qemu/hw/acpi/nvdimm.c
<<
>>
Prefs
   1/*
   2 * NVDIMM ACPI Implementation
   3 *
   4 * Copyright(C) 2015 Intel Corporation.
   5 *
   6 * Author:
   7 *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
   8 *
   9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
  10 * and the DSM specification can be found at:
  11 *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
  12 *
  13 * Currently, it only supports PMEM Virtualization.
  14 *
  15 * This library is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU Lesser General Public
  17 * License as published by the Free Software Foundation; either
  18 * version 2.1 of the License, or (at your option) any later version.
  19 *
  20 * This library is distributed in the hope that it will be useful,
  21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  23 * Lesser General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU Lesser General Public
  26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
  27 */
  28
  29#include "qemu/osdep.h"
  30#include "qemu/uuid.h"
  31#include "qapi/error.h"
  32#include "hw/acpi/acpi.h"
  33#include "hw/acpi/aml-build.h"
  34#include "hw/acpi/bios-linker-loader.h"
  35#include "hw/nvram/fw_cfg.h"
  36#include "hw/mem/nvdimm.h"
  37#include "qemu/nvdimm-utils.h"
  38
  39/*
  40 * define Byte Addressable Persistent Memory (PM) Region according to
  41 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
  42 */
  43static const uint8_t nvdimm_nfit_spa_uuid[] =
  44      UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
  45              0x18, 0xb7, 0x8c, 0xdb);
  46
  47/*
  48 * NVDIMM Firmware Interface Table
  49 * @signature: "NFIT"
  50 *
  51 * It provides information that allows OSPM to enumerate NVDIMM present in
  52 * the platform and associate system physical address ranges created by the
  53 * NVDIMMs.
  54 *
  55 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
  56 */
  57struct NvdimmNfitHeader {
  58    ACPI_TABLE_HEADER_DEF
  59    uint32_t reserved;
  60} QEMU_PACKED;
  61typedef struct NvdimmNfitHeader NvdimmNfitHeader;
  62
  63/*
  64 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
  65 * Interface Table (NFIT).
  66 */
  67
  68/*
  69 * System Physical Address Range Structure
  70 *
  71 * It describes the system physical address ranges occupied by NVDIMMs and
  72 * the types of the regions.
  73 */
  74struct NvdimmNfitSpa {
  75    uint16_t type;
  76    uint16_t length;
  77    uint16_t spa_index;
  78    uint16_t flags;
  79    uint32_t reserved;
  80    uint32_t proximity_domain;
  81    uint8_t type_guid[16];
  82    uint64_t spa_base;
  83    uint64_t spa_length;
  84    uint64_t mem_attr;
  85} QEMU_PACKED;
  86typedef struct NvdimmNfitSpa NvdimmNfitSpa;
  87
  88/*
  89 * Memory Device to System Physical Address Range Mapping Structure
  90 *
  91 * It enables identifying each NVDIMM region and the corresponding SPA
  92 * describing the memory interleave
  93 */
  94struct NvdimmNfitMemDev {
  95    uint16_t type;
  96    uint16_t length;
  97    uint32_t nfit_handle;
  98    uint16_t phys_id;
  99    uint16_t region_id;
 100    uint16_t spa_index;
 101    uint16_t dcr_index;
 102    uint64_t region_len;
 103    uint64_t region_offset;
 104    uint64_t region_dpa;
 105    uint16_t interleave_index;
 106    uint16_t interleave_ways;
 107    uint16_t flags;
 108    uint16_t reserved;
 109} QEMU_PACKED;
 110typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
 111
 112#define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
 113
 114/*
 115 * NVDIMM Control Region Structure
 116 *
 117 * It describes the NVDIMM and if applicable, Block Control Window.
 118 */
 119struct NvdimmNfitControlRegion {
 120    uint16_t type;
 121    uint16_t length;
 122    uint16_t dcr_index;
 123    uint16_t vendor_id;
 124    uint16_t device_id;
 125    uint16_t revision_id;
 126    uint16_t sub_vendor_id;
 127    uint16_t sub_device_id;
 128    uint16_t sub_revision_id;
 129    uint8_t reserved[6];
 130    uint32_t serial_number;
 131    uint16_t fic;
 132    uint16_t num_bcw;
 133    uint64_t bcw_size;
 134    uint64_t cmd_offset;
 135    uint64_t cmd_size;
 136    uint64_t status_offset;
 137    uint64_t status_size;
 138    uint16_t flags;
 139    uint8_t reserved2[6];
 140} QEMU_PACKED;
 141typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
 142
 143/*
 144 * NVDIMM Platform Capabilities Structure
 145 *
 146 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
 147 */
 148struct NvdimmNfitPlatformCaps {
 149    uint16_t type;
 150    uint16_t length;
 151    uint8_t highest_cap;
 152    uint8_t reserved[3];
 153    uint32_t capabilities;
 154    uint8_t reserved2[4];
 155} QEMU_PACKED;
 156typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
 157
 158/*
 159 * Module serial number is a unique number for each device. We use the
 160 * slot id of NVDIMM device to generate this number so that each device
 161 * associates with a different number.
 162 *
 163 * 0x123456 is a magic number we arbitrarily chose.
 164 */
 165static uint32_t nvdimm_slot_to_sn(int slot)
 166{
 167    return 0x123456 + slot;
 168}
 169
 170/*
 171 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
 172 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
 173 * by ACPI device _ADR method.
 174 *
 175 * We generate the handle with the slot id of NVDIMM device and reserve
 176 * 0 for NVDIMM root device.
 177 */
 178static uint32_t nvdimm_slot_to_handle(int slot)
 179{
 180    return slot + 1;
 181}
 182
 183/*
 184 * index uniquely identifies the structure, 0 is reserved which indicates
 185 * that the structure is not valid or the associated structure is not
 186 * present.
 187 *
 188 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
 189 * nfit_dc which are generated by the slot id of NVDIMM device.
 190 */
 191static uint16_t nvdimm_slot_to_spa_index(int slot)
 192{
 193    return (slot + 1) << 1;
 194}
 195
 196/* See the comments of nvdimm_slot_to_spa_index(). */
 197static uint32_t nvdimm_slot_to_dcr_index(int slot)
 198{
 199    return nvdimm_slot_to_spa_index(slot) + 1;
 200}
 201
 202static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
 203{
 204    NVDIMMDevice *nvdimm = NULL;
 205    GSList *list, *device_list = nvdimm_get_device_list();
 206
 207    for (list = device_list; list; list = list->next) {
 208        NVDIMMDevice *nvd = list->data;
 209        int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
 210                                           NULL);
 211
 212        if (nvdimm_slot_to_handle(slot) == handle) {
 213            nvdimm = nvd;
 214            break;
 215        }
 216    }
 217
 218    g_slist_free(device_list);
 219    return nvdimm;
 220}
 221
 222/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
 223static void
 224nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
 225{
 226    NvdimmNfitSpa *nfit_spa;
 227    uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
 228                                             NULL);
 229    uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
 230                                             NULL);
 231    uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
 232                                             NULL);
 233    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 234                                       NULL);
 235
 236    nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
 237
 238    nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
 239                                      Structure */);
 240    nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
 241    nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
 242
 243    /*
 244     * Control region is strict as all the device info, such as SN, index,
 245     * is associated with slot id.
 246     */
 247    nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
 248                                       management during hot add/online
 249                                       operation */ |
 250                                  2 /* Data in Proximity Domain field is
 251                                       valid*/);
 252
 253    /* NUMA node. */
 254    nfit_spa->proximity_domain = cpu_to_le32(node);
 255    /* the region reported as PMEM. */
 256    memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
 257           sizeof(nvdimm_nfit_spa_uuid));
 258
 259    nfit_spa->spa_base = cpu_to_le64(addr);
 260    nfit_spa->spa_length = cpu_to_le64(size);
 261
 262    /* It is the PMEM and can be cached as writeback. */
 263    nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
 264                                     0x8000ULL /* EFI_MEMORY_NV */);
 265}
 266
 267/*
 268 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
 269 * Structure
 270 */
 271static void
 272nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
 273{
 274    NvdimmNfitMemDev *nfit_memdev;
 275    NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
 276    uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
 277                                             NULL);
 278    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 279                                            NULL);
 280    uint32_t handle = nvdimm_slot_to_handle(slot);
 281
 282    nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
 283
 284    nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
 285                                         Range Map Structure*/);
 286    nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
 287    nfit_memdev->nfit_handle = cpu_to_le32(handle);
 288
 289    /*
 290     * associate memory device with System Physical Address Range
 291     * Structure.
 292     */
 293    nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
 294    /* associate memory device with Control Region Structure. */
 295    nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
 296
 297    /* The memory region on the device. */
 298    nfit_memdev->region_len = cpu_to_le64(size);
 299    /* The device address starts from 0. */
 300    nfit_memdev->region_dpa = cpu_to_le64(0);
 301
 302    /* Only one interleave for PMEM. */
 303    nfit_memdev->interleave_ways = cpu_to_le16(1);
 304
 305    if (nvdimm->unarmed) {
 306        nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
 307    }
 308}
 309
 310/*
 311 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
 312 */
 313static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
 314{
 315    NvdimmNfitControlRegion *nfit_dcr;
 316    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 317                                       NULL);
 318    uint32_t sn = nvdimm_slot_to_sn(slot);
 319
 320    nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
 321
 322    nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
 323    nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
 324    nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
 325
 326    /* vendor: Intel. */
 327    nfit_dcr->vendor_id = cpu_to_le16(0x8086);
 328    nfit_dcr->device_id = cpu_to_le16(1);
 329
 330    /* The _DSM method is following Intel's DSM specification. */
 331    nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
 332                                             in ACPI 6.0 is 1. */);
 333    nfit_dcr->serial_number = cpu_to_le32(sn);
 334    nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
 335                                         Byte addressable, no energy backed.
 336                                         See ACPI 6.2, sect 5.2.25.6 and
 337                                         JEDEC Annex L Release 3. */);
 338}
 339
 340/*
 341 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
 342 */
 343static void
 344nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
 345{
 346    NvdimmNfitPlatformCaps *nfit_caps;
 347
 348    nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
 349
 350    nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
 351    nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
 352    nfit_caps->highest_cap = 31 - clz32(capabilities);
 353    nfit_caps->capabilities = cpu_to_le32(capabilities);
 354}
 355
 356static GArray *nvdimm_build_device_structure(NVDIMMState *state)
 357{
 358    GSList *device_list = nvdimm_get_device_list();
 359    GArray *structures = g_array_new(false, true /* clear */, 1);
 360
 361    for (; device_list; device_list = device_list->next) {
 362        DeviceState *dev = device_list->data;
 363
 364        /* build System Physical Address Range Structure. */
 365        nvdimm_build_structure_spa(structures, dev);
 366
 367        /*
 368         * build Memory Device to System Physical Address Range Mapping
 369         * Structure.
 370         */
 371        nvdimm_build_structure_memdev(structures, dev);
 372
 373        /* build NVDIMM Control Region Structure. */
 374        nvdimm_build_structure_dcr(structures, dev);
 375    }
 376    g_slist_free(device_list);
 377
 378    if (state->persistence) {
 379        nvdimm_build_structure_caps(structures, state->persistence);
 380    }
 381
 382    return structures;
 383}
 384
 385static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
 386{
 387    fit_buf->fit = g_array_new(false, true /* clear */, 1);
 388}
 389
 390static void nvdimm_build_fit_buffer(NVDIMMState *state)
 391{
 392    NvdimmFitBuffer *fit_buf = &state->fit_buf;
 393
 394    g_array_free(fit_buf->fit, true);
 395    fit_buf->fit = nvdimm_build_device_structure(state);
 396    fit_buf->dirty = true;
 397}
 398
 399void nvdimm_plug(NVDIMMState *state)
 400{
 401    nvdimm_build_fit_buffer(state);
 402}
 403
 404static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
 405                              GArray *table_data, BIOSLinker *linker,
 406                              const char *oem_id, const char *oem_table_id)
 407{
 408    NvdimmFitBuffer *fit_buf = &state->fit_buf;
 409    unsigned int header;
 410
 411    acpi_add_table(table_offsets, table_data);
 412
 413    /* NFIT header. */
 414    header = table_data->len;
 415    acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
 416    /* NVDIMM device structures. */
 417    g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
 418
 419    build_header(linker, table_data,
 420                 (void *)(table_data->data + header), "NFIT",
 421                 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, oem_id,
 422                 oem_table_id);
 423}
 424
 425#define NVDIMM_DSM_MEMORY_SIZE      4096
 426
 427struct NvdimmDsmIn {
 428    uint32_t handle;
 429    uint32_t revision;
 430    uint32_t function;
 431    /* the remaining size in the page is used by arg3. */
 432    union {
 433        uint8_t arg3[4084];
 434    };
 435} QEMU_PACKED;
 436typedef struct NvdimmDsmIn NvdimmDsmIn;
 437QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
 438
 439struct NvdimmDsmOut {
 440    /* the size of buffer filled by QEMU. */
 441    uint32_t len;
 442    uint8_t data[4092];
 443} QEMU_PACKED;
 444typedef struct NvdimmDsmOut NvdimmDsmOut;
 445QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
 446
 447struct NvdimmDsmFunc0Out {
 448    /* the size of buffer filled by QEMU. */
 449     uint32_t len;
 450     uint32_t supported_func;
 451} QEMU_PACKED;
 452typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
 453
 454struct NvdimmDsmFuncNoPayloadOut {
 455    /* the size of buffer filled by QEMU. */
 456     uint32_t len;
 457     uint32_t func_ret_status;
 458} QEMU_PACKED;
 459typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
 460
 461struct NvdimmFuncGetLabelSizeOut {
 462    /* the size of buffer filled by QEMU. */
 463    uint32_t len;
 464    uint32_t func_ret_status; /* return status code. */
 465    uint32_t label_size; /* the size of label data area. */
 466    /*
 467     * Maximum size of the namespace label data length supported by
 468     * the platform in Get/Set Namespace Label Data functions.
 469     */
 470    uint32_t max_xfer;
 471} QEMU_PACKED;
 472typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
 473QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
 474
 475struct NvdimmFuncGetLabelDataIn {
 476    uint32_t offset; /* the offset in the namespace label data area. */
 477    uint32_t length; /* the size of data is to be read via the function. */
 478} QEMU_PACKED;
 479typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
 480QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
 481                  offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
 482
 483struct NvdimmFuncGetLabelDataOut {
 484    /* the size of buffer filled by QEMU. */
 485    uint32_t len;
 486    uint32_t func_ret_status; /* return status code. */
 487    uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */
 488} QEMU_PACKED;
 489typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
 490QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
 491
 492struct NvdimmFuncSetLabelDataIn {
 493    uint32_t offset; /* the offset in the namespace label data area. */
 494    uint32_t length; /* the size of data is to be written via the function. */
 495    uint8_t in_buf[]; /* the data written to label data area. */
 496} QEMU_PACKED;
 497typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
 498QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
 499                  offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
 500
 501struct NvdimmFuncReadFITIn {
 502    uint32_t offset; /* the offset into FIT buffer. */
 503} QEMU_PACKED;
 504typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
 505QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
 506                  offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
 507
 508struct NvdimmFuncReadFITOut {
 509    /* the size of buffer filled by QEMU. */
 510    uint32_t len;
 511    uint32_t func_ret_status; /* return status code. */
 512    uint8_t fit[]; /* the FIT data. */
 513} QEMU_PACKED;
 514typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
 515QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
 516
 517static void
 518nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
 519{
 520    NvdimmDsmFunc0Out func0 = {
 521        .len = cpu_to_le32(sizeof(func0)),
 522        .supported_func = cpu_to_le32(supported_func),
 523    };
 524    cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
 525}
 526
 527static void
 528nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
 529{
 530    NvdimmDsmFuncNoPayloadOut out = {
 531        .len = cpu_to_le32(sizeof(out)),
 532        .func_ret_status = cpu_to_le32(func_ret_status),
 533    };
 534    cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
 535}
 536
 537#define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
 538#define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
 539#define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
 540#define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
 541#define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
 542
 543#define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
 544
 545/* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
 546static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
 547                                     hwaddr dsm_mem_addr)
 548{
 549    NvdimmFitBuffer *fit_buf = &state->fit_buf;
 550    NvdimmFuncReadFITIn *read_fit;
 551    NvdimmFuncReadFITOut *read_fit_out;
 552    GArray *fit;
 553    uint32_t read_len = 0, func_ret_status;
 554    int size;
 555
 556    read_fit = (NvdimmFuncReadFITIn *)in->arg3;
 557    read_fit->offset = le32_to_cpu(read_fit->offset);
 558
 559    fit = fit_buf->fit;
 560
 561    nvdimm_debug("Read FIT: offset 0x%x FIT size 0x%x Dirty %s.\n",
 562                 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
 563
 564    if (read_fit->offset > fit->len) {
 565        func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
 566        goto exit;
 567    }
 568
 569    /* It is the first time to read FIT. */
 570    if (!read_fit->offset) {
 571        fit_buf->dirty = false;
 572    } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
 573        func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
 574        goto exit;
 575    }
 576
 577    func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
 578    read_len = MIN(fit->len - read_fit->offset,
 579                   NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
 580
 581exit:
 582    size = sizeof(NvdimmFuncReadFITOut) + read_len;
 583    read_fit_out = g_malloc(size);
 584
 585    read_fit_out->len = cpu_to_le32(size);
 586    read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
 587    memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
 588
 589    cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
 590
 591    g_free(read_fit_out);
 592}
 593
 594static void
 595nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
 596                                       NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 597{
 598    switch (in->function) {
 599    case 0x0:
 600        nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
 601        return;
 602    case 0x1 /* Read FIT */:
 603        nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
 604        return;
 605    }
 606
 607    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 608}
 609
 610static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 611{
 612    /*
 613     * function 0 is called to inquire which functions are supported by
 614     * OSPM
 615     */
 616    if (!in->function) {
 617        nvdimm_dsm_function0(0 /* No function supported other than
 618                                  function 0 */, dsm_mem_addr);
 619        return;
 620    }
 621
 622    /* No function except function 0 is supported yet. */
 623    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 624}
 625
 626/*
 627 * the max transfer size is the max size transferred by both a
 628 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
 629 * function.
 630 */
 631static uint32_t nvdimm_get_max_xfer_label_size(void)
 632{
 633    uint32_t max_get_size, max_set_size, dsm_memory_size;
 634
 635    dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
 636
 637    /*
 638     * the max data ACPI can read one time which is transferred by
 639     * the response of 'Get Namespace Label Data' function.
 640     */
 641    max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
 642
 643    /*
 644     * the max data ACPI can write one time which is transferred by
 645     * 'Set Namespace Label Data' function.
 646     */
 647    max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
 648                   sizeof(NvdimmFuncSetLabelDataIn);
 649
 650    return MIN(max_get_size, max_set_size);
 651}
 652
 653/*
 654 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
 655 *
 656 * It gets the size of Namespace Label data area and the max data size
 657 * that Get/Set Namespace Label Data functions can transfer.
 658 */
 659static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
 660{
 661    NvdimmFuncGetLabelSizeOut label_size_out = {
 662        .len = cpu_to_le32(sizeof(label_size_out)),
 663    };
 664    uint32_t label_size, mxfer;
 665
 666    label_size = nvdimm->label_size;
 667    mxfer = nvdimm_get_max_xfer_label_size();
 668
 669    nvdimm_debug("label_size 0x%x, max_xfer 0x%x.\n", label_size, mxfer);
 670
 671    label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
 672    label_size_out.label_size = cpu_to_le32(label_size);
 673    label_size_out.max_xfer = cpu_to_le32(mxfer);
 674
 675    cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
 676                              sizeof(label_size_out));
 677}
 678
 679static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
 680                                           uint32_t offset, uint32_t length)
 681{
 682    uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
 683
 684    if (offset + length < offset) {
 685        nvdimm_debug("offset 0x%x + length 0x%x is overflow.\n", offset,
 686                     length);
 687        return ret;
 688    }
 689
 690    if (nvdimm->label_size < offset + length) {
 691        nvdimm_debug("position 0x%x is beyond label data (len = %" PRIx64 ").\n",
 692                     offset + length, nvdimm->label_size);
 693        return ret;
 694    }
 695
 696    if (length > nvdimm_get_max_xfer_label_size()) {
 697        nvdimm_debug("length (0x%x) is larger than max_xfer (0x%x).\n",
 698                     length, nvdimm_get_max_xfer_label_size());
 699        return ret;
 700    }
 701
 702    return NVDIMM_DSM_RET_STATUS_SUCCESS;
 703}
 704
 705/*
 706 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
 707 */
 708static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
 709                                      hwaddr dsm_mem_addr)
 710{
 711    NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
 712    NvdimmFuncGetLabelDataIn *get_label_data;
 713    NvdimmFuncGetLabelDataOut *get_label_data_out;
 714    uint32_t status;
 715    int size;
 716
 717    get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
 718    get_label_data->offset = le32_to_cpu(get_label_data->offset);
 719    get_label_data->length = le32_to_cpu(get_label_data->length);
 720
 721    nvdimm_debug("Read Label Data: offset 0x%x length 0x%x.\n",
 722                 get_label_data->offset, get_label_data->length);
 723
 724    status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
 725                                        get_label_data->length);
 726    if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
 727        nvdimm_dsm_no_payload(status, dsm_mem_addr);
 728        return;
 729    }
 730
 731    size = sizeof(*get_label_data_out) + get_label_data->length;
 732    assert(size <= NVDIMM_DSM_MEMORY_SIZE);
 733    get_label_data_out = g_malloc(size);
 734
 735    get_label_data_out->len = cpu_to_le32(size);
 736    get_label_data_out->func_ret_status =
 737                            cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
 738    nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
 739                         get_label_data->length, get_label_data->offset);
 740
 741    cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
 742    g_free(get_label_data_out);
 743}
 744
 745/*
 746 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
 747 */
 748static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
 749                                      hwaddr dsm_mem_addr)
 750{
 751    NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
 752    NvdimmFuncSetLabelDataIn *set_label_data;
 753    uint32_t status;
 754
 755    set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
 756
 757    set_label_data->offset = le32_to_cpu(set_label_data->offset);
 758    set_label_data->length = le32_to_cpu(set_label_data->length);
 759
 760    nvdimm_debug("Write Label Data: offset 0x%x length 0x%x.\n",
 761                 set_label_data->offset, set_label_data->length);
 762
 763    status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
 764                                        set_label_data->length);
 765    if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
 766        nvdimm_dsm_no_payload(status, dsm_mem_addr);
 767        return;
 768    }
 769
 770    assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
 771                    set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
 772
 773    nvc->write_label_data(nvdimm, set_label_data->in_buf,
 774                          set_label_data->length, set_label_data->offset);
 775    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
 776}
 777
 778static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 779{
 780    NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
 781
 782    /* See the comments in nvdimm_dsm_root(). */
 783    if (!in->function) {
 784        uint32_t supported_func = 0;
 785
 786        if (nvdimm && nvdimm->label_size) {
 787            supported_func |= 0x1 /* Bit 0 indicates whether there is
 788                                     support for any functions other
 789                                     than function 0. */ |
 790                              1 << 4 /* Get Namespace Label Size */ |
 791                              1 << 5 /* Get Namespace Label Data */ |
 792                              1 << 6 /* Set Namespace Label Data */;
 793        }
 794        nvdimm_dsm_function0(supported_func, dsm_mem_addr);
 795        return;
 796    }
 797
 798    if (!nvdimm) {
 799        nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
 800                              dsm_mem_addr);
 801        return;
 802    }
 803
 804    /* Encode DSM function according to DSM Spec Rev1. */
 805    switch (in->function) {
 806    case 4 /* Get Namespace Label Size */:
 807        if (nvdimm->label_size) {
 808            nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
 809            return;
 810        }
 811        break;
 812    case 5 /* Get Namespace Label Data */:
 813        if (nvdimm->label_size) {
 814            nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
 815            return;
 816        }
 817        break;
 818    case 0x6 /* Set Namespace Label Data */:
 819        if (nvdimm->label_size) {
 820            nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
 821            return;
 822        }
 823        break;
 824    }
 825
 826    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 827}
 828
 829static uint64_t
 830nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
 831{
 832    nvdimm_debug("BUG: we never read _DSM IO Port.\n");
 833    return 0;
 834}
 835
 836static void
 837nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
 838{
 839    NVDIMMState *state = opaque;
 840    NvdimmDsmIn *in;
 841    hwaddr dsm_mem_addr = val;
 842
 843    nvdimm_debug("dsm memory address 0x%" HWADDR_PRIx ".\n", dsm_mem_addr);
 844
 845    /*
 846     * The DSM memory is mapped to guest address space so an evil guest
 847     * can change its content while we are doing DSM emulation. Avoid
 848     * this by copying DSM memory to QEMU local memory.
 849     */
 850    in = g_new(NvdimmDsmIn, 1);
 851    cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
 852
 853    in->revision = le32_to_cpu(in->revision);
 854    in->function = le32_to_cpu(in->function);
 855    in->handle = le32_to_cpu(in->handle);
 856
 857    nvdimm_debug("Revision 0x%x Handler 0x%x Function 0x%x.\n", in->revision,
 858                 in->handle, in->function);
 859
 860    if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
 861        nvdimm_debug("Revision 0x%x is not supported, expect 0x%x.\n",
 862                     in->revision, 0x1);
 863        nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 864        goto exit;
 865    }
 866
 867    if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
 868        nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
 869        goto exit;
 870    }
 871
 872     /* Handle 0 is reserved for NVDIMM Root Device. */
 873    if (!in->handle) {
 874        nvdimm_dsm_root(in, dsm_mem_addr);
 875        goto exit;
 876    }
 877
 878    nvdimm_dsm_device(in, dsm_mem_addr);
 879
 880exit:
 881    g_free(in);
 882}
 883
 884static const MemoryRegionOps nvdimm_dsm_ops = {
 885    .read = nvdimm_dsm_read,
 886    .write = nvdimm_dsm_write,
 887    .endianness = DEVICE_LITTLE_ENDIAN,
 888    .valid = {
 889        .min_access_size = 4,
 890        .max_access_size = 4,
 891    },
 892};
 893
 894void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
 895{
 896    if (dev->hotplugged) {
 897        acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
 898    }
 899}
 900
 901void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
 902                            struct AcpiGenericAddress dsm_io,
 903                            FWCfgState *fw_cfg, Object *owner)
 904{
 905    state->dsm_io = dsm_io;
 906    memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
 907                          "nvdimm-acpi-io", dsm_io.bit_width >> 3);
 908    memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
 909
 910    state->dsm_mem = g_array_new(false, true /* clear */, 1);
 911    acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
 912    fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
 913                    state->dsm_mem->len);
 914
 915    nvdimm_init_fit_buffer(&state->fit_buf);
 916}
 917
 918#define NVDIMM_COMMON_DSM       "NCAL"
 919#define NVDIMM_ACPI_MEM_ADDR    "MEMA"
 920
 921#define NVDIMM_DSM_MEMORY       "NRAM"
 922#define NVDIMM_DSM_IOPORT       "NPIO"
 923
 924#define NVDIMM_DSM_NOTIFY       "NTFI"
 925#define NVDIMM_DSM_HANDLE       "HDLE"
 926#define NVDIMM_DSM_REVISION     "REVS"
 927#define NVDIMM_DSM_FUNCTION     "FUNC"
 928#define NVDIMM_DSM_ARG3         "FARG"
 929
 930#define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
 931#define NVDIMM_DSM_OUT_BUF      "ODAT"
 932
 933#define NVDIMM_DSM_RFIT_STATUS  "RSTA"
 934
 935#define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
 936
 937static void nvdimm_build_common_dsm(Aml *dev,
 938                                    NVDIMMState *nvdimm_state)
 939{
 940    Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
 941    Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
 942    Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
 943    Aml *whilectx, *offset;
 944    uint8_t byte_list[1];
 945    AmlRegionSpace rs;
 946
 947    method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
 948    uuid = aml_arg(0);
 949    function = aml_arg(2);
 950    handle = aml_arg(4);
 951    dsm_mem = aml_local(6);
 952    dsm_out_buf = aml_local(7);
 953
 954    aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
 955
 956    if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
 957        rs = AML_SYSTEM_IO;
 958    } else {
 959        rs = AML_SYSTEM_MEMORY;
 960    }
 961
 962    /* map DSM memory and IO into ACPI namespace. */
 963    aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
 964               aml_int(nvdimm_state->dsm_io.address),
 965               nvdimm_state->dsm_io.bit_width >> 3));
 966    aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
 967               AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
 968
 969    /*
 970     * DSM notifier:
 971     * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
 972     *                    emulate the access.
 973     *
 974     * It is the IO port so that accessing them will cause VM-exit, the
 975     * control will be transferred to QEMU.
 976     */
 977    field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
 978                      AML_PRESERVE);
 979    aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
 980               nvdimm_state->dsm_io.bit_width));
 981    aml_append(method, field);
 982
 983    /*
 984     * DSM input:
 985     * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
 986     *                    happens on NVDIMM Root Device.
 987     * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
 988     * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
 989     * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
 990     *                  containing function-specific arguments.
 991     *
 992     * They are RAM mapping on host so that these accesses never cause
 993     * VM-EXIT.
 994     */
 995    field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
 996                      AML_PRESERVE);
 997    aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
 998               sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
 999    aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
1000               sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
1001    aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
1002               sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
1003    aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
1004         (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
1005    aml_append(method, field);
1006
1007    /*
1008     * DSM output:
1009     * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1010     * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1011     *
1012     * Since the page is reused by both input and out, the input data
1013     * will be lost after storing new result into ODAT so we should fetch
1014     * all the input data before writing the result.
1015     */
1016    field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1017                      AML_PRESERVE);
1018    aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1019               sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1020    aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1021       (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1022    aml_append(method, field);
1023
1024    /*
1025     * do not support any method if DSM memory address has not been
1026     * patched.
1027     */
1028    unpatched = aml_equal(dsm_mem, aml_int(0x0));
1029
1030    expected_uuid = aml_local(0);
1031
1032    ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1033    aml_append(ifctx, aml_store(
1034               aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1035               /* UUID for NVDIMM Root Device */, expected_uuid));
1036    aml_append(method, ifctx);
1037    elsectx = aml_else();
1038    ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1039    aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1040               /* UUID for QEMU internal use */), expected_uuid));
1041    aml_append(elsectx, ifctx);
1042    elsectx2 = aml_else();
1043    aml_append(elsectx2, aml_store(
1044               aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1045               /* UUID for NVDIMM Devices */, expected_uuid));
1046    aml_append(elsectx, elsectx2);
1047    aml_append(method, elsectx);
1048
1049    uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1050
1051    unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1052
1053    /*
1054     * function 0 is called to inquire what functions are supported by
1055     * OSPM
1056     */
1057    ifctx = aml_if(aml_equal(function, aml_int(0)));
1058    byte_list[0] = 0 /* No function Supported */;
1059    aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1060    aml_append(unsupport, ifctx);
1061
1062    /* No function is supported yet. */
1063    byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1064    aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1065    aml_append(method, unsupport);
1066
1067    /*
1068     * The HDLE indicates the DSM function is issued from which device,
1069     * it reserves 0 for root device and is the handle for NVDIMM devices.
1070     * See the comments in nvdimm_slot_to_handle().
1071     */
1072    aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1073    aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1074    aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1075
1076    /*
1077     * The fourth parameter (Arg3) of _DSM is a package which contains
1078     * a buffer, the layout of the buffer is specified by UUID (Arg0),
1079     * Revision ID (Arg1) and Function Index (Arg2) which are documented
1080     * in the DSM Spec.
1081     */
1082    pckg = aml_arg(3);
1083    ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1084                   aml_int(4 /* Package */)) /* It is a Package? */,
1085                   aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1086                   NULL));
1087
1088    pckg_index = aml_local(2);
1089    pckg_buf = aml_local(3);
1090    aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1091    aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1092    aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1093    aml_append(method, ifctx);
1094
1095    /*
1096     * tell QEMU about the real address of DSM memory, then QEMU
1097     * gets the control and fills the result in DSM memory.
1098     */
1099    aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1100
1101    dsm_out_buf_size = aml_local(1);
1102    /* RLEN is not included in the payload returned to guest. */
1103    aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1104               aml_int(4), dsm_out_buf_size));
1105
1106    /*
1107     * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1108     * the Buffer Field <= to the size of an Integer (in bits), it will
1109     * be treated as an integer. Moreover, the integer size depends on
1110     * DSDT tables revision number. If revision number is < 2, integer
1111     * size is 32 bits, otherwise it is 64 bits.
1112     * Because of this CreateField() canot be used if RLEN < Integer Size.
1113     *
1114     * Also please note that APCI ASL operator SizeOf() doesn't support
1115     * Integer and there isn't any other way to figure out the Integer
1116     * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1117     * build dsm_out_buf byte by byte.
1118     */
1119    ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1120    offset = aml_local(2);
1121    aml_append(ifctx, aml_store(aml_int(0), offset));
1122    aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1123    aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1124
1125    whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1126    /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1127    aml_append(whilectx, aml_store(aml_derefof(aml_index(
1128                                   aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1129                                   aml_index(aml_name("TBUF"), aml_int(0))));
1130    aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1131                                         dsm_out_buf));
1132    aml_append(whilectx, aml_increment(offset));
1133    aml_append(ifctx, whilectx);
1134
1135    aml_append(ifctx, aml_return(dsm_out_buf));
1136    aml_append(method, ifctx);
1137
1138    /* If RLEN >= Integer size, just use CreateField() operator */
1139    aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1140                                 dsm_out_buf_size));
1141    aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1142               aml_int(0), dsm_out_buf_size, "OBUF"));
1143    aml_append(method, aml_return(aml_name("OBUF")));
1144
1145    aml_append(dev, method);
1146}
1147
1148static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1149{
1150    Aml *method;
1151
1152    method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1153    aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1154                                  aml_arg(1), aml_arg(2), aml_arg(3),
1155                                  aml_int(handle))));
1156    aml_append(dev, method);
1157}
1158
1159static void nvdimm_build_fit(Aml *dev)
1160{
1161    Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1162    Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1163
1164    buf = aml_local(0);
1165    buf_size = aml_local(1);
1166    fit = aml_local(2);
1167
1168    aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1169
1170    /* build helper function, RFIT. */
1171    method = aml_method("RFIT", 1, AML_SERIALIZED);
1172    aml_append(method, aml_name_decl("OFST", aml_int(0)));
1173
1174    /* prepare input package. */
1175    pkg = aml_package(1);
1176    aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1177    aml_append(pkg, aml_name("OFST"));
1178
1179    /* call Read_FIT function. */
1180    call_result = aml_call5(NVDIMM_COMMON_DSM,
1181                            aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1182                            aml_int(1) /* Revision 1 */,
1183                            aml_int(0x1) /* Read FIT */,
1184                            pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1185    aml_append(method, aml_store(call_result, buf));
1186
1187    /* handle _DSM result. */
1188    aml_append(method, aml_create_dword_field(buf,
1189               aml_int(0) /* offset at byte 0 */, "STAU"));
1190
1191    aml_append(method, aml_store(aml_name("STAU"),
1192                                 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1193
1194     /* if something is wrong during _DSM. */
1195    ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1196                       aml_name("STAU"));
1197    ifctx = aml_if(aml_lnot(ifcond));
1198    aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1199    aml_append(method, ifctx);
1200
1201    aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1202    aml_append(method, aml_subtract(buf_size,
1203                                    aml_int(4) /* the size of "STAU" */,
1204                                    buf_size));
1205
1206    /* if we read the end of fit. */
1207    ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1208    aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1209    aml_append(method, ifctx);
1210
1211    aml_append(method, aml_create_field(buf,
1212                            aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1213                            aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1214    aml_append(method, aml_return(aml_name("BUFF")));
1215    aml_append(dev, method);
1216
1217    /* build _FIT. */
1218    method = aml_method("_FIT", 0, AML_SERIALIZED);
1219    offset = aml_local(3);
1220
1221    aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1222    aml_append(method, aml_store(aml_int(0), offset));
1223
1224    whilectx = aml_while(aml_int(1));
1225    aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1226    aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1227
1228    /*
1229     * if fit buffer was changed during RFIT, read from the beginning
1230     * again.
1231     */
1232    ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1233                             aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1234    aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1235    aml_append(ifctx, aml_store(aml_int(0), offset));
1236    aml_append(whilectx, ifctx);
1237
1238    elsectx = aml_else();
1239
1240    /* finish fit read if no data is read out. */
1241    ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1242    aml_append(ifctx, aml_return(fit));
1243    aml_append(elsectx, ifctx);
1244
1245    /* update the offset. */
1246    aml_append(elsectx, aml_add(offset, buf_size, offset));
1247    /* append the data we read out to the fit buffer. */
1248    aml_append(elsectx, aml_concatenate(fit, buf, fit));
1249    aml_append(whilectx, elsectx);
1250    aml_append(method, whilectx);
1251
1252    aml_append(dev, method);
1253}
1254
1255static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1256{
1257    uint32_t slot;
1258
1259    for (slot = 0; slot < ram_slots; slot++) {
1260        uint32_t handle = nvdimm_slot_to_handle(slot);
1261        Aml *nvdimm_dev;
1262
1263        nvdimm_dev = aml_device("NV%02X", slot);
1264
1265        /*
1266         * ACPI 6.0: 9.20 NVDIMM Devices:
1267         *
1268         * _ADR object that is used to supply OSPM with unique address
1269         * of the NVDIMM device. This is done by returning the NFIT Device
1270         * handle that is used to identify the associated entries in ACPI
1271         * table NFIT or _FIT.
1272         */
1273        aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1274
1275        nvdimm_build_device_dsm(nvdimm_dev, handle);
1276        aml_append(root_dev, nvdimm_dev);
1277    }
1278}
1279
1280static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1281                              BIOSLinker *linker,
1282                              NVDIMMState *nvdimm_state,
1283                              uint32_t ram_slots, const char *oem_id)
1284{
1285    Aml *ssdt, *sb_scope, *dev;
1286    int mem_addr_offset, nvdimm_ssdt;
1287
1288    acpi_add_table(table_offsets, table_data);
1289
1290    ssdt = init_aml_allocator();
1291    acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1292
1293    sb_scope = aml_scope("\\_SB");
1294
1295    dev = aml_device("NVDR");
1296
1297    /*
1298     * ACPI 6.0: 9.20 NVDIMM Devices:
1299     *
1300     * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1301     * NVDIMM interface device. Platform firmware is required to contain one
1302     * such device in _SB scope if NVDIMMs support is exposed by platform to
1303     * OSPM.
1304     * For each NVDIMM present or intended to be supported by platform,
1305     * platform firmware also exposes an ACPI Namespace Device under the
1306     * root device.
1307     */
1308    aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1309
1310    nvdimm_build_common_dsm(dev, nvdimm_state);
1311
1312    /* 0 is reserved for root device. */
1313    nvdimm_build_device_dsm(dev, 0);
1314    nvdimm_build_fit(dev);
1315
1316    nvdimm_build_nvdimm_devices(dev, ram_slots);
1317
1318    aml_append(sb_scope, dev);
1319    aml_append(ssdt, sb_scope);
1320
1321    nvdimm_ssdt = table_data->len;
1322
1323    /* copy AML table into ACPI tables blob and patch header there */
1324    g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1325    mem_addr_offset = build_append_named_dword(table_data,
1326                                               NVDIMM_ACPI_MEM_ADDR);
1327
1328    bios_linker_loader_alloc(linker,
1329                             NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1330                             sizeof(NvdimmDsmIn), false /* high memory */);
1331    bios_linker_loader_add_pointer(linker,
1332        ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1333        NVDIMM_DSM_MEM_FILE, 0);
1334    build_header(linker, table_data,
1335        (void *)(table_data->data + nvdimm_ssdt),
1336                 "SSDT", table_data->len - nvdimm_ssdt, 1, oem_id, "NVDIMM");
1337    free_aml_allocator();
1338}
1339
1340void nvdimm_build_srat(GArray *table_data)
1341{
1342    GSList *device_list = nvdimm_get_device_list();
1343
1344    for (; device_list; device_list = device_list->next) {
1345        AcpiSratMemoryAffinity *numamem = NULL;
1346        DeviceState *dev = device_list->data;
1347        Object *obj = OBJECT(dev);
1348        uint64_t addr, size;
1349        int node;
1350
1351        node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
1352        addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
1353        size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
1354
1355        numamem = acpi_data_push(table_data, sizeof *numamem);
1356        build_srat_memory(numamem, addr, size, node,
1357                          MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
1358    }
1359    g_slist_free(device_list);
1360}
1361
1362void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1363                       BIOSLinker *linker, NVDIMMState *state,
1364                       uint32_t ram_slots, const char *oem_id,
1365                       const char *oem_table_id)
1366{
1367    GSList *device_list;
1368
1369    /* no nvdimm device can be plugged. */
1370    if (!ram_slots) {
1371        return;
1372    }
1373
1374    nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1375                      ram_slots, oem_id);
1376
1377    device_list = nvdimm_get_device_list();
1378    /* no NVDIMM device is plugged. */
1379    if (!device_list) {
1380        return;
1381    }
1382
1383    nvdimm_build_nfit(state, table_offsets, table_data, linker,
1384                      oem_id, oem_table_id);
1385    g_slist_free(device_list);
1386}
1387