qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qemu-common.h"
  33#include "qemu/datadir.h"
  34#include "qemu/units.h"
  35#include "qemu/option.h"
  36#include "monitor/qdev.h"
  37#include "qapi/error.h"
  38#include "hw/sysbus.h"
  39#include "hw/boards.h"
  40#include "hw/arm/boot.h"
  41#include "hw/arm/primecell.h"
  42#include "hw/arm/virt.h"
  43#include "hw/block/flash.h"
  44#include "hw/vfio/vfio-calxeda-xgmac.h"
  45#include "hw/vfio/vfio-amd-xgbe.h"
  46#include "hw/display/ramfb.h"
  47#include "net/net.h"
  48#include "sysemu/device_tree.h"
  49#include "sysemu/numa.h"
  50#include "sysemu/runstate.h"
  51#include "sysemu/sysemu.h"
  52#include "sysemu/tpm.h"
  53#include "sysemu/kvm.h"
  54#include "hw/loader.h"
  55#include "exec/address-spaces.h"
  56#include "qemu/bitops.h"
  57#include "qemu/error-report.h"
  58#include "qemu/module.h"
  59#include "hw/pci-host/gpex.h"
  60#include "hw/virtio/virtio-pci.h"
  61#include "hw/arm/sysbus-fdt.h"
  62#include "hw/platform-bus.h"
  63#include "hw/qdev-properties.h"
  64#include "hw/arm/fdt.h"
  65#include "hw/intc/arm_gic.h"
  66#include "hw/intc/arm_gicv3_common.h"
  67#include "hw/irq.h"
  68#include "kvm_arm.h"
  69#include "hw/firmware/smbios.h"
  70#include "qapi/visitor.h"
  71#include "qapi/qapi-visit-common.h"
  72#include "standard-headers/linux/input.h"
  73#include "hw/arm/smmuv3.h"
  74#include "hw/acpi/acpi.h"
  75#include "target/arm/internals.h"
  76#include "hw/mem/pc-dimm.h"
  77#include "hw/mem/nvdimm.h"
  78#include "hw/acpi/generic_event_device.h"
  79#include "hw/virtio/virtio-iommu.h"
  80#include "hw/char/pl011.h"
  81#include "qemu/guest-random.h"
  82
  83#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
  84    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
  85                                                    void *data) \
  86    { \
  87        MachineClass *mc = MACHINE_CLASS(oc); \
  88        virt_machine_##major##_##minor##_options(mc); \
  89        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
  90        if (latest) { \
  91            mc->alias = "virt"; \
  92        } \
  93    } \
  94    static const TypeInfo machvirt_##major##_##minor##_info = { \
  95        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
  96        .parent = TYPE_VIRT_MACHINE, \
  97        .class_init = virt_##major##_##minor##_class_init, \
  98    }; \
  99    static void machvirt_machine_##major##_##minor##_init(void) \
 100    { \
 101        type_register_static(&machvirt_##major##_##minor##_info); \
 102    } \
 103    type_init(machvirt_machine_##major##_##minor##_init);
 104
 105#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
 106    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
 107#define DEFINE_VIRT_MACHINE(major, minor) \
 108    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
 109
 110
 111/* Number of external interrupt lines to configure the GIC with */
 112#define NUM_IRQS 256
 113
 114#define PLATFORM_BUS_NUM_IRQS 64
 115
 116/* Legacy RAM limit in GB (< version 4.0) */
 117#define LEGACY_RAMLIMIT_GB 255
 118#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
 119
 120/* Addresses and sizes of our components.
 121 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 122 * 128MB..256MB is used for miscellaneous device I/O.
 123 * 256MB..1GB is reserved for possible future PCI support (ie where the
 124 * PCI memory window will go if we add a PCI host controller).
 125 * 1GB and up is RAM (which may happily spill over into the
 126 * high memory region beyond 4GB).
 127 * This represents a compromise between how much RAM can be given to
 128 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 129 * Note that devices should generally be placed at multiples of 0x10000,
 130 * to accommodate guests using 64K pages.
 131 */
 132static const MemMapEntry base_memmap[] = {
 133    /* Space up to 0x8000000 is reserved for a boot ROM */
 134    [VIRT_FLASH] =              {          0, 0x08000000 },
 135    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 136    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 137    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 138    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 139    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 140    [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
 141    [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
 142    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 143    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 144    /* This redistributor space allows up to 2*64kB*123 CPUs */
 145    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 146    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 147    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 148    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 149    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 150    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 151    [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
 152    [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
 153    [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
 154    [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
 155    [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
 156    [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
 157    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 158    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 159    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 160    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 161    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 162    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 163    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 164    /* Actual RAM size depends on initial RAM and device memory settings */
 165    [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
 166};
 167
 168/*
 169 * Highmem IO Regions: This memory map is floating, located after the RAM.
 170 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
 171 * top of the RAM, so that its base get the same alignment as the size,
 172 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
 173 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
 174 * Note the extended_memmap is sized so that it eventually also includes the
 175 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
 176 * index of base_memmap).
 177 */
 178static MemMapEntry extended_memmap[] = {
 179    /* Additional 64 MB redist region (can contain up to 512 redistributors) */
 180    [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
 181    [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
 182    /* Second PCIe window */
 183    [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
 184};
 185
 186static const int a15irqmap[] = {
 187    [VIRT_UART] = 1,
 188    [VIRT_RTC] = 2,
 189    [VIRT_PCIE] = 3, /* ... to 6 */
 190    [VIRT_GPIO] = 7,
 191    [VIRT_SECURE_UART] = 8,
 192    [VIRT_ACPI_GED] = 9,
 193    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 194    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 195    [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
 196    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 197};
 198
 199static const char *valid_cpus[] = {
 200    ARM_CPU_TYPE_NAME("cortex-a7"),
 201    ARM_CPU_TYPE_NAME("cortex-a15"),
 202    ARM_CPU_TYPE_NAME("cortex-a53"),
 203    ARM_CPU_TYPE_NAME("cortex-a57"),
 204    ARM_CPU_TYPE_NAME("cortex-a72"),
 205    ARM_CPU_TYPE_NAME("host"),
 206    ARM_CPU_TYPE_NAME("max"),
 207};
 208
 209static bool cpu_type_valid(const char *cpu)
 210{
 211    int i;
 212
 213    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 214        if (strcmp(cpu, valid_cpus[i]) == 0) {
 215            return true;
 216        }
 217    }
 218    return false;
 219}
 220
 221static void create_kaslr_seed(MachineState *ms, const char *node)
 222{
 223    uint64_t seed;
 224
 225    if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
 226        return;
 227    }
 228    qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
 229}
 230
 231static void create_fdt(VirtMachineState *vms)
 232{
 233    MachineState *ms = MACHINE(vms);
 234    int nb_numa_nodes = ms->numa_state->num_nodes;
 235    void *fdt = create_device_tree(&vms->fdt_size);
 236
 237    if (!fdt) {
 238        error_report("create_device_tree() failed");
 239        exit(1);
 240    }
 241
 242    ms->fdt = fdt;
 243
 244    /* Header */
 245    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 246    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 247    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 248
 249    /* /chosen must exist for load_dtb to fill in necessary properties later */
 250    qemu_fdt_add_subnode(fdt, "/chosen");
 251    create_kaslr_seed(ms, "/chosen");
 252
 253    if (vms->secure) {
 254        qemu_fdt_add_subnode(fdt, "/secure-chosen");
 255        create_kaslr_seed(ms, "/secure-chosen");
 256    }
 257
 258    /* Clock node, for the benefit of the UART. The kernel device tree
 259     * binding documentation claims the PL011 node clock properties are
 260     * optional but in practice if you omit them the kernel refuses to
 261     * probe for the device.
 262     */
 263    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 264    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 265    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 266    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 267    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 268    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 269                                "clk24mhz");
 270    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 271
 272    if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
 273        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 274        uint32_t *matrix = g_malloc0(size);
 275        int idx, i, j;
 276
 277        for (i = 0; i < nb_numa_nodes; i++) {
 278            for (j = 0; j < nb_numa_nodes; j++) {
 279                idx = (i * nb_numa_nodes + j) * 3;
 280                matrix[idx + 0] = cpu_to_be32(i);
 281                matrix[idx + 1] = cpu_to_be32(j);
 282                matrix[idx + 2] =
 283                    cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
 284            }
 285        }
 286
 287        qemu_fdt_add_subnode(fdt, "/distance-map");
 288        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 289                                "numa-distance-map-v1");
 290        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 291                         matrix, size);
 292        g_free(matrix);
 293    }
 294}
 295
 296static void fdt_add_timer_nodes(const VirtMachineState *vms)
 297{
 298    /* On real hardware these interrupts are level-triggered.
 299     * On KVM they were edge-triggered before host kernel version 4.4,
 300     * and level-triggered afterwards.
 301     * On emulated QEMU they are level-triggered.
 302     *
 303     * Getting the DTB info about them wrong is awkward for some
 304     * guest kernels:
 305     *  pre-4.8 ignore the DT and leave the interrupt configured
 306     *   with whatever the GIC reset value (or the bootloader) left it at
 307     *  4.8 before rc6 honour the incorrect data by programming it back
 308     *   into the GIC, causing problems
 309     *  4.8rc6 and later ignore the DT and always write "level triggered"
 310     *   into the GIC
 311     *
 312     * For backwards-compatibility, virt-2.8 and earlier will continue
 313     * to say these are edge-triggered, but later machines will report
 314     * the correct information.
 315     */
 316    ARMCPU *armcpu;
 317    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 318    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 319    MachineState *ms = MACHINE(vms);
 320
 321    if (vmc->claim_edge_triggered_timers) {
 322        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 323    }
 324
 325    if (vms->gic_version == VIRT_GIC_VERSION_2) {
 326        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 327                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 328                             (1 << MACHINE(vms)->smp.cpus) - 1);
 329    }
 330
 331    qemu_fdt_add_subnode(ms->fdt, "/timer");
 332
 333    armcpu = ARM_CPU(qemu_get_cpu(0));
 334    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 335        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 336        qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
 337                         compat, sizeof(compat));
 338    } else {
 339        qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
 340                                "arm,armv7-timer");
 341    }
 342    qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
 343    qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
 344                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 345                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 346                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 347                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 348}
 349
 350static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 351{
 352    int cpu;
 353    int addr_cells = 1;
 354    const MachineState *ms = MACHINE(vms);
 355    int smp_cpus = ms->smp.cpus;
 356
 357    /*
 358     * From Documentation/devicetree/bindings/arm/cpus.txt
 359     *  On ARM v8 64-bit systems value should be set to 2,
 360     *  that corresponds to the MPIDR_EL1 register size.
 361     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 362     *  in the system, #address-cells can be set to 1, since
 363     *  MPIDR_EL1[63:32] bits are not used for CPUs
 364     *  identification.
 365     *
 366     *  Here we actually don't know whether our system is 32- or 64-bit one.
 367     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 368     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 369     */
 370    for (cpu = 0; cpu < smp_cpus; cpu++) {
 371        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 372
 373        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 374            addr_cells = 2;
 375            break;
 376        }
 377    }
 378
 379    qemu_fdt_add_subnode(ms->fdt, "/cpus");
 380    qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
 381    qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
 382
 383    for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
 384        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 385        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 386        CPUState *cs = CPU(armcpu);
 387
 388        qemu_fdt_add_subnode(ms->fdt, nodename);
 389        qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
 390        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 391                                    armcpu->dtb_compatible);
 392
 393        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
 394            qemu_fdt_setprop_string(ms->fdt, nodename,
 395                                        "enable-method", "psci");
 396        }
 397
 398        if (addr_cells == 2) {
 399            qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
 400                                 armcpu->mp_affinity);
 401        } else {
 402            qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
 403                                  armcpu->mp_affinity);
 404        }
 405
 406        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 407            qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
 408                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 409        }
 410
 411        g_free(nodename);
 412    }
 413}
 414
 415static void fdt_add_its_gic_node(VirtMachineState *vms)
 416{
 417    char *nodename;
 418    MachineState *ms = MACHINE(vms);
 419
 420    vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
 421    nodename = g_strdup_printf("/intc/its@%" PRIx64,
 422                               vms->memmap[VIRT_GIC_ITS].base);
 423    qemu_fdt_add_subnode(ms->fdt, nodename);
 424    qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 425                            "arm,gic-v3-its");
 426    qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
 427    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 428                                 2, vms->memmap[VIRT_GIC_ITS].base,
 429                                 2, vms->memmap[VIRT_GIC_ITS].size);
 430    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
 431    g_free(nodename);
 432}
 433
 434static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 435{
 436    MachineState *ms = MACHINE(vms);
 437    char *nodename;
 438
 439    nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
 440                               vms->memmap[VIRT_GIC_V2M].base);
 441    vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
 442    qemu_fdt_add_subnode(ms->fdt, nodename);
 443    qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 444                            "arm,gic-v2m-frame");
 445    qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
 446    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 447                                 2, vms->memmap[VIRT_GIC_V2M].base,
 448                                 2, vms->memmap[VIRT_GIC_V2M].size);
 449    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
 450    g_free(nodename);
 451}
 452
 453static void fdt_add_gic_node(VirtMachineState *vms)
 454{
 455    MachineState *ms = MACHINE(vms);
 456    char *nodename;
 457
 458    vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
 459    qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 460
 461    nodename = g_strdup_printf("/intc@%" PRIx64,
 462                               vms->memmap[VIRT_GIC_DIST].base);
 463    qemu_fdt_add_subnode(ms->fdt, nodename);
 464    qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
 465    qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
 466    qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
 467    qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
 468    qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
 469    if (vms->gic_version == VIRT_GIC_VERSION_3) {
 470        int nb_redist_regions = virt_gicv3_redist_region_count(vms);
 471
 472        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 473                                "arm,gic-v3");
 474
 475        qemu_fdt_setprop_cell(ms->fdt, nodename,
 476                              "#redistributor-regions", nb_redist_regions);
 477
 478        if (nb_redist_regions == 1) {
 479            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 480                                         2, vms->memmap[VIRT_GIC_DIST].base,
 481                                         2, vms->memmap[VIRT_GIC_DIST].size,
 482                                         2, vms->memmap[VIRT_GIC_REDIST].base,
 483                                         2, vms->memmap[VIRT_GIC_REDIST].size);
 484        } else {
 485            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 486                                 2, vms->memmap[VIRT_GIC_DIST].base,
 487                                 2, vms->memmap[VIRT_GIC_DIST].size,
 488                                 2, vms->memmap[VIRT_GIC_REDIST].base,
 489                                 2, vms->memmap[VIRT_GIC_REDIST].size,
 490                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
 491                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
 492        }
 493
 494        if (vms->virt) {
 495            qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 496                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 497                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 498        }
 499    } else {
 500        /* 'cortex-a15-gic' means 'GIC v2' */
 501        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 502                                "arm,cortex-a15-gic");
 503        if (!vms->virt) {
 504            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 505                                         2, vms->memmap[VIRT_GIC_DIST].base,
 506                                         2, vms->memmap[VIRT_GIC_DIST].size,
 507                                         2, vms->memmap[VIRT_GIC_CPU].base,
 508                                         2, vms->memmap[VIRT_GIC_CPU].size);
 509        } else {
 510            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 511                                         2, vms->memmap[VIRT_GIC_DIST].base,
 512                                         2, vms->memmap[VIRT_GIC_DIST].size,
 513                                         2, vms->memmap[VIRT_GIC_CPU].base,
 514                                         2, vms->memmap[VIRT_GIC_CPU].size,
 515                                         2, vms->memmap[VIRT_GIC_HYP].base,
 516                                         2, vms->memmap[VIRT_GIC_HYP].size,
 517                                         2, vms->memmap[VIRT_GIC_VCPU].base,
 518                                         2, vms->memmap[VIRT_GIC_VCPU].size);
 519            qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 520                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 521                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 522        }
 523    }
 524
 525    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
 526    g_free(nodename);
 527}
 528
 529static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 530{
 531    ARMCPU *armcpu = ARM_CPU(first_cpu);
 532    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 533    MachineState *ms = MACHINE(vms);
 534
 535    if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
 536        assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
 537        return;
 538    }
 539
 540    if (vms->gic_version == VIRT_GIC_VERSION_2) {
 541        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 542                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 543                             (1 << MACHINE(vms)->smp.cpus) - 1);
 544    }
 545
 546    qemu_fdt_add_subnode(ms->fdt, "/pmu");
 547    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 548        const char compat[] = "arm,armv8-pmuv3";
 549        qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
 550                         compat, sizeof(compat));
 551        qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
 552                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 553    }
 554}
 555
 556static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
 557{
 558    DeviceState *dev;
 559    MachineState *ms = MACHINE(vms);
 560    int irq = vms->irqmap[VIRT_ACPI_GED];
 561    uint32_t event = ACPI_GED_PWR_DOWN_EVT;
 562
 563    if (ms->ram_slots) {
 564        event |= ACPI_GED_MEM_HOTPLUG_EVT;
 565    }
 566
 567    if (ms->nvdimms_state->is_enabled) {
 568        event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
 569    }
 570
 571    dev = qdev_new(TYPE_ACPI_GED);
 572    qdev_prop_set_uint32(dev, "ged-event", event);
 573
 574    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
 575    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
 576    sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
 577
 578    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 579
 580    return dev;
 581}
 582
 583static void create_its(VirtMachineState *vms)
 584{
 585    const char *itsclass = its_class_name();
 586    DeviceState *dev;
 587
 588    if (!itsclass) {
 589        /* Do nothing if not supported */
 590        return;
 591    }
 592
 593    dev = qdev_new(itsclass);
 594
 595    object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
 596                             &error_abort);
 597    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 598    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 599
 600    fdt_add_its_gic_node(vms);
 601    vms->msi_controller = VIRT_MSI_CTRL_ITS;
 602}
 603
 604static void create_v2m(VirtMachineState *vms)
 605{
 606    int i;
 607    int irq = vms->irqmap[VIRT_GIC_V2M];
 608    DeviceState *dev;
 609
 610    dev = qdev_new("arm-gicv2m");
 611    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 612    qdev_prop_set_uint32(dev, "base-spi", irq);
 613    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 614    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 615
 616    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 617        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
 618                           qdev_get_gpio_in(vms->gic, irq + i));
 619    }
 620
 621    fdt_add_v2m_gic_node(vms);
 622    vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
 623}
 624
 625static void create_gic(VirtMachineState *vms)
 626{
 627    MachineState *ms = MACHINE(vms);
 628    /* We create a standalone GIC */
 629    SysBusDevice *gicbusdev;
 630    const char *gictype;
 631    int type = vms->gic_version, i;
 632    unsigned int smp_cpus = ms->smp.cpus;
 633    uint32_t nb_redist_regions = 0;
 634
 635    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 636
 637    vms->gic = qdev_new(gictype);
 638    qdev_prop_set_uint32(vms->gic, "revision", type);
 639    qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
 640    /* Note that the num-irq property counts both internal and external
 641     * interrupts; there are always 32 of the former (mandated by GIC spec).
 642     */
 643    qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
 644    if (!kvm_irqchip_in_kernel()) {
 645        qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
 646    }
 647
 648    if (type == 3) {
 649        uint32_t redist0_capacity =
 650                    vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
 651        uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
 652
 653        nb_redist_regions = virt_gicv3_redist_region_count(vms);
 654
 655        qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
 656                             nb_redist_regions);
 657        qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
 658
 659        if (nb_redist_regions == 2) {
 660            uint32_t redist1_capacity =
 661                    vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
 662
 663            qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
 664                MIN(smp_cpus - redist0_count, redist1_capacity));
 665        }
 666    } else {
 667        if (!kvm_irqchip_in_kernel()) {
 668            qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
 669                              vms->virt);
 670        }
 671    }
 672    gicbusdev = SYS_BUS_DEVICE(vms->gic);
 673    sysbus_realize_and_unref(gicbusdev, &error_fatal);
 674    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 675    if (type == 3) {
 676        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 677        if (nb_redist_regions == 2) {
 678            sysbus_mmio_map(gicbusdev, 2,
 679                            vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
 680        }
 681    } else {
 682        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 683        if (vms->virt) {
 684            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
 685            sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
 686        }
 687    }
 688
 689    /* Wire the outputs from each CPU's generic timer and the GICv3
 690     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 691     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 692     */
 693    for (i = 0; i < smp_cpus; i++) {
 694        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 695        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 696        int irq;
 697        /* Mapping from the output timer irq lines from the CPU to the
 698         * GIC PPI inputs we use for the virt board.
 699         */
 700        const int timer_irq[] = {
 701            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 702            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 703            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 704            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 705        };
 706
 707        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 708            qdev_connect_gpio_out(cpudev, irq,
 709                                  qdev_get_gpio_in(vms->gic,
 710                                                   ppibase + timer_irq[irq]));
 711        }
 712
 713        if (type == 3) {
 714            qemu_irq irq = qdev_get_gpio_in(vms->gic,
 715                                            ppibase + ARCH_GIC_MAINT_IRQ);
 716            qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
 717                                        0, irq);
 718        } else if (vms->virt) {
 719            qemu_irq irq = qdev_get_gpio_in(vms->gic,
 720                                            ppibase + ARCH_GIC_MAINT_IRQ);
 721            sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
 722        }
 723
 724        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 725                                    qdev_get_gpio_in(vms->gic, ppibase
 726                                                     + VIRTUAL_PMU_IRQ));
 727
 728        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 729        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 730                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 731        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 732                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 733        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 734                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 735    }
 736
 737    fdt_add_gic_node(vms);
 738
 739    if (type == 3 && vms->its) {
 740        create_its(vms);
 741    } else if (type == 2) {
 742        create_v2m(vms);
 743    }
 744}
 745
 746static void create_uart(const VirtMachineState *vms, int uart,
 747                        MemoryRegion *mem, Chardev *chr)
 748{
 749    char *nodename;
 750    hwaddr base = vms->memmap[uart].base;
 751    hwaddr size = vms->memmap[uart].size;
 752    int irq = vms->irqmap[uart];
 753    const char compat[] = "arm,pl011\0arm,primecell";
 754    const char clocknames[] = "uartclk\0apb_pclk";
 755    DeviceState *dev = qdev_new(TYPE_PL011);
 756    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 757    MachineState *ms = MACHINE(vms);
 758
 759    qdev_prop_set_chr(dev, "chardev", chr);
 760    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 761    memory_region_add_subregion(mem, base,
 762                                sysbus_mmio_get_region(s, 0));
 763    sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
 764
 765    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 766    qemu_fdt_add_subnode(ms->fdt, nodename);
 767    /* Note that we can't use setprop_string because of the embedded NUL */
 768    qemu_fdt_setprop(ms->fdt, nodename, "compatible",
 769                         compat, sizeof(compat));
 770    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 771                                     2, base, 2, size);
 772    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 773                               GIC_FDT_IRQ_TYPE_SPI, irq,
 774                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 775    qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
 776                               vms->clock_phandle, vms->clock_phandle);
 777    qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
 778                         clocknames, sizeof(clocknames));
 779
 780    if (uart == VIRT_UART) {
 781        qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
 782    } else {
 783        /* Mark as not usable by the normal world */
 784        qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
 785        qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
 786
 787        qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
 788                                nodename);
 789    }
 790
 791    g_free(nodename);
 792}
 793
 794static void create_rtc(const VirtMachineState *vms)
 795{
 796    char *nodename;
 797    hwaddr base = vms->memmap[VIRT_RTC].base;
 798    hwaddr size = vms->memmap[VIRT_RTC].size;
 799    int irq = vms->irqmap[VIRT_RTC];
 800    const char compat[] = "arm,pl031\0arm,primecell";
 801    MachineState *ms = MACHINE(vms);
 802
 803    sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
 804
 805    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 806    qemu_fdt_add_subnode(ms->fdt, nodename);
 807    qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
 808    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 809                                 2, base, 2, size);
 810    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 811                           GIC_FDT_IRQ_TYPE_SPI, irq,
 812                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 813    qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
 814    qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
 815    g_free(nodename);
 816}
 817
 818static DeviceState *gpio_key_dev;
 819static void virt_powerdown_req(Notifier *n, void *opaque)
 820{
 821    VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
 822
 823    if (s->acpi_dev) {
 824        acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
 825    } else {
 826        /* use gpio Pin 3 for power button event */
 827        qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 828    }
 829}
 830
 831static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
 832                             uint32_t phandle)
 833{
 834    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 835                                        qdev_get_gpio_in(pl061_dev, 3));
 836
 837    qemu_fdt_add_subnode(fdt, "/gpio-keys");
 838    qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
 839    qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
 840    qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
 841
 842    qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
 843    qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
 844                            "label", "GPIO Key Poweroff");
 845    qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
 846                          KEY_POWER);
 847    qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
 848                           "gpios", phandle, 3, 0);
 849}
 850
 851#define SECURE_GPIO_POWEROFF 0
 852#define SECURE_GPIO_RESET    1
 853
 854static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
 855                                   uint32_t phandle)
 856{
 857    DeviceState *gpio_pwr_dev;
 858
 859    /* gpio-pwr */
 860    gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
 861
 862    /* connect secure pl061 to gpio-pwr */
 863    qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
 864                          qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
 865    qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
 866                          qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
 867
 868    qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
 869    qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
 870                            "gpio-poweroff");
 871    qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
 872                           "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
 873    qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
 874    qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
 875                            "okay");
 876
 877    qemu_fdt_add_subnode(fdt, "/gpio-restart");
 878    qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
 879                            "gpio-restart");
 880    qemu_fdt_setprop_cells(fdt, "/gpio-restart",
 881                           "gpios", phandle, SECURE_GPIO_RESET, 0);
 882    qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
 883    qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
 884                            "okay");
 885}
 886
 887static void create_gpio_devices(const VirtMachineState *vms, int gpio,
 888                                MemoryRegion *mem)
 889{
 890    char *nodename;
 891    DeviceState *pl061_dev;
 892    hwaddr base = vms->memmap[gpio].base;
 893    hwaddr size = vms->memmap[gpio].size;
 894    int irq = vms->irqmap[gpio];
 895    const char compat[] = "arm,pl061\0arm,primecell";
 896    SysBusDevice *s;
 897    MachineState *ms = MACHINE(vms);
 898
 899    pl061_dev = qdev_new("pl061");
 900    s = SYS_BUS_DEVICE(pl061_dev);
 901    sysbus_realize_and_unref(s, &error_fatal);
 902    memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
 903    sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
 904
 905    uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
 906    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 907    qemu_fdt_add_subnode(ms->fdt, nodename);
 908    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 909                                 2, base, 2, size);
 910    qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
 911    qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
 912    qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
 913    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 914                           GIC_FDT_IRQ_TYPE_SPI, irq,
 915                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 916    qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
 917    qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
 918    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
 919
 920    if (gpio != VIRT_GPIO) {
 921        /* Mark as not usable by the normal world */
 922        qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
 923        qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
 924    }
 925    g_free(nodename);
 926
 927    /* Child gpio devices */
 928    if (gpio == VIRT_GPIO) {
 929        create_gpio_keys(ms->fdt, pl061_dev, phandle);
 930    } else {
 931        create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
 932    }
 933}
 934
 935static void create_virtio_devices(const VirtMachineState *vms)
 936{
 937    int i;
 938    hwaddr size = vms->memmap[VIRT_MMIO].size;
 939    MachineState *ms = MACHINE(vms);
 940
 941    /* We create the transports in forwards order. Since qbus_realize()
 942     * prepends (not appends) new child buses, the incrementing loop below will
 943     * create a list of virtio-mmio buses with decreasing base addresses.
 944     *
 945     * When a -device option is processed from the command line,
 946     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 947     * order. The upshot is that -device options in increasing command line
 948     * order are mapped to virtio-mmio buses with decreasing base addresses.
 949     *
 950     * When this code was originally written, that arrangement ensured that the
 951     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 952     * the first -device on the command line. (The end-to-end order is a
 953     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 954     * guest kernel's name-to-address assignment strategy.)
 955     *
 956     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 957     * the message, if not necessarily the code, of commit 70161ff336.
 958     * Therefore the loop now establishes the inverse of the original intent.
 959     *
 960     * Unfortunately, we can't counteract the kernel change by reversing the
 961     * loop; it would break existing command lines.
 962     *
 963     * In any case, the kernel makes no guarantee about the stability of
 964     * enumeration order of virtio devices (as demonstrated by it changing
 965     * between kernel versions). For reliable and stable identification
 966     * of disks users must use UUIDs or similar mechanisms.
 967     */
 968    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 969        int irq = vms->irqmap[VIRT_MMIO] + i;
 970        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 971
 972        sysbus_create_simple("virtio-mmio", base,
 973                             qdev_get_gpio_in(vms->gic, irq));
 974    }
 975
 976    /* We add dtb nodes in reverse order so that they appear in the finished
 977     * device tree lowest address first.
 978     *
 979     * Note that this mapping is independent of the loop above. The previous
 980     * loop influences virtio device to virtio transport assignment, whereas
 981     * this loop controls how virtio transports are laid out in the dtb.
 982     */
 983    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 984        char *nodename;
 985        int irq = vms->irqmap[VIRT_MMIO] + i;
 986        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 987
 988        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 989        qemu_fdt_add_subnode(ms->fdt, nodename);
 990        qemu_fdt_setprop_string(ms->fdt, nodename,
 991                                "compatible", "virtio,mmio");
 992        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 993                                     2, base, 2, size);
 994        qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 995                               GIC_FDT_IRQ_TYPE_SPI, irq,
 996                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 997        qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
 998        g_free(nodename);
 999    }
1000}
1001
1002#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1003
1004static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1005                                        const char *name,
1006                                        const char *alias_prop_name)
1007{
1008    /*
1009     * Create a single flash device.  We use the same parameters as
1010     * the flash devices on the Versatile Express board.
1011     */
1012    DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1013
1014    qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1015    qdev_prop_set_uint8(dev, "width", 4);
1016    qdev_prop_set_uint8(dev, "device-width", 2);
1017    qdev_prop_set_bit(dev, "big-endian", false);
1018    qdev_prop_set_uint16(dev, "id0", 0x89);
1019    qdev_prop_set_uint16(dev, "id1", 0x18);
1020    qdev_prop_set_uint16(dev, "id2", 0x00);
1021    qdev_prop_set_uint16(dev, "id3", 0x00);
1022    qdev_prop_set_string(dev, "name", name);
1023    object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1024    object_property_add_alias(OBJECT(vms), alias_prop_name,
1025                              OBJECT(dev), "drive");
1026    return PFLASH_CFI01(dev);
1027}
1028
1029static void virt_flash_create(VirtMachineState *vms)
1030{
1031    vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1032    vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1033}
1034
1035static void virt_flash_map1(PFlashCFI01 *flash,
1036                            hwaddr base, hwaddr size,
1037                            MemoryRegion *sysmem)
1038{
1039    DeviceState *dev = DEVICE(flash);
1040
1041    assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1042    assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1043    qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1044    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1045
1046    memory_region_add_subregion(sysmem, base,
1047                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1048                                                       0));
1049}
1050
1051static void virt_flash_map(VirtMachineState *vms,
1052                           MemoryRegion *sysmem,
1053                           MemoryRegion *secure_sysmem)
1054{
1055    /*
1056     * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1057     * sysmem is the system memory space. secure_sysmem is the secure view
1058     * of the system, and the first flash device should be made visible only
1059     * there. The second flash device is visible to both secure and nonsecure.
1060     * If sysmem == secure_sysmem this means there is no separate Secure
1061     * address space and both flash devices are generally visible.
1062     */
1063    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1064    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1065
1066    virt_flash_map1(vms->flash[0], flashbase, flashsize,
1067                    secure_sysmem);
1068    virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1069                    sysmem);
1070}
1071
1072static void virt_flash_fdt(VirtMachineState *vms,
1073                           MemoryRegion *sysmem,
1074                           MemoryRegion *secure_sysmem)
1075{
1076    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1077    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1078    MachineState *ms = MACHINE(vms);
1079    char *nodename;
1080
1081    if (sysmem == secure_sysmem) {
1082        /* Report both flash devices as a single node in the DT */
1083        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1084        qemu_fdt_add_subnode(ms->fdt, nodename);
1085        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1086        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1087                                     2, flashbase, 2, flashsize,
1088                                     2, flashbase + flashsize, 2, flashsize);
1089        qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1090        g_free(nodename);
1091    } else {
1092        /*
1093         * Report the devices as separate nodes so we can mark one as
1094         * only visible to the secure world.
1095         */
1096        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1097        qemu_fdt_add_subnode(ms->fdt, nodename);
1098        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1099        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1100                                     2, flashbase, 2, flashsize);
1101        qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1102        qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1103        qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1104        g_free(nodename);
1105
1106        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1107        qemu_fdt_add_subnode(ms->fdt, nodename);
1108        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1109        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1110                                     2, flashbase + flashsize, 2, flashsize);
1111        qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1112        g_free(nodename);
1113    }
1114}
1115
1116static bool virt_firmware_init(VirtMachineState *vms,
1117                               MemoryRegion *sysmem,
1118                               MemoryRegion *secure_sysmem)
1119{
1120    int i;
1121    const char *bios_name;
1122    BlockBackend *pflash_blk0;
1123
1124    /* Map legacy -drive if=pflash to machine properties */
1125    for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1126        pflash_cfi01_legacy_drive(vms->flash[i],
1127                                  drive_get(IF_PFLASH, 0, i));
1128    }
1129
1130    virt_flash_map(vms, sysmem, secure_sysmem);
1131
1132    pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1133
1134    bios_name = MACHINE(vms)->firmware;
1135    if (bios_name) {
1136        char *fname;
1137        MemoryRegion *mr;
1138        int image_size;
1139
1140        if (pflash_blk0) {
1141            error_report("The contents of the first flash device may be "
1142                         "specified with -bios or with -drive if=pflash... "
1143                         "but you cannot use both options at once");
1144            exit(1);
1145        }
1146
1147        /* Fall back to -bios */
1148
1149        fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1150        if (!fname) {
1151            error_report("Could not find ROM image '%s'", bios_name);
1152            exit(1);
1153        }
1154        mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1155        image_size = load_image_mr(fname, mr);
1156        g_free(fname);
1157        if (image_size < 0) {
1158            error_report("Could not load ROM image '%s'", bios_name);
1159            exit(1);
1160        }
1161    }
1162
1163    return pflash_blk0 || bios_name;
1164}
1165
1166static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1167{
1168    MachineState *ms = MACHINE(vms);
1169    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1170    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1171    FWCfgState *fw_cfg;
1172    char *nodename;
1173
1174    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1175    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1176
1177    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1178    qemu_fdt_add_subnode(ms->fdt, nodename);
1179    qemu_fdt_setprop_string(ms->fdt, nodename,
1180                            "compatible", "qemu,fw-cfg-mmio");
1181    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1182                                 2, base, 2, size);
1183    qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1184    g_free(nodename);
1185    return fw_cfg;
1186}
1187
1188static void create_pcie_irq_map(const MachineState *ms,
1189                                uint32_t gic_phandle,
1190                                int first_irq, const char *nodename)
1191{
1192    int devfn, pin;
1193    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1194    uint32_t *irq_map = full_irq_map;
1195
1196    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1197        for (pin = 0; pin < 4; pin++) {
1198            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1199            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1200            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1201            int i;
1202
1203            uint32_t map[] = {
1204                devfn << 8, 0, 0,                           /* devfn */
1205                pin + 1,                                    /* PCI pin */
1206                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1207
1208            /* Convert map to big endian */
1209            for (i = 0; i < 10; i++) {
1210                irq_map[i] = cpu_to_be32(map[i]);
1211            }
1212            irq_map += 10;
1213        }
1214    }
1215
1216    qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1217                     full_irq_map, sizeof(full_irq_map));
1218
1219    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1220                           cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1221                           0, 0,
1222                           0x7           /* PCI irq */);
1223}
1224
1225static void create_smmu(const VirtMachineState *vms,
1226                        PCIBus *bus)
1227{
1228    char *node;
1229    const char compat[] = "arm,smmu-v3";
1230    int irq =  vms->irqmap[VIRT_SMMU];
1231    int i;
1232    hwaddr base = vms->memmap[VIRT_SMMU].base;
1233    hwaddr size = vms->memmap[VIRT_SMMU].size;
1234    const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1235    DeviceState *dev;
1236    MachineState *ms = MACHINE(vms);
1237
1238    if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1239        return;
1240    }
1241
1242    dev = qdev_new("arm-smmuv3");
1243
1244    object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1245                             &error_abort);
1246    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1247    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1248    for (i = 0; i < NUM_SMMU_IRQS; i++) {
1249        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1250                           qdev_get_gpio_in(vms->gic, irq + i));
1251    }
1252
1253    node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1254    qemu_fdt_add_subnode(ms->fdt, node);
1255    qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1256    qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1257
1258    qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1259            GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1260            GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1261            GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1262            GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1263
1264    qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1265                     sizeof(irq_names));
1266
1267    qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1268    qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1269    qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1270
1271    qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1272
1273    qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1274    g_free(node);
1275}
1276
1277static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1278{
1279    const char compat[] = "virtio,pci-iommu";
1280    uint16_t bdf = vms->virtio_iommu_bdf;
1281    MachineState *ms = MACHINE(vms);
1282    char *node;
1283
1284    vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1285
1286    node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1287    qemu_fdt_add_subnode(ms->fdt, node);
1288    qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1289    qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1290                                 1, bdf << 8, 1, 0, 1, 0,
1291                                 1, 0, 1, 0);
1292
1293    qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1294    qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1295    g_free(node);
1296
1297    qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1298                           0x0, vms->iommu_phandle, 0x0, bdf,
1299                           bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1300}
1301
1302static void create_pcie(VirtMachineState *vms)
1303{
1304    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1305    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1306    hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1307    hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1308    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1309    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1310    hwaddr base_ecam, size_ecam;
1311    hwaddr base = base_mmio;
1312    int nr_pcie_buses;
1313    int irq = vms->irqmap[VIRT_PCIE];
1314    MemoryRegion *mmio_alias;
1315    MemoryRegion *mmio_reg;
1316    MemoryRegion *ecam_alias;
1317    MemoryRegion *ecam_reg;
1318    DeviceState *dev;
1319    char *nodename;
1320    int i, ecam_id;
1321    PCIHostState *pci;
1322    MachineState *ms = MACHINE(vms);
1323
1324    dev = qdev_new(TYPE_GPEX_HOST);
1325    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1326
1327    ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1328    base_ecam = vms->memmap[ecam_id].base;
1329    size_ecam = vms->memmap[ecam_id].size;
1330    nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1331    /* Map only the first size_ecam bytes of ECAM space */
1332    ecam_alias = g_new0(MemoryRegion, 1);
1333    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1334    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1335                             ecam_reg, 0, size_ecam);
1336    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1337
1338    /* Map the MMIO window into system address space so as to expose
1339     * the section of PCI MMIO space which starts at the same base address
1340     * (ie 1:1 mapping for that part of PCI MMIO space visible through
1341     * the window).
1342     */
1343    mmio_alias = g_new0(MemoryRegion, 1);
1344    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1345    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1346                             mmio_reg, base_mmio, size_mmio);
1347    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1348
1349    if (vms->highmem) {
1350        /* Map high MMIO space */
1351        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1352
1353        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1354                                 mmio_reg, base_mmio_high, size_mmio_high);
1355        memory_region_add_subregion(get_system_memory(), base_mmio_high,
1356                                    high_mmio_alias);
1357    }
1358
1359    /* Map IO port space */
1360    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1361
1362    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1363        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1364                           qdev_get_gpio_in(vms->gic, irq + i));
1365        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1366    }
1367
1368    pci = PCI_HOST_BRIDGE(dev);
1369    vms->bus = pci->bus;
1370    if (vms->bus) {
1371        for (i = 0; i < nb_nics; i++) {
1372            NICInfo *nd = &nd_table[i];
1373
1374            if (!nd->model) {
1375                nd->model = g_strdup("virtio");
1376            }
1377
1378            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1379        }
1380    }
1381
1382    nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1383    qemu_fdt_add_subnode(ms->fdt, nodename);
1384    qemu_fdt_setprop_string(ms->fdt, nodename,
1385                            "compatible", "pci-host-ecam-generic");
1386    qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1387    qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1388    qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1389    qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1390    qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1391                           nr_pcie_buses - 1);
1392    qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1393
1394    if (vms->msi_phandle) {
1395        qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1396                               vms->msi_phandle);
1397    }
1398
1399    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1400                                 2, base_ecam, 2, size_ecam);
1401
1402    if (vms->highmem) {
1403        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1404                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1405                                     2, base_pio, 2, size_pio,
1406                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1407                                     2, base_mmio, 2, size_mmio,
1408                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1409                                     2, base_mmio_high,
1410                                     2, base_mmio_high, 2, size_mmio_high);
1411    } else {
1412        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1413                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1414                                     2, base_pio, 2, size_pio,
1415                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1416                                     2, base_mmio, 2, size_mmio);
1417    }
1418
1419    qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1420    create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1421
1422    if (vms->iommu) {
1423        vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1424
1425        switch (vms->iommu) {
1426        case VIRT_IOMMU_SMMUV3:
1427            create_smmu(vms, vms->bus);
1428            qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1429                                   0x0, vms->iommu_phandle, 0x0, 0x10000);
1430            break;
1431        default:
1432            g_assert_not_reached();
1433        }
1434    }
1435}
1436
1437static void create_platform_bus(VirtMachineState *vms)
1438{
1439    DeviceState *dev;
1440    SysBusDevice *s;
1441    int i;
1442    MemoryRegion *sysmem = get_system_memory();
1443
1444    dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1445    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1446    qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1447    qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1448    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1449    vms->platform_bus_dev = dev;
1450
1451    s = SYS_BUS_DEVICE(dev);
1452    for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1453        int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1454        sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1455    }
1456
1457    memory_region_add_subregion(sysmem,
1458                                vms->memmap[VIRT_PLATFORM_BUS].base,
1459                                sysbus_mmio_get_region(s, 0));
1460}
1461
1462static void create_tag_ram(MemoryRegion *tag_sysmem,
1463                           hwaddr base, hwaddr size,
1464                           const char *name)
1465{
1466    MemoryRegion *tagram = g_new(MemoryRegion, 1);
1467
1468    memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1469    memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1470}
1471
1472static void create_secure_ram(VirtMachineState *vms,
1473                              MemoryRegion *secure_sysmem,
1474                              MemoryRegion *secure_tag_sysmem)
1475{
1476    MemoryRegion *secram = g_new(MemoryRegion, 1);
1477    char *nodename;
1478    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1479    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1480    MachineState *ms = MACHINE(vms);
1481
1482    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1483                           &error_fatal);
1484    memory_region_add_subregion(secure_sysmem, base, secram);
1485
1486    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1487    qemu_fdt_add_subnode(ms->fdt, nodename);
1488    qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1489    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1490    qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1491    qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1492
1493    if (secure_tag_sysmem) {
1494        create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1495    }
1496
1497    g_free(nodename);
1498}
1499
1500static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1501{
1502    const VirtMachineState *board = container_of(binfo, VirtMachineState,
1503                                                 bootinfo);
1504    MachineState *ms = MACHINE(board);
1505
1506
1507    *fdt_size = board->fdt_size;
1508    return ms->fdt;
1509}
1510
1511static void virt_build_smbios(VirtMachineState *vms)
1512{
1513    MachineClass *mc = MACHINE_GET_CLASS(vms);
1514    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1515    uint8_t *smbios_tables, *smbios_anchor;
1516    size_t smbios_tables_len, smbios_anchor_len;
1517    const char *product = "QEMU Virtual Machine";
1518
1519    if (kvm_enabled()) {
1520        product = "KVM Virtual Machine";
1521    }
1522
1523    smbios_set_defaults("QEMU", product,
1524                        vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1525                        true, SMBIOS_ENTRY_POINT_30);
1526
1527    smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1528                      &smbios_anchor, &smbios_anchor_len);
1529
1530    if (smbios_anchor) {
1531        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1532                        smbios_tables, smbios_tables_len);
1533        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1534                        smbios_anchor, smbios_anchor_len);
1535    }
1536}
1537
1538static
1539void virt_machine_done(Notifier *notifier, void *data)
1540{
1541    VirtMachineState *vms = container_of(notifier, VirtMachineState,
1542                                         machine_done);
1543    MachineState *ms = MACHINE(vms);
1544    ARMCPU *cpu = ARM_CPU(first_cpu);
1545    struct arm_boot_info *info = &vms->bootinfo;
1546    AddressSpace *as = arm_boot_address_space(cpu, info);
1547
1548    /*
1549     * If the user provided a dtb, we assume the dynamic sysbus nodes
1550     * already are integrated there. This corresponds to a use case where
1551     * the dynamic sysbus nodes are complex and their generation is not yet
1552     * supported. In that case the user can take charge of the guest dt
1553     * while qemu takes charge of the qom stuff.
1554     */
1555    if (info->dtb_filename == NULL) {
1556        platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1557                                       vms->memmap[VIRT_PLATFORM_BUS].base,
1558                                       vms->memmap[VIRT_PLATFORM_BUS].size,
1559                                       vms->irqmap[VIRT_PLATFORM_BUS]);
1560    }
1561    if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1562        exit(1);
1563    }
1564
1565    fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1566
1567    virt_acpi_setup(vms);
1568    virt_build_smbios(vms);
1569}
1570
1571static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1572{
1573    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1574    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1575
1576    if (!vmc->disallow_affinity_adjustment) {
1577        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1578         * GIC's target-list limitations. 32-bit KVM hosts currently
1579         * always create clusters of 4 CPUs, but that is expected to
1580         * change when they gain support for gicv3. When KVM is enabled
1581         * it will override the changes we make here, therefore our
1582         * purposes are to make TCG consistent (with 64-bit KVM hosts)
1583         * and to improve SGI efficiency.
1584         */
1585        if (vms->gic_version == VIRT_GIC_VERSION_3) {
1586            clustersz = GICV3_TARGETLIST_BITS;
1587        } else {
1588            clustersz = GIC_TARGETLIST_BITS;
1589        }
1590    }
1591    return arm_cpu_mp_affinity(idx, clustersz);
1592}
1593
1594static void virt_set_memmap(VirtMachineState *vms)
1595{
1596    MachineState *ms = MACHINE(vms);
1597    hwaddr base, device_memory_base, device_memory_size;
1598    int i;
1599
1600    vms->memmap = extended_memmap;
1601
1602    for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1603        vms->memmap[i] = base_memmap[i];
1604    }
1605
1606    if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1607        error_report("unsupported number of memory slots: %"PRIu64,
1608                     ms->ram_slots);
1609        exit(EXIT_FAILURE);
1610    }
1611
1612    /*
1613     * We compute the base of the high IO region depending on the
1614     * amount of initial and device memory. The device memory start/size
1615     * is aligned on 1GiB. We never put the high IO region below 256GiB
1616     * so that if maxram_size is < 255GiB we keep the legacy memory map.
1617     * The device region size assumes 1GiB page max alignment per slot.
1618     */
1619    device_memory_base =
1620        ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1621    device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1622
1623    /* Base address of the high IO region */
1624    base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1625    if (base < device_memory_base) {
1626        error_report("maxmem/slots too huge");
1627        exit(EXIT_FAILURE);
1628    }
1629    if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1630        base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1631    }
1632
1633    for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1634        hwaddr size = extended_memmap[i].size;
1635
1636        base = ROUND_UP(base, size);
1637        vms->memmap[i].base = base;
1638        vms->memmap[i].size = size;
1639        base += size;
1640    }
1641    vms->highest_gpa = base - 1;
1642    if (device_memory_size > 0) {
1643        ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1644        ms->device_memory->base = device_memory_base;
1645        memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1646                           "device-memory", device_memory_size);
1647    }
1648}
1649
1650/*
1651 * finalize_gic_version - Determines the final gic_version
1652 * according to the gic-version property
1653 *
1654 * Default GIC type is v2
1655 */
1656static void finalize_gic_version(VirtMachineState *vms)
1657{
1658    unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1659
1660    if (kvm_enabled()) {
1661        int probe_bitmap;
1662
1663        if (!kvm_irqchip_in_kernel()) {
1664            switch (vms->gic_version) {
1665            case VIRT_GIC_VERSION_HOST:
1666                warn_report(
1667                    "gic-version=host not relevant with kernel-irqchip=off "
1668                     "as only userspace GICv2 is supported. Using v2 ...");
1669                return;
1670            case VIRT_GIC_VERSION_MAX:
1671            case VIRT_GIC_VERSION_NOSEL:
1672                vms->gic_version = VIRT_GIC_VERSION_2;
1673                return;
1674            case VIRT_GIC_VERSION_2:
1675                return;
1676            case VIRT_GIC_VERSION_3:
1677                error_report(
1678                    "gic-version=3 is not supported with kernel-irqchip=off");
1679                exit(1);
1680            }
1681        }
1682
1683        probe_bitmap = kvm_arm_vgic_probe();
1684        if (!probe_bitmap) {
1685            error_report("Unable to determine GIC version supported by host");
1686            exit(1);
1687        }
1688
1689        switch (vms->gic_version) {
1690        case VIRT_GIC_VERSION_HOST:
1691        case VIRT_GIC_VERSION_MAX:
1692            if (probe_bitmap & KVM_ARM_VGIC_V3) {
1693                vms->gic_version = VIRT_GIC_VERSION_3;
1694            } else {
1695                vms->gic_version = VIRT_GIC_VERSION_2;
1696            }
1697            return;
1698        case VIRT_GIC_VERSION_NOSEL:
1699            if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1700                vms->gic_version = VIRT_GIC_VERSION_2;
1701            } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1702                /*
1703                 * in case the host does not support v2 in-kernel emulation or
1704                 * the end-user requested more than 8 VCPUs we now default
1705                 * to v3. In any case defaulting to v2 would be broken.
1706                 */
1707                vms->gic_version = VIRT_GIC_VERSION_3;
1708            } else if (max_cpus > GIC_NCPU) {
1709                error_report("host only supports in-kernel GICv2 emulation "
1710                             "but more than 8 vcpus are requested");
1711                exit(1);
1712            }
1713            break;
1714        case VIRT_GIC_VERSION_2:
1715        case VIRT_GIC_VERSION_3:
1716            break;
1717        }
1718
1719        /* Check chosen version is effectively supported by the host */
1720        if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1721            !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1722            error_report("host does not support in-kernel GICv2 emulation");
1723            exit(1);
1724        } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1725                   !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1726            error_report("host does not support in-kernel GICv3 emulation");
1727            exit(1);
1728        }
1729        return;
1730    }
1731
1732    /* TCG mode */
1733    switch (vms->gic_version) {
1734    case VIRT_GIC_VERSION_NOSEL:
1735        vms->gic_version = VIRT_GIC_VERSION_2;
1736        break;
1737    case VIRT_GIC_VERSION_MAX:
1738        vms->gic_version = VIRT_GIC_VERSION_3;
1739        break;
1740    case VIRT_GIC_VERSION_HOST:
1741        error_report("gic-version=host requires KVM");
1742        exit(1);
1743    case VIRT_GIC_VERSION_2:
1744    case VIRT_GIC_VERSION_3:
1745        break;
1746    }
1747}
1748
1749/*
1750 * virt_cpu_post_init() must be called after the CPUs have
1751 * been realized and the GIC has been created.
1752 */
1753static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1754{
1755    int max_cpus = MACHINE(vms)->smp.max_cpus;
1756    bool aarch64, pmu, steal_time;
1757    CPUState *cpu;
1758
1759    aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1760    pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1761    steal_time = object_property_get_bool(OBJECT(first_cpu),
1762                                          "kvm-steal-time", NULL);
1763
1764    if (kvm_enabled()) {
1765        hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1766        hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1767
1768        if (steal_time) {
1769            MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1770            hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1771
1772            /* The memory region size must be a multiple of host page size. */
1773            pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1774
1775            if (pvtime_size > pvtime_reg_size) {
1776                error_report("pvtime requires a %" HWADDR_PRId
1777                             " byte memory region for %d CPUs,"
1778                             " but only %" HWADDR_PRId " has been reserved",
1779                             pvtime_size, max_cpus, pvtime_reg_size);
1780                exit(1);
1781            }
1782
1783            memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1784            memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1785        }
1786
1787        CPU_FOREACH(cpu) {
1788            if (pmu) {
1789                assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1790                if (kvm_irqchip_in_kernel()) {
1791                    kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1792                }
1793                kvm_arm_pmu_init(cpu);
1794            }
1795            if (steal_time) {
1796                kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1797                                         cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1798            }
1799        }
1800    } else {
1801        if (aarch64 && vms->highmem) {
1802            int requested_pa_size = 64 - clz64(vms->highest_gpa);
1803            int pamax = arm_pamax(ARM_CPU(first_cpu));
1804
1805            if (pamax < requested_pa_size) {
1806                error_report("VCPU supports less PA bits (%d) than "
1807                             "requested by the memory map (%d)",
1808                             pamax, requested_pa_size);
1809                exit(1);
1810            }
1811        }
1812    }
1813}
1814
1815static void machvirt_init(MachineState *machine)
1816{
1817    VirtMachineState *vms = VIRT_MACHINE(machine);
1818    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1819    MachineClass *mc = MACHINE_GET_CLASS(machine);
1820    const CPUArchIdList *possible_cpus;
1821    MemoryRegion *sysmem = get_system_memory();
1822    MemoryRegion *secure_sysmem = NULL;
1823    MemoryRegion *tag_sysmem = NULL;
1824    MemoryRegion *secure_tag_sysmem = NULL;
1825    int n, virt_max_cpus;
1826    bool firmware_loaded;
1827    bool aarch64 = true;
1828    bool has_ged = !vmc->no_ged;
1829    unsigned int smp_cpus = machine->smp.cpus;
1830    unsigned int max_cpus = machine->smp.max_cpus;
1831
1832    /*
1833     * In accelerated mode, the memory map is computed earlier in kvm_type()
1834     * to create a VM with the right number of IPA bits.
1835     */
1836    if (!vms->memmap) {
1837        virt_set_memmap(vms);
1838    }
1839
1840    /* We can probe only here because during property set
1841     * KVM is not available yet
1842     */
1843    finalize_gic_version(vms);
1844
1845    if (!cpu_type_valid(machine->cpu_type)) {
1846        error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1847        exit(1);
1848    }
1849
1850    if (vms->secure) {
1851        if (kvm_enabled()) {
1852            error_report("mach-virt: KVM does not support Security extensions");
1853            exit(1);
1854        }
1855
1856        /*
1857         * The Secure view of the world is the same as the NonSecure,
1858         * but with a few extra devices. Create it as a container region
1859         * containing the system memory at low priority; any secure-only
1860         * devices go in at higher priority and take precedence.
1861         */
1862        secure_sysmem = g_new(MemoryRegion, 1);
1863        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1864                           UINT64_MAX);
1865        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1866    }
1867
1868    firmware_loaded = virt_firmware_init(vms, sysmem,
1869                                         secure_sysmem ?: sysmem);
1870
1871    /* If we have an EL3 boot ROM then the assumption is that it will
1872     * implement PSCI itself, so disable QEMU's internal implementation
1873     * so it doesn't get in the way. Instead of starting secondary
1874     * CPUs in PSCI powerdown state we will start them all running and
1875     * let the boot ROM sort them out.
1876     * The usual case is that we do use QEMU's PSCI implementation;
1877     * if the guest has EL2 then we will use SMC as the conduit,
1878     * and otherwise we will use HVC (for backwards compatibility and
1879     * because if we're using KVM then we must use HVC).
1880     */
1881    if (vms->secure && firmware_loaded) {
1882        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1883    } else if (vms->virt) {
1884        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1885    } else {
1886        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1887    }
1888
1889    /* The maximum number of CPUs depends on the GIC version, or on how
1890     * many redistributors we can fit into the memory map.
1891     */
1892    if (vms->gic_version == VIRT_GIC_VERSION_3) {
1893        virt_max_cpus =
1894            vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1895        virt_max_cpus +=
1896            vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1897    } else {
1898        virt_max_cpus = GIC_NCPU;
1899    }
1900
1901    if (max_cpus > virt_max_cpus) {
1902        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1903                     "supported by machine 'mach-virt' (%d)",
1904                     max_cpus, virt_max_cpus);
1905        exit(1);
1906    }
1907
1908    if (vms->virt && kvm_enabled()) {
1909        error_report("mach-virt: KVM does not support providing "
1910                     "Virtualization extensions to the guest CPU");
1911        exit(1);
1912    }
1913
1914    if (vms->mte && kvm_enabled()) {
1915        error_report("mach-virt: KVM does not support providing "
1916                     "MTE to the guest CPU");
1917        exit(1);
1918    }
1919
1920    create_fdt(vms);
1921
1922    possible_cpus = mc->possible_cpu_arch_ids(machine);
1923    assert(possible_cpus->len == max_cpus);
1924    for (n = 0; n < possible_cpus->len; n++) {
1925        Object *cpuobj;
1926        CPUState *cs;
1927
1928        if (n >= smp_cpus) {
1929            break;
1930        }
1931
1932        cpuobj = object_new(possible_cpus->cpus[n].type);
1933        object_property_set_int(cpuobj, "mp-affinity",
1934                                possible_cpus->cpus[n].arch_id, NULL);
1935
1936        cs = CPU(cpuobj);
1937        cs->cpu_index = n;
1938
1939        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1940                          &error_fatal);
1941
1942        aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1943
1944        if (!vms->secure) {
1945            object_property_set_bool(cpuobj, "has_el3", false, NULL);
1946        }
1947
1948        if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1949            object_property_set_bool(cpuobj, "has_el2", false, NULL);
1950        }
1951
1952        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1953            object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1954                                    NULL);
1955
1956            /* Secondary CPUs start in PSCI powered-down state */
1957            if (n > 0) {
1958                object_property_set_bool(cpuobj, "start-powered-off", true,
1959                                         NULL);
1960            }
1961        }
1962
1963        if (vmc->kvm_no_adjvtime &&
1964            object_property_find(cpuobj, "kvm-no-adjvtime")) {
1965            object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1966        }
1967
1968        if (vmc->no_kvm_steal_time &&
1969            object_property_find(cpuobj, "kvm-steal-time")) {
1970            object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1971        }
1972
1973        if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1974            object_property_set_bool(cpuobj, "pmu", false, NULL);
1975        }
1976
1977        if (object_property_find(cpuobj, "reset-cbar")) {
1978            object_property_set_int(cpuobj, "reset-cbar",
1979                                    vms->memmap[VIRT_CPUPERIPHS].base,
1980                                    &error_abort);
1981        }
1982
1983        object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1984                                 &error_abort);
1985        if (vms->secure) {
1986            object_property_set_link(cpuobj, "secure-memory",
1987                                     OBJECT(secure_sysmem), &error_abort);
1988        }
1989
1990        if (vms->mte) {
1991            /* Create the memory region only once, but link to all cpus. */
1992            if (!tag_sysmem) {
1993                /*
1994                 * The property exists only if MemTag is supported.
1995                 * If it is, we must allocate the ram to back that up.
1996                 */
1997                if (!object_property_find(cpuobj, "tag-memory")) {
1998                    error_report("MTE requested, but not supported "
1999                                 "by the guest CPU");
2000                    exit(1);
2001                }
2002
2003                tag_sysmem = g_new(MemoryRegion, 1);
2004                memory_region_init(tag_sysmem, OBJECT(machine),
2005                                   "tag-memory", UINT64_MAX / 32);
2006
2007                if (vms->secure) {
2008                    secure_tag_sysmem = g_new(MemoryRegion, 1);
2009                    memory_region_init(secure_tag_sysmem, OBJECT(machine),
2010                                       "secure-tag-memory", UINT64_MAX / 32);
2011
2012                    /* As with ram, secure-tag takes precedence over tag.  */
2013                    memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2014                                                        tag_sysmem, -1);
2015                }
2016            }
2017
2018            object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2019                                     &error_abort);
2020            if (vms->secure) {
2021                object_property_set_link(cpuobj, "secure-tag-memory",
2022                                         OBJECT(secure_tag_sysmem),
2023                                         &error_abort);
2024            }
2025        }
2026
2027        qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2028        object_unref(cpuobj);
2029    }
2030    fdt_add_timer_nodes(vms);
2031    fdt_add_cpu_nodes(vms);
2032
2033    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2034                                machine->ram);
2035    if (machine->device_memory) {
2036        memory_region_add_subregion(sysmem, machine->device_memory->base,
2037                                    &machine->device_memory->mr);
2038    }
2039
2040    virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2041
2042    create_gic(vms);
2043
2044    virt_cpu_post_init(vms, sysmem);
2045
2046    fdt_add_pmu_nodes(vms);
2047
2048    create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2049
2050    if (vms->secure) {
2051        create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2052        create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2053    }
2054
2055    if (tag_sysmem) {
2056        create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2057                       machine->ram_size, "mach-virt.tag");
2058    }
2059
2060    vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2061
2062    create_rtc(vms);
2063
2064    create_pcie(vms);
2065
2066    if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2067        vms->acpi_dev = create_acpi_ged(vms);
2068    } else {
2069        create_gpio_devices(vms, VIRT_GPIO, sysmem);
2070    }
2071
2072    if (vms->secure && !vmc->no_secure_gpio) {
2073        create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2074    }
2075
2076     /* connect powerdown request */
2077     vms->powerdown_notifier.notify = virt_powerdown_req;
2078     qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2079
2080    /* Create mmio transports, so the user can create virtio backends
2081     * (which will be automatically plugged in to the transports). If
2082     * no backend is created the transport will just sit harmlessly idle.
2083     */
2084    create_virtio_devices(vms);
2085
2086    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2087    rom_set_fw(vms->fw_cfg);
2088
2089    create_platform_bus(vms);
2090
2091    if (machine->nvdimms_state->is_enabled) {
2092        const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2093            .space_id = AML_AS_SYSTEM_MEMORY,
2094            .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2095            .bit_width = NVDIMM_ACPI_IO_LEN << 3
2096        };
2097
2098        nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2099                               arm_virt_nvdimm_acpi_dsmio,
2100                               vms->fw_cfg, OBJECT(vms));
2101    }
2102
2103    vms->bootinfo.ram_size = machine->ram_size;
2104    vms->bootinfo.nb_cpus = smp_cpus;
2105    vms->bootinfo.board_id = -1;
2106    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2107    vms->bootinfo.get_dtb = machvirt_dtb;
2108    vms->bootinfo.skip_dtb_autoload = true;
2109    vms->bootinfo.firmware_loaded = firmware_loaded;
2110    arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2111
2112    vms->machine_done.notify = virt_machine_done;
2113    qemu_add_machine_init_done_notifier(&vms->machine_done);
2114}
2115
2116static bool virt_get_secure(Object *obj, Error **errp)
2117{
2118    VirtMachineState *vms = VIRT_MACHINE(obj);
2119
2120    return vms->secure;
2121}
2122
2123static void virt_set_secure(Object *obj, bool value, Error **errp)
2124{
2125    VirtMachineState *vms = VIRT_MACHINE(obj);
2126
2127    vms->secure = value;
2128}
2129
2130static bool virt_get_virt(Object *obj, Error **errp)
2131{
2132    VirtMachineState *vms = VIRT_MACHINE(obj);
2133
2134    return vms->virt;
2135}
2136
2137static void virt_set_virt(Object *obj, bool value, Error **errp)
2138{
2139    VirtMachineState *vms = VIRT_MACHINE(obj);
2140
2141    vms->virt = value;
2142}
2143
2144static bool virt_get_highmem(Object *obj, Error **errp)
2145{
2146    VirtMachineState *vms = VIRT_MACHINE(obj);
2147
2148    return vms->highmem;
2149}
2150
2151static void virt_set_highmem(Object *obj, bool value, Error **errp)
2152{
2153    VirtMachineState *vms = VIRT_MACHINE(obj);
2154
2155    vms->highmem = value;
2156}
2157
2158static bool virt_get_its(Object *obj, Error **errp)
2159{
2160    VirtMachineState *vms = VIRT_MACHINE(obj);
2161
2162    return vms->its;
2163}
2164
2165static void virt_set_its(Object *obj, bool value, Error **errp)
2166{
2167    VirtMachineState *vms = VIRT_MACHINE(obj);
2168
2169    vms->its = value;
2170}
2171
2172static char *virt_get_oem_id(Object *obj, Error **errp)
2173{
2174    VirtMachineState *vms = VIRT_MACHINE(obj);
2175
2176    return g_strdup(vms->oem_id);
2177}
2178
2179static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2180{
2181    VirtMachineState *vms = VIRT_MACHINE(obj);
2182    size_t len = strlen(value);
2183
2184    if (len > 6) {
2185        error_setg(errp,
2186                   "User specified oem-id value is bigger than 6 bytes in size");
2187        return;
2188    }
2189
2190    strncpy(vms->oem_id, value, 6);
2191}
2192
2193static char *virt_get_oem_table_id(Object *obj, Error **errp)
2194{
2195    VirtMachineState *vms = VIRT_MACHINE(obj);
2196
2197    return g_strdup(vms->oem_table_id);
2198}
2199
2200static void virt_set_oem_table_id(Object *obj, const char *value,
2201                                  Error **errp)
2202{
2203    VirtMachineState *vms = VIRT_MACHINE(obj);
2204    size_t len = strlen(value);
2205
2206    if (len > 8) {
2207        error_setg(errp,
2208                   "User specified oem-table-id value is bigger than 8 bytes in size");
2209        return;
2210    }
2211    strncpy(vms->oem_table_id, value, 8);
2212}
2213
2214
2215bool virt_is_acpi_enabled(VirtMachineState *vms)
2216{
2217    if (vms->acpi == ON_OFF_AUTO_OFF) {
2218        return false;
2219    }
2220    return true;
2221}
2222
2223static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2224                          void *opaque, Error **errp)
2225{
2226    VirtMachineState *vms = VIRT_MACHINE(obj);
2227    OnOffAuto acpi = vms->acpi;
2228
2229    visit_type_OnOffAuto(v, name, &acpi, errp);
2230}
2231
2232static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2233                          void *opaque, Error **errp)
2234{
2235    VirtMachineState *vms = VIRT_MACHINE(obj);
2236
2237    visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2238}
2239
2240static bool virt_get_ras(Object *obj, Error **errp)
2241{
2242    VirtMachineState *vms = VIRT_MACHINE(obj);
2243
2244    return vms->ras;
2245}
2246
2247static void virt_set_ras(Object *obj, bool value, Error **errp)
2248{
2249    VirtMachineState *vms = VIRT_MACHINE(obj);
2250
2251    vms->ras = value;
2252}
2253
2254static bool virt_get_mte(Object *obj, Error **errp)
2255{
2256    VirtMachineState *vms = VIRT_MACHINE(obj);
2257
2258    return vms->mte;
2259}
2260
2261static void virt_set_mte(Object *obj, bool value, Error **errp)
2262{
2263    VirtMachineState *vms = VIRT_MACHINE(obj);
2264
2265    vms->mte = value;
2266}
2267
2268static char *virt_get_gic_version(Object *obj, Error **errp)
2269{
2270    VirtMachineState *vms = VIRT_MACHINE(obj);
2271    const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2272
2273    return g_strdup(val);
2274}
2275
2276static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2277{
2278    VirtMachineState *vms = VIRT_MACHINE(obj);
2279
2280    if (!strcmp(value, "3")) {
2281        vms->gic_version = VIRT_GIC_VERSION_3;
2282    } else if (!strcmp(value, "2")) {
2283        vms->gic_version = VIRT_GIC_VERSION_2;
2284    } else if (!strcmp(value, "host")) {
2285        vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2286    } else if (!strcmp(value, "max")) {
2287        vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2288    } else {
2289        error_setg(errp, "Invalid gic-version value");
2290        error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2291    }
2292}
2293
2294static char *virt_get_iommu(Object *obj, Error **errp)
2295{
2296    VirtMachineState *vms = VIRT_MACHINE(obj);
2297
2298    switch (vms->iommu) {
2299    case VIRT_IOMMU_NONE:
2300        return g_strdup("none");
2301    case VIRT_IOMMU_SMMUV3:
2302        return g_strdup("smmuv3");
2303    default:
2304        g_assert_not_reached();
2305    }
2306}
2307
2308static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2309{
2310    VirtMachineState *vms = VIRT_MACHINE(obj);
2311
2312    if (!strcmp(value, "smmuv3")) {
2313        vms->iommu = VIRT_IOMMU_SMMUV3;
2314    } else if (!strcmp(value, "none")) {
2315        vms->iommu = VIRT_IOMMU_NONE;
2316    } else {
2317        error_setg(errp, "Invalid iommu value");
2318        error_append_hint(errp, "Valid values are none, smmuv3.\n");
2319    }
2320}
2321
2322static CpuInstanceProperties
2323virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2324{
2325    MachineClass *mc = MACHINE_GET_CLASS(ms);
2326    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2327
2328    assert(cpu_index < possible_cpus->len);
2329    return possible_cpus->cpus[cpu_index].props;
2330}
2331
2332static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2333{
2334    return idx % ms->numa_state->num_nodes;
2335}
2336
2337static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2338{
2339    int n;
2340    unsigned int max_cpus = ms->smp.max_cpus;
2341    VirtMachineState *vms = VIRT_MACHINE(ms);
2342
2343    if (ms->possible_cpus) {
2344        assert(ms->possible_cpus->len == max_cpus);
2345        return ms->possible_cpus;
2346    }
2347
2348    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2349                                  sizeof(CPUArchId) * max_cpus);
2350    ms->possible_cpus->len = max_cpus;
2351    for (n = 0; n < ms->possible_cpus->len; n++) {
2352        ms->possible_cpus->cpus[n].type = ms->cpu_type;
2353        ms->possible_cpus->cpus[n].arch_id =
2354            virt_cpu_mp_affinity(vms, n);
2355        ms->possible_cpus->cpus[n].props.has_thread_id = true;
2356        ms->possible_cpus->cpus[n].props.thread_id = n;
2357    }
2358    return ms->possible_cpus;
2359}
2360
2361static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2362                                 Error **errp)
2363{
2364    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2365    const MachineState *ms = MACHINE(hotplug_dev);
2366    const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2367
2368    if (!vms->acpi_dev) {
2369        error_setg(errp,
2370                   "memory hotplug is not enabled: missing acpi-ged device");
2371        return;
2372    }
2373
2374    if (vms->mte) {
2375        error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2376        return;
2377    }
2378
2379    if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2380        error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2381        return;
2382    }
2383
2384    pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2385}
2386
2387static void virt_memory_plug(HotplugHandler *hotplug_dev,
2388                             DeviceState *dev, Error **errp)
2389{
2390    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2391    MachineState *ms = MACHINE(hotplug_dev);
2392    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2393
2394    pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2395
2396    if (is_nvdimm) {
2397        nvdimm_plug(ms->nvdimms_state);
2398    }
2399
2400    hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2401                         dev, &error_abort);
2402}
2403
2404static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2405                                            DeviceState *dev, Error **errp)
2406{
2407    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2408
2409    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2410        virt_memory_pre_plug(hotplug_dev, dev, errp);
2411    } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2412        hwaddr db_start = 0, db_end = 0;
2413        char *resv_prop_str;
2414
2415        switch (vms->msi_controller) {
2416        case VIRT_MSI_CTRL_NONE:
2417            return;
2418        case VIRT_MSI_CTRL_ITS:
2419            /* GITS_TRANSLATER page */
2420            db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2421            db_end = base_memmap[VIRT_GIC_ITS].base +
2422                     base_memmap[VIRT_GIC_ITS].size - 1;
2423            break;
2424        case VIRT_MSI_CTRL_GICV2M:
2425            /* MSI_SETSPI_NS page */
2426            db_start = base_memmap[VIRT_GIC_V2M].base;
2427            db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2428            break;
2429        }
2430        resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2431                                        db_start, db_end,
2432                                        VIRTIO_IOMMU_RESV_MEM_T_MSI);
2433
2434        qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2435        qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2436        g_free(resv_prop_str);
2437    }
2438}
2439
2440static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2441                                        DeviceState *dev, Error **errp)
2442{
2443    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2444
2445    if (vms->platform_bus_dev) {
2446        MachineClass *mc = MACHINE_GET_CLASS(vms);
2447
2448        if (device_is_dynamic_sysbus(mc, dev)) {
2449            platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2450                                     SYS_BUS_DEVICE(dev));
2451        }
2452    }
2453    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2454        virt_memory_plug(hotplug_dev, dev, errp);
2455    }
2456    if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2457        PCIDevice *pdev = PCI_DEVICE(dev);
2458
2459        vms->iommu = VIRT_IOMMU_VIRTIO;
2460        vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2461        create_virtio_iommu_dt_bindings(vms);
2462    }
2463}
2464
2465static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2466                                     DeviceState *dev, Error **errp)
2467{
2468    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2469    Error *local_err = NULL;
2470
2471    if (!vms->acpi_dev) {
2472        error_setg(&local_err,
2473                   "memory hotplug is not enabled: missing acpi-ged device");
2474        goto out;
2475    }
2476
2477    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2478        error_setg(&local_err,
2479                   "nvdimm device hot unplug is not supported yet.");
2480        goto out;
2481    }
2482
2483    hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2484                                   &local_err);
2485out:
2486    error_propagate(errp, local_err);
2487}
2488
2489static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2490                             DeviceState *dev, Error **errp)
2491{
2492    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2493    Error *local_err = NULL;
2494
2495    hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2496    if (local_err) {
2497        goto out;
2498    }
2499
2500    pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2501    qdev_unrealize(dev);
2502
2503out:
2504    error_propagate(errp, local_err);
2505}
2506
2507static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2508                                          DeviceState *dev, Error **errp)
2509{
2510    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2511        virt_dimm_unplug_request(hotplug_dev, dev, errp);
2512    } else {
2513        error_setg(errp, "device unplug request for unsupported device"
2514                   " type: %s", object_get_typename(OBJECT(dev)));
2515    }
2516}
2517
2518static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2519                                          DeviceState *dev, Error **errp)
2520{
2521    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2522        virt_dimm_unplug(hotplug_dev, dev, errp);
2523    } else {
2524        error_setg(errp, "virt: device unplug for unsupported device"
2525                   " type: %s", object_get_typename(OBJECT(dev)));
2526    }
2527}
2528
2529static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2530                                                        DeviceState *dev)
2531{
2532    MachineClass *mc = MACHINE_GET_CLASS(machine);
2533
2534    if (device_is_dynamic_sysbus(mc, dev) ||
2535       (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2536        return HOTPLUG_HANDLER(machine);
2537    }
2538    if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2539        VirtMachineState *vms = VIRT_MACHINE(machine);
2540
2541        if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2542            return HOTPLUG_HANDLER(machine);
2543        }
2544    }
2545    return NULL;
2546}
2547
2548/*
2549 * for arm64 kvm_type [7-0] encodes the requested number of bits
2550 * in the IPA address space
2551 */
2552static int virt_kvm_type(MachineState *ms, const char *type_str)
2553{
2554    VirtMachineState *vms = VIRT_MACHINE(ms);
2555    int max_vm_pa_size, requested_pa_size;
2556    bool fixed_ipa;
2557
2558    max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2559
2560    /* we freeze the memory map to compute the highest gpa */
2561    virt_set_memmap(vms);
2562
2563    requested_pa_size = 64 - clz64(vms->highest_gpa);
2564
2565    /*
2566     * KVM requires the IPA size to be at least 32 bits.
2567     */
2568    if (requested_pa_size < 32) {
2569        requested_pa_size = 32;
2570    }
2571
2572    if (requested_pa_size > max_vm_pa_size) {
2573        error_report("-m and ,maxmem option values "
2574                     "require an IPA range (%d bits) larger than "
2575                     "the one supported by the host (%d bits)",
2576                     requested_pa_size, max_vm_pa_size);
2577        exit(1);
2578    }
2579    /*
2580     * We return the requested PA log size, unless KVM only supports
2581     * the implicit legacy 40b IPA setting, in which case the kvm_type
2582     * must be 0.
2583     */
2584    return fixed_ipa ? 0 : requested_pa_size;
2585}
2586
2587static void virt_machine_class_init(ObjectClass *oc, void *data)
2588{
2589    MachineClass *mc = MACHINE_CLASS(oc);
2590    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2591
2592    mc->init = machvirt_init;
2593    /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2594     * The value may be reduced later when we have more information about the
2595     * configuration of the particular instance.
2596     */
2597    mc->max_cpus = 512;
2598    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2599    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2600    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2601    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2602    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2603    mc->block_default_type = IF_VIRTIO;
2604    mc->no_cdrom = 1;
2605    mc->pci_allow_0_address = true;
2606    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2607    mc->minimum_page_bits = 12;
2608    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2609    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2610    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2611    mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2612    mc->kvm_type = virt_kvm_type;
2613    assert(!mc->get_hotplug_handler);
2614    mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2615    hc->pre_plug = virt_machine_device_pre_plug_cb;
2616    hc->plug = virt_machine_device_plug_cb;
2617    hc->unplug_request = virt_machine_device_unplug_request_cb;
2618    hc->unplug = virt_machine_device_unplug_cb;
2619    mc->nvdimm_supported = true;
2620    mc->auto_enable_numa_with_memhp = true;
2621    mc->auto_enable_numa_with_memdev = true;
2622    mc->default_ram_id = "mach-virt.ram";
2623
2624    object_class_property_add(oc, "acpi", "OnOffAuto",
2625        virt_get_acpi, virt_set_acpi,
2626        NULL, NULL);
2627    object_class_property_set_description(oc, "acpi",
2628        "Enable ACPI");
2629    object_class_property_add_bool(oc, "secure", virt_get_secure,
2630                                   virt_set_secure);
2631    object_class_property_set_description(oc, "secure",
2632                                                "Set on/off to enable/disable the ARM "
2633                                                "Security Extensions (TrustZone)");
2634
2635    object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2636                                   virt_set_virt);
2637    object_class_property_set_description(oc, "virtualization",
2638                                          "Set on/off to enable/disable emulating a "
2639                                          "guest CPU which implements the ARM "
2640                                          "Virtualization Extensions");
2641
2642    object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2643                                   virt_set_highmem);
2644    object_class_property_set_description(oc, "highmem",
2645                                          "Set on/off to enable/disable using "
2646                                          "physical address space above 32 bits");
2647
2648    object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2649                                  virt_set_gic_version);
2650    object_class_property_set_description(oc, "gic-version",
2651                                          "Set GIC version. "
2652                                          "Valid values are 2, 3, host and max");
2653
2654    object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2655    object_class_property_set_description(oc, "iommu",
2656                                          "Set the IOMMU type. "
2657                                          "Valid values are none and smmuv3");
2658
2659    object_class_property_add_bool(oc, "ras", virt_get_ras,
2660                                   virt_set_ras);
2661    object_class_property_set_description(oc, "ras",
2662                                          "Set on/off to enable/disable reporting host memory errors "
2663                                          "to a KVM guest using ACPI and guest external abort exceptions");
2664
2665    object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2666    object_class_property_set_description(oc, "mte",
2667                                          "Set on/off to enable/disable emulating a "
2668                                          "guest CPU which implements the ARM "
2669                                          "Memory Tagging Extension");
2670
2671    object_class_property_add_bool(oc, "its", virt_get_its,
2672                                   virt_set_its);
2673    object_class_property_set_description(oc, "its",
2674                                          "Set on/off to enable/disable "
2675                                          "ITS instantiation");
2676
2677    object_class_property_add_str(oc, "x-oem-id",
2678                                  virt_get_oem_id,
2679                                  virt_set_oem_id);
2680    object_class_property_set_description(oc, "x-oem-id",
2681                                          "Override the default value of field OEMID "
2682                                          "in ACPI table header."
2683                                          "The string may be up to 6 bytes in size");
2684
2685
2686    object_class_property_add_str(oc, "x-oem-table-id",
2687                                  virt_get_oem_table_id,
2688                                  virt_set_oem_table_id);
2689    object_class_property_set_description(oc, "x-oem-table-id",
2690                                          "Override the default value of field OEM Table ID "
2691                                          "in ACPI table header."
2692                                          "The string may be up to 8 bytes in size");
2693
2694}
2695
2696static void virt_instance_init(Object *obj)
2697{
2698    VirtMachineState *vms = VIRT_MACHINE(obj);
2699    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2700
2701    /* EL3 is disabled by default on virt: this makes us consistent
2702     * between KVM and TCG for this board, and it also allows us to
2703     * boot UEFI blobs which assume no TrustZone support.
2704     */
2705    vms->secure = false;
2706
2707    /* EL2 is also disabled by default, for similar reasons */
2708    vms->virt = false;
2709
2710    /* High memory is enabled by default */
2711    vms->highmem = true;
2712    vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2713
2714    vms->highmem_ecam = !vmc->no_highmem_ecam;
2715
2716    if (vmc->no_its) {
2717        vms->its = false;
2718    } else {
2719        /* Default allows ITS instantiation */
2720        vms->its = true;
2721    }
2722
2723    /* Default disallows iommu instantiation */
2724    vms->iommu = VIRT_IOMMU_NONE;
2725
2726    /* Default disallows RAS instantiation */
2727    vms->ras = false;
2728
2729    /* MTE is disabled by default.  */
2730    vms->mte = false;
2731
2732    vms->irqmap = a15irqmap;
2733
2734    virt_flash_create(vms);
2735
2736    vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2737    vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2738}
2739
2740static const TypeInfo virt_machine_info = {
2741    .name          = TYPE_VIRT_MACHINE,
2742    .parent        = TYPE_MACHINE,
2743    .abstract      = true,
2744    .instance_size = sizeof(VirtMachineState),
2745    .class_size    = sizeof(VirtMachineClass),
2746    .class_init    = virt_machine_class_init,
2747    .instance_init = virt_instance_init,
2748    .interfaces = (InterfaceInfo[]) {
2749         { TYPE_HOTPLUG_HANDLER },
2750         { }
2751    },
2752};
2753
2754static void machvirt_machine_init(void)
2755{
2756    type_register_static(&virt_machine_info);
2757}
2758type_init(machvirt_machine_init);
2759
2760static void virt_machine_6_0_options(MachineClass *mc)
2761{
2762}
2763DEFINE_VIRT_MACHINE_AS_LATEST(6, 0)
2764
2765static void virt_machine_5_2_options(MachineClass *mc)
2766{
2767    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2768
2769    virt_machine_6_0_options(mc);
2770    compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2771    vmc->no_secure_gpio = true;
2772}
2773DEFINE_VIRT_MACHINE(5, 2)
2774
2775static void virt_machine_5_1_options(MachineClass *mc)
2776{
2777    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2778
2779    virt_machine_5_2_options(mc);
2780    compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2781    vmc->no_kvm_steal_time = true;
2782}
2783DEFINE_VIRT_MACHINE(5, 1)
2784
2785static void virt_machine_5_0_options(MachineClass *mc)
2786{
2787    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2788
2789    virt_machine_5_1_options(mc);
2790    compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2791    mc->numa_mem_supported = true;
2792    vmc->acpi_expose_flash = true;
2793    mc->auto_enable_numa_with_memdev = false;
2794}
2795DEFINE_VIRT_MACHINE(5, 0)
2796
2797static void virt_machine_4_2_options(MachineClass *mc)
2798{
2799    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2800
2801    virt_machine_5_0_options(mc);
2802    compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2803    vmc->kvm_no_adjvtime = true;
2804}
2805DEFINE_VIRT_MACHINE(4, 2)
2806
2807static void virt_machine_4_1_options(MachineClass *mc)
2808{
2809    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2810
2811    virt_machine_4_2_options(mc);
2812    compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2813    vmc->no_ged = true;
2814    mc->auto_enable_numa_with_memhp = false;
2815}
2816DEFINE_VIRT_MACHINE(4, 1)
2817
2818static void virt_machine_4_0_options(MachineClass *mc)
2819{
2820    virt_machine_4_1_options(mc);
2821    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2822}
2823DEFINE_VIRT_MACHINE(4, 0)
2824
2825static void virt_machine_3_1_options(MachineClass *mc)
2826{
2827    virt_machine_4_0_options(mc);
2828    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2829}
2830DEFINE_VIRT_MACHINE(3, 1)
2831
2832static void virt_machine_3_0_options(MachineClass *mc)
2833{
2834    virt_machine_3_1_options(mc);
2835    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2836}
2837DEFINE_VIRT_MACHINE(3, 0)
2838
2839static void virt_machine_2_12_options(MachineClass *mc)
2840{
2841    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2842
2843    virt_machine_3_0_options(mc);
2844    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2845    vmc->no_highmem_ecam = true;
2846    mc->max_cpus = 255;
2847}
2848DEFINE_VIRT_MACHINE(2, 12)
2849
2850static void virt_machine_2_11_options(MachineClass *mc)
2851{
2852    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2853
2854    virt_machine_2_12_options(mc);
2855    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2856    vmc->smbios_old_sys_ver = true;
2857}
2858DEFINE_VIRT_MACHINE(2, 11)
2859
2860static void virt_machine_2_10_options(MachineClass *mc)
2861{
2862    virt_machine_2_11_options(mc);
2863    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2864    /* before 2.11 we never faulted accesses to bad addresses */
2865    mc->ignore_memory_transaction_failures = true;
2866}
2867DEFINE_VIRT_MACHINE(2, 10)
2868
2869static void virt_machine_2_9_options(MachineClass *mc)
2870{
2871    virt_machine_2_10_options(mc);
2872    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2873}
2874DEFINE_VIRT_MACHINE(2, 9)
2875
2876static void virt_machine_2_8_options(MachineClass *mc)
2877{
2878    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2879
2880    virt_machine_2_9_options(mc);
2881    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2882    /* For 2.8 and earlier we falsely claimed in the DT that
2883     * our timers were edge-triggered, not level-triggered.
2884     */
2885    vmc->claim_edge_triggered_timers = true;
2886}
2887DEFINE_VIRT_MACHINE(2, 8)
2888
2889static void virt_machine_2_7_options(MachineClass *mc)
2890{
2891    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2892
2893    virt_machine_2_8_options(mc);
2894    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2895    /* ITS was introduced with 2.8 */
2896    vmc->no_its = true;
2897    /* Stick with 1K pages for migration compatibility */
2898    mc->minimum_page_bits = 0;
2899}
2900DEFINE_VIRT_MACHINE(2, 7)
2901
2902static void virt_machine_2_6_options(MachineClass *mc)
2903{
2904    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2905
2906    virt_machine_2_7_options(mc);
2907    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2908    vmc->disallow_affinity_adjustment = true;
2909    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2910    vmc->no_pmu = true;
2911}
2912DEFINE_VIRT_MACHINE(2, 6)
2913