qemu/hw/char/cadence_uart.c
<<
>>
Prefs
   1/*
   2 * Device model for Cadence UART
   3 *
   4 * Reference: Xilinx Zynq 7000 reference manual
   5 *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
   6 *   - Chapter 19 UART Controller
   7 *   - Appendix B for Register details
   8 *
   9 * Copyright (c) 2010 Xilinx Inc.
  10 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
  11 * Copyright (c) 2012 PetaLogix Pty Ltd.
  12 * Written by Haibing Ma
  13 *            M.Habib
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/sysbus.h"
  26#include "migration/vmstate.h"
  27#include "chardev/char-fe.h"
  28#include "chardev/char-serial.h"
  29#include "qemu/timer.h"
  30#include "qemu/log.h"
  31#include "qemu/module.h"
  32#include "hw/char/cadence_uart.h"
  33#include "hw/irq.h"
  34#include "hw/qdev-clock.h"
  35#include "hw/qdev-properties-system.h"
  36#include "trace.h"
  37
  38#ifdef CADENCE_UART_ERR_DEBUG
  39#define DB_PRINT(...) do { \
  40    fprintf(stderr,  ": %s: ", __func__); \
  41    fprintf(stderr, ## __VA_ARGS__); \
  42    } while (0)
  43#else
  44    #define DB_PRINT(...)
  45#endif
  46
  47#define UART_SR_INTR_RTRIG     0x00000001
  48#define UART_SR_INTR_REMPTY    0x00000002
  49#define UART_SR_INTR_RFUL      0x00000004
  50#define UART_SR_INTR_TEMPTY    0x00000008
  51#define UART_SR_INTR_TFUL      0x00000010
  52/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
  53#define UART_SR_TTRIG          0x00002000
  54#define UART_INTR_TTRIG        0x00000400
  55/* bits fields in CSR that correlate to CISR. If any of these bits are set in
  56 * SR, then the same bit in CISR is set high too */
  57#define UART_SR_TO_CISR_MASK   0x0000001F
  58
  59#define UART_INTR_ROVR         0x00000020
  60#define UART_INTR_FRAME        0x00000040
  61#define UART_INTR_PARE         0x00000080
  62#define UART_INTR_TIMEOUT      0x00000100
  63#define UART_INTR_DMSI         0x00000200
  64#define UART_INTR_TOVR         0x00001000
  65
  66#define UART_SR_RACTIVE    0x00000400
  67#define UART_SR_TACTIVE    0x00000800
  68#define UART_SR_FDELT      0x00001000
  69
  70#define UART_CR_RXRST       0x00000001
  71#define UART_CR_TXRST       0x00000002
  72#define UART_CR_RX_EN       0x00000004
  73#define UART_CR_RX_DIS      0x00000008
  74#define UART_CR_TX_EN       0x00000010
  75#define UART_CR_TX_DIS      0x00000020
  76#define UART_CR_RST_TO      0x00000040
  77#define UART_CR_STARTBRK    0x00000080
  78#define UART_CR_STOPBRK     0x00000100
  79
  80#define UART_MR_CLKS            0x00000001
  81#define UART_MR_CHRL            0x00000006
  82#define UART_MR_CHRL_SH         1
  83#define UART_MR_PAR             0x00000038
  84#define UART_MR_PAR_SH          3
  85#define UART_MR_NBSTOP          0x000000C0
  86#define UART_MR_NBSTOP_SH       6
  87#define UART_MR_CHMODE          0x00000300
  88#define UART_MR_CHMODE_SH       8
  89#define UART_MR_UCLKEN          0x00000400
  90#define UART_MR_IRMODE          0x00000800
  91
  92#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
  93#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
  94#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
  95#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
  96#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
  97#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
  98#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
  99#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
 100#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
 101#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
 102
 103#define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)
 104
 105#define R_CR       (0x00/4)
 106#define R_MR       (0x04/4)
 107#define R_IER      (0x08/4)
 108#define R_IDR      (0x0C/4)
 109#define R_IMR      (0x10/4)
 110#define R_CISR     (0x14/4)
 111#define R_BRGR     (0x18/4)
 112#define R_RTOR     (0x1C/4)
 113#define R_RTRIG    (0x20/4)
 114#define R_MCR      (0x24/4)
 115#define R_MSR      (0x28/4)
 116#define R_SR       (0x2C/4)
 117#define R_TX_RX    (0x30/4)
 118#define R_BDIV     (0x34/4)
 119#define R_FDEL     (0x38/4)
 120#define R_PMIN     (0x3C/4)
 121#define R_PWID     (0x40/4)
 122#define R_TTRIG    (0x44/4)
 123
 124
 125static void uart_update_status(CadenceUARTState *s)
 126{
 127    s->r[R_SR] = 0;
 128
 129    s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
 130                                                           : 0;
 131    s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
 132    s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
 133
 134    s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
 135                                                           : 0;
 136    s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
 137    s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
 138
 139    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
 140    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
 141    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
 142}
 143
 144static void fifo_trigger_update(void *opaque)
 145{
 146    CadenceUARTState *s = opaque;
 147
 148    if (s->r[R_RTOR]) {
 149        s->r[R_CISR] |= UART_INTR_TIMEOUT;
 150        uart_update_status(s);
 151    }
 152}
 153
 154static void uart_rx_reset(CadenceUARTState *s)
 155{
 156    s->rx_wpos = 0;
 157    s->rx_count = 0;
 158    qemu_chr_fe_accept_input(&s->chr);
 159}
 160
 161static void uart_tx_reset(CadenceUARTState *s)
 162{
 163    s->tx_count = 0;
 164}
 165
 166static void uart_send_breaks(CadenceUARTState *s)
 167{
 168    int break_enabled = 1;
 169
 170    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
 171                      &break_enabled);
 172}
 173
 174static void uart_parameters_setup(CadenceUARTState *s)
 175{
 176    QEMUSerialSetParams ssp;
 177    unsigned int baud_rate, packet_size, input_clk;
 178    input_clk = clock_get_hz(s->refclk);
 179
 180    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
 181    baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
 182    trace_cadence_uart_baudrate(baud_rate);
 183
 184    ssp.speed = baud_rate;
 185
 186    packet_size = 1;
 187
 188    switch (s->r[R_MR] & UART_MR_PAR) {
 189    case UART_PARITY_EVEN:
 190        ssp.parity = 'E';
 191        packet_size++;
 192        break;
 193    case UART_PARITY_ODD:
 194        ssp.parity = 'O';
 195        packet_size++;
 196        break;
 197    default:
 198        ssp.parity = 'N';
 199        break;
 200    }
 201
 202    switch (s->r[R_MR] & UART_MR_CHRL) {
 203    case UART_DATA_BITS_6:
 204        ssp.data_bits = 6;
 205        break;
 206    case UART_DATA_BITS_7:
 207        ssp.data_bits = 7;
 208        break;
 209    default:
 210        ssp.data_bits = 8;
 211        break;
 212    }
 213
 214    switch (s->r[R_MR] & UART_MR_NBSTOP) {
 215    case UART_STOP_BITS_1:
 216        ssp.stop_bits = 1;
 217        break;
 218    default:
 219        ssp.stop_bits = 2;
 220        break;
 221    }
 222
 223    packet_size += ssp.data_bits + ssp.stop_bits;
 224    if (ssp.speed == 0) {
 225        /*
 226         * Avoid division-by-zero below.
 227         * TODO: find something better
 228         */
 229        ssp.speed = 1;
 230    }
 231    s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
 232    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
 233}
 234
 235static int uart_can_receive(void *opaque)
 236{
 237    CadenceUARTState *s = opaque;
 238    int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
 239    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 240
 241    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 242        ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
 243    }
 244    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 245        ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
 246    }
 247    return ret;
 248}
 249
 250static void uart_ctrl_update(CadenceUARTState *s)
 251{
 252    if (s->r[R_CR] & UART_CR_TXRST) {
 253        uart_tx_reset(s);
 254    }
 255
 256    if (s->r[R_CR] & UART_CR_RXRST) {
 257        uart_rx_reset(s);
 258    }
 259
 260    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
 261
 262    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
 263        uart_send_breaks(s);
 264    }
 265}
 266
 267static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
 268{
 269    CadenceUARTState *s = opaque;
 270    uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 271    int i;
 272
 273    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 274        return;
 275    }
 276
 277    if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
 278        s->r[R_CISR] |= UART_INTR_ROVR;
 279    } else {
 280        for (i = 0; i < size; i++) {
 281            s->rx_fifo[s->rx_wpos] = buf[i];
 282            s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
 283            s->rx_count++;
 284        }
 285        timer_mod(s->fifo_trigger_handle, new_rx_time +
 286                                                (s->char_tx_time * 4));
 287    }
 288    uart_update_status(s);
 289}
 290
 291static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
 292                                  void *opaque)
 293{
 294    CadenceUARTState *s = opaque;
 295    int ret;
 296
 297    /* instant drain the fifo when there's no back-end */
 298    if (!qemu_chr_fe_backend_connected(&s->chr)) {
 299        s->tx_count = 0;
 300        return FALSE;
 301    }
 302
 303    if (!s->tx_count) {
 304        return FALSE;
 305    }
 306
 307    ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
 308
 309    if (ret >= 0) {
 310        s->tx_count -= ret;
 311        memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
 312    }
 313
 314    if (s->tx_count) {
 315        guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
 316                                        cadence_uart_xmit, s);
 317        if (!r) {
 318            s->tx_count = 0;
 319            return FALSE;
 320        }
 321    }
 322
 323    uart_update_status(s);
 324    return FALSE;
 325}
 326
 327static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
 328                               int size)
 329{
 330    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
 331        return;
 332    }
 333
 334    if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
 335        size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
 336        /*
 337         * This can only be a guest error via a bad tx fifo register push,
 338         * as can_receive() should stop remote loop and echo modes ever getting
 339         * us to here.
 340         */
 341        qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
 342        s->r[R_CISR] |= UART_INTR_ROVR;
 343    }
 344
 345    memcpy(s->tx_fifo + s->tx_count, buf, size);
 346    s->tx_count += size;
 347
 348    cadence_uart_xmit(NULL, G_IO_OUT, s);
 349}
 350
 351static void uart_receive(void *opaque, const uint8_t *buf, int size)
 352{
 353    CadenceUARTState *s = opaque;
 354    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 355
 356    /* ignore characters when unclocked or in reset */
 357    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
 358        return;
 359    }
 360
 361    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 362        uart_write_rx_fifo(opaque, buf, size);
 363    }
 364    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 365        uart_write_tx_fifo(s, buf, size);
 366    }
 367}
 368
 369static void uart_event(void *opaque, QEMUChrEvent event)
 370{
 371    CadenceUARTState *s = opaque;
 372    uint8_t buf = '\0';
 373
 374    /* ignore characters when unclocked or in reset */
 375    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
 376        return;
 377    }
 378
 379    if (event == CHR_EVENT_BREAK) {
 380        uart_write_rx_fifo(opaque, &buf, 1);
 381    }
 382
 383    uart_update_status(s);
 384}
 385
 386static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
 387{
 388    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 389        return;
 390    }
 391
 392    if (s->rx_count) {
 393        uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
 394                            s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
 395        *c = s->rx_fifo[rx_rpos];
 396        s->rx_count--;
 397
 398        qemu_chr_fe_accept_input(&s->chr);
 399    } else {
 400        *c = 0;
 401    }
 402
 403    uart_update_status(s);
 404}
 405
 406static void uart_write(void *opaque, hwaddr offset,
 407                          uint64_t value, unsigned size)
 408{
 409    CadenceUARTState *s = opaque;
 410
 411    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
 412    offset >>= 2;
 413    if (offset >= CADENCE_UART_R_MAX) {
 414        return;
 415    }
 416    switch (offset) {
 417    case R_IER: /* ier (wts imr) */
 418        s->r[R_IMR] |= value;
 419        break;
 420    case R_IDR: /* idr (wtc imr) */
 421        s->r[R_IMR] &= ~value;
 422        break;
 423    case R_IMR: /* imr (read only) */
 424        break;
 425    case R_CISR: /* cisr (wtc) */
 426        s->r[R_CISR] &= ~value;
 427        break;
 428    case R_TX_RX: /* UARTDR */
 429        switch (s->r[R_MR] & UART_MR_CHMODE) {
 430        case NORMAL_MODE:
 431            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
 432            break;
 433        case LOCAL_LOOPBACK:
 434            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
 435            break;
 436        }
 437        break;
 438    case R_BRGR: /* Baud rate generator */
 439        if (value >= 0x01) {
 440            s->r[offset] = value & 0xFFFF;
 441        }
 442        break;
 443    case R_BDIV:    /* Baud rate divider */
 444        if (value >= 0x04) {
 445            s->r[offset] = value & 0xFF;
 446        }
 447        break;
 448    default:
 449        s->r[offset] = value;
 450    }
 451
 452    switch (offset) {
 453    case R_CR:
 454        uart_ctrl_update(s);
 455        break;
 456    case R_MR:
 457        uart_parameters_setup(s);
 458        break;
 459    }
 460    uart_update_status(s);
 461}
 462
 463static uint64_t uart_read(void *opaque, hwaddr offset,
 464        unsigned size)
 465{
 466    CadenceUARTState *s = opaque;
 467    uint32_t c = 0;
 468
 469    offset >>= 2;
 470    if (offset >= CADENCE_UART_R_MAX) {
 471        c = 0;
 472    } else if (offset == R_TX_RX) {
 473        uart_read_rx_fifo(s, &c);
 474    } else {
 475       c = s->r[offset];
 476    }
 477
 478    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
 479    return c;
 480}
 481
 482static const MemoryRegionOps uart_ops = {
 483    .read = uart_read,
 484    .write = uart_write,
 485    .endianness = DEVICE_NATIVE_ENDIAN,
 486};
 487
 488static void cadence_uart_reset_init(Object *obj, ResetType type)
 489{
 490    CadenceUARTState *s = CADENCE_UART(obj);
 491
 492    s->r[R_CR] = 0x00000128;
 493    s->r[R_IMR] = 0;
 494    s->r[R_CISR] = 0;
 495    s->r[R_RTRIG] = 0x00000020;
 496    s->r[R_BRGR] = 0x0000028B;
 497    s->r[R_BDIV] = 0x0000000F;
 498    s->r[R_TTRIG] = 0x00000020;
 499}
 500
 501static void cadence_uart_reset_hold(Object *obj)
 502{
 503    CadenceUARTState *s = CADENCE_UART(obj);
 504
 505    uart_rx_reset(s);
 506    uart_tx_reset(s);
 507
 508    uart_update_status(s);
 509}
 510
 511static void cadence_uart_realize(DeviceState *dev, Error **errp)
 512{
 513    CadenceUARTState *s = CADENCE_UART(dev);
 514
 515    s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 516                                          fifo_trigger_update, s);
 517
 518    qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
 519                             uart_event, NULL, s, NULL, true);
 520}
 521
 522static void cadence_uart_refclk_update(void *opaque, ClockEvent event)
 523{
 524    CadenceUARTState *s = opaque;
 525
 526    /* recompute uart's speed on clock change */
 527    uart_parameters_setup(s);
 528}
 529
 530static void cadence_uart_init(Object *obj)
 531{
 532    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 533    CadenceUARTState *s = CADENCE_UART(obj);
 534
 535    memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
 536    sysbus_init_mmio(sbd, &s->iomem);
 537    sysbus_init_irq(sbd, &s->irq);
 538
 539    s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
 540                                   cadence_uart_refclk_update, s, ClockUpdate);
 541    /* initialize the frequency in case the clock remains unconnected */
 542    clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
 543
 544    s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
 545}
 546
 547static int cadence_uart_pre_load(void *opaque)
 548{
 549    CadenceUARTState *s = opaque;
 550
 551    /* the frequency will be overriden if the refclk field is present */
 552    clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
 553    return 0;
 554}
 555
 556static int cadence_uart_post_load(void *opaque, int version_id)
 557{
 558    CadenceUARTState *s = opaque;
 559
 560    /* Ensure these two aren't invalid numbers */
 561    if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
 562        s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
 563        /* Value is invalid, abort */
 564        return 1;
 565    }
 566
 567    uart_parameters_setup(s);
 568    uart_update_status(s);
 569    return 0;
 570}
 571
 572static const VMStateDescription vmstate_cadence_uart = {
 573    .name = "cadence_uart",
 574    .version_id = 3,
 575    .minimum_version_id = 2,
 576    .pre_load = cadence_uart_pre_load,
 577    .post_load = cadence_uart_post_load,
 578    .fields = (VMStateField[]) {
 579        VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
 580        VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
 581                            CADENCE_UART_RX_FIFO_SIZE),
 582        VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
 583                            CADENCE_UART_TX_FIFO_SIZE),
 584        VMSTATE_UINT32(rx_count, CadenceUARTState),
 585        VMSTATE_UINT32(tx_count, CadenceUARTState),
 586        VMSTATE_UINT32(rx_wpos, CadenceUARTState),
 587        VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
 588        VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
 589        VMSTATE_END_OF_LIST()
 590    },
 591};
 592
 593static Property cadence_uart_properties[] = {
 594    DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
 595    DEFINE_PROP_END_OF_LIST(),
 596};
 597
 598static void cadence_uart_class_init(ObjectClass *klass, void *data)
 599{
 600    DeviceClass *dc = DEVICE_CLASS(klass);
 601    ResettableClass *rc = RESETTABLE_CLASS(klass);
 602
 603    dc->realize = cadence_uart_realize;
 604    dc->vmsd = &vmstate_cadence_uart;
 605    rc->phases.enter = cadence_uart_reset_init;
 606    rc->phases.hold  = cadence_uart_reset_hold;
 607    device_class_set_props(dc, cadence_uart_properties);
 608  }
 609
 610static const TypeInfo cadence_uart_info = {
 611    .name          = TYPE_CADENCE_UART,
 612    .parent        = TYPE_SYS_BUS_DEVICE,
 613    .instance_size = sizeof(CadenceUARTState),
 614    .instance_init = cadence_uart_init,
 615    .class_init    = cadence_uart_class_init,
 616};
 617
 618static void cadence_uart_register_types(void)
 619{
 620    type_register_static(&cadence_uart_info);
 621}
 622
 623type_init(cadence_uart_register_types)
 624