qemu/hw/arm/stellaris.c
<<
>>
Prefs
   1/*
   2 * Luminary Micro Stellaris peripherals
   3 *
   4 * Copyright (c) 2006 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qapi/error.h"
  12#include "hw/sysbus.h"
  13#include "hw/ssi/ssi.h"
  14#include "hw/arm/boot.h"
  15#include "qemu/timer.h"
  16#include "hw/i2c/i2c.h"
  17#include "net/net.h"
  18#include "hw/boards.h"
  19#include "qemu/log.h"
  20#include "exec/address-spaces.h"
  21#include "sysemu/sysemu.h"
  22#include "hw/arm/armv7m.h"
  23#include "hw/char/pl011.h"
  24#include "hw/input/gamepad.h"
  25#include "hw/irq.h"
  26#include "hw/watchdog/cmsdk-apb-watchdog.h"
  27#include "migration/vmstate.h"
  28#include "hw/misc/unimp.h"
  29#include "hw/qdev-clock.h"
  30#include "cpu.h"
  31#include "qom/object.h"
  32
  33#define GPIO_A 0
  34#define GPIO_B 1
  35#define GPIO_C 2
  36#define GPIO_D 3
  37#define GPIO_E 4
  38#define GPIO_F 5
  39#define GPIO_G 6
  40
  41#define BP_OLED_I2C  0x01
  42#define BP_OLED_SSI  0x02
  43#define BP_GAMEPAD   0x04
  44
  45#define NUM_IRQ_LINES 64
  46
  47typedef const struct {
  48    const char *name;
  49    uint32_t did0;
  50    uint32_t did1;
  51    uint32_t dc0;
  52    uint32_t dc1;
  53    uint32_t dc2;
  54    uint32_t dc3;
  55    uint32_t dc4;
  56    uint32_t peripherals;
  57} stellaris_board_info;
  58
  59/* General purpose timer module.  */
  60
  61#define TYPE_STELLARIS_GPTM "stellaris-gptm"
  62OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM)
  63
  64struct gptm_state {
  65    SysBusDevice parent_obj;
  66
  67    MemoryRegion iomem;
  68    uint32_t config;
  69    uint32_t mode[2];
  70    uint32_t control;
  71    uint32_t state;
  72    uint32_t mask;
  73    uint32_t load[2];
  74    uint32_t match[2];
  75    uint32_t prescale[2];
  76    uint32_t match_prescale[2];
  77    uint32_t rtc;
  78    int64_t tick[2];
  79    struct gptm_state *opaque[2];
  80    QEMUTimer *timer[2];
  81    /* The timers have an alternate output used to trigger the ADC.  */
  82    qemu_irq trigger;
  83    qemu_irq irq;
  84};
  85
  86static void gptm_update_irq(gptm_state *s)
  87{
  88    int level;
  89    level = (s->state & s->mask) != 0;
  90    qemu_set_irq(s->irq, level);
  91}
  92
  93static void gptm_stop(gptm_state *s, int n)
  94{
  95    timer_del(s->timer[n]);
  96}
  97
  98static void gptm_reload(gptm_state *s, int n, int reset)
  99{
 100    int64_t tick;
 101    if (reset)
 102        tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 103    else
 104        tick = s->tick[n];
 105
 106    if (s->config == 0) {
 107        /* 32-bit CountDown.  */
 108        uint32_t count;
 109        count = s->load[0] | (s->load[1] << 16);
 110        tick += (int64_t)count * system_clock_scale;
 111    } else if (s->config == 1) {
 112        /* 32-bit RTC.  1Hz tick.  */
 113        tick += NANOSECONDS_PER_SECOND;
 114    } else if (s->mode[n] == 0xa) {
 115        /* PWM mode.  Not implemented.  */
 116    } else {
 117        qemu_log_mask(LOG_UNIMP,
 118                      "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
 119                      s->mode[n]);
 120        return;
 121    }
 122    s->tick[n] = tick;
 123    timer_mod(s->timer[n], tick);
 124}
 125
 126static void gptm_tick(void *opaque)
 127{
 128    gptm_state **p = (gptm_state **)opaque;
 129    gptm_state *s;
 130    int n;
 131
 132    s = *p;
 133    n = p - s->opaque;
 134    if (s->config == 0) {
 135        s->state |= 1;
 136        if ((s->control & 0x20)) {
 137            /* Output trigger.  */
 138            qemu_irq_pulse(s->trigger);
 139        }
 140        if (s->mode[0] & 1) {
 141            /* One-shot.  */
 142            s->control &= ~1;
 143        } else {
 144            /* Periodic.  */
 145            gptm_reload(s, 0, 0);
 146        }
 147    } else if (s->config == 1) {
 148        /* RTC.  */
 149        uint32_t match;
 150        s->rtc++;
 151        match = s->match[0] | (s->match[1] << 16);
 152        if (s->rtc > match)
 153            s->rtc = 0;
 154        if (s->rtc == 0) {
 155            s->state |= 8;
 156        }
 157        gptm_reload(s, 0, 0);
 158    } else if (s->mode[n] == 0xa) {
 159        /* PWM mode.  Not implemented.  */
 160    } else {
 161        qemu_log_mask(LOG_UNIMP,
 162                      "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
 163                      s->mode[n]);
 164    }
 165    gptm_update_irq(s);
 166}
 167
 168static uint64_t gptm_read(void *opaque, hwaddr offset,
 169                          unsigned size)
 170{
 171    gptm_state *s = (gptm_state *)opaque;
 172
 173    switch (offset) {
 174    case 0x00: /* CFG */
 175        return s->config;
 176    case 0x04: /* TAMR */
 177        return s->mode[0];
 178    case 0x08: /* TBMR */
 179        return s->mode[1];
 180    case 0x0c: /* CTL */
 181        return s->control;
 182    case 0x18: /* IMR */
 183        return s->mask;
 184    case 0x1c: /* RIS */
 185        return s->state;
 186    case 0x20: /* MIS */
 187        return s->state & s->mask;
 188    case 0x24: /* CR */
 189        return 0;
 190    case 0x28: /* TAILR */
 191        return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
 192    case 0x2c: /* TBILR */
 193        return s->load[1];
 194    case 0x30: /* TAMARCHR */
 195        return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
 196    case 0x34: /* TBMATCHR */
 197        return s->match[1];
 198    case 0x38: /* TAPR */
 199        return s->prescale[0];
 200    case 0x3c: /* TBPR */
 201        return s->prescale[1];
 202    case 0x40: /* TAPMR */
 203        return s->match_prescale[0];
 204    case 0x44: /* TBPMR */
 205        return s->match_prescale[1];
 206    case 0x48: /* TAR */
 207        if (s->config == 1) {
 208            return s->rtc;
 209        }
 210        qemu_log_mask(LOG_UNIMP,
 211                      "GPTM: read of TAR but timer read not supported\n");
 212        return 0;
 213    case 0x4c: /* TBR */
 214        qemu_log_mask(LOG_UNIMP,
 215                      "GPTM: read of TBR but timer read not supported\n");
 216        return 0;
 217    default:
 218        qemu_log_mask(LOG_GUEST_ERROR,
 219                      "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
 220                      offset);
 221        return 0;
 222    }
 223}
 224
 225static void gptm_write(void *opaque, hwaddr offset,
 226                       uint64_t value, unsigned size)
 227{
 228    gptm_state *s = (gptm_state *)opaque;
 229    uint32_t oldval;
 230
 231    /* The timers should be disabled before changing the configuration.
 232       We take advantage of this and defer everything until the timer
 233       is enabled.  */
 234    switch (offset) {
 235    case 0x00: /* CFG */
 236        s->config = value;
 237        break;
 238    case 0x04: /* TAMR */
 239        s->mode[0] = value;
 240        break;
 241    case 0x08: /* TBMR */
 242        s->mode[1] = value;
 243        break;
 244    case 0x0c: /* CTL */
 245        oldval = s->control;
 246        s->control = value;
 247        /* TODO: Implement pause.  */
 248        if ((oldval ^ value) & 1) {
 249            if (value & 1) {
 250                gptm_reload(s, 0, 1);
 251            } else {
 252                gptm_stop(s, 0);
 253            }
 254        }
 255        if (((oldval ^ value) & 0x100) && s->config >= 4) {
 256            if (value & 0x100) {
 257                gptm_reload(s, 1, 1);
 258            } else {
 259                gptm_stop(s, 1);
 260            }
 261        }
 262        break;
 263    case 0x18: /* IMR */
 264        s->mask = value & 0x77;
 265        gptm_update_irq(s);
 266        break;
 267    case 0x24: /* CR */
 268        s->state &= ~value;
 269        break;
 270    case 0x28: /* TAILR */
 271        s->load[0] = value & 0xffff;
 272        if (s->config < 4) {
 273            s->load[1] = value >> 16;
 274        }
 275        break;
 276    case 0x2c: /* TBILR */
 277        s->load[1] = value & 0xffff;
 278        break;
 279    case 0x30: /* TAMARCHR */
 280        s->match[0] = value & 0xffff;
 281        if (s->config < 4) {
 282            s->match[1] = value >> 16;
 283        }
 284        break;
 285    case 0x34: /* TBMATCHR */
 286        s->match[1] = value >> 16;
 287        break;
 288    case 0x38: /* TAPR */
 289        s->prescale[0] = value;
 290        break;
 291    case 0x3c: /* TBPR */
 292        s->prescale[1] = value;
 293        break;
 294    case 0x40: /* TAPMR */
 295        s->match_prescale[0] = value;
 296        break;
 297    case 0x44: /* TBPMR */
 298        s->match_prescale[0] = value;
 299        break;
 300    default:
 301        qemu_log_mask(LOG_GUEST_ERROR,
 302                      "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
 303                      offset);
 304    }
 305    gptm_update_irq(s);
 306}
 307
 308static const MemoryRegionOps gptm_ops = {
 309    .read = gptm_read,
 310    .write = gptm_write,
 311    .endianness = DEVICE_NATIVE_ENDIAN,
 312};
 313
 314static const VMStateDescription vmstate_stellaris_gptm = {
 315    .name = "stellaris_gptm",
 316    .version_id = 1,
 317    .minimum_version_id = 1,
 318    .fields = (VMStateField[]) {
 319        VMSTATE_UINT32(config, gptm_state),
 320        VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
 321        VMSTATE_UINT32(control, gptm_state),
 322        VMSTATE_UINT32(state, gptm_state),
 323        VMSTATE_UINT32(mask, gptm_state),
 324        VMSTATE_UNUSED(8),
 325        VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
 326        VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
 327        VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
 328        VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
 329        VMSTATE_UINT32(rtc, gptm_state),
 330        VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
 331        VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
 332        VMSTATE_END_OF_LIST()
 333    }
 334};
 335
 336static void stellaris_gptm_init(Object *obj)
 337{
 338    DeviceState *dev = DEVICE(obj);
 339    gptm_state *s = STELLARIS_GPTM(obj);
 340    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 341
 342    sysbus_init_irq(sbd, &s->irq);
 343    qdev_init_gpio_out(dev, &s->trigger, 1);
 344
 345    memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
 346                          "gptm", 0x1000);
 347    sysbus_init_mmio(sbd, &s->iomem);
 348
 349    s->opaque[0] = s->opaque[1] = s;
 350}
 351
 352static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
 353{
 354    gptm_state *s = STELLARIS_GPTM(dev);
 355    s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
 356    s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
 357}
 358
 359/* System controller.  */
 360
 361#define TYPE_STELLARIS_SYS "stellaris-sys"
 362OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
 363
 364struct ssys_state {
 365    SysBusDevice parent_obj;
 366
 367    MemoryRegion iomem;
 368    uint32_t pborctl;
 369    uint32_t ldopctl;
 370    uint32_t int_status;
 371    uint32_t int_mask;
 372    uint32_t resc;
 373    uint32_t rcc;
 374    uint32_t rcc2;
 375    uint32_t rcgc[3];
 376    uint32_t scgc[3];
 377    uint32_t dcgc[3];
 378    uint32_t clkvclr;
 379    uint32_t ldoarst;
 380    qemu_irq irq;
 381    Clock *sysclk;
 382    /* Properties (all read-only registers) */
 383    uint32_t user0;
 384    uint32_t user1;
 385    uint32_t did0;
 386    uint32_t did1;
 387    uint32_t dc0;
 388    uint32_t dc1;
 389    uint32_t dc2;
 390    uint32_t dc3;
 391    uint32_t dc4;
 392};
 393
 394static void ssys_update(ssys_state *s)
 395{
 396  qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
 397}
 398
 399static uint32_t pllcfg_sandstorm[16] = {
 400    0x31c0, /* 1 Mhz */
 401    0x1ae0, /* 1.8432 Mhz */
 402    0x18c0, /* 2 Mhz */
 403    0xd573, /* 2.4576 Mhz */
 404    0x37a6, /* 3.57954 Mhz */
 405    0x1ae2, /* 3.6864 Mhz */
 406    0x0c40, /* 4 Mhz */
 407    0x98bc, /* 4.906 Mhz */
 408    0x935b, /* 4.9152 Mhz */
 409    0x09c0, /* 5 Mhz */
 410    0x4dee, /* 5.12 Mhz */
 411    0x0c41, /* 6 Mhz */
 412    0x75db, /* 6.144 Mhz */
 413    0x1ae6, /* 7.3728 Mhz */
 414    0x0600, /* 8 Mhz */
 415    0x585b /* 8.192 Mhz */
 416};
 417
 418static uint32_t pllcfg_fury[16] = {
 419    0x3200, /* 1 Mhz */
 420    0x1b20, /* 1.8432 Mhz */
 421    0x1900, /* 2 Mhz */
 422    0xf42b, /* 2.4576 Mhz */
 423    0x37e3, /* 3.57954 Mhz */
 424    0x1b21, /* 3.6864 Mhz */
 425    0x0c80, /* 4 Mhz */
 426    0x98ee, /* 4.906 Mhz */
 427    0xd5b4, /* 4.9152 Mhz */
 428    0x0a00, /* 5 Mhz */
 429    0x4e27, /* 5.12 Mhz */
 430    0x1902, /* 6 Mhz */
 431    0xec1c, /* 6.144 Mhz */
 432    0x1b23, /* 7.3728 Mhz */
 433    0x0640, /* 8 Mhz */
 434    0xb11c /* 8.192 Mhz */
 435};
 436
 437#define DID0_VER_MASK        0x70000000
 438#define DID0_VER_0           0x00000000
 439#define DID0_VER_1           0x10000000
 440
 441#define DID0_CLASS_MASK      0x00FF0000
 442#define DID0_CLASS_SANDSTORM 0x00000000
 443#define DID0_CLASS_FURY      0x00010000
 444
 445static int ssys_board_class(const ssys_state *s)
 446{
 447    uint32_t did0 = s->did0;
 448    switch (did0 & DID0_VER_MASK) {
 449    case DID0_VER_0:
 450        return DID0_CLASS_SANDSTORM;
 451    case DID0_VER_1:
 452        switch (did0 & DID0_CLASS_MASK) {
 453        case DID0_CLASS_SANDSTORM:
 454        case DID0_CLASS_FURY:
 455            return did0 & DID0_CLASS_MASK;
 456        }
 457        /* for unknown classes, fall through */
 458    default:
 459        /* This can only happen if the hardwired constant did0 value
 460         * in this board's stellaris_board_info struct is wrong.
 461         */
 462        g_assert_not_reached();
 463    }
 464}
 465
 466static uint64_t ssys_read(void *opaque, hwaddr offset,
 467                          unsigned size)
 468{
 469    ssys_state *s = (ssys_state *)opaque;
 470
 471    switch (offset) {
 472    case 0x000: /* DID0 */
 473        return s->did0;
 474    case 0x004: /* DID1 */
 475        return s->did1;
 476    case 0x008: /* DC0 */
 477        return s->dc0;
 478    case 0x010: /* DC1 */
 479        return s->dc1;
 480    case 0x014: /* DC2 */
 481        return s->dc2;
 482    case 0x018: /* DC3 */
 483        return s->dc3;
 484    case 0x01c: /* DC4 */
 485        return s->dc4;
 486    case 0x030: /* PBORCTL */
 487        return s->pborctl;
 488    case 0x034: /* LDOPCTL */
 489        return s->ldopctl;
 490    case 0x040: /* SRCR0 */
 491        return 0;
 492    case 0x044: /* SRCR1 */
 493        return 0;
 494    case 0x048: /* SRCR2 */
 495        return 0;
 496    case 0x050: /* RIS */
 497        return s->int_status;
 498    case 0x054: /* IMC */
 499        return s->int_mask;
 500    case 0x058: /* MISC */
 501        return s->int_status & s->int_mask;
 502    case 0x05c: /* RESC */
 503        return s->resc;
 504    case 0x060: /* RCC */
 505        return s->rcc;
 506    case 0x064: /* PLLCFG */
 507        {
 508            int xtal;
 509            xtal = (s->rcc >> 6) & 0xf;
 510            switch (ssys_board_class(s)) {
 511            case DID0_CLASS_FURY:
 512                return pllcfg_fury[xtal];
 513            case DID0_CLASS_SANDSTORM:
 514                return pllcfg_sandstorm[xtal];
 515            default:
 516                g_assert_not_reached();
 517            }
 518        }
 519    case 0x070: /* RCC2 */
 520        return s->rcc2;
 521    case 0x100: /* RCGC0 */
 522        return s->rcgc[0];
 523    case 0x104: /* RCGC1 */
 524        return s->rcgc[1];
 525    case 0x108: /* RCGC2 */
 526        return s->rcgc[2];
 527    case 0x110: /* SCGC0 */
 528        return s->scgc[0];
 529    case 0x114: /* SCGC1 */
 530        return s->scgc[1];
 531    case 0x118: /* SCGC2 */
 532        return s->scgc[2];
 533    case 0x120: /* DCGC0 */
 534        return s->dcgc[0];
 535    case 0x124: /* DCGC1 */
 536        return s->dcgc[1];
 537    case 0x128: /* DCGC2 */
 538        return s->dcgc[2];
 539    case 0x150: /* CLKVCLR */
 540        return s->clkvclr;
 541    case 0x160: /* LDOARST */
 542        return s->ldoarst;
 543    case 0x1e0: /* USER0 */
 544        return s->user0;
 545    case 0x1e4: /* USER1 */
 546        return s->user1;
 547    default:
 548        qemu_log_mask(LOG_GUEST_ERROR,
 549                      "SSYS: read at bad offset 0x%x\n", (int)offset);
 550        return 0;
 551    }
 552}
 553
 554static bool ssys_use_rcc2(ssys_state *s)
 555{
 556    return (s->rcc2 >> 31) & 0x1;
 557}
 558
 559/*
 560 * Calculate the system clock period. We only want to propagate
 561 * this change to the rest of the system if we're not being called
 562 * from migration post-load.
 563 */
 564static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
 565{
 566    /*
 567     * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
 568     * clock is 200MHz, which is a period of 5 ns. Dividing the clock
 569     * frequency by X is the same as multiplying the period by X.
 570     */
 571    if (ssys_use_rcc2(s)) {
 572        system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
 573    } else {
 574        system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
 575    }
 576    clock_set_ns(s->sysclk, system_clock_scale);
 577    if (propagate_clock) {
 578        clock_propagate(s->sysclk);
 579    }
 580}
 581
 582static void ssys_write(void *opaque, hwaddr offset,
 583                       uint64_t value, unsigned size)
 584{
 585    ssys_state *s = (ssys_state *)opaque;
 586
 587    switch (offset) {
 588    case 0x030: /* PBORCTL */
 589        s->pborctl = value & 0xffff;
 590        break;
 591    case 0x034: /* LDOPCTL */
 592        s->ldopctl = value & 0x1f;
 593        break;
 594    case 0x040: /* SRCR0 */
 595    case 0x044: /* SRCR1 */
 596    case 0x048: /* SRCR2 */
 597        qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
 598        break;
 599    case 0x054: /* IMC */
 600        s->int_mask = value & 0x7f;
 601        break;
 602    case 0x058: /* MISC */
 603        s->int_status &= ~value;
 604        break;
 605    case 0x05c: /* RESC */
 606        s->resc = value & 0x3f;
 607        break;
 608    case 0x060: /* RCC */
 609        if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
 610            /* PLL enable.  */
 611            s->int_status |= (1 << 6);
 612        }
 613        s->rcc = value;
 614        ssys_calculate_system_clock(s, true);
 615        break;
 616    case 0x070: /* RCC2 */
 617        if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
 618            break;
 619        }
 620
 621        if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
 622            /* PLL enable.  */
 623            s->int_status |= (1 << 6);
 624        }
 625        s->rcc2 = value;
 626        ssys_calculate_system_clock(s, true);
 627        break;
 628    case 0x100: /* RCGC0 */
 629        s->rcgc[0] = value;
 630        break;
 631    case 0x104: /* RCGC1 */
 632        s->rcgc[1] = value;
 633        break;
 634    case 0x108: /* RCGC2 */
 635        s->rcgc[2] = value;
 636        break;
 637    case 0x110: /* SCGC0 */
 638        s->scgc[0] = value;
 639        break;
 640    case 0x114: /* SCGC1 */
 641        s->scgc[1] = value;
 642        break;
 643    case 0x118: /* SCGC2 */
 644        s->scgc[2] = value;
 645        break;
 646    case 0x120: /* DCGC0 */
 647        s->dcgc[0] = value;
 648        break;
 649    case 0x124: /* DCGC1 */
 650        s->dcgc[1] = value;
 651        break;
 652    case 0x128: /* DCGC2 */
 653        s->dcgc[2] = value;
 654        break;
 655    case 0x150: /* CLKVCLR */
 656        s->clkvclr = value;
 657        break;
 658    case 0x160: /* LDOARST */
 659        s->ldoarst = value;
 660        break;
 661    default:
 662        qemu_log_mask(LOG_GUEST_ERROR,
 663                      "SSYS: write at bad offset 0x%x\n", (int)offset);
 664    }
 665    ssys_update(s);
 666}
 667
 668static const MemoryRegionOps ssys_ops = {
 669    .read = ssys_read,
 670    .write = ssys_write,
 671    .endianness = DEVICE_NATIVE_ENDIAN,
 672};
 673
 674static void stellaris_sys_reset_enter(Object *obj, ResetType type)
 675{
 676    ssys_state *s = STELLARIS_SYS(obj);
 677
 678    s->pborctl = 0x7ffd;
 679    s->rcc = 0x078e3ac0;
 680
 681    if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
 682        s->rcc2 = 0;
 683    } else {
 684        s->rcc2 = 0x07802810;
 685    }
 686    s->rcgc[0] = 1;
 687    s->scgc[0] = 1;
 688    s->dcgc[0] = 1;
 689}
 690
 691static void stellaris_sys_reset_hold(Object *obj)
 692{
 693    ssys_state *s = STELLARIS_SYS(obj);
 694
 695    /* OK to propagate clocks from the hold phase */
 696    ssys_calculate_system_clock(s, true);
 697}
 698
 699static void stellaris_sys_reset_exit(Object *obj)
 700{
 701}
 702
 703static int stellaris_sys_post_load(void *opaque, int version_id)
 704{
 705    ssys_state *s = opaque;
 706
 707    ssys_calculate_system_clock(s, false);
 708
 709    return 0;
 710}
 711
 712static const VMStateDescription vmstate_stellaris_sys = {
 713    .name = "stellaris_sys",
 714    .version_id = 2,
 715    .minimum_version_id = 1,
 716    .post_load = stellaris_sys_post_load,
 717    .fields = (VMStateField[]) {
 718        VMSTATE_UINT32(pborctl, ssys_state),
 719        VMSTATE_UINT32(ldopctl, ssys_state),
 720        VMSTATE_UINT32(int_mask, ssys_state),
 721        VMSTATE_UINT32(int_status, ssys_state),
 722        VMSTATE_UINT32(resc, ssys_state),
 723        VMSTATE_UINT32(rcc, ssys_state),
 724        VMSTATE_UINT32_V(rcc2, ssys_state, 2),
 725        VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
 726        VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
 727        VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
 728        VMSTATE_UINT32(clkvclr, ssys_state),
 729        VMSTATE_UINT32(ldoarst, ssys_state),
 730        /* No field for sysclk -- handled in post-load instead */
 731        VMSTATE_END_OF_LIST()
 732    }
 733};
 734
 735static Property stellaris_sys_properties[] = {
 736    DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
 737    DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
 738    DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
 739    DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
 740    DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
 741    DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
 742    DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
 743    DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
 744    DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
 745    DEFINE_PROP_END_OF_LIST()
 746};
 747
 748static void stellaris_sys_instance_init(Object *obj)
 749{
 750    ssys_state *s = STELLARIS_SYS(obj);
 751    SysBusDevice *sbd = SYS_BUS_DEVICE(s);
 752
 753    memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
 754    sysbus_init_mmio(sbd, &s->iomem);
 755    sysbus_init_irq(sbd, &s->irq);
 756    s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
 757}
 758
 759static DeviceState *stellaris_sys_init(uint32_t base, qemu_irq irq,
 760                                       stellaris_board_info *board,
 761                                       uint8_t *macaddr)
 762{
 763    DeviceState *dev = qdev_new(TYPE_STELLARIS_SYS);
 764    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 765
 766    /* Most devices come preprogrammed with a MAC address in the user data. */
 767    qdev_prop_set_uint32(dev, "user0",
 768                         macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
 769    qdev_prop_set_uint32(dev, "user1",
 770                         macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
 771    qdev_prop_set_uint32(dev, "did0", board->did0);
 772    qdev_prop_set_uint32(dev, "did1", board->did1);
 773    qdev_prop_set_uint32(dev, "dc0", board->dc0);
 774    qdev_prop_set_uint32(dev, "dc1", board->dc1);
 775    qdev_prop_set_uint32(dev, "dc2", board->dc2);
 776    qdev_prop_set_uint32(dev, "dc3", board->dc3);
 777    qdev_prop_set_uint32(dev, "dc4", board->dc4);
 778
 779    sysbus_realize_and_unref(sbd, &error_fatal);
 780    sysbus_mmio_map(sbd, 0, base);
 781    sysbus_connect_irq(sbd, 0, irq);
 782
 783    return dev;
 784}
 785
 786/* I2C controller.  */
 787
 788#define TYPE_STELLARIS_I2C "stellaris-i2c"
 789OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
 790
 791struct stellaris_i2c_state {
 792    SysBusDevice parent_obj;
 793
 794    I2CBus *bus;
 795    qemu_irq irq;
 796    MemoryRegion iomem;
 797    uint32_t msa;
 798    uint32_t mcs;
 799    uint32_t mdr;
 800    uint32_t mtpr;
 801    uint32_t mimr;
 802    uint32_t mris;
 803    uint32_t mcr;
 804};
 805
 806#define STELLARIS_I2C_MCS_BUSY    0x01
 807#define STELLARIS_I2C_MCS_ERROR   0x02
 808#define STELLARIS_I2C_MCS_ADRACK  0x04
 809#define STELLARIS_I2C_MCS_DATACK  0x08
 810#define STELLARIS_I2C_MCS_ARBLST  0x10
 811#define STELLARIS_I2C_MCS_IDLE    0x20
 812#define STELLARIS_I2C_MCS_BUSBSY  0x40
 813
 814static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
 815                                   unsigned size)
 816{
 817    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
 818
 819    switch (offset) {
 820    case 0x00: /* MSA */
 821        return s->msa;
 822    case 0x04: /* MCS */
 823        /* We don't emulate timing, so the controller is never busy.  */
 824        return s->mcs | STELLARIS_I2C_MCS_IDLE;
 825    case 0x08: /* MDR */
 826        return s->mdr;
 827    case 0x0c: /* MTPR */
 828        return s->mtpr;
 829    case 0x10: /* MIMR */
 830        return s->mimr;
 831    case 0x14: /* MRIS */
 832        return s->mris;
 833    case 0x18: /* MMIS */
 834        return s->mris & s->mimr;
 835    case 0x20: /* MCR */
 836        return s->mcr;
 837    default:
 838        qemu_log_mask(LOG_GUEST_ERROR,
 839                      "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
 840        return 0;
 841    }
 842}
 843
 844static void stellaris_i2c_update(stellaris_i2c_state *s)
 845{
 846    int level;
 847
 848    level = (s->mris & s->mimr) != 0;
 849    qemu_set_irq(s->irq, level);
 850}
 851
 852static void stellaris_i2c_write(void *opaque, hwaddr offset,
 853                                uint64_t value, unsigned size)
 854{
 855    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
 856
 857    switch (offset) {
 858    case 0x00: /* MSA */
 859        s->msa = value & 0xff;
 860        break;
 861    case 0x04: /* MCS */
 862        if ((s->mcr & 0x10) == 0) {
 863            /* Disabled.  Do nothing.  */
 864            break;
 865        }
 866        /* Grab the bus if this is starting a transfer.  */
 867        if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
 868            if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
 869                s->mcs |= STELLARIS_I2C_MCS_ARBLST;
 870            } else {
 871                s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
 872                s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
 873            }
 874        }
 875        /* If we don't have the bus then indicate an error.  */
 876        if (!i2c_bus_busy(s->bus)
 877                || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
 878            s->mcs |= STELLARIS_I2C_MCS_ERROR;
 879            break;
 880        }
 881        s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
 882        if (value & 1) {
 883            /* Transfer a byte.  */
 884            /* TODO: Handle errors.  */
 885            if (s->msa & 1) {
 886                /* Recv */
 887                s->mdr = i2c_recv(s->bus);
 888            } else {
 889                /* Send */
 890                i2c_send(s->bus, s->mdr);
 891            }
 892            /* Raise an interrupt.  */
 893            s->mris |= 1;
 894        }
 895        if (value & 4) {
 896            /* Finish transfer.  */
 897            i2c_end_transfer(s->bus);
 898            s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
 899        }
 900        break;
 901    case 0x08: /* MDR */
 902        s->mdr = value & 0xff;
 903        break;
 904    case 0x0c: /* MTPR */
 905        s->mtpr = value & 0xff;
 906        break;
 907    case 0x10: /* MIMR */
 908        s->mimr = 1;
 909        break;
 910    case 0x1c: /* MICR */
 911        s->mris &= ~value;
 912        break;
 913    case 0x20: /* MCR */
 914        if (value & 1) {
 915            qemu_log_mask(LOG_UNIMP,
 916                          "stellaris_i2c: Loopback not implemented\n");
 917        }
 918        if (value & 0x20) {
 919            qemu_log_mask(LOG_UNIMP,
 920                          "stellaris_i2c: Slave mode not implemented\n");
 921        }
 922        s->mcr = value & 0x31;
 923        break;
 924    default:
 925        qemu_log_mask(LOG_GUEST_ERROR,
 926                      "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
 927    }
 928    stellaris_i2c_update(s);
 929}
 930
 931static void stellaris_i2c_reset(stellaris_i2c_state *s)
 932{
 933    if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
 934        i2c_end_transfer(s->bus);
 935
 936    s->msa = 0;
 937    s->mcs = 0;
 938    s->mdr = 0;
 939    s->mtpr = 1;
 940    s->mimr = 0;
 941    s->mris = 0;
 942    s->mcr = 0;
 943    stellaris_i2c_update(s);
 944}
 945
 946static const MemoryRegionOps stellaris_i2c_ops = {
 947    .read = stellaris_i2c_read,
 948    .write = stellaris_i2c_write,
 949    .endianness = DEVICE_NATIVE_ENDIAN,
 950};
 951
 952static const VMStateDescription vmstate_stellaris_i2c = {
 953    .name = "stellaris_i2c",
 954    .version_id = 1,
 955    .minimum_version_id = 1,
 956    .fields = (VMStateField[]) {
 957        VMSTATE_UINT32(msa, stellaris_i2c_state),
 958        VMSTATE_UINT32(mcs, stellaris_i2c_state),
 959        VMSTATE_UINT32(mdr, stellaris_i2c_state),
 960        VMSTATE_UINT32(mtpr, stellaris_i2c_state),
 961        VMSTATE_UINT32(mimr, stellaris_i2c_state),
 962        VMSTATE_UINT32(mris, stellaris_i2c_state),
 963        VMSTATE_UINT32(mcr, stellaris_i2c_state),
 964        VMSTATE_END_OF_LIST()
 965    }
 966};
 967
 968static void stellaris_i2c_init(Object *obj)
 969{
 970    DeviceState *dev = DEVICE(obj);
 971    stellaris_i2c_state *s = STELLARIS_I2C(obj);
 972    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 973    I2CBus *bus;
 974
 975    sysbus_init_irq(sbd, &s->irq);
 976    bus = i2c_init_bus(dev, "i2c");
 977    s->bus = bus;
 978
 979    memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
 980                          "i2c", 0x1000);
 981    sysbus_init_mmio(sbd, &s->iomem);
 982    /* ??? For now we only implement the master interface.  */
 983    stellaris_i2c_reset(s);
 984}
 985
 986/* Analogue to Digital Converter.  This is only partially implemented,
 987   enough for applications that use a combined ADC and timer tick.  */
 988
 989#define STELLARIS_ADC_EM_CONTROLLER 0
 990#define STELLARIS_ADC_EM_COMP       1
 991#define STELLARIS_ADC_EM_EXTERNAL   4
 992#define STELLARIS_ADC_EM_TIMER      5
 993#define STELLARIS_ADC_EM_PWM0       6
 994#define STELLARIS_ADC_EM_PWM1       7
 995#define STELLARIS_ADC_EM_PWM2       8
 996
 997#define STELLARIS_ADC_FIFO_EMPTY    0x0100
 998#define STELLARIS_ADC_FIFO_FULL     0x1000
 999
1000#define TYPE_STELLARIS_ADC "stellaris-adc"
1001typedef struct StellarisADCState stellaris_adc_state;
1002DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
1003                         TYPE_STELLARIS_ADC)
1004
1005struct StellarisADCState {
1006    SysBusDevice parent_obj;
1007
1008    MemoryRegion iomem;
1009    uint32_t actss;
1010    uint32_t ris;
1011    uint32_t im;
1012    uint32_t emux;
1013    uint32_t ostat;
1014    uint32_t ustat;
1015    uint32_t sspri;
1016    uint32_t sac;
1017    struct {
1018        uint32_t state;
1019        uint32_t data[16];
1020    } fifo[4];
1021    uint32_t ssmux[4];
1022    uint32_t ssctl[4];
1023    uint32_t noise;
1024    qemu_irq irq[4];
1025};
1026
1027static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
1028{
1029    int tail;
1030
1031    tail = s->fifo[n].state & 0xf;
1032    if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
1033        s->ustat |= 1 << n;
1034    } else {
1035        s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
1036        s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
1037        if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
1038            s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
1039    }
1040    return s->fifo[n].data[tail];
1041}
1042
1043static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
1044                                     uint32_t value)
1045{
1046    int head;
1047
1048    /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry 
1049       FIFO fir each sequencer.  */
1050    head = (s->fifo[n].state >> 4) & 0xf;
1051    if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
1052        s->ostat |= 1 << n;
1053        return;
1054    }
1055    s->fifo[n].data[head] = value;
1056    head = (head + 1) & 0xf;
1057    s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
1058    s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
1059    if ((s->fifo[n].state & 0xf) == head)
1060        s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
1061}
1062
1063static void stellaris_adc_update(stellaris_adc_state *s)
1064{
1065    int level;
1066    int n;
1067
1068    for (n = 0; n < 4; n++) {
1069        level = (s->ris & s->im & (1 << n)) != 0;
1070        qemu_set_irq(s->irq[n], level);
1071    }
1072}
1073
1074static void stellaris_adc_trigger(void *opaque, int irq, int level)
1075{
1076    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1077    int n;
1078
1079    for (n = 0; n < 4; n++) {
1080        if ((s->actss & (1 << n)) == 0) {
1081            continue;
1082        }
1083
1084        if (((s->emux >> (n * 4)) & 0xff) != 5) {
1085            continue;
1086        }
1087
1088        /* Some applications use the ADC as a random number source, so introduce
1089           some variation into the signal.  */
1090        s->noise = s->noise * 314159 + 1;
1091        /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1092        stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1093        s->ris |= (1 << n);
1094        stellaris_adc_update(s);
1095    }
1096}
1097
1098static void stellaris_adc_reset(stellaris_adc_state *s)
1099{
1100    int n;
1101
1102    for (n = 0; n < 4; n++) {
1103        s->ssmux[n] = 0;
1104        s->ssctl[n] = 0;
1105        s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1106    }
1107}
1108
1109static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1110                                   unsigned size)
1111{
1112    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1113
1114    /* TODO: Implement this.  */
1115    if (offset >= 0x40 && offset < 0xc0) {
1116        int n;
1117        n = (offset - 0x40) >> 5;
1118        switch (offset & 0x1f) {
1119        case 0x00: /* SSMUX */
1120            return s->ssmux[n];
1121        case 0x04: /* SSCTL */
1122            return s->ssctl[n];
1123        case 0x08: /* SSFIFO */
1124            return stellaris_adc_fifo_read(s, n);
1125        case 0x0c: /* SSFSTAT */
1126            return s->fifo[n].state;
1127        default:
1128            break;
1129        }
1130    }
1131    switch (offset) {
1132    case 0x00: /* ACTSS */
1133        return s->actss;
1134    case 0x04: /* RIS */
1135        return s->ris;
1136    case 0x08: /* IM */
1137        return s->im;
1138    case 0x0c: /* ISC */
1139        return s->ris & s->im;
1140    case 0x10: /* OSTAT */
1141        return s->ostat;
1142    case 0x14: /* EMUX */
1143        return s->emux;
1144    case 0x18: /* USTAT */
1145        return s->ustat;
1146    case 0x20: /* SSPRI */
1147        return s->sspri;
1148    case 0x30: /* SAC */
1149        return s->sac;
1150    default:
1151        qemu_log_mask(LOG_GUEST_ERROR,
1152                      "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1153        return 0;
1154    }
1155}
1156
1157static void stellaris_adc_write(void *opaque, hwaddr offset,
1158                                uint64_t value, unsigned size)
1159{
1160    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1161
1162    /* TODO: Implement this.  */
1163    if (offset >= 0x40 && offset < 0xc0) {
1164        int n;
1165        n = (offset - 0x40) >> 5;
1166        switch (offset & 0x1f) {
1167        case 0x00: /* SSMUX */
1168            s->ssmux[n] = value & 0x33333333;
1169            return;
1170        case 0x04: /* SSCTL */
1171            if (value != 6) {
1172                qemu_log_mask(LOG_UNIMP,
1173                              "ADC: Unimplemented sequence %" PRIx64 "\n",
1174                              value);
1175            }
1176            s->ssctl[n] = value;
1177            return;
1178        default:
1179            break;
1180        }
1181    }
1182    switch (offset) {
1183    case 0x00: /* ACTSS */
1184        s->actss = value & 0xf;
1185        break;
1186    case 0x08: /* IM */
1187        s->im = value;
1188        break;
1189    case 0x0c: /* ISC */
1190        s->ris &= ~value;
1191        break;
1192    case 0x10: /* OSTAT */
1193        s->ostat &= ~value;
1194        break;
1195    case 0x14: /* EMUX */
1196        s->emux = value;
1197        break;
1198    case 0x18: /* USTAT */
1199        s->ustat &= ~value;
1200        break;
1201    case 0x20: /* SSPRI */
1202        s->sspri = value;
1203        break;
1204    case 0x28: /* PSSI */
1205        qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1206        break;
1207    case 0x30: /* SAC */
1208        s->sac = value;
1209        break;
1210    default:
1211        qemu_log_mask(LOG_GUEST_ERROR,
1212                      "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1213    }
1214    stellaris_adc_update(s);
1215}
1216
1217static const MemoryRegionOps stellaris_adc_ops = {
1218    .read = stellaris_adc_read,
1219    .write = stellaris_adc_write,
1220    .endianness = DEVICE_NATIVE_ENDIAN,
1221};
1222
1223static const VMStateDescription vmstate_stellaris_adc = {
1224    .name = "stellaris_adc",
1225    .version_id = 1,
1226    .minimum_version_id = 1,
1227    .fields = (VMStateField[]) {
1228        VMSTATE_UINT32(actss, stellaris_adc_state),
1229        VMSTATE_UINT32(ris, stellaris_adc_state),
1230        VMSTATE_UINT32(im, stellaris_adc_state),
1231        VMSTATE_UINT32(emux, stellaris_adc_state),
1232        VMSTATE_UINT32(ostat, stellaris_adc_state),
1233        VMSTATE_UINT32(ustat, stellaris_adc_state),
1234        VMSTATE_UINT32(sspri, stellaris_adc_state),
1235        VMSTATE_UINT32(sac, stellaris_adc_state),
1236        VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1237        VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1238        VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1239        VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1240        VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1241        VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1242        VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1243        VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1244        VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1245        VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1246        VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1247        VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1248        VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1249        VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1250        VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1251        VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1252        VMSTATE_UINT32(noise, stellaris_adc_state),
1253        VMSTATE_END_OF_LIST()
1254    }
1255};
1256
1257static void stellaris_adc_init(Object *obj)
1258{
1259    DeviceState *dev = DEVICE(obj);
1260    stellaris_adc_state *s = STELLARIS_ADC(obj);
1261    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1262    int n;
1263
1264    for (n = 0; n < 4; n++) {
1265        sysbus_init_irq(sbd, &s->irq[n]);
1266    }
1267
1268    memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1269                          "adc", 0x1000);
1270    sysbus_init_mmio(sbd, &s->iomem);
1271    stellaris_adc_reset(s);
1272    qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1273}
1274
1275/* Board init.  */
1276static stellaris_board_info stellaris_boards[] = {
1277  { "LM3S811EVB",
1278    0,
1279    0x0032000e,
1280    0x001f001f, /* dc0 */
1281    0x001132bf,
1282    0x01071013,
1283    0x3f0f01ff,
1284    0x0000001f,
1285    BP_OLED_I2C
1286  },
1287  { "LM3S6965EVB",
1288    0x10010002,
1289    0x1073402e,
1290    0x00ff007f, /* dc0 */
1291    0x001133ff,
1292    0x030f5317,
1293    0x0f0f87ff,
1294    0x5000007f,
1295    BP_OLED_SSI | BP_GAMEPAD
1296  }
1297};
1298
1299static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1300{
1301    static const int uart_irq[] = {5, 6, 33, 34};
1302    static const int timer_irq[] = {19, 21, 23, 35};
1303    static const uint32_t gpio_addr[7] =
1304      { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1305        0x40024000, 0x40025000, 0x40026000};
1306    static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1307
1308    /* Memory map of SoC devices, from
1309     * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1310     * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1311     *
1312     * 40000000 wdtimer
1313     * 40002000 i2c (unimplemented)
1314     * 40004000 GPIO
1315     * 40005000 GPIO
1316     * 40006000 GPIO
1317     * 40007000 GPIO
1318     * 40008000 SSI
1319     * 4000c000 UART
1320     * 4000d000 UART
1321     * 4000e000 UART
1322     * 40020000 i2c
1323     * 40021000 i2c (unimplemented)
1324     * 40024000 GPIO
1325     * 40025000 GPIO
1326     * 40026000 GPIO
1327     * 40028000 PWM (unimplemented)
1328     * 4002c000 QEI (unimplemented)
1329     * 4002d000 QEI (unimplemented)
1330     * 40030000 gptimer
1331     * 40031000 gptimer
1332     * 40032000 gptimer
1333     * 40033000 gptimer
1334     * 40038000 ADC
1335     * 4003c000 analogue comparator (unimplemented)
1336     * 40048000 ethernet
1337     * 400fc000 hibernation module (unimplemented)
1338     * 400fd000 flash memory control (unimplemented)
1339     * 400fe000 system control
1340     */
1341
1342    DeviceState *gpio_dev[7], *nvic;
1343    qemu_irq gpio_in[7][8];
1344    qemu_irq gpio_out[7][8];
1345    qemu_irq adc;
1346    int sram_size;
1347    int flash_size;
1348    I2CBus *i2c;
1349    DeviceState *dev;
1350    DeviceState *ssys_dev;
1351    int i;
1352    int j;
1353
1354    MemoryRegion *sram = g_new(MemoryRegion, 1);
1355    MemoryRegion *flash = g_new(MemoryRegion, 1);
1356    MemoryRegion *system_memory = get_system_memory();
1357
1358    flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1359    sram_size = ((board->dc0 >> 18) + 1) * 1024;
1360
1361    /* Flash programming is done via the SCU, so pretend it is ROM.  */
1362    memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1363                           &error_fatal);
1364    memory_region_add_subregion(system_memory, 0, flash);
1365
1366    memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1367                           &error_fatal);
1368    memory_region_add_subregion(system_memory, 0x20000000, sram);
1369
1370    nvic = qdev_new(TYPE_ARMV7M);
1371    qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1372    qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1373    qdev_prop_set_bit(nvic, "enable-bitband", true);
1374    object_property_set_link(OBJECT(nvic), "memory",
1375                             OBJECT(get_system_memory()), &error_abort);
1376    /* This will exit with an error if the user passed us a bad cpu_type */
1377    sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1378
1379    if (board->dc1 & (1 << 16)) {
1380        dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1381                                    qdev_get_gpio_in(nvic, 14),
1382                                    qdev_get_gpio_in(nvic, 15),
1383                                    qdev_get_gpio_in(nvic, 16),
1384                                    qdev_get_gpio_in(nvic, 17),
1385                                    NULL);
1386        adc = qdev_get_gpio_in(dev, 0);
1387    } else {
1388        adc = NULL;
1389    }
1390    for (i = 0; i < 4; i++) {
1391        if (board->dc2 & (0x10000 << i)) {
1392            dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1393                                       0x40030000 + i * 0x1000,
1394                                       qdev_get_gpio_in(nvic, timer_irq[i]));
1395            /* TODO: This is incorrect, but we get away with it because
1396               the ADC output is only ever pulsed.  */
1397            qdev_connect_gpio_out(dev, 0, adc);
1398        }
1399    }
1400
1401    ssys_dev = stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1402                                  board, nd_table[0].macaddr.a);
1403
1404
1405    if (board->dc1 & (1 << 3)) { /* watchdog present */
1406        dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1407
1408        qdev_connect_clock_in(dev, "WDOGCLK",
1409                              qdev_get_clock_out(ssys_dev, "SYSCLK"));
1410
1411        sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1412        sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1413                        0,
1414                        0x40000000u);
1415        sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1416                           0,
1417                           qdev_get_gpio_in(nvic, 18));
1418    }
1419
1420
1421    for (i = 0; i < 7; i++) {
1422        if (board->dc4 & (1 << i)) {
1423            gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1424                                               qdev_get_gpio_in(nvic,
1425                                                                gpio_irq[i]));
1426            for (j = 0; j < 8; j++) {
1427                gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1428                gpio_out[i][j] = NULL;
1429            }
1430        }
1431    }
1432
1433    if (board->dc2 & (1 << 12)) {
1434        dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1435                                   qdev_get_gpio_in(nvic, 8));
1436        i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1437        if (board->peripherals & BP_OLED_I2C) {
1438            i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1439        }
1440    }
1441
1442    for (i = 0; i < 4; i++) {
1443        if (board->dc2 & (1 << i)) {
1444            pl011_luminary_create(0x4000c000 + i * 0x1000,
1445                                  qdev_get_gpio_in(nvic, uart_irq[i]),
1446                                  serial_hd(i));
1447        }
1448    }
1449    if (board->dc2 & (1 << 4)) {
1450        dev = sysbus_create_simple("pl022", 0x40008000,
1451                                   qdev_get_gpio_in(nvic, 7));
1452        if (board->peripherals & BP_OLED_SSI) {
1453            void *bus;
1454            DeviceState *sddev;
1455            DeviceState *ssddev;
1456
1457            /* Some boards have both an OLED controller and SD card connected to
1458             * the same SSI port, with the SD card chip select connected to a
1459             * GPIO pin.  Technically the OLED chip select is connected to the
1460             * SSI Fss pin.  We do not bother emulating that as both devices
1461             * should never be selected simultaneously, and our OLED controller
1462             * ignores stray 0xff commands that occur when deselecting the SD
1463             * card.
1464             */
1465            bus = qdev_get_child_bus(dev, "ssi");
1466
1467            sddev = ssi_create_peripheral(bus, "ssi-sd");
1468            ssddev = ssi_create_peripheral(bus, "ssd0323");
1469            gpio_out[GPIO_D][0] = qemu_irq_split(
1470                    qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1471                    qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1472            gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1473
1474            /* Make sure the select pin is high.  */
1475            qemu_irq_raise(gpio_out[GPIO_D][0]);
1476        }
1477    }
1478    if (board->dc4 & (1 << 28)) {
1479        DeviceState *enet;
1480
1481        qemu_check_nic_model(&nd_table[0], "stellaris");
1482
1483        enet = qdev_new("stellaris_enet");
1484        qdev_set_nic_properties(enet, &nd_table[0]);
1485        sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1486        sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1487        sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1488    }
1489    if (board->peripherals & BP_GAMEPAD) {
1490        qemu_irq gpad_irq[5];
1491        static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1492
1493        gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1494        gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1495        gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1496        gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1497        gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1498
1499        stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1500    }
1501    for (i = 0; i < 7; i++) {
1502        if (board->dc4 & (1 << i)) {
1503            for (j = 0; j < 8; j++) {
1504                if (gpio_out[i][j]) {
1505                    qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1506                }
1507            }
1508        }
1509    }
1510
1511    /* Add dummy regions for the devices we don't implement yet,
1512     * so guest accesses don't cause unlogged crashes.
1513     */
1514    create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1515    create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1516    create_unimplemented_device("PWM", 0x40028000, 0x1000);
1517    create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1518    create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1519    create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1520    create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1521    create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1522
1523    armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1524}
1525
1526/* FIXME: Figure out how to generate these from stellaris_boards.  */
1527static void lm3s811evb_init(MachineState *machine)
1528{
1529    stellaris_init(machine, &stellaris_boards[0]);
1530}
1531
1532static void lm3s6965evb_init(MachineState *machine)
1533{
1534    stellaris_init(machine, &stellaris_boards[1]);
1535}
1536
1537static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1538{
1539    MachineClass *mc = MACHINE_CLASS(oc);
1540
1541    mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1542    mc->init = lm3s811evb_init;
1543    mc->ignore_memory_transaction_failures = true;
1544    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1545}
1546
1547static const TypeInfo lm3s811evb_type = {
1548    .name = MACHINE_TYPE_NAME("lm3s811evb"),
1549    .parent = TYPE_MACHINE,
1550    .class_init = lm3s811evb_class_init,
1551};
1552
1553static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1554{
1555    MachineClass *mc = MACHINE_CLASS(oc);
1556
1557    mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1558    mc->init = lm3s6965evb_init;
1559    mc->ignore_memory_transaction_failures = true;
1560    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1561}
1562
1563static const TypeInfo lm3s6965evb_type = {
1564    .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1565    .parent = TYPE_MACHINE,
1566    .class_init = lm3s6965evb_class_init,
1567};
1568
1569static void stellaris_machine_init(void)
1570{
1571    type_register_static(&lm3s811evb_type);
1572    type_register_static(&lm3s6965evb_type);
1573}
1574
1575type_init(stellaris_machine_init)
1576
1577static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1578{
1579    DeviceClass *dc = DEVICE_CLASS(klass);
1580
1581    dc->vmsd = &vmstate_stellaris_i2c;
1582}
1583
1584static const TypeInfo stellaris_i2c_info = {
1585    .name          = TYPE_STELLARIS_I2C,
1586    .parent        = TYPE_SYS_BUS_DEVICE,
1587    .instance_size = sizeof(stellaris_i2c_state),
1588    .instance_init = stellaris_i2c_init,
1589    .class_init    = stellaris_i2c_class_init,
1590};
1591
1592static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1593{
1594    DeviceClass *dc = DEVICE_CLASS(klass);
1595
1596    dc->vmsd = &vmstate_stellaris_gptm;
1597    dc->realize = stellaris_gptm_realize;
1598}
1599
1600static const TypeInfo stellaris_gptm_info = {
1601    .name          = TYPE_STELLARIS_GPTM,
1602    .parent        = TYPE_SYS_BUS_DEVICE,
1603    .instance_size = sizeof(gptm_state),
1604    .instance_init = stellaris_gptm_init,
1605    .class_init    = stellaris_gptm_class_init,
1606};
1607
1608static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1609{
1610    DeviceClass *dc = DEVICE_CLASS(klass);
1611
1612    dc->vmsd = &vmstate_stellaris_adc;
1613}
1614
1615static const TypeInfo stellaris_adc_info = {
1616    .name          = TYPE_STELLARIS_ADC,
1617    .parent        = TYPE_SYS_BUS_DEVICE,
1618    .instance_size = sizeof(stellaris_adc_state),
1619    .instance_init = stellaris_adc_init,
1620    .class_init    = stellaris_adc_class_init,
1621};
1622
1623static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1624{
1625    DeviceClass *dc = DEVICE_CLASS(klass);
1626    ResettableClass *rc = RESETTABLE_CLASS(klass);
1627
1628    dc->vmsd = &vmstate_stellaris_sys;
1629    rc->phases.enter = stellaris_sys_reset_enter;
1630    rc->phases.hold = stellaris_sys_reset_hold;
1631    rc->phases.exit = stellaris_sys_reset_exit;
1632    device_class_set_props(dc, stellaris_sys_properties);
1633}
1634
1635static const TypeInfo stellaris_sys_info = {
1636    .name = TYPE_STELLARIS_SYS,
1637    .parent = TYPE_SYS_BUS_DEVICE,
1638    .instance_size = sizeof(ssys_state),
1639    .instance_init = stellaris_sys_instance_init,
1640    .class_init = stellaris_sys_class_init,
1641};
1642
1643static void stellaris_register_types(void)
1644{
1645    type_register_static(&stellaris_i2c_info);
1646    type_register_static(&stellaris_gptm_info);
1647    type_register_static(&stellaris_adc_info);
1648    type_register_static(&stellaris_sys_info);
1649}
1650
1651type_init(stellaris_register_types)
1652