary when necessary. */
1088    return r;
1089}
1090
1091typedef struct {
1092    Coroutine *co;
1093    int ret;
1094    AioContext *ctx;
1095} NVMeCoData;
1096
1097static void nvme_rw_cb_bh(void *opaque)
1098{
1099    NVMeCoData *data = opaque;
1100    qemu_coroutine_enter(data->co);
1101}
1102
1103static void nvme_rw_cb(void *opaque, int ret)
1104{
1105    NVMeCoData *data = opaque;
1106    data->ret = ret;
1107    if (!data->co) {
1108        /* The rw coroutine hasn't yielded, don't try to enter. */
1109        return;
1110    }
1111    replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1112}
1113
1114static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1115                                            uint64_t offset, uint64_t bytes,
1116                                            QEMUIOVector *qiov,
1117                                            bool is_write,
1118                                            int flags)
1119{
1120    int r;
1121    BDRVNVMeState *s = bs->opaque;
1122    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1123    NVMeRequest *req;
1124
1125    uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1126                       (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1127    NvmeCmd cmd = {
1128        .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1129        .nsid = cpu_to_le32(s->nsid),
1130        .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1131        .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1132        .cdw12 = cpu_to_le32(cdw12),
1133    };
1134    NVMeCoData data = {
1135        .ctx = bdrv_get_aio_context(bs),
1136        .ret = -EINPROGRESS,
1137    };
1138
1139    trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1140    assert(s->queue_count > 1);
1141    req = nvme_get_free_req(ioq);
1142    assert(req);
1143
1144    qemu_co_mutex_lock(&s->dma_map_lock);
1145    r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1146    qemu_co_mutex_unlock(&s->dma_map_lock);
1147    if (r) {
1148        nvme_put_free_req_and_wake(ioq, req);
1149        return r;
1150    }
1151    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1152
1153    data.co = qemu_coroutine_self();
1154    while (data.ret == -EINPROGRESS) {
1155        qemu_coroutine_yield();
1156    }
1157
1158    qemu_co_mutex_lock(&s->dma_map_lock);
1159    r = nvme_cmd_unmap_qiov(bs, qiov);
1160    qemu_co_mutex_unlock(&s->dma_map_lock);
1161    if (r) {
1162        return r;
1163    }
1164
1165    trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1166    return data.ret;
1167}
1168
1169static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1170                                     const QEMUIOVector *qiov)
1171{
1172    int i;
1173    BDRVNVMeState *s = bs->opaque;
1174
1175    for (i = 0; i < qiov->niov; ++i) {
1176        if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1177                                 qemu_real_host_page_size) ||
1178            !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) {
1179            trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1180                                      qiov->iov[i].iov_len, s->page_size);
1181            return false;
1182        }
1183    }
1184    return true;
1185}
1186
1187static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1188                       QEMUIOVector *qiov, bool is_write, int flags)
1189{
1190    BDRVNVMeState *s = bs->opaque;
1191    int r;
1192    uint8_t *buf = NULL;
1193    QEMUIOVector local_qiov;
1194    size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size);
1195    assert(QEMU_IS_ALIGNED(offset, s->page_size));
1196    assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1197    assert(bytes <= s->max_transfer);
1198    if (nvme_qiov_aligned(bs, qiov)) {
1199        s->stats.aligned_accesses++;
1200        return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1201    }
1202    s->stats.unaligned_accesses++;
1203    trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1204    buf = qemu_try_memalign(qemu_real_host_page_size, len);
1205
1206    if (!buf) {
1207        return -ENOMEM;
1208    }
1209    qemu_iovec_init(&local_qiov, 1);
1210    if (is_write) {
1211        qemu_iovec_to_buf(qiov, 0, buf, bytes);
1212    }
1213    qemu_iovec_add(&local_qiov, buf, bytes);
1214    r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1215    qemu_iovec_destroy(&local_qiov);
1216    if (!r && !is_write) {
1217        qemu_iovec_from_buf(qiov, 0, buf, bytes);
1218    }
1219    qemu_vfree(buf);
1220    return r;
1221}
1222
1223static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1224                                       uint64_t offset, uint64_t bytes,
1225                                       QEMUIOVector *qiov, int flags)
1226{
1227    return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1228}
1229
1230static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1231                                        uint64_t offset, uint64_t bytes,
1232                                        QEMUIOVector *qiov, int flags)
1233{
1234    return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1235}
1236
1237static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1238{
1239    BDRVNVMeState *s = bs->opaque;
1240    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1241    NVMeRequest *req;
1242    NvmeCmd cmd = {
1243        .opcode = NVME_CMD_FLUSH,
1244        .nsid = cpu_to_le32(s->nsid),
1245    };
1246    NVMeCoData data = {
1247        .ctx = bdrv_get_aio_context(bs),
1248        .ret = -EINPROGRESS,
1249    };
1250
1251    assert(s->queue_count > 1);
1252    req = nvme_get_free_req(ioq);
1253    assert(req);
1254    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1255
1256    data.co = qemu_coroutine_self();
1257    if (data.ret == -EINPROGRESS) {
1258        qemu_coroutine_yield();
1259    }
1260
1261    return data.ret;
1262}
1263
1264
1265static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1266                                              int64_t offset,
1267                                              int bytes,
1268                                              BdrvRequestFlags flags)
1269{
1270    BDRVNVMeState *s = bs->opaque;
1271    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1272    NVMeRequest *req;
1273
1274    uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1275
1276    if (!s->supports_write_zeroes) {
1277        return -ENOTSUP;
1278    }
1279
1280    NvmeCmd cmd = {
1281        .opcode = NVME_CMD_WRITE_ZEROES,
1282        .nsid = cpu_to_le32(s->nsid),
1283        .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1284        .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1285    };
1286
1287    NVMeCoData data = {
1288        .ctx = bdrv_get_aio_context(bs),
1289        .ret = -EINPROGRESS,
1290    };
1291
1292    if (flags & BDRV_REQ_MAY_UNMAP) {
1293        cdw12 |= (1 << 25);
1294    }
1295
1296    if (flags & BDRV_REQ_FUA) {
1297        cdw12 |= (1 << 30);
1298    }
1299
1300    cmd.cdw12 = cpu_to_le32(cdw12);
1301
1302    trace_nvme_write_zeroes(s, offset, bytes, flags);
1303    assert(s->queue_count > 1);
1304    req = nvme_get_free_req(ioq);
1305    assert(req);
1306
1307    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1308
1309    data.co = qemu_coroutine_self();
1310    while (data.ret == -EINPROGRESS) {
1311        qemu_coroutine_yield();
1312    }
1313
1314    trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1315    return data.ret;
1316}
1317
1318
1319static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1320                                         int64_t offset,
1321                                         int bytes)
1322{
1323    BDRVNVMeState *s = bs->opaque;
1324    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1325    NVMeRequest *req;
1326    NvmeDsmRange *buf;
1327    QEMUIOVector local_qiov;
1328    int ret;
1329
1330    NvmeCmd cmd = {
1331        .opcode = NVME_CMD_DSM,
1332        .nsid = cpu_to_le32(s->nsid),
1333        .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1334        .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1335    };
1336
1337    NVMeCoData data = {
1338        .ctx = bdrv_get_aio_context(bs),
1339        .ret = -EINPROGRESS,
1340    };
1341
1342    if (!s->supports_discard) {
1343        return -ENOTSUP;
1344    }
1345
1346    assert(s->queue_count > 1);
1347
1348    buf = qemu_try_memalign(s->page_size, s->page_size);
1349    if (!buf) {
1350        return -ENOMEM;
1351    }
1352    memset(buf, 0, s->page_size);
1353    buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1354    buf->slba = cpu_to_le64(offset >> s->blkshift);
1355    buf->cattr = 0;
1356
1357    qemu_iovec_init(&local_qiov, 1);
1358    qemu_iovec_add(&local_qiov, buf, 4096);
1359
1360    req = nvme_get_free_req(ioq);
1361    assert(req);
1362
1363    qemu_co_mutex_lock(&s->dma_map_lock);
1364    ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1365    qemu_co_mutex_unlock(&s->dma_map_lock);
1366
1367    if (ret) {
1368        nvme_put_free_req_and_wake(ioq, req);
1369        goto out;
1370    }
1371
1372    trace_nvme_dsm(s, offset, bytes);
1373
1374    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1375
1376    data.co = qemu_coroutine_self();
1377    while (data.ret == -EINPROGRESS) {
1378        qemu_coroutine_yield();
1379    }
1380
1381    qemu_co_mutex_lock(&s->dma_map_lock);
1382    ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1383    qemu_co_mutex_unlock(&s->dma_map_lock);
1384
1385    if (ret) {
1386        goto out;
1387    }
1388
1389    ret = data.ret;
1390    trace_nvme_dsm_done(s, offset, bytes, ret);
1391out:
1392    qemu_iovec_destroy(&local_qiov);
1393    qemu_vfree(buf);
1394    return ret;
1395
1396}
1397
1398static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1399                                         bool exact, PreallocMode prealloc,
1400                                         BdrvRequestFlags flags, Error **errp)
1401{
1402    int64_t cur_length;
1403
1404    if (prealloc != PREALLOC_MODE_OFF) {
1405        error_setg(errp, "Unsupported preallocation mode '%s'",
1406                   PreallocMode_str(prealloc));
1407        return -ENOTSUP;
1408    }
1409
1410    cur_length = nvme_getlength(bs);
1411    if (offset != cur_length && exact) {
1412        error_setg(errp, "Cannot resize NVMe devices");
1413        return -ENOTSUP;
1414    } else if (offset > cur_length) {
1415        error_setg(errp, "Cannot grow NVMe devices");
1416        return -EINVAL;
1417    }
1418
1419    return 0;
1420}
1421
1422static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1423                               BlockReopenQueue *queue, Error **errp)
1424{
1425    return 0;
1426}
1427
1428static void nvme_refresh_filename(BlockDriverState *bs)
1429{
1430    BDRVNVMeState *s = bs->opaque;
1431
1432    snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1433             s->device, s->nsid);
1434}
1435
1436static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1437{
1438    BDRVNVMeState *s = bs->opaque;
1439
1440    bs->bl.opt_mem_alignment = s->page_size;
1441    bs->bl.request_alignment = s->page_size;
1442    bs->bl.max_transfer = s->max_transfer;
1443}
1444
1445static void nvme_detach_aio_context(BlockDriverState *bs)
1446{
1447    BDRVNVMeState *s = bs->opaque;
1448
1449    for (unsigned i = 0; i < s->queue_count; i++) {
1450        NVMeQueuePair *q = s->queues[i];
1451
1452        qemu_bh_delete(q->completion_bh);
1453        q->completion_bh = NULL;
1454    }
1455
1456    aio_set_event_notifier(bdrv_get_aio_context(bs),
1457                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1458                           false, NULL, NULL);
1459}
1460
1461static void nvme_attach_aio_context(BlockDriverState *bs,
1462                                    AioContext *new_context)
1463{
1464    BDRVNVMeState *s = bs->opaque;
1465
1466    s->aio_context = new_context;
1467    aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1468                           false, nvme_handle_event, nvme_poll_cb);
1469
1470    for (unsigned i = 0; i < s->queue_count; i++) {
1471        NVMeQueuePair *q = s->queues[i];
1472
1473        q->completion_bh =
1474            aio_bh_new(new_context, nvme_process_completion_bh, q);
1475    }
1476}
1477
1478static void nvme_aio_plug(BlockDriverState *bs)
1479{
1480    BDRVNVMeState *s = bs->opaque;
1481    assert(!s->plugged);
1482    s->plugged = true;
1483}
1484
1485static void nvme_aio_unplug(BlockDriverState *bs)
1486{
1487    BDRVNVMeState *s = bs->opaque;
1488    assert(s->plugged);
1489    s->plugged = false;
1490    for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1491        NVMeQueuePair *q = s->queues[i];
1492        qemu_mutex_lock(&q->lock);
1493        nvme_kick(q);
1494        nvme_process_completion(q);
1495        qemu_mutex_unlock(&q->lock);
1496    }
1497}
1498
1499static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1500{
1501    int ret;
1502    BDRVNVMeState *s = bs->opaque;
1503
1504    ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1505    if (ret) {
1506        /* FIXME: we may run out of IOVA addresses after repeated
1507         * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1508         * doesn't reclaim addresses for fixed mappings. */
1509        error_report("nvme_register_buf failed: %s", strerror(-ret));
1510    }
1511}
1512
1513static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1514{
1515    BDRVNVMeState *s = bs->opaque;
1516
1517    qemu_vfio_dma_unmap(s->vfio, host);
1518}
1519
1520static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1521{
1522    BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1523    BDRVNVMeState *s = bs->opaque;
1524
1525    stats->driver = BLOCKDEV_DRIVER_NVME;
1526    stats->u.nvme = (BlockStatsSpecificNvme) {
1527        .completion_errors = s->stats.completion_errors,
1528        .aligned_accesses = s->stats.aligned_accesses,
1529        .unaligned_accesses = s->stats.unaligned_accesses,
1530    };
1531
1532    return stats;
1533}
1534
1535static const char *const nvme_strong_runtime_opts[] = {
1536    NVME_BLOCK_OPT_DEVICE,
1537    NVME_BLOCK_OPT_NAMESPACE,
1538
1539    NULL
1540};
1541
1542static BlockDriver bdrv_nvme = {
1543    .format_name              = "nvme",
1544    .protocol_name            = "nvme",
1545    .instance_size            = sizeof(BDRVNVMeState),
1546
1547    .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1548    .create_opts              = &bdrv_create_opts_simple,
1549
1550    .bdrv_parse_filename      = nvme_parse_filename,
1551    .bdrv_file_open           = nvme_file_open,
1552    .bdrv_close               = nvme_close,
1553    .bdrv_getlength           = nvme_getlength,
1554    .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1555    .bdrv_co_truncate         = nvme_co_truncate,
1556
1557    .bdrv_co_preadv           = nvme_co_preadv,
1558    .bdrv_co_pwritev          = nvme_co_pwritev,
1559
1560    .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1561    .bdrv_co_pdiscard         = nvme_co_pdiscard,
1562
1563    .bdrv_co_flush_to_disk    = nvme_co_flush,
1564    .bdrv_reopen_prepare      = nvme_reopen_prepare,
1565
1566    .bdrv_refresh_filename    = nvme_refresh_filename,
1567    .bdrv_refresh_limits      = nvme_refresh_limits,
1568    .strong_runtime_opts      = nvme_strong_runtime_opts,
1569    .bdrv_get_specific_stats  = nvme_get_specific_stats,
1570
1571    .bdrv_detach_aio_context  = nvme_detach_aio_context,
1572    .bdrv_attach_aio_context  = nvme_attach_aio_context,
1573
1574    .bdrv_io_plug             = nvme_aio_plug,
1575    .bdrv_io_unplug           = nvme_aio_unplug,
1576
1577    .bdrv_register_buf        = nvme_register_buf,
1578    .bdrv_unregister_buf      = nvme_unregister_buf,
1579};
1580
1581static void bdrv_nvme_init(void)
1582{
1583    bdrv_register(&bdrv_nvme);
1584}
1585
1586block_init(bdrv_nvme_init);
1587