qemu/hw/core/loader.c
<<
>>
Prefs
   1/*
   2 * QEMU Executable loader
   3 *
   4 * Copyright (c) 2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 *
  24 * Gunzip functionality in this file is derived from u-boot:
  25 *
  26 * (C) Copyright 2008 Semihalf
  27 *
  28 * (C) Copyright 2000-2005
  29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  30 *
  31 * This program is free software; you can redistribute it and/or
  32 * modify it under the terms of the GNU General Public License as
  33 * published by the Free Software Foundation; either version 2 of
  34 * the License, or (at your option) any later version.
  35 *
  36 * This program is distributed in the hope that it will be useful,
  37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  39 * GNU General Public License for more details.
  40 *
  41 * You should have received a copy of the GNU General Public License along
  42 * with this program; if not, see <http://www.gnu.org/licenses/>.
  43 */
  44
  45#include "qemu/osdep.h"
  46#include "qemu-common.h"
  47#include "qemu/datadir.h"
  48#include "qapi/error.h"
  49#include "trace.h"
  50#include "hw/hw.h"
  51#include "disas/disas.h"
  52#include "migration/vmstate.h"
  53#include "monitor/monitor.h"
  54#include "sysemu/reset.h"
  55#include "sysemu/sysemu.h"
  56#include "uboot_image.h"
  57#include "hw/loader.h"
  58#include "hw/nvram/fw_cfg.h"
  59#include "exec/memory.h"
  60#include "exec/address-spaces.h"
  61#include "hw/boards.h"
  62#include "qemu/cutils.h"
  63#include "sysemu/runstate.h"
  64
  65#include <zlib.h>
  66
  67static int roms_loaded;
  68
  69/* return the size or -1 if error */
  70int64_t get_image_size(const char *filename)
  71{
  72    int fd;
  73    int64_t size;
  74    fd = open(filename, O_RDONLY | O_BINARY);
  75    if (fd < 0)
  76        return -1;
  77    size = lseek(fd, 0, SEEK_END);
  78    close(fd);
  79    return size;
  80}
  81
  82/* return the size or -1 if error */
  83ssize_t load_image_size(const char *filename, void *addr, size_t size)
  84{
  85    int fd;
  86    ssize_t actsize, l = 0;
  87
  88    fd = open(filename, O_RDONLY | O_BINARY);
  89    if (fd < 0) {
  90        return -1;
  91    }
  92
  93    while ((actsize = read(fd, addr + l, size - l)) > 0) {
  94        l += actsize;
  95    }
  96
  97    close(fd);
  98
  99    return actsize < 0 ? -1 : l;
 100}
 101
 102/* read()-like version */
 103ssize_t read_targphys(const char *name,
 104                      int fd, hwaddr dst_addr, size_t nbytes)
 105{
 106    uint8_t *buf;
 107    ssize_t did;
 108
 109    buf = g_malloc(nbytes);
 110    did = read(fd, buf, nbytes);
 111    if (did > 0)
 112        rom_add_blob_fixed("read", buf, did, dst_addr);
 113    g_free(buf);
 114    return did;
 115}
 116
 117int load_image_targphys(const char *filename,
 118                        hwaddr addr, uint64_t max_sz)
 119{
 120    return load_image_targphys_as(filename, addr, max_sz, NULL);
 121}
 122
 123/* return the size or -1 if error */
 124int load_image_targphys_as(const char *filename,
 125                           hwaddr addr, uint64_t max_sz, AddressSpace *as)
 126{
 127    int size;
 128
 129    size = get_image_size(filename);
 130    if (size < 0 || size > max_sz) {
 131        return -1;
 132    }
 133    if (size > 0) {
 134        if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
 135            return -1;
 136        }
 137    }
 138    return size;
 139}
 140
 141int load_image_mr(const char *filename, MemoryRegion *mr)
 142{
 143    int size;
 144
 145    if (!memory_access_is_direct(mr, false)) {
 146        /* Can only load an image into RAM or ROM */
 147        return -1;
 148    }
 149
 150    size = get_image_size(filename);
 151
 152    if (size < 0 || size > memory_region_size(mr)) {
 153        return -1;
 154    }
 155    if (size > 0) {
 156        if (rom_add_file_mr(filename, mr, -1) < 0) {
 157            return -1;
 158        }
 159    }
 160    return size;
 161}
 162
 163void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
 164                      const char *source)
 165{
 166    const char *nulp;
 167    char *ptr;
 168
 169    if (buf_size <= 0) return;
 170    nulp = memchr(source, 0, buf_size);
 171    if (nulp) {
 172        rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
 173    } else {
 174        rom_add_blob_fixed(name, source, buf_size, dest);
 175        ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
 176        *ptr = 0;
 177    }
 178}
 179
 180/* A.OUT loader */
 181
 182struct exec
 183{
 184  uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
 185  uint32_t a_text;   /* length of text, in bytes */
 186  uint32_t a_data;   /* length of data, in bytes */
 187  uint32_t a_bss;    /* length of uninitialized data area, in bytes */
 188  uint32_t a_syms;   /* length of symbol table data in file, in bytes */
 189  uint32_t a_entry;  /* start address */
 190  uint32_t a_trsize; /* length of relocation info for text, in bytes */
 191  uint32_t a_drsize; /* length of relocation info for data, in bytes */
 192};
 193
 194static void bswap_ahdr(struct exec *e)
 195{
 196    bswap32s(&e->a_info);
 197    bswap32s(&e->a_text);
 198    bswap32s(&e->a_data);
 199    bswap32s(&e->a_bss);
 200    bswap32s(&e->a_syms);
 201    bswap32s(&e->a_entry);
 202    bswap32s(&e->a_trsize);
 203    bswap32s(&e->a_drsize);
 204}
 205
 206#define N_MAGIC(exec) ((exec).a_info & 0xffff)
 207#define OMAGIC 0407
 208#define NMAGIC 0410
 209#define ZMAGIC 0413
 210#define QMAGIC 0314
 211#define _N_HDROFF(x) (1024 - sizeof (struct exec))
 212#define N_TXTOFF(x)                                                     \
 213    (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :     \
 214     (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
 215#define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
 216#define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
 217
 218#define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
 219
 220#define N_DATADDR(x, target_page_size) \
 221    (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
 222     : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
 223
 224
 225int load_aout(const char *filename, hwaddr addr, int max_sz,
 226              int bswap_needed, hwaddr target_page_size)
 227{
 228    int fd;
 229    ssize_t size, ret;
 230    struct exec e;
 231    uint32_t magic;
 232
 233    fd = open(filename, O_RDONLY | O_BINARY);
 234    if (fd < 0)
 235        return -1;
 236
 237    size = read(fd, &e, sizeof(e));
 238    if (size < 0)
 239        goto fail;
 240
 241    if (bswap_needed) {
 242        bswap_ahdr(&e);
 243    }
 244
 245    magic = N_MAGIC(e);
 246    switch (magic) {
 247    case ZMAGIC:
 248    case QMAGIC:
 249    case OMAGIC:
 250        if (e.a_text + e.a_data > max_sz)
 251            goto fail;
 252        lseek(fd, N_TXTOFF(e), SEEK_SET);
 253        size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
 254        if (size < 0)
 255            goto fail;
 256        break;
 257    case NMAGIC:
 258        if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
 259            goto fail;
 260        lseek(fd, N_TXTOFF(e), SEEK_SET);
 261        size = read_targphys(filename, fd, addr, e.a_text);
 262        if (size < 0)
 263            goto fail;
 264        ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
 265                            e.a_data);
 266        if (ret < 0)
 267            goto fail;
 268        size += ret;
 269        break;
 270    default:
 271        goto fail;
 272    }
 273    close(fd);
 274    return size;
 275 fail:
 276    close(fd);
 277    return -1;
 278}
 279
 280/* ELF loader */
 281
 282static void *load_at(int fd, off_t offset, size_t size)
 283{
 284    void *ptr;
 285    if (lseek(fd, offset, SEEK_SET) < 0)
 286        return NULL;
 287    ptr = g_malloc(size);
 288    if (read(fd, ptr, size) != size) {
 289        g_free(ptr);
 290        return NULL;
 291    }
 292    return ptr;
 293}
 294
 295#ifdef ELF_CLASS
 296#undef ELF_CLASS
 297#endif
 298
 299#define ELF_CLASS   ELFCLASS32
 300#include "elf.h"
 301
 302#define SZ              32
 303#define elf_word        uint32_t
 304#define elf_sword        int32_t
 305#define bswapSZs        bswap32s
 306#include "hw/elf_ops.h"
 307
 308#undef elfhdr
 309#undef elf_phdr
 310#undef elf_shdr
 311#undef elf_sym
 312#undef elf_rela
 313#undef elf_note
 314#undef elf_word
 315#undef elf_sword
 316#undef bswapSZs
 317#undef SZ
 318#define elfhdr          elf64_hdr
 319#define elf_phdr        elf64_phdr
 320#define elf_note        elf64_note
 321#define elf_shdr        elf64_shdr
 322#define elf_sym         elf64_sym
 323#define elf_rela        elf64_rela
 324#define elf_word        uint64_t
 325#define elf_sword        int64_t
 326#define bswapSZs        bswap64s
 327#define SZ              64
 328#include "hw/elf_ops.h"
 329
 330const char *load_elf_strerror(int error)
 331{
 332    switch (error) {
 333    case 0:
 334        return "No error";
 335    case ELF_LOAD_FAILED:
 336        return "Failed to load ELF";
 337    case ELF_LOAD_NOT_ELF:
 338        return "The image is not ELF";
 339    case ELF_LOAD_WRONG_ARCH:
 340        return "The image is from incompatible architecture";
 341    case ELF_LOAD_WRONG_ENDIAN:
 342        return "The image has incorrect endianness";
 343    case ELF_LOAD_TOO_BIG:
 344        return "The image segments are too big to load";
 345    default:
 346        return "Unknown error";
 347    }
 348}
 349
 350void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
 351{
 352    int fd;
 353    uint8_t e_ident_local[EI_NIDENT];
 354    uint8_t *e_ident;
 355    size_t hdr_size, off;
 356    bool is64l;
 357
 358    if (!hdr) {
 359        hdr = e_ident_local;
 360    }
 361    e_ident = hdr;
 362
 363    fd = open(filename, O_RDONLY | O_BINARY);
 364    if (fd < 0) {
 365        error_setg_errno(errp, errno, "Failed to open file: %s", filename);
 366        return;
 367    }
 368    if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
 369        error_setg_errno(errp, errno, "Failed to read file: %s", filename);
 370        goto fail;
 371    }
 372    if (e_ident[0] != ELFMAG0 ||
 373        e_ident[1] != ELFMAG1 ||
 374        e_ident[2] != ELFMAG2 ||
 375        e_ident[3] != ELFMAG3) {
 376        error_setg(errp, "Bad ELF magic");
 377        goto fail;
 378    }
 379
 380    is64l = e_ident[EI_CLASS] == ELFCLASS64;
 381    hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
 382    if (is64) {
 383        *is64 = is64l;
 384    }
 385
 386    off = EI_NIDENT;
 387    while (hdr != e_ident_local && off < hdr_size) {
 388        size_t br = read(fd, hdr + off, hdr_size - off);
 389        switch (br) {
 390        case 0:
 391            error_setg(errp, "File too short: %s", filename);
 392            goto fail;
 393        case -1:
 394            error_setg_errno(errp, errno, "Failed to read file: %s",
 395                             filename);
 396            goto fail;
 397        }
 398        off += br;
 399    }
 400
 401fail:
 402    close(fd);
 403}
 404
 405/* return < 0 if error, otherwise the number of bytes loaded in memory */
 406int load_elf(const char *filename,
 407             uint64_t (*elf_note_fn)(void *, void *, bool),
 408             uint64_t (*translate_fn)(void *, uint64_t),
 409             void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
 410             uint64_t *highaddr, uint32_t *pflags, int big_endian,
 411             int elf_machine, int clear_lsb, int data_swab)
 412{
 413    return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
 414                       pentry, lowaddr, highaddr, pflags, big_endian,
 415                       elf_machine, clear_lsb, data_swab, NULL);
 416}
 417
 418/* return < 0 if error, otherwise the number of bytes loaded in memory */
 419int load_elf_as(const char *filename,
 420                uint64_t (*elf_note_fn)(void *, void *, bool),
 421                uint64_t (*translate_fn)(void *, uint64_t),
 422                void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
 423                uint64_t *highaddr, uint32_t *pflags, int big_endian,
 424                int elf_machine, int clear_lsb, int data_swab, AddressSpace *as)
 425{
 426    return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
 427                        pentry, lowaddr, highaddr, pflags, big_endian,
 428                        elf_machine, clear_lsb, data_swab, as, true);
 429}
 430
 431/* return < 0 if error, otherwise the number of bytes loaded in memory */
 432int load_elf_ram(const char *filename,
 433                 uint64_t (*elf_note_fn)(void *, void *, bool),
 434                 uint64_t (*translate_fn)(void *, uint64_t),
 435                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
 436                 uint64_t *highaddr, uint32_t *pflags, int big_endian,
 437                 int elf_machine, int clear_lsb, int data_swab,
 438                 AddressSpace *as, bool load_rom)
 439{
 440    return load_elf_ram_sym(filename, elf_note_fn,
 441                            translate_fn, translate_opaque,
 442                            pentry, lowaddr, highaddr, pflags, big_endian,
 443                            elf_machine, clear_lsb, data_swab, as,
 444                            load_rom, NULL);
 445}
 446
 447/* return < 0 if error, otherwise the number of bytes loaded in memory */
 448int load_elf_ram_sym(const char *filename,
 449                     uint64_t (*elf_note_fn)(void *, void *, bool),
 450                     uint64_t (*translate_fn)(void *, uint64_t),
 451                     void *translate_opaque, uint64_t *pentry,
 452                     uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
 453                     int big_endian, int elf_machine,
 454                     int clear_lsb, int data_swab,
 455                     AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
 456{
 457    int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
 458    uint8_t e_ident[EI_NIDENT];
 459
 460    fd = open(filename, O_RDONLY | O_BINARY);
 461    if (fd < 0) {
 462        perror(filename);
 463        return -1;
 464    }
 465    if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
 466        goto fail;
 467    if (e_ident[0] != ELFMAG0 ||
 468        e_ident[1] != ELFMAG1 ||
 469        e_ident[2] != ELFMAG2 ||
 470        e_ident[3] != ELFMAG3) {
 471        ret = ELF_LOAD_NOT_ELF;
 472        goto fail;
 473    }
 474#ifdef HOST_WORDS_BIGENDIAN
 475    data_order = ELFDATA2MSB;
 476#else
 477    data_order = ELFDATA2LSB;
 478#endif
 479    must_swab = data_order != e_ident[EI_DATA];
 480    if (big_endian) {
 481        target_data_order = ELFDATA2MSB;
 482    } else {
 483        target_data_order = ELFDATA2LSB;
 484    }
 485
 486    if (target_data_order != e_ident[EI_DATA]) {
 487        ret = ELF_LOAD_WRONG_ENDIAN;
 488        goto fail;
 489    }
 490
 491    lseek(fd, 0, SEEK_SET);
 492    if (e_ident[EI_CLASS] == ELFCLASS64) {
 493        ret = load_elf64(filename, fd, elf_note_fn,
 494                         translate_fn, translate_opaque, must_swab,
 495                         pentry, lowaddr, highaddr, pflags, elf_machine,
 496                         clear_lsb, data_swab, as, load_rom, sym_cb);
 497    } else {
 498        ret = load_elf32(filename, fd, elf_note_fn,
 499                         translate_fn, translate_opaque, must_swab,
 500                         pentry, lowaddr, highaddr, pflags, elf_machine,
 501                         clear_lsb, data_swab, as, load_rom, sym_cb);
 502    }
 503
 504 fail:
 505    close(fd);
 506    return ret;
 507}
 508
 509static void bswap_uboot_header(uboot_image_header_t *hdr)
 510{
 511#ifndef HOST_WORDS_BIGENDIAN
 512    bswap32s(&hdr->ih_magic);
 513    bswap32s(&hdr->ih_hcrc);
 514    bswap32s(&hdr->ih_time);
 515    bswap32s(&hdr->ih_size);
 516    bswap32s(&hdr->ih_load);
 517    bswap32s(&hdr->ih_ep);
 518    bswap32s(&hdr->ih_dcrc);
 519#endif
 520}
 521
 522
 523#define ZALLOC_ALIGNMENT        16
 524
 525static void *zalloc(void *x, unsigned items, unsigned size)
 526{
 527    void *p;
 528
 529    size *= items;
 530    size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
 531
 532    p = g_malloc(size);
 533
 534    return (p);
 535}
 536
 537static void zfree(void *x, void *addr)
 538{
 539    g_free(addr);
 540}
 541
 542
 543#define HEAD_CRC        2
 544#define EXTRA_FIELD     4
 545#define ORIG_NAME       8
 546#define COMMENT         0x10
 547#define RESERVED        0xe0
 548
 549#define DEFLATED        8
 550
 551ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
 552{
 553    z_stream s;
 554    ssize_t dstbytes;
 555    int r, i, flags;
 556
 557    /* skip header */
 558    i = 10;
 559    flags = src[3];
 560    if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
 561        puts ("Error: Bad gzipped data\n");
 562        return -1;
 563    }
 564    if ((flags & EXTRA_FIELD) != 0)
 565        i = 12 + src[10] + (src[11] << 8);
 566    if ((flags & ORIG_NAME) != 0)
 567        while (src[i++] != 0)
 568            ;
 569    if ((flags & COMMENT) != 0)
 570        while (src[i++] != 0)
 571            ;
 572    if ((flags & HEAD_CRC) != 0)
 573        i += 2;
 574    if (i >= srclen) {
 575        puts ("Error: gunzip out of data in header\n");
 576        return -1;
 577    }
 578
 579    s.zalloc = zalloc;
 580    s.zfree = zfree;
 581
 582    r = inflateInit2(&s, -MAX_WBITS);
 583    if (r != Z_OK) {
 584        printf ("Error: inflateInit2() returned %d\n", r);
 585        return (-1);
 586    }
 587    s.next_in = src + i;
 588    s.avail_in = srclen - i;
 589    s.next_out = dst;
 590    s.avail_out = dstlen;
 591    r = inflate(&s, Z_FINISH);
 592    if (r != Z_OK && r != Z_STREAM_END) {
 593        printf ("Error: inflate() returned %d\n", r);
 594        return -1;
 595    }
 596    dstbytes = s.next_out - (unsigned char *) dst;
 597    inflateEnd(&s);
 598
 599    return dstbytes;
 600}
 601
 602/* Load a U-Boot image.  */
 603static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
 604                            int *is_linux, uint8_t image_type,
 605                            uint64_t (*translate_fn)(void *, uint64_t),
 606                            void *translate_opaque, AddressSpace *as)
 607{
 608    int fd;
 609    int size;
 610    hwaddr address;
 611    uboot_image_header_t h;
 612    uboot_image_header_t *hdr = &h;
 613    uint8_t *data = NULL;
 614    int ret = -1;
 615    int do_uncompress = 0;
 616
 617    fd = open(filename, O_RDONLY | O_BINARY);
 618    if (fd < 0)
 619        return -1;
 620
 621    size = read(fd, hdr, sizeof(uboot_image_header_t));
 622    if (size < sizeof(uboot_image_header_t)) {
 623        goto out;
 624    }
 625
 626    bswap_uboot_header(hdr);
 627
 628    if (hdr->ih_magic != IH_MAGIC)
 629        goto out;
 630
 631    if (hdr->ih_type != image_type) {
 632        if (!(image_type == IH_TYPE_KERNEL &&
 633            hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
 634            fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
 635                    image_type);
 636            goto out;
 637        }
 638    }
 639
 640    /* TODO: Implement other image types.  */
 641    switch (hdr->ih_type) {
 642    case IH_TYPE_KERNEL_NOLOAD:
 643        if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
 644            fprintf(stderr, "this image format (kernel_noload) cannot be "
 645                    "loaded on this machine type");
 646            goto out;
 647        }
 648
 649        hdr->ih_load = *loadaddr + sizeof(*hdr);
 650        hdr->ih_ep += hdr->ih_load;
 651        /* fall through */
 652    case IH_TYPE_KERNEL:
 653        address = hdr->ih_load;
 654        if (translate_fn) {
 655            address = translate_fn(translate_opaque, address);
 656        }
 657        if (loadaddr) {
 658            *loadaddr = hdr->ih_load;
 659        }
 660
 661        switch (hdr->ih_comp) {
 662        case IH_COMP_NONE:
 663            break;
 664        case IH_COMP_GZIP:
 665            do_uncompress = 1;
 666            break;
 667        default:
 668            fprintf(stderr,
 669                    "Unable to load u-boot images with compression type %d\n",
 670                    hdr->ih_comp);
 671            goto out;
 672        }
 673
 674        if (ep) {
 675            *ep = hdr->ih_ep;
 676        }
 677
 678        /* TODO: Check CPU type.  */
 679        if (is_linux) {
 680            if (hdr->ih_os == IH_OS_LINUX) {
 681                *is_linux = 1;
 682            } else {
 683                *is_linux = 0;
 684            }
 685        }
 686
 687        break;
 688    case IH_TYPE_RAMDISK:
 689        address = *loadaddr;
 690        break;
 691    default:
 692        fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
 693        goto out;
 694    }
 695
 696    data = g_malloc(hdr->ih_size);
 697
 698    if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
 699        fprintf(stderr, "Error reading file\n");
 700        goto out;
 701    }
 702
 703    if (do_uncompress) {
 704        uint8_t *compressed_data;
 705        size_t max_bytes;
 706        ssize_t bytes;
 707
 708        compressed_data = data;
 709        max_bytes = UBOOT_MAX_GUNZIP_BYTES;
 710        data = g_malloc(max_bytes);
 711
 712        bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
 713        g_free(compressed_data);
 714        if (bytes < 0) {
 715            fprintf(stderr, "Unable to decompress gzipped image!\n");
 716            goto out;
 717        }
 718        hdr->ih_size = bytes;
 719    }
 720
 721    rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
 722
 723    ret = hdr->ih_size;
 724
 725out:
 726    g_free(data);
 727    close(fd);
 728    return ret;
 729}
 730
 731int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
 732                int *is_linux,
 733                uint64_t (*translate_fn)(void *, uint64_t),
 734                void *translate_opaque)
 735{
 736    return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
 737                            translate_fn, translate_opaque, NULL);
 738}
 739
 740int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
 741                   int *is_linux,
 742                   uint64_t (*translate_fn)(void *, uint64_t),
 743                   void *translate_opaque, AddressSpace *as)
 744{
 745    return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
 746                            translate_fn, translate_opaque, as);
 747}
 748
 749/* Load a ramdisk.  */
 750int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
 751{
 752    return load_ramdisk_as(filename, addr, max_sz, NULL);
 753}
 754
 755int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
 756                    AddressSpace *as)
 757{
 758    return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
 759                            NULL, NULL, as);
 760}
 761
 762/* Load a gzip-compressed kernel to a dynamically allocated buffer. */
 763int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
 764                              uint8_t **buffer)
 765{
 766    uint8_t *compressed_data = NULL;
 767    uint8_t *data = NULL;
 768    gsize len;
 769    ssize_t bytes;
 770    int ret = -1;
 771
 772    if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
 773                             NULL)) {
 774        goto out;
 775    }
 776
 777    /* Is it a gzip-compressed file? */
 778    if (len < 2 ||
 779        compressed_data[0] != 0x1f ||
 780        compressed_data[1] != 0x8b) {
 781        goto out;
 782    }
 783
 784    if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
 785        max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
 786    }
 787
 788    data = g_malloc(max_sz);
 789    bytes = gunzip(data, max_sz, compressed_data, len);
 790    if (bytes < 0) {
 791        fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
 792                filename);
 793        goto out;
 794    }
 795
 796    /* trim to actual size and return to caller */
 797    *buffer = g_realloc(data, bytes);
 798    ret = bytes;
 799    /* ownership has been transferred to caller */
 800    data = NULL;
 801
 802 out:
 803    g_free(compressed_data);
 804    g_free(data);
 805    return ret;
 806}
 807
 808/* Load a gzip-compressed kernel. */
 809int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
 810{
 811    int bytes;
 812    uint8_t *data;
 813
 814    bytes = load_image_gzipped_buffer(filename, max_sz, &data);
 815    if (bytes != -1) {
 816        rom_add_blob_fixed(filename, data, bytes, addr);
 817        g_free(data);
 818    }
 819    return bytes;
 820}
 821
 822/*
 823 * Functions for reboot-persistent memory regions.
 824 *  - used for vga bios and option roms.
 825 *  - also linux kernel (-kernel / -initrd).
 826 */
 827
 828typedef struct Rom Rom;
 829
 830struct Rom {
 831    char *name;
 832    char *path;
 833
 834    /* datasize is the amount of memory allocated in "data". If datasize is less
 835     * than romsize, it means that the area from datasize to romsize is filled
 836     * with zeros.
 837     */
 838    size_t romsize;
 839    size_t datasize;
 840
 841    uint8_t *data;
 842    MemoryRegion *mr;
 843    AddressSpace *as;
 844    int isrom;
 845    char *fw_dir;
 846    char *fw_file;
 847    GMappedFile *mapped_file;
 848
 849    bool committed;
 850
 851    hwaddr addr;
 852    QTAILQ_ENTRY(Rom) next;
 853};
 854
 855static FWCfgState *fw_cfg;
 856static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
 857
 858/*
 859 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
 860 * rom_add_elf_program())
 861 */
 862static void rom_free_data(Rom *rom)
 863{
 864    if (rom->mapped_file) {
 865        g_mapped_file_unref(rom->mapped_file);
 866        rom->mapped_file = NULL;
 867    } else {
 868        g_free(rom->data);
 869    }
 870
 871    rom->data = NULL;
 872}
 873
 874static void rom_free(Rom *rom)
 875{
 876    rom_free_data(rom);
 877    g_free(rom->path);
 878    g_free(rom->name);
 879    g_free(rom->fw_dir);
 880    g_free(rom->fw_file);
 881    g_free(rom);
 882}
 883
 884static inline bool rom_order_compare(Rom *rom, Rom *item)
 885{
 886    return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
 887           (rom->as == item->as && rom->addr >= item->addr);
 888}
 889
 890static void rom_insert(Rom *rom)
 891{
 892    Rom *item;
 893
 894    if (roms_loaded) {
 895        hw_error ("ROM images must be loaded at startup\n");
 896    }
 897
 898    /* The user didn't specify an address space, this is the default */
 899    if (!rom->as) {
 900        rom->as = &address_space_memory;
 901    }
 902
 903    rom->committed = false;
 904
 905    /* List is ordered by load address in the same address space */
 906    QTAILQ_FOREACH(item, &roms, next) {
 907        if (rom_order_compare(rom, item)) {
 908            continue;
 909        }
 910        QTAILQ_INSERT_BEFORE(item, rom, next);
 911        return;
 912    }
 913    QTAILQ_INSERT_TAIL(&roms, rom, next);
 914}
 915
 916static void fw_cfg_resized(const char *id, uint64_t length, void *host)
 917{
 918    if (fw_cfg) {
 919        fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
 920    }
 921}
 922
 923static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
 924{
 925    void *data;
 926
 927    rom->mr = g_malloc(sizeof(*rom->mr));
 928    memory_region_init_resizeable_ram(rom->mr, owner, name,
 929                                      rom->datasize, rom->romsize,
 930                                      fw_cfg_resized,
 931                                      &error_fatal);
 932    memory_region_set_readonly(rom->mr, ro);
 933    vmstate_register_ram_global(rom->mr);
 934
 935    data = memory_region_get_ram_ptr(rom->mr);
 936    memcpy(data, rom->data, rom->datasize);
 937
 938    return data;
 939}
 940
 941int rom_add_file(const char *file, const char *fw_dir,
 942                 hwaddr addr, int32_t bootindex,
 943                 bool option_rom, MemoryRegion *mr,
 944                 AddressSpace *as)
 945{
 946    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 947    Rom *rom;
 948    int rc, fd = -1;
 949    char devpath[100];
 950
 951    if (as && mr) {
 952        fprintf(stderr, "Specifying an Address Space and Memory Region is " \
 953                "not valid when loading a rom\n");
 954        /* We haven't allocated anything so we don't need any cleanup */
 955        return -1;
 956    }
 957
 958    rom = g_malloc0(sizeof(*rom));
 959    rom->name = g_strdup(file);
 960    rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
 961    rom->as = as;
 962    if (rom->path == NULL) {
 963        rom->path = g_strdup(file);
 964    }
 965
 966    fd = open(rom->path, O_RDONLY | O_BINARY);
 967    if (fd == -1) {
 968        fprintf(stderr, "Could not open option rom '%s': %s\n",
 969                rom->path, strerror(errno));
 970        goto err;
 971    }
 972
 973    if (fw_dir) {
 974        rom->fw_dir  = g_strdup(fw_dir);
 975        rom->fw_file = g_strdup(file);
 976    }
 977    rom->addr     = addr;
 978    rom->romsize  = lseek(fd, 0, SEEK_END);
 979    if (rom->romsize == -1) {
 980        fprintf(stderr, "rom: file %-20s: get size error: %s\n",
 981                rom->name, strerror(errno));
 982        goto err;
 983    }
 984
 985    rom->datasize = rom->romsize;
 986    rom->data     = g_malloc0(rom->datasize);
 987    lseek(fd, 0, SEEK_SET);
 988    rc = read(fd, rom->data, rom->datasize);
 989    if (rc != rom->datasize) {
 990        fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
 991                rom->name, rc, rom->datasize);
 992        goto err;
 993    }
 994    close(fd);
 995    rom_insert(rom);
 996    if (rom->fw_file && fw_cfg) {
 997        const char *basename;
 998        char fw_file_name[FW_CFG_MAX_FILE_PATH];
 999        void *data;
1000
1001        basename = strrchr(rom->fw_file, '/');
1002        if (basename) {
1003            basename++;
1004        } else {
1005            basename = rom->fw_file;
1006        }
1007        snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1008                 basename);
1009        snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1010
1011        if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1012            data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1013        } else {
1014            data = rom->data;
1015        }
1016
1017        fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1018    } else {
1019        if (mr) {
1020            rom->mr = mr;
1021            snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1022        } else {
1023            snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1024        }
1025    }
1026
1027    add_boot_device_path(bootindex, NULL, devpath);
1028    return 0;
1029
1030err:
1031    if (fd != -1)
1032        close(fd);
1033
1034    rom_free(rom);
1035    return -1;
1036}
1037
1038MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1039                   size_t max_len, hwaddr addr, const char *fw_file_name,
1040                   FWCfgCallback fw_callback, void *callback_opaque,
1041                   AddressSpace *as, bool read_only)
1042{
1043    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1044    Rom *rom;
1045    MemoryRegion *mr = NULL;
1046
1047    rom           = g_malloc0(sizeof(*rom));
1048    rom->name     = g_strdup(name);
1049    rom->as       = as;
1050    rom->addr     = addr;
1051    rom->romsize  = max_len ? max_len : len;
1052    rom->datasize = len;
1053    g_assert(rom->romsize >= rom->datasize);
1054    rom->data     = g_malloc0(rom->datasize);
1055    memcpy(rom->data, blob, len);
1056    rom_insert(rom);
1057    if (fw_file_name && fw_cfg) {
1058        char devpath[100];
1059        void *data;
1060
1061        if (read_only) {
1062            snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1063        } else {
1064            snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1065        }
1066
1067        if (mc->rom_file_has_mr) {
1068            data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1069            mr = rom->mr;
1070        } else {
1071            data = rom->data;
1072        }
1073
1074        fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1075                                 fw_callback, NULL, callback_opaque,
1076                                 data, rom->datasize, read_only);
1077    }
1078    return mr;
1079}
1080
1081/* This function is specific for elf program because we don't need to allocate
1082 * all the rom. We just allocate the first part and the rest is just zeros. This
1083 * is why romsize and datasize are different. Also, this function takes its own
1084 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1085 */
1086int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1087                        size_t datasize, size_t romsize, hwaddr addr,
1088                        AddressSpace *as)
1089{
1090    Rom *rom;
1091
1092    rom           = g_malloc0(sizeof(*rom));
1093    rom->name     = g_strdup(name);
1094    rom->addr     = addr;
1095    rom->datasize = datasize;
1096    rom->romsize  = romsize;
1097    rom->data     = data;
1098    rom->as       = as;
1099
1100    if (mapped_file && data) {
1101        g_mapped_file_ref(mapped_file);
1102        rom->mapped_file = mapped_file;
1103    }
1104
1105    rom_insert(rom);
1106    return 0;
1107}
1108
1109int rom_add_vga(const char *file)
1110{
1111    return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1112}
1113
1114int rom_add_option(const char *file, int32_t bootindex)
1115{
1116    return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1117}
1118
1119static void rom_reset(void *unused)
1120{
1121    Rom *rom;
1122
1123    QTAILQ_FOREACH(rom, &roms, next) {
1124        if (rom->fw_file) {
1125            continue;
1126        }
1127        /*
1128         * We don't need to fill in the RAM with ROM data because we'll fill
1129         * the data in during the next incoming migration in all cases.  Note
1130         * that some of those RAMs can actually be modified by the guest.
1131         */
1132        if (runstate_check(RUN_STATE_INMIGRATE)) {
1133            if (rom->data && rom->isrom) {
1134                /*
1135                 * Free it so that a rom_reset after migration doesn't
1136                 * overwrite a potentially modified 'rom'.
1137                 */
1138                rom_free_data(rom);
1139            }
1140            continue;
1141        }
1142
1143        if (rom->data == NULL) {
1144            continue;
1145        }
1146        if (rom->mr) {
1147            void *host = memory_region_get_ram_ptr(rom->mr);
1148            memcpy(host, rom->data, rom->datasize);
1149        } else {
1150            address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1151                                    rom->data, rom->datasize);
1152        }
1153        if (rom->isrom) {
1154            /* rom needs to be written only once */
1155            rom_free_data(rom);
1156        }
1157        /*
1158         * The rom loader is really on the same level as firmware in the guest
1159         * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1160         * that the instruction cache for that new region is clear, so that the
1161         * CPU definitely fetches its instructions from the just written data.
1162         */
1163        cpu_flush_icache_range(rom->addr, rom->datasize);
1164
1165        trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1166    }
1167}
1168
1169/* Return true if two consecutive ROMs in the ROM list overlap */
1170static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1171{
1172    if (!last_rom) {
1173        return false;
1174    }
1175    return last_rom->as == this_rom->as &&
1176        last_rom->addr + last_rom->romsize > this_rom->addr;
1177}
1178
1179static const char *rom_as_name(Rom *rom)
1180{
1181    const char *name = rom->as ? rom->as->name : NULL;
1182    return name ?: "anonymous";
1183}
1184
1185static void rom_print_overlap_error_header(void)
1186{
1187    error_report("Some ROM regions are overlapping");
1188    error_printf(
1189        "These ROM regions might have been loaded by "
1190        "direct user request or by default.\n"
1191        "They could be BIOS/firmware images, a guest kernel, "
1192        "initrd or some other file loaded into guest memory.\n"
1193        "Check whether you intended to load all this guest code, and "
1194        "whether it has been built to load to the correct addresses.\n");
1195}
1196
1197static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1198{
1199    error_printf(
1200        "\nThe following two regions overlap (in the %s address space):\n",
1201        rom_as_name(rom));
1202    error_printf(
1203        "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1204        last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1205    error_printf(
1206        "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1207        rom->name, rom->addr, rom->addr + rom->romsize);
1208}
1209
1210int rom_check_and_register_reset(void)
1211{
1212    MemoryRegionSection section;
1213    Rom *rom, *last_rom = NULL;
1214    bool found_overlap = false;
1215
1216    QTAILQ_FOREACH(rom, &roms, next) {
1217        if (rom->fw_file) {
1218            continue;
1219        }
1220        if (!rom->mr) {
1221            if (roms_overlap(last_rom, rom)) {
1222                if (!found_overlap) {
1223                    found_overlap = true;
1224                    rom_print_overlap_error_header();
1225                }
1226                rom_print_one_overlap_error(last_rom, rom);
1227                /* Keep going through the list so we report all overlaps */
1228            }
1229            last_rom = rom;
1230        }
1231        section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1232                                     rom->addr, 1);
1233        rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1234        memory_region_unref(section.mr);
1235    }
1236    if (found_overlap) {
1237        return -1;
1238    }
1239
1240    qemu_register_reset(rom_reset, NULL);
1241    roms_loaded = 1;
1242    return 0;
1243}
1244
1245void rom_set_fw(FWCfgState *f)
1246{
1247    fw_cfg = f;
1248}
1249
1250void rom_set_order_override(int order)
1251{
1252    if (!fw_cfg)
1253        return;
1254    fw_cfg_set_order_override(fw_cfg, order);
1255}
1256
1257void rom_reset_order_override(void)
1258{
1259    if (!fw_cfg)
1260        return;
1261    fw_cfg_reset_order_override(fw_cfg);
1262}
1263
1264void rom_transaction_begin(void)
1265{
1266    Rom *rom;
1267
1268    /* Ignore ROMs added without the transaction API */
1269    QTAILQ_FOREACH(rom, &roms, next) {
1270        rom->committed = true;
1271    }
1272}
1273
1274void rom_transaction_end(bool commit)
1275{
1276    Rom *rom;
1277    Rom *tmp;
1278
1279    QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1280        if (rom->committed) {
1281            continue;
1282        }
1283        if (commit) {
1284            rom->committed = true;
1285        } else {
1286            QTAILQ_REMOVE(&roms, rom, next);
1287            rom_free(rom);
1288        }
1289    }
1290}
1291
1292static Rom *find_rom(hwaddr addr, size_t size)
1293{
1294    Rom *rom;
1295
1296    QTAILQ_FOREACH(rom, &roms, next) {
1297        if (rom->fw_file) {
1298            continue;
1299        }
1300        if (rom->mr) {
1301            continue;
1302        }
1303        if (rom->addr > addr) {
1304            continue;
1305        }
1306        if (rom->addr + rom->romsize < addr + size) {
1307            continue;
1308        }
1309        return rom;
1310    }
1311    return NULL;
1312}
1313
1314/*
1315 * Copies memory from registered ROMs to dest. Any memory that is contained in
1316 * a ROM between addr and addr + size is copied. Note that this can involve
1317 * multiple ROMs, which need not start at addr and need not end at addr + size.
1318 */
1319int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1320{
1321    hwaddr end = addr + size;
1322    uint8_t *s, *d = dest;
1323    size_t l = 0;
1324    Rom *rom;
1325
1326    QTAILQ_FOREACH(rom, &roms, next) {
1327        if (rom->fw_file) {
1328            continue;
1329        }
1330        if (rom->mr) {
1331            continue;
1332        }
1333        if (rom->addr + rom->romsize < addr) {
1334            continue;
1335        }
1336        if (rom->addr > end || rom->addr < addr) {
1337            break;
1338        }
1339
1340        d = dest + (rom->addr - addr);
1341        s = rom->data;
1342        l = rom->datasize;
1343
1344        if ((d + l) > (dest + size)) {
1345            l = dest - d;
1346        }
1347
1348        if (l > 0) {
1349            memcpy(d, s, l);
1350        }
1351
1352        if (rom->romsize > rom->datasize) {
1353            /* If datasize is less than romsize, it means that we didn't
1354             * allocate all the ROM because the trailing data are only zeros.
1355             */
1356
1357            d += l;
1358            l = rom->romsize - rom->datasize;
1359
1360            if ((d + l) > (dest + size)) {
1361                /* Rom size doesn't fit in the destination area. Adjust to avoid
1362                 * overflow.
1363                 */
1364                l = dest - d;
1365            }
1366
1367            if (l > 0) {
1368                memset(d, 0x0, l);
1369            }
1370        }
1371    }
1372
1373    return (d + l) - dest;
1374}
1375
1376void *rom_ptr(hwaddr addr, size_t size)
1377{
1378    Rom *rom;
1379
1380    rom = find_rom(addr, size);
1381    if (!rom || !rom->data)
1382        return NULL;
1383    return rom->data + (addr - rom->addr);
1384}
1385
1386typedef struct FindRomCBData {
1387    size_t size; /* Amount of data we want from ROM, in bytes */
1388    MemoryRegion *mr; /* MR at the unaliased guest addr */
1389    hwaddr xlat; /* Offset of addr within mr */
1390    void *rom; /* Output: rom data pointer, if found */
1391} FindRomCBData;
1392
1393static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1394                        hwaddr offset_in_region, void *opaque)
1395{
1396    FindRomCBData *cbdata = opaque;
1397    hwaddr alias_addr;
1398
1399    if (mr != cbdata->mr) {
1400        return false;
1401    }
1402
1403    alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1404    cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1405    if (!cbdata->rom) {
1406        return false;
1407    }
1408    /* Found a match, stop iterating */
1409    return true;
1410}
1411
1412void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1413{
1414    /*
1415     * Find any ROM data for the given guest address range.  If there
1416     * is a ROM blob then return a pointer to the host memory
1417     * corresponding to 'addr'; otherwise return NULL.
1418     *
1419     * We look not only for ROM blobs that were loaded directly to
1420     * addr, but also for ROM blobs that were loaded to aliases of
1421     * that memory at other addresses within the AddressSpace.
1422     *
1423     * Note that we do not check @as against the 'as' member in the
1424     * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1425     * AddressSpace which the rom blob should be written to, whereas
1426     * our @as argument is the AddressSpace which we are (effectively)
1427     * reading from, and the same underlying RAM will often be visible
1428     * in multiple AddressSpaces. (A common example is a ROM blob
1429     * written to the 'system' address space but then read back via a
1430     * CPU's cpu->as pointer.) This does mean we might potentially
1431     * return a false-positive match if a ROM blob was loaded into an
1432     * AS which is entirely separate and distinct from the one we're
1433     * querying, but this issue exists also for rom_ptr() and hasn't
1434     * caused any problems in practice.
1435     */
1436    FlatView *fv;
1437    void *rom;
1438    hwaddr len_unused;
1439    FindRomCBData cbdata = {};
1440
1441    /* Easy case: there's data at the actual address */
1442    rom = rom_ptr(addr, size);
1443    if (rom) {
1444        return rom;
1445    }
1446
1447    RCU_READ_LOCK_GUARD();
1448
1449    fv = address_space_to_flatview(as);
1450    cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1451                                   false, MEMTXATTRS_UNSPECIFIED);
1452    if (!cbdata.mr) {
1453        /* Nothing at this address, so there can't be any aliasing */
1454        return NULL;
1455    }
1456    cbdata.size = size;
1457    flatview_for_each_range(fv, find_rom_cb, &cbdata);
1458    return cbdata.rom;
1459}
1460
1461void hmp_info_roms(Monitor *mon, const QDict *qdict)
1462{
1463    Rom *rom;
1464
1465    QTAILQ_FOREACH(rom, &roms, next) {
1466        if (rom->mr) {
1467            monitor_printf(mon, "%s"
1468                           " size=0x%06zx name=\"%s\"\n",
1469                           memory_region_name(rom->mr),
1470                           rom->romsize,
1471                           rom->name);
1472        } else if (!rom->fw_file) {
1473            monitor_printf(mon, "addr=" TARGET_FMT_plx
1474                           " size=0x%06zx mem=%s name=\"%s\"\n",
1475                           rom->addr, rom->romsize,
1476                           rom->isrom ? "rom" : "ram",
1477                           rom->name);
1478        } else {
1479            monitor_printf(mon, "fw=%s/%s"
1480                           " size=0x%06zx name=\"%s\"\n",
1481                           rom->fw_dir,
1482                           rom->fw_file,
1483                           rom->romsize,
1484                           rom->name);
1485        }
1486    }
1487}
1488
1489typedef enum HexRecord HexRecord;
1490enum HexRecord {
1491    DATA_RECORD = 0,
1492    EOF_RECORD,
1493    EXT_SEG_ADDR_RECORD,
1494    START_SEG_ADDR_RECORD,
1495    EXT_LINEAR_ADDR_RECORD,
1496    START_LINEAR_ADDR_RECORD,
1497};
1498
1499/* Each record contains a 16-bit address which is combined with the upper 16
1500 * bits of the implicit "next address" to form a 32-bit address.
1501 */
1502#define NEXT_ADDR_MASK 0xffff0000
1503
1504#define DATA_FIELD_MAX_LEN 0xff
1505#define LEN_EXCEPT_DATA 0x5
1506/* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1507 *       sizeof(checksum) */
1508typedef struct {
1509    uint8_t byte_count;
1510    uint16_t address;
1511    uint8_t record_type;
1512    uint8_t data[DATA_FIELD_MAX_LEN];
1513    uint8_t checksum;
1514} HexLine;
1515
1516/* return 0 or -1 if error */
1517static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1518                         uint32_t *index, const bool in_process)
1519{
1520    /* +-------+---------------+-------+---------------------+--------+
1521     * | byte  |               |record |                     |        |
1522     * | count |    address    | type  |        data         |checksum|
1523     * +-------+---------------+-------+---------------------+--------+
1524     * ^       ^               ^       ^                     ^        ^
1525     * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1526     */
1527    uint8_t value = 0;
1528    uint32_t idx = *index;
1529    /* ignore space */
1530    if (g_ascii_isspace(c)) {
1531        return true;
1532    }
1533    if (!g_ascii_isxdigit(c) || !in_process) {
1534        return false;
1535    }
1536    value = g_ascii_xdigit_value(c);
1537    value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1538    if (idx < 2) {
1539        line->byte_count |= value;
1540    } else if (2 <= idx && idx < 6) {
1541        line->address <<= 4;
1542        line->address += g_ascii_xdigit_value(c);
1543    } else if (6 <= idx && idx < 8) {
1544        line->record_type |= value;
1545    } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1546        line->data[(idx - 8) >> 1] |= value;
1547    } else if (8 + 2 * line->byte_count <= idx &&
1548               idx < 10 + 2 * line->byte_count) {
1549        line->checksum |= value;
1550    } else {
1551        return false;
1552    }
1553    *our_checksum += value;
1554    ++(*index);
1555    return true;
1556}
1557
1558typedef struct {
1559    const char *filename;
1560    HexLine line;
1561    uint8_t *bin_buf;
1562    hwaddr *start_addr;
1563    int total_size;
1564    uint32_t next_address_to_write;
1565    uint32_t current_address;
1566    uint32_t current_rom_index;
1567    uint32_t rom_start_address;
1568    AddressSpace *as;
1569    bool complete;
1570} HexParser;
1571
1572/* return size or -1 if error */
1573static int handle_record_type(HexParser *parser)
1574{
1575    HexLine *line = &(parser->line);
1576    switch (line->record_type) {
1577    case DATA_RECORD:
1578        parser->current_address =
1579            (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1580        /* verify this is a contiguous block of memory */
1581        if (parser->current_address != parser->next_address_to_write) {
1582            if (parser->current_rom_index != 0) {
1583                rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1584                                      parser->current_rom_index,
1585                                      parser->rom_start_address, parser->as);
1586            }
1587            parser->rom_start_address = parser->current_address;
1588            parser->current_rom_index = 0;
1589        }
1590
1591        /* copy from line buffer to output bin_buf */
1592        memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1593               line->byte_count);
1594        parser->current_rom_index += line->byte_count;
1595        parser->total_size += line->byte_count;
1596        /* save next address to write */
1597        parser->next_address_to_write =
1598            parser->current_address + line->byte_count;
1599        break;
1600
1601    case EOF_RECORD:
1602        if (parser->current_rom_index != 0) {
1603            rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1604                                  parser->current_rom_index,
1605                                  parser->rom_start_address, parser->as);
1606        }
1607        parser->complete = true;
1608        return parser->total_size;
1609    case EXT_SEG_ADDR_RECORD:
1610    case EXT_LINEAR_ADDR_RECORD:
1611        if (line->byte_count != 2 && line->address != 0) {
1612            return -1;
1613        }
1614
1615        if (parser->current_rom_index != 0) {
1616            rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1617                                  parser->current_rom_index,
1618                                  parser->rom_start_address, parser->as);
1619        }
1620
1621        /* save next address to write,
1622         * in case of non-contiguous block of memory */
1623        parser->next_address_to_write = (line->data[0] << 12) |
1624                                        (line->data[1] << 4);
1625        if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1626            parser->next_address_to_write <<= 12;
1627        }
1628
1629        parser->rom_start_address = parser->next_address_to_write;
1630        parser->current_rom_index = 0;
1631        break;
1632
1633    case START_SEG_ADDR_RECORD:
1634        if (line->byte_count != 4 && line->address != 0) {
1635            return -1;
1636        }
1637
1638        /* x86 16-bit CS:IP segmented addressing */
1639        *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1640                                ((line->data[2] << 8) | line->data[3]);
1641        break;
1642
1643    case START_LINEAR_ADDR_RECORD:
1644        if (line->byte_count != 4 && line->address != 0) {
1645            return -1;
1646        }
1647
1648        *(parser->start_addr) = ldl_be_p(line->data);
1649        break;
1650
1651    default:
1652        return -1;
1653    }
1654
1655    return parser->total_size;
1656}
1657
1658/* return size or -1 if error */
1659static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1660                          size_t hex_blob_size, AddressSpace *as)
1661{
1662    bool in_process = false; /* avoid re-enter and
1663                              * check whether record begin with ':' */
1664    uint8_t *end = hex_blob + hex_blob_size;
1665    uint8_t our_checksum = 0;
1666    uint32_t record_index = 0;
1667    HexParser parser = {
1668        .filename = filename,
1669        .bin_buf = g_malloc(hex_blob_size),
1670        .start_addr = addr,
1671        .as = as,
1672        .complete = false
1673    };
1674
1675    rom_transaction_begin();
1676
1677    for (; hex_blob < end && !parser.complete; ++hex_blob) {
1678        switch (*hex_blob) {
1679        case '\r':
1680        case '\n':
1681            if (!in_process) {
1682                break;
1683            }
1684
1685            in_process = false;
1686            if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1687                    record_index ||
1688                our_checksum != 0) {
1689                parser.total_size = -1;
1690                goto out;
1691            }
1692
1693            if (handle_record_type(&parser) == -1) {
1694                parser.total_size = -1;
1695                goto out;
1696            }
1697            break;
1698
1699        /* start of a new record. */
1700        case ':':
1701            memset(&parser.line, 0, sizeof(HexLine));
1702            in_process = true;
1703            record_index = 0;
1704            break;
1705
1706        /* decoding lines */
1707        default:
1708            if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1709                              &record_index, in_process)) {
1710                parser.total_size = -1;
1711                goto out;
1712            }
1713            break;
1714        }
1715    }
1716
1717out:
1718    g_free(parser.bin_buf);
1719    rom_transaction_end(parser.total_size != -1);
1720    return parser.total_size;
1721}
1722
1723/* return size or -1 if error */
1724int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1725{
1726    gsize hex_blob_size;
1727    gchar *hex_blob;
1728    int total_size = 0;
1729
1730    if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1731        return -1;
1732    }
1733
1734    total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1735                                hex_blob_size, as);
1736
1737    g_free(hex_blob);
1738    return total_size;
1739}
1740