qemu/hw/arm/boot.c
<<
>>
Prefs
   1/*
   2 * ARM kernel loader.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu-common.h"
  12#include "qemu/datadir.h"
  13#include "qemu/error-report.h"
  14#include "qapi/error.h"
  15#include <libfdt.h>
  16#include "hw/arm/boot.h"
  17#include "hw/arm/linux-boot-if.h"
  18#include "sysemu/kvm.h"
  19#include "sysemu/sysemu.h"
  20#include "sysemu/numa.h"
  21#include "hw/boards.h"
  22#include "sysemu/reset.h"
  23#include "hw/loader.h"
  24#include "elf.h"
  25#include "sysemu/device_tree.h"
  26#include "qemu/config-file.h"
  27#include "qemu/option.h"
  28#include "exec/address-spaces.h"
  29#include "qemu/units.h"
  30
  31/* Kernel boot protocol is specified in the kernel docs
  32 * Documentation/arm/Booting and Documentation/arm64/booting.txt
  33 * They have different preferred image load offsets from system RAM base.
  34 */
  35#define KERNEL_ARGS_ADDR   0x100
  36#define KERNEL_NOLOAD_ADDR 0x02000000
  37#define KERNEL_LOAD_ADDR   0x00010000
  38#define KERNEL64_LOAD_ADDR 0x00080000
  39
  40#define ARM64_TEXT_OFFSET_OFFSET    8
  41#define ARM64_MAGIC_OFFSET          56
  42
  43#define BOOTLOADER_MAX_SIZE         (4 * KiB)
  44
  45AddressSpace *arm_boot_address_space(ARMCPU *cpu,
  46                                     const struct arm_boot_info *info)
  47{
  48    /* Return the address space to use for bootloader reads and writes.
  49     * We prefer the secure address space if the CPU has it and we're
  50     * going to boot the guest into it.
  51     */
  52    int asidx;
  53    CPUState *cs = CPU(cpu);
  54
  55    if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
  56        asidx = ARMASIdx_S;
  57    } else {
  58        asidx = ARMASIdx_NS;
  59    }
  60
  61    return cpu_get_address_space(cs, asidx);
  62}
  63
  64typedef enum {
  65    FIXUP_NONE = 0,     /* do nothing */
  66    FIXUP_TERMINATOR,   /* end of insns */
  67    FIXUP_BOARDID,      /* overwrite with board ID number */
  68    FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
  69    FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
  70    FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
  71    FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
  72    FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
  73    FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
  74    FIXUP_BOOTREG,      /* overwrite with boot register address */
  75    FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
  76    FIXUP_MAX,
  77} FixupType;
  78
  79typedef struct ARMInsnFixup {
  80    uint32_t insn;
  81    FixupType fixup;
  82} ARMInsnFixup;
  83
  84static const ARMInsnFixup bootloader_aarch64[] = {
  85    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
  86    { 0xaa1f03e1 }, /* mov x1, xzr */
  87    { 0xaa1f03e2 }, /* mov x2, xzr */
  88    { 0xaa1f03e3 }, /* mov x3, xzr */
  89    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
  90    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
  91    { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
  92    { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
  93    { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
  94    { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
  95    { 0, FIXUP_TERMINATOR }
  96};
  97
  98/* A very small bootloader: call the board-setup code (if needed),
  99 * set r0-r2, then jump to the kernel.
 100 * If we're not calling boot setup code then we don't copy across
 101 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
 102 */
 103
 104static const ARMInsnFixup bootloader[] = {
 105    { 0xe28fe004 }, /* add     lr, pc, #4 */
 106    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
 107    { 0, FIXUP_BOARD_SETUP },
 108#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
 109    { 0xe3a00000 }, /* mov     r0, #0 */
 110    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
 111    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
 112    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
 113    { 0, FIXUP_BOARDID },
 114    { 0, FIXUP_ARGPTR_LO },
 115    { 0, FIXUP_ENTRYPOINT_LO },
 116    { 0, FIXUP_TERMINATOR }
 117};
 118
 119/* Handling for secondary CPU boot in a multicore system.
 120 * Unlike the uniprocessor/primary CPU boot, this is platform
 121 * dependent. The default code here is based on the secondary
 122 * CPU boot protocol used on realview/vexpress boards, with
 123 * some parameterisation to increase its flexibility.
 124 * QEMU platform models for which this code is not appropriate
 125 * should override write_secondary_boot and secondary_cpu_reset_hook
 126 * instead.
 127 *
 128 * This code enables the interrupt controllers for the secondary
 129 * CPUs and then puts all the secondary CPUs into a loop waiting
 130 * for an interprocessor interrupt and polling a configurable
 131 * location for the kernel secondary CPU entry point.
 132 */
 133#define DSB_INSN 0xf57ff04f
 134#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 135
 136static const ARMInsnFixup smpboot[] = {
 137    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 138    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 139    { 0xe3a01001 }, /* mov r1, #1 */
 140    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 141    { 0xe3a010ff }, /* mov r1, #0xff */
 142    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 143    { 0, FIXUP_DSB },   /* dsb */
 144    { 0xe320f003 }, /* wfi */
 145    { 0xe5901000 }, /* ldr     r1, [r0] */
 146    { 0xe1110001 }, /* tst     r1, r1 */
 147    { 0x0afffffb }, /* beq     <wfi> */
 148    { 0xe12fff11 }, /* bx      r1 */
 149    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 150    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 151    { 0, FIXUP_TERMINATOR }
 152};
 153
 154static void write_bootloader(const char *name, hwaddr addr,
 155                             const ARMInsnFixup *insns, uint32_t *fixupcontext,
 156                             AddressSpace *as)
 157{
 158    /* Fix up the specified bootloader fragment and write it into
 159     * guest memory using rom_add_blob_fixed(). fixupcontext is
 160     * an array giving the values to write in for the fixup types
 161     * which write a value into the code array.
 162     */
 163    int i, len;
 164    uint32_t *code;
 165
 166    len = 0;
 167    while (insns[len].fixup != FIXUP_TERMINATOR) {
 168        len++;
 169    }
 170
 171    code = g_new0(uint32_t, len);
 172
 173    for (i = 0; i < len; i++) {
 174        uint32_t insn = insns[i].insn;
 175        FixupType fixup = insns[i].fixup;
 176
 177        switch (fixup) {
 178        case FIXUP_NONE:
 179            break;
 180        case FIXUP_BOARDID:
 181        case FIXUP_BOARD_SETUP:
 182        case FIXUP_ARGPTR_LO:
 183        case FIXUP_ARGPTR_HI:
 184        case FIXUP_ENTRYPOINT_LO:
 185        case FIXUP_ENTRYPOINT_HI:
 186        case FIXUP_GIC_CPU_IF:
 187        case FIXUP_BOOTREG:
 188        case FIXUP_DSB:
 189            insn = fixupcontext[fixup];
 190            break;
 191        default:
 192            abort();
 193        }
 194        code[i] = tswap32(insn);
 195    }
 196
 197    assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
 198
 199    rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
 200
 201    g_free(code);
 202}
 203
 204static void default_write_secondary(ARMCPU *cpu,
 205                                    const struct arm_boot_info *info)
 206{
 207    uint32_t fixupcontext[FIXUP_MAX];
 208    AddressSpace *as = arm_boot_address_space(cpu, info);
 209
 210    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 211    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 212    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 213        fixupcontext[FIXUP_DSB] = DSB_INSN;
 214    } else {
 215        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 216    }
 217
 218    write_bootloader("smpboot", info->smp_loader_start,
 219                     smpboot, fixupcontext, as);
 220}
 221
 222void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 223                                            const struct arm_boot_info *info,
 224                                            hwaddr mvbar_addr)
 225{
 226    AddressSpace *as = arm_boot_address_space(cpu, info);
 227    int n;
 228    uint32_t mvbar_blob[] = {
 229        /* mvbar_addr: secure monitor vectors
 230         * Default unimplemented and unused vectors to spin. Makes it
 231         * easier to debug (as opposed to the CPU running away).
 232         */
 233        0xeafffffe, /* (spin) */
 234        0xeafffffe, /* (spin) */
 235        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 236        0xeafffffe, /* (spin) */
 237        0xeafffffe, /* (spin) */
 238        0xeafffffe, /* (spin) */
 239        0xeafffffe, /* (spin) */
 240        0xeafffffe, /* (spin) */
 241    };
 242    uint32_t board_setup_blob[] = {
 243        /* board setup addr */
 244        0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
 245        0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
 246        0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
 247        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 248        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 249        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 250        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 251        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 252        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 253        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 254        0xe1a0f001, /* mov     pc, r1                 ;return */
 255    };
 256
 257    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 258    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 259
 260    /* check that these blobs don't overlap */
 261    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 262          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 263
 264    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 265        mvbar_blob[n] = tswap32(mvbar_blob[n]);
 266    }
 267    rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 268                          mvbar_addr, as);
 269
 270    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 271        board_setup_blob[n] = tswap32(board_setup_blob[n]);
 272    }
 273    rom_add_blob_fixed_as("board-setup", board_setup_blob,
 274                          sizeof(board_setup_blob), info->board_setup_addr, as);
 275}
 276
 277static void default_reset_secondary(ARMCPU *cpu,
 278                                    const struct arm_boot_info *info)
 279{
 280    AddressSpace *as = arm_boot_address_space(cpu, info);
 281    CPUState *cs = CPU(cpu);
 282
 283    address_space_stl_notdirty(as, info->smp_bootreg_addr,
 284                               0, MEMTXATTRS_UNSPECIFIED, NULL);
 285    cpu_set_pc(cs, info->smp_loader_start);
 286}
 287
 288static inline bool have_dtb(const struct arm_boot_info *info)
 289{
 290    return info->dtb_filename || info->get_dtb;
 291}
 292
 293#define WRITE_WORD(p, value) do { \
 294    address_space_stl_notdirty(as, p, value, \
 295                               MEMTXATTRS_UNSPECIFIED, NULL);  \
 296    p += 4;                       \
 297} while (0)
 298
 299static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
 300{
 301    int initrd_size = info->initrd_size;
 302    hwaddr base = info->loader_start;
 303    hwaddr p;
 304
 305    p = base + KERNEL_ARGS_ADDR;
 306    /* ATAG_CORE */
 307    WRITE_WORD(p, 5);
 308    WRITE_WORD(p, 0x54410001);
 309    WRITE_WORD(p, 1);
 310    WRITE_WORD(p, 0x1000);
 311    WRITE_WORD(p, 0);
 312    /* ATAG_MEM */
 313    /* TODO: handle multiple chips on one ATAG list */
 314    WRITE_WORD(p, 4);
 315    WRITE_WORD(p, 0x54410002);
 316    WRITE_WORD(p, info->ram_size);
 317    WRITE_WORD(p, info->loader_start);
 318    if (initrd_size) {
 319        /* ATAG_INITRD2 */
 320        WRITE_WORD(p, 4);
 321        WRITE_WORD(p, 0x54420005);
 322        WRITE_WORD(p, info->initrd_start);
 323        WRITE_WORD(p, initrd_size);
 324    }
 325    if (info->kernel_cmdline && *info->kernel_cmdline) {
 326        /* ATAG_CMDLINE */
 327        int cmdline_size;
 328
 329        cmdline_size = strlen(info->kernel_cmdline);
 330        address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
 331                            info->kernel_cmdline, cmdline_size + 1);
 332        cmdline_size = (cmdline_size >> 2) + 1;
 333        WRITE_WORD(p, cmdline_size + 2);
 334        WRITE_WORD(p, 0x54410009);
 335        p += cmdline_size * 4;
 336    }
 337    if (info->atag_board) {
 338        /* ATAG_BOARD */
 339        int atag_board_len;
 340        uint8_t atag_board_buf[0x1000];
 341
 342        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 343        WRITE_WORD(p, (atag_board_len + 8) >> 2);
 344        WRITE_WORD(p, 0x414f4d50);
 345        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 346                            atag_board_buf, atag_board_len);
 347        p += atag_board_len;
 348    }
 349    /* ATAG_END */
 350    WRITE_WORD(p, 0);
 351    WRITE_WORD(p, 0);
 352}
 353
 354static void set_kernel_args_old(const struct arm_boot_info *info,
 355                                AddressSpace *as)
 356{
 357    hwaddr p;
 358    const char *s;
 359    int initrd_size = info->initrd_size;
 360    hwaddr base = info->loader_start;
 361
 362    /* see linux/include/asm-arm/setup.h */
 363    p = base + KERNEL_ARGS_ADDR;
 364    /* page_size */
 365    WRITE_WORD(p, 4096);
 366    /* nr_pages */
 367    WRITE_WORD(p, info->ram_size / 4096);
 368    /* ramdisk_size */
 369    WRITE_WORD(p, 0);
 370#define FLAG_READONLY   1
 371#define FLAG_RDLOAD     4
 372#define FLAG_RDPROMPT   8
 373    /* flags */
 374    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 375    /* rootdev */
 376    WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
 377    /* video_num_cols */
 378    WRITE_WORD(p, 0);
 379    /* video_num_rows */
 380    WRITE_WORD(p, 0);
 381    /* video_x */
 382    WRITE_WORD(p, 0);
 383    /* video_y */
 384    WRITE_WORD(p, 0);
 385    /* memc_control_reg */
 386    WRITE_WORD(p, 0);
 387    /* unsigned char sounddefault */
 388    /* unsigned char adfsdrives */
 389    /* unsigned char bytes_per_char_h */
 390    /* unsigned char bytes_per_char_v */
 391    WRITE_WORD(p, 0);
 392    /* pages_in_bank[4] */
 393    WRITE_WORD(p, 0);
 394    WRITE_WORD(p, 0);
 395    WRITE_WORD(p, 0);
 396    WRITE_WORD(p, 0);
 397    /* pages_in_vram */
 398    WRITE_WORD(p, 0);
 399    /* initrd_start */
 400    if (initrd_size) {
 401        WRITE_WORD(p, info->initrd_start);
 402    } else {
 403        WRITE_WORD(p, 0);
 404    }
 405    /* initrd_size */
 406    WRITE_WORD(p, initrd_size);
 407    /* rd_start */
 408    WRITE_WORD(p, 0);
 409    /* system_rev */
 410    WRITE_WORD(p, 0);
 411    /* system_serial_low */
 412    WRITE_WORD(p, 0);
 413    /* system_serial_high */
 414    WRITE_WORD(p, 0);
 415    /* mem_fclk_21285 */
 416    WRITE_WORD(p, 0);
 417    /* zero unused fields */
 418    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 419        WRITE_WORD(p, 0);
 420    }
 421    s = info->kernel_cmdline;
 422    if (s) {
 423        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
 424    } else {
 425        WRITE_WORD(p, 0);
 426    }
 427}
 428
 429static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
 430                               uint32_t scells, hwaddr mem_len,
 431                               int numa_node_id)
 432{
 433    char *nodename;
 434    int ret;
 435
 436    nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 437    qemu_fdt_add_subnode(fdt, nodename);
 438    qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 439    ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
 440                                       scells, mem_len);
 441    if (ret < 0) {
 442        goto out;
 443    }
 444
 445    /* only set the NUMA ID if it is specified */
 446    if (numa_node_id >= 0) {
 447        ret = qemu_fdt_setprop_cell(fdt, nodename,
 448                                    "numa-node-id", numa_node_id);
 449    }
 450out:
 451    g_free(nodename);
 452    return ret;
 453}
 454
 455static void fdt_add_psci_node(void *fdt)
 456{
 457    uint32_t cpu_suspend_fn;
 458    uint32_t cpu_off_fn;
 459    uint32_t cpu_on_fn;
 460    uint32_t migrate_fn;
 461    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 462    const char *psci_method;
 463    int64_t psci_conduit;
 464    int rc;
 465
 466    psci_conduit = object_property_get_int(OBJECT(armcpu),
 467                                           "psci-conduit",
 468                                           &error_abort);
 469    switch (psci_conduit) {
 470    case QEMU_PSCI_CONDUIT_DISABLED:
 471        return;
 472    case QEMU_PSCI_CONDUIT_HVC:
 473        psci_method = "hvc";
 474        break;
 475    case QEMU_PSCI_CONDUIT_SMC:
 476        psci_method = "smc";
 477        break;
 478    default:
 479        g_assert_not_reached();
 480    }
 481
 482    /*
 483     * If /psci node is present in provided DTB, assume that no fixup
 484     * is necessary and all PSCI configuration should be taken as-is
 485     */
 486    rc = fdt_path_offset(fdt, "/psci");
 487    if (rc >= 0) {
 488        return;
 489    }
 490
 491    qemu_fdt_add_subnode(fdt, "/psci");
 492    if (armcpu->psci_version == 2) {
 493        const char comp[] = "arm,psci-0.2\0arm,psci";
 494        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 495
 496        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 497        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 498            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 499            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 500            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 501        } else {
 502            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 503            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 504            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 505        }
 506    } else {
 507        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 508
 509        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 510        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 511        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 512        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 513    }
 514
 515    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 516     * to the instruction that should be used to invoke PSCI functions.
 517     * However, the device tree binding uses 'method' instead, so that is
 518     * what we should use here.
 519     */
 520    qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 521
 522    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 523    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 524    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 525    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 526}
 527
 528int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 529                 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
 530{
 531    void *fdt = NULL;
 532    int size, rc, n = 0;
 533    uint32_t acells, scells;
 534    unsigned int i;
 535    hwaddr mem_base, mem_len;
 536    char **node_path;
 537    Error *err = NULL;
 538
 539    if (binfo->dtb_filename) {
 540        char *filename;
 541        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 542        if (!filename) {
 543            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 544            goto fail;
 545        }
 546
 547        fdt = load_device_tree(filename, &size);
 548        if (!fdt) {
 549            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 550            g_free(filename);
 551            goto fail;
 552        }
 553        g_free(filename);
 554    } else {
 555        fdt = binfo->get_dtb(binfo, &size);
 556        if (!fdt) {
 557            fprintf(stderr, "Board was unable to create a dtb blob\n");
 558            goto fail;
 559        }
 560    }
 561
 562    if (addr_limit > addr && size > (addr_limit - addr)) {
 563        /* Installing the device tree blob at addr would exceed addr_limit.
 564         * Whether this constitutes failure is up to the caller to decide,
 565         * so just return 0 as size, i.e., no error.
 566         */
 567        g_free(fdt);
 568        return 0;
 569    }
 570
 571    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 572                                   NULL, &error_fatal);
 573    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 574                                   NULL, &error_fatal);
 575    if (acells == 0 || scells == 0) {
 576        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 577        goto fail;
 578    }
 579
 580    if (scells < 2 && binfo->ram_size >= 4 * GiB) {
 581        /* This is user error so deserves a friendlier error message
 582         * than the failure of setprop_sized_cells would provide
 583         */
 584        fprintf(stderr, "qemu: dtb file not compatible with "
 585                "RAM size > 4GB\n");
 586        goto fail;
 587    }
 588
 589    /* nop all root nodes matching /memory or /memory@unit-address */
 590    node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
 591    if (err) {
 592        error_report_err(err);
 593        goto fail;
 594    }
 595    while (node_path[n]) {
 596        if (g_str_has_prefix(node_path[n], "/memory")) {
 597            qemu_fdt_nop_node(fdt, node_path[n]);
 598        }
 599        n++;
 600    }
 601    g_strfreev(node_path);
 602
 603    if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
 604        mem_base = binfo->loader_start;
 605        for (i = 0; i < ms->numa_state->num_nodes; i++) {
 606            mem_len = ms->numa_state->nodes[i].node_mem;
 607            rc = fdt_add_memory_node(fdt, acells, mem_base,
 608                                     scells, mem_len, i);
 609            if (rc < 0) {
 610                fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 611                        mem_base);
 612                goto fail;
 613            }
 614
 615            mem_base += mem_len;
 616        }
 617    } else {
 618        rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
 619                                 scells, binfo->ram_size, -1);
 620        if (rc < 0) {
 621            fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 622                    binfo->loader_start);
 623            goto fail;
 624        }
 625    }
 626
 627    rc = fdt_path_offset(fdt, "/chosen");
 628    if (rc < 0) {
 629        qemu_fdt_add_subnode(fdt, "/chosen");
 630    }
 631
 632    if (ms->kernel_cmdline && *ms->kernel_cmdline) {
 633        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 634                                     ms->kernel_cmdline);
 635        if (rc < 0) {
 636            fprintf(stderr, "couldn't set /chosen/bootargs\n");
 637            goto fail;
 638        }
 639    }
 640
 641    if (binfo->initrd_size) {
 642        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
 643                                   binfo->initrd_start);
 644        if (rc < 0) {
 645            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 646            goto fail;
 647        }
 648
 649        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 650                                   binfo->initrd_start + binfo->initrd_size);
 651        if (rc < 0) {
 652            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 653            goto fail;
 654        }
 655    }
 656
 657    fdt_add_psci_node(fdt);
 658
 659    if (binfo->modify_dtb) {
 660        binfo->modify_dtb(binfo, fdt);
 661    }
 662
 663    qemu_fdt_dumpdtb(fdt, size);
 664
 665    /* Put the DTB into the memory map as a ROM image: this will ensure
 666     * the DTB is copied again upon reset, even if addr points into RAM.
 667     */
 668    rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
 669
 670    g_free(fdt);
 671
 672    return size;
 673
 674fail:
 675    g_free(fdt);
 676    return -1;
 677}
 678
 679static void do_cpu_reset(void *opaque)
 680{
 681    ARMCPU *cpu = opaque;
 682    CPUState *cs = CPU(cpu);
 683    CPUARMState *env = &cpu->env;
 684    const struct arm_boot_info *info = env->boot_info;
 685
 686    cpu_reset(cs);
 687    if (info) {
 688        if (!info->is_linux) {
 689            int i;
 690            /* Jump to the entry point.  */
 691            uint64_t entry = info->entry;
 692
 693            switch (info->endianness) {
 694            case ARM_ENDIANNESS_LE:
 695                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 696                for (i = 1; i < 4; ++i) {
 697                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 698                }
 699                env->uncached_cpsr &= ~CPSR_E;
 700                break;
 701            case ARM_ENDIANNESS_BE8:
 702                env->cp15.sctlr_el[1] |= SCTLR_E0E;
 703                for (i = 1; i < 4; ++i) {
 704                    env->cp15.sctlr_el[i] |= SCTLR_EE;
 705                }
 706                env->uncached_cpsr |= CPSR_E;
 707                break;
 708            case ARM_ENDIANNESS_BE32:
 709                env->cp15.sctlr_el[1] |= SCTLR_B;
 710                break;
 711            case ARM_ENDIANNESS_UNKNOWN:
 712                break; /* Board's decision */
 713            default:
 714                g_assert_not_reached();
 715            }
 716
 717            cpu_set_pc(cs, entry);
 718        } else {
 719            /* If we are booting Linux then we need to check whether we are
 720             * booting into secure or non-secure state and adjust the state
 721             * accordingly.  Out of reset, ARM is defined to be in secure state
 722             * (SCR.NS = 0), we change that here if non-secure boot has been
 723             * requested.
 724             */
 725            if (arm_feature(env, ARM_FEATURE_EL3)) {
 726                /* AArch64 is defined to come out of reset into EL3 if enabled.
 727                 * If we are booting Linux then we need to adjust our EL as
 728                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 729                 * SVC, which Linux expects, so no privilege/exception level to
 730                 * adjust.
 731                 */
 732                if (env->aarch64) {
 733                    env->cp15.scr_el3 |= SCR_RW;
 734                    if (arm_feature(env, ARM_FEATURE_EL2)) {
 735                        env->cp15.hcr_el2 |= HCR_RW;
 736                        env->pstate = PSTATE_MODE_EL2h;
 737                    } else {
 738                        env->pstate = PSTATE_MODE_EL1h;
 739                    }
 740                    if (cpu_isar_feature(aa64_pauth, cpu)) {
 741                        env->cp15.scr_el3 |= SCR_API | SCR_APK;
 742                    }
 743                    if (cpu_isar_feature(aa64_mte, cpu)) {
 744                        env->cp15.scr_el3 |= SCR_ATA;
 745                    }
 746                    if (cpu_isar_feature(aa64_sve, cpu)) {
 747                        env->cp15.cptr_el[3] |= CPTR_EZ;
 748                    }
 749                    /* AArch64 kernels never boot in secure mode */
 750                    assert(!info->secure_boot);
 751                    /* This hook is only supported for AArch32 currently:
 752                     * bootloader_aarch64[] will not call the hook, and
 753                     * the code above has already dropped us into EL2 or EL1.
 754                     */
 755                    assert(!info->secure_board_setup);
 756                }
 757
 758                if (arm_feature(env, ARM_FEATURE_EL2)) {
 759                    /* If we have EL2 then Linux expects the HVC insn to work */
 760                    env->cp15.scr_el3 |= SCR_HCE;
 761                }
 762
 763                /* Set to non-secure if not a secure boot */
 764                if (!info->secure_boot &&
 765                    (cs != first_cpu || !info->secure_board_setup)) {
 766                    /* Linux expects non-secure state */
 767                    env->cp15.scr_el3 |= SCR_NS;
 768                    /* Set NSACR.{CP11,CP10} so NS can access the FPU */
 769                    env->cp15.nsacr |= 3 << 10;
 770                }
 771            }
 772
 773            if (!env->aarch64 && !info->secure_boot &&
 774                arm_feature(env, ARM_FEATURE_EL2)) {
 775                /*
 776                 * This is an AArch32 boot not to Secure state, and
 777                 * we have Hyp mode available, so boot the kernel into
 778                 * Hyp mode. This is not how the CPU comes out of reset,
 779                 * so we need to manually put it there.
 780                 */
 781                cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
 782            }
 783
 784            if (cs == first_cpu) {
 785                AddressSpace *as = arm_boot_address_space(cpu, info);
 786
 787                cpu_set_pc(cs, info->loader_start);
 788
 789                if (!have_dtb(info)) {
 790                    if (old_param) {
 791                        set_kernel_args_old(info, as);
 792                    } else {
 793                        set_kernel_args(info, as);
 794                    }
 795                }
 796            } else {
 797                info->secondary_cpu_reset_hook(cpu, info);
 798            }
 799        }
 800        arm_rebuild_hflags(env);
 801    }
 802}
 803
 804/**
 805 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
 806 *                          by key.
 807 * @fw_cfg:         The firmware config instance to store the data in.
 808 * @size_key:       The firmware config key to store the size of the loaded
 809 *                  data under, with fw_cfg_add_i32().
 810 * @data_key:       The firmware config key to store the loaded data under,
 811 *                  with fw_cfg_add_bytes().
 812 * @image_name:     The name of the image file to load. If it is NULL, the
 813 *                  function returns without doing anything.
 814 * @try_decompress: Whether the image should be decompressed (gunzipped) before
 815 *                  adding it to fw_cfg. If decompression fails, the image is
 816 *                  loaded as-is.
 817 *
 818 * In case of failure, the function prints an error message to stderr and the
 819 * process exits with status 1.
 820 */
 821static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
 822                                 uint16_t data_key, const char *image_name,
 823                                 bool try_decompress)
 824{
 825    size_t size = -1;
 826    uint8_t *data;
 827
 828    if (image_name == NULL) {
 829        return;
 830    }
 831
 832    if (try_decompress) {
 833        size = load_image_gzipped_buffer(image_name,
 834                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
 835    }
 836
 837    if (size == (size_t)-1) {
 838        gchar *contents;
 839        gsize length;
 840
 841        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
 842            error_report("failed to load \"%s\"", image_name);
 843            exit(1);
 844        }
 845        size = length;
 846        data = (uint8_t *)contents;
 847    }
 848
 849    fw_cfg_add_i32(fw_cfg, size_key, size);
 850    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
 851}
 852
 853static int do_arm_linux_init(Object *obj, void *opaque)
 854{
 855    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 856        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 857        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 858        struct arm_boot_info *info = opaque;
 859
 860        if (albifc->arm_linux_init) {
 861            albifc->arm_linux_init(albif, info->secure_boot);
 862        }
 863    }
 864    return 0;
 865}
 866
 867static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 868                            uint64_t *lowaddr, uint64_t *highaddr,
 869                            int elf_machine, AddressSpace *as)
 870{
 871    bool elf_is64;
 872    union {
 873        Elf32_Ehdr h32;
 874        Elf64_Ehdr h64;
 875    } elf_header;
 876    int data_swab = 0;
 877    bool big_endian;
 878    int64_t ret = -1;
 879    Error *err = NULL;
 880
 881
 882    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 883    if (err) {
 884        error_free(err);
 885        return ret;
 886    }
 887
 888    if (elf_is64) {
 889        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 890        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 891                                      : ARM_ENDIANNESS_LE;
 892    } else {
 893        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 894        if (big_endian) {
 895            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 896                info->endianness = ARM_ENDIANNESS_BE8;
 897            } else {
 898                info->endianness = ARM_ENDIANNESS_BE32;
 899                /* In BE32, the CPU has a different view of the per-byte
 900                 * address map than the rest of the system. BE32 ELF files
 901                 * are organised such that they can be programmed through
 902                 * the CPU's per-word byte-reversed view of the world. QEMU
 903                 * however loads ELF files independently of the CPU. So
 904                 * tell the ELF loader to byte reverse the data for us.
 905                 */
 906                data_swab = 2;
 907            }
 908        } else {
 909            info->endianness = ARM_ENDIANNESS_LE;
 910        }
 911    }
 912
 913    ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
 914                      pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
 915                      1, data_swab, as);
 916    if (ret <= 0) {
 917        /* The header loaded but the image didn't */
 918        exit(1);
 919    }
 920
 921    return ret;
 922}
 923
 924static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
 925                                   hwaddr *entry, AddressSpace *as)
 926{
 927    hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
 928    uint64_t kernel_size = 0;
 929    uint8_t *buffer;
 930    int size;
 931
 932    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 933    size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
 934                                     &buffer);
 935
 936    if (size < 0) {
 937        gsize len;
 938
 939        /* Load as raw file otherwise */
 940        if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
 941            return -1;
 942        }
 943        size = len;
 944    }
 945
 946    /* check the arm64 magic header value -- very old kernels may not have it */
 947    if (size > ARM64_MAGIC_OFFSET + 4 &&
 948        memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
 949        uint64_t hdrvals[2];
 950
 951        /* The arm64 Image header has text_offset and image_size fields at 8 and
 952         * 16 bytes into the Image header, respectively. The text_offset field
 953         * is only valid if the image_size is non-zero.
 954         */
 955        memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
 956
 957        kernel_size = le64_to_cpu(hdrvals[1]);
 958
 959        if (kernel_size != 0) {
 960            kernel_load_offset = le64_to_cpu(hdrvals[0]);
 961
 962            /*
 963             * We write our startup "bootloader" at the very bottom of RAM,
 964             * so that bit can't be used for the image. Luckily the Image
 965             * format specification is that the image requests only an offset
 966             * from a 2MB boundary, not an absolute load address. So if the
 967             * image requests an offset that might mean it overlaps with the
 968             * bootloader, we can just load it starting at 2MB+offset rather
 969             * than 0MB + offset.
 970             */
 971            if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
 972                kernel_load_offset += 2 * MiB;
 973            }
 974        }
 975    }
 976
 977    /*
 978     * Kernels before v3.17 don't populate the image_size field, and
 979     * raw images have no header. For those our best guess at the size
 980     * is the size of the Image file itself.
 981     */
 982    if (kernel_size == 0) {
 983        kernel_size = size;
 984    }
 985
 986    *entry = mem_base + kernel_load_offset;
 987    rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
 988
 989    g_free(buffer);
 990
 991    return kernel_size;
 992}
 993
 994static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
 995                                         struct arm_boot_info *info)
 996{
 997    /* Set up for a direct boot of a kernel image file. */
 998    CPUState *cs;
 999    AddressSpace *as = arm_boot_address_space(cpu, info);
1000    int kernel_size;
1001    int initrd_size;
1002    int is_linux = 0;
1003    uint64_t elf_entry;
1004    /* Addresses of first byte used and first byte not used by the image */
1005    uint64_t image_low_addr = 0, image_high_addr = 0;
1006    int elf_machine;
1007    hwaddr entry;
1008    static const ARMInsnFixup *primary_loader;
1009    uint64_t ram_end = info->loader_start + info->ram_size;
1010
1011    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1012        primary_loader = bootloader_aarch64;
1013        elf_machine = EM_AARCH64;
1014    } else {
1015        primary_loader = bootloader;
1016        if (!info->write_board_setup) {
1017            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1018        }
1019        elf_machine = EM_ARM;
1020    }
1021
1022    if (!info->secondary_cpu_reset_hook) {
1023        info->secondary_cpu_reset_hook = default_reset_secondary;
1024    }
1025    if (!info->write_secondary_boot) {
1026        info->write_secondary_boot = default_write_secondary;
1027    }
1028
1029    if (info->nb_cpus == 0)
1030        info->nb_cpus = 1;
1031
1032    /* Assume that raw images are linux kernels, and ELF images are not.  */
1033    kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1034                               &image_high_addr, elf_machine, as);
1035    if (kernel_size > 0 && have_dtb(info)) {
1036        /*
1037         * If there is still some room left at the base of RAM, try and put
1038         * the DTB there like we do for images loaded with -bios or -pflash.
1039         */
1040        if (image_low_addr > info->loader_start
1041            || image_high_addr < info->loader_start) {
1042            /*
1043             * Set image_low_addr as address limit for arm_load_dtb if it may be
1044             * pointing into RAM, otherwise pass '0' (no limit)
1045             */
1046            if (image_low_addr < info->loader_start) {
1047                image_low_addr = 0;
1048            }
1049            info->dtb_start = info->loader_start;
1050            info->dtb_limit = image_low_addr;
1051        }
1052    }
1053    entry = elf_entry;
1054    if (kernel_size < 0) {
1055        uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1056        kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1057                                     &is_linux, NULL, NULL, as);
1058        if (kernel_size >= 0) {
1059            image_low_addr = loadaddr;
1060            image_high_addr = image_low_addr + kernel_size;
1061        }
1062    }
1063    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1064        kernel_size = load_aarch64_image(info->kernel_filename,
1065                                         info->loader_start, &entry, as);
1066        is_linux = 1;
1067        if (kernel_size >= 0) {
1068            image_low_addr = entry;
1069            image_high_addr = image_low_addr + kernel_size;
1070        }
1071    } else if (kernel_size < 0) {
1072        /* 32-bit ARM */
1073        entry = info->loader_start + KERNEL_LOAD_ADDR;
1074        kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1075                                             ram_end - KERNEL_LOAD_ADDR, as);
1076        is_linux = 1;
1077        if (kernel_size >= 0) {
1078            image_low_addr = entry;
1079            image_high_addr = image_low_addr + kernel_size;
1080        }
1081    }
1082    if (kernel_size < 0) {
1083        error_report("could not load kernel '%s'", info->kernel_filename);
1084        exit(1);
1085    }
1086
1087    if (kernel_size > info->ram_size) {
1088        error_report("kernel '%s' is too large to fit in RAM "
1089                     "(kernel size %d, RAM size %" PRId64 ")",
1090                     info->kernel_filename, kernel_size, info->ram_size);
1091        exit(1);
1092    }
1093
1094    info->entry = entry;
1095
1096    /*
1097     * We want to put the initrd far enough into RAM that when the
1098     * kernel is uncompressed it will not clobber the initrd. However
1099     * on boards without much RAM we must ensure that we still leave
1100     * enough room for a decent sized initrd, and on boards with large
1101     * amounts of RAM we must avoid the initrd being so far up in RAM
1102     * that it is outside lowmem and inaccessible to the kernel.
1103     * So for boards with less  than 256MB of RAM we put the initrd
1104     * halfway into RAM, and for boards with 256MB of RAM or more we put
1105     * the initrd at 128MB.
1106     * We also refuse to put the initrd somewhere that will definitely
1107     * overlay the kernel we just loaded, though for kernel formats which
1108     * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1109     * we might still make a bad choice here.
1110     */
1111    info->initrd_start = info->loader_start +
1112        MIN(info->ram_size / 2, 128 * MiB);
1113    if (image_high_addr) {
1114        info->initrd_start = MAX(info->initrd_start, image_high_addr);
1115    }
1116    info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1117
1118    if (is_linux) {
1119        uint32_t fixupcontext[FIXUP_MAX];
1120
1121        if (info->initrd_filename) {
1122
1123            if (info->initrd_start >= ram_end) {
1124                error_report("not enough space after kernel to load initrd");
1125                exit(1);
1126            }
1127
1128            initrd_size = load_ramdisk_as(info->initrd_filename,
1129                                          info->initrd_start,
1130                                          ram_end - info->initrd_start, as);
1131            if (initrd_size < 0) {
1132                initrd_size = load_image_targphys_as(info->initrd_filename,
1133                                                     info->initrd_start,
1134                                                     ram_end -
1135                                                     info->initrd_start,
1136                                                     as);
1137            }
1138            if (initrd_size < 0) {
1139                error_report("could not load initrd '%s'",
1140                             info->initrd_filename);
1141                exit(1);
1142            }
1143            if (info->initrd_start + initrd_size > ram_end) {
1144                error_report("could not load initrd '%s': "
1145                             "too big to fit into RAM after the kernel",
1146                             info->initrd_filename);
1147                exit(1);
1148            }
1149        } else {
1150            initrd_size = 0;
1151        }
1152        info->initrd_size = initrd_size;
1153
1154        fixupcontext[FIXUP_BOARDID] = info->board_id;
1155        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1156
1157        /*
1158         * for device tree boot, we pass the DTB directly in r2. Otherwise
1159         * we point to the kernel args.
1160         */
1161        if (have_dtb(info)) {
1162            hwaddr align;
1163
1164            if (elf_machine == EM_AARCH64) {
1165                /*
1166                 * Some AArch64 kernels on early bootup map the fdt region as
1167                 *
1168                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1169                 *
1170                 * Let's play safe and prealign it to 2MB to give us some space.
1171                 */
1172                align = 2 * MiB;
1173            } else {
1174                /*
1175                 * Some 32bit kernels will trash anything in the 4K page the
1176                 * initrd ends in, so make sure the DTB isn't caught up in that.
1177                 */
1178                align = 4 * KiB;
1179            }
1180
1181            /* Place the DTB after the initrd in memory with alignment. */
1182            info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1183                                           align);
1184            if (info->dtb_start >= ram_end) {
1185                error_report("Not enough space for DTB after kernel/initrd");
1186                exit(1);
1187            }
1188            fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1189            fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1190        } else {
1191            fixupcontext[FIXUP_ARGPTR_LO] =
1192                info->loader_start + KERNEL_ARGS_ADDR;
1193            fixupcontext[FIXUP_ARGPTR_HI] =
1194                (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1195            if (info->ram_size >= 4 * GiB) {
1196                error_report("RAM size must be less than 4GB to boot"
1197                             " Linux kernel using ATAGS (try passing a device tree"
1198                             " using -dtb)");
1199                exit(1);
1200            }
1201        }
1202        fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1203        fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1204
1205        write_bootloader("bootloader", info->loader_start,
1206                         primary_loader, fixupcontext, as);
1207
1208        if (info->nb_cpus > 1) {
1209            info->write_secondary_boot(cpu, info);
1210        }
1211        if (info->write_board_setup) {
1212            info->write_board_setup(cpu, info);
1213        }
1214
1215        /*
1216         * Notify devices which need to fake up firmware initialization
1217         * that we're doing a direct kernel boot.
1218         */
1219        object_child_foreach_recursive(object_get_root(),
1220                                       do_arm_linux_init, info);
1221    }
1222    info->is_linux = is_linux;
1223
1224    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1225        ARM_CPU(cs)->env.boot_info = info;
1226    }
1227}
1228
1229static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1230{
1231    /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1232
1233    if (have_dtb(info)) {
1234        /*
1235         * If we have a device tree blob, but no kernel to supply it to (or
1236         * the kernel is supposed to be loaded by the bootloader), copy the
1237         * DTB to the base of RAM for the bootloader to pick up.
1238         */
1239        info->dtb_start = info->loader_start;
1240    }
1241
1242    if (info->kernel_filename) {
1243        FWCfgState *fw_cfg;
1244        bool try_decompressing_kernel;
1245
1246        fw_cfg = fw_cfg_find();
1247        try_decompressing_kernel = arm_feature(&cpu->env,
1248                                               ARM_FEATURE_AARCH64);
1249
1250        /*
1251         * Expose the kernel, the command line, and the initrd in fw_cfg.
1252         * We don't process them here at all, it's all left to the
1253         * firmware.
1254         */
1255        load_image_to_fw_cfg(fw_cfg,
1256                             FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1257                             info->kernel_filename,
1258                             try_decompressing_kernel);
1259        load_image_to_fw_cfg(fw_cfg,
1260                             FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1261                             info->initrd_filename, false);
1262
1263        if (info->kernel_cmdline) {
1264            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1265                           strlen(info->kernel_cmdline) + 1);
1266            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1267                              info->kernel_cmdline);
1268        }
1269    }
1270
1271    /*
1272     * We will start from address 0 (typically a boot ROM image) in the
1273     * same way as hardware. Leave env->boot_info NULL, so that
1274     * do_cpu_reset() knows it does not need to alter the PC on reset.
1275     */
1276}
1277
1278void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1279{
1280    CPUState *cs;
1281    AddressSpace *as = arm_boot_address_space(cpu, info);
1282
1283    /*
1284     * CPU objects (unlike devices) are not automatically reset on system
1285     * reset, so we must always register a handler to do so. If we're
1286     * actually loading a kernel, the handler is also responsible for
1287     * arranging that we start it correctly.
1288     */
1289    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1290        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1291    }
1292
1293    /*
1294     * The board code is not supposed to set secure_board_setup unless
1295     * running its code in secure mode is actually possible, and KVM
1296     * doesn't support secure.
1297     */
1298    assert(!(info->secure_board_setup && kvm_enabled()));
1299    info->kernel_filename = ms->kernel_filename;
1300    info->kernel_cmdline = ms->kernel_cmdline;
1301    info->initrd_filename = ms->initrd_filename;
1302    info->dtb_filename = ms->dtb;
1303    info->dtb_limit = 0;
1304
1305    /* Load the kernel.  */
1306    if (!info->kernel_filename || info->firmware_loaded) {
1307        arm_setup_firmware_boot(cpu, info);
1308    } else {
1309        arm_setup_direct_kernel_boot(cpu, info);
1310    }
1311
1312    if (!info->skip_dtb_autoload && have_dtb(info)) {
1313        if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1314            exit(1);
1315        }
1316    }
1317}
1318
1319static const TypeInfo arm_linux_boot_if_info = {
1320    .name = TYPE_ARM_LINUX_BOOT_IF,
1321    .parent = TYPE_INTERFACE,
1322    .class_size = sizeof(ARMLinuxBootIfClass),
1323};
1324
1325static void arm_linux_boot_register_types(void)
1326{
1327    type_register_static(&arm_linux_boot_if_info);
1328}
1329
1330type_init(arm_linux_boot_register_types)
1331