qemu/hw/core/ptimer.c
<<
>>
Prefs
   1/*
   2 * General purpose implementation of a simple periodic countdown timer.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GNU LGPL.
   7 */
   8
   9#include "qemu/osdep.h"
  10#include "hw/ptimer.h"
  11#include "migration/vmstate.h"
  12#include "qemu/host-utils.h"
  13#include "sysemu/replay.h"
  14#include "sysemu/cpu-timers.h"
  15#include "sysemu/qtest.h"
  16#include "block/aio.h"
  17#include "sysemu/cpus.h"
  18#include "hw/clock.h"
  19
  20#define DELTA_ADJUST     1
  21#define DELTA_NO_ADJUST -1
  22
  23struct ptimer_state
  24{
  25    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
  26    uint64_t limit;
  27    uint64_t delta;
  28    uint32_t period_frac;
  29    int64_t period;
  30    int64_t last_event;
  31    int64_t next_event;
  32    uint8_t policy_mask;
  33    QEMUTimer *timer;
  34    ptimer_cb callback;
  35    void *callback_opaque;
  36    /*
  37     * These track whether we're in a transaction block, and if we
  38     * need to do a timer reload when the block finishes. They don't
  39     * need to be migrated because migration can never happen in the
  40     * middle of a transaction block.
  41     */
  42    bool in_transaction;
  43    bool need_reload;
  44};
  45
  46/* Use a bottom-half routine to avoid reentrancy issues.  */
  47static void ptimer_trigger(ptimer_state *s)
  48{
  49    s->callback(s->callback_opaque);
  50}
  51
  52static void ptimer_reload(ptimer_state *s, int delta_adjust)
  53{
  54    uint32_t period_frac;
  55    uint64_t period;
  56    uint64_t delta;
  57    bool suppress_trigger = false;
  58
  59    /*
  60     * Note that if delta_adjust is 0 then we must be here because of
  61     * a count register write or timer start, not because of timer expiry.
  62     * In that case the policy might require us to suppress the timer trigger
  63     * that we would otherwise generate for a zero delta.
  64     */
  65    if (delta_adjust == 0 &&
  66        (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
  67        suppress_trigger = true;
  68    }
  69    if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
  70        && !suppress_trigger) {
  71        ptimer_trigger(s);
  72    }
  73
  74    /*
  75     * Note that ptimer_trigger() might call the device callback function,
  76     * which can then modify timer state, so we must not cache any fields
  77     * from ptimer_state until after we have called it.
  78     */
  79    delta = s->delta;
  80    period = s->period;
  81    period_frac = s->period_frac;
  82
  83    if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
  84        delta = s->delta = s->limit;
  85    }
  86
  87    if (s->period == 0) {
  88        if (!qtest_enabled()) {
  89            fprintf(stderr, "Timer with period zero, disabling\n");
  90        }
  91        timer_del(s->timer);
  92        s->enabled = 0;
  93        return;
  94    }
  95
  96    if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
  97        if (delta_adjust != DELTA_NO_ADJUST) {
  98            delta += delta_adjust;
  99        }
 100    }
 101
 102    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
 103        if (s->enabled == 1 && s->limit == 0) {
 104            delta = 1;
 105        }
 106    }
 107
 108    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 109        if (delta_adjust != DELTA_NO_ADJUST) {
 110            delta = 1;
 111        }
 112    }
 113
 114    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
 115        if (s->enabled == 1 && s->limit != 0) {
 116            delta = 1;
 117        }
 118    }
 119
 120    if (delta == 0) {
 121        if (s->enabled == 0) {
 122            /* trigger callback disabled the timer already */
 123            return;
 124        }
 125        if (!qtest_enabled()) {
 126            fprintf(stderr, "Timer with delta zero, disabling\n");
 127        }
 128        timer_del(s->timer);
 129        s->enabled = 0;
 130        return;
 131    }
 132
 133    /*
 134     * Artificially limit timeout rate to something
 135     * achievable under QEMU.  Otherwise, QEMU spends all
 136     * its time generating timer interrupts, and there
 137     * is no forward progress.
 138     * About ten microseconds is the fastest that really works
 139     * on the current generation of host machines.
 140     */
 141
 142    if (s->enabled == 1 && (delta * period < 10000) &&
 143        !icount_enabled() && !qtest_enabled()) {
 144        period = 10000 / delta;
 145        period_frac = 0;
 146    }
 147
 148    s->last_event = s->next_event;
 149    s->next_event = s->last_event + delta * period;
 150    if (period_frac) {
 151        s->next_event += ((int64_t)period_frac * delta) >> 32;
 152    }
 153    timer_mod(s->timer, s->next_event);
 154}
 155
 156static void ptimer_tick(void *opaque)
 157{
 158    ptimer_state *s = (ptimer_state *)opaque;
 159    bool trigger = true;
 160
 161    /*
 162     * We perform all the tick actions within a begin/commit block
 163     * because the callback function that ptimer_trigger() calls
 164     * might make calls into the ptimer APIs that provoke another
 165     * trigger, and we want that to cause the callback function
 166     * to be called iteratively, not recursively.
 167     */
 168    ptimer_transaction_begin(s);
 169
 170    if (s->enabled == 2) {
 171        s->delta = 0;
 172        s->enabled = 0;
 173    } else {
 174        int delta_adjust = DELTA_ADJUST;
 175
 176        if (s->delta == 0 || s->limit == 0) {
 177            /* If a "continuous trigger" policy is not used and limit == 0,
 178               we should error out. delta == 0 means that this tick is
 179               caused by a "no immediate reload" policy, so it shouldn't
 180               be adjusted.  */
 181            delta_adjust = DELTA_NO_ADJUST;
 182        }
 183
 184        if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 185            /* Avoid re-trigger on deferred reload if "no immediate trigger"
 186               policy isn't used.  */
 187            trigger = (delta_adjust == DELTA_ADJUST);
 188        }
 189
 190        s->delta = s->limit;
 191
 192        ptimer_reload(s, delta_adjust);
 193    }
 194
 195    if (trigger) {
 196        ptimer_trigger(s);
 197    }
 198
 199    ptimer_transaction_commit(s);
 200}
 201
 202uint64_t ptimer_get_count(ptimer_state *s)
 203{
 204    uint64_t counter;
 205
 206    if (s->enabled && s->delta != 0) {
 207        int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 208        int64_t next = s->next_event;
 209        int64_t last = s->last_event;
 210        bool expired = (now - next >= 0);
 211        bool oneshot = (s->enabled == 2);
 212
 213        /* Figure out the current counter value.  */
 214        if (expired) {
 215            /* Prevent timer underflowing if it should already have
 216               triggered.  */
 217            counter = 0;
 218        } else {
 219            uint64_t rem;
 220            uint64_t div;
 221            int clz1, clz2;
 222            int shift;
 223            uint32_t period_frac = s->period_frac;
 224            uint64_t period = s->period;
 225
 226            if (!oneshot && (s->delta * period < 10000) &&
 227                !icount_enabled() && !qtest_enabled()) {
 228                period = 10000 / s->delta;
 229                period_frac = 0;
 230            }
 231
 232            /* We need to divide time by period, where time is stored in
 233               rem (64-bit integer) and period is stored in period/period_frac
 234               (64.32 fixed point).
 235
 236               Doing full precision division is hard, so scale values and
 237               do a 64-bit division.  The result should be rounded down,
 238               so that the rounding error never causes the timer to go
 239               backwards.
 240            */
 241
 242            rem = next - now;
 243            div = period;
 244
 245            clz1 = clz64(rem);
 246            clz2 = clz64(div);
 247            shift = clz1 < clz2 ? clz1 : clz2;
 248
 249            rem <<= shift;
 250            div <<= shift;
 251            if (shift >= 32) {
 252                div |= ((uint64_t)period_frac << (shift - 32));
 253            } else {
 254                if (shift != 0)
 255                    div |= (period_frac >> (32 - shift));
 256                /* Look at remaining bits of period_frac and round div up if 
 257                   necessary.  */
 258                if ((uint32_t)(period_frac << shift))
 259                    div += 1;
 260            }
 261            counter = rem / div;
 262
 263            if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
 264                /* Before wrapping around, timer should stay with counter = 0
 265                   for a one period.  */
 266                if (!oneshot && s->delta == s->limit) {
 267                    if (now == last) {
 268                        /* Counter == delta here, check whether it was
 269                           adjusted and if it was, then right now it is
 270                           that "one period".  */
 271                        if (counter == s->limit + DELTA_ADJUST) {
 272                            return 0;
 273                        }
 274                    } else if (counter == s->limit) {
 275                        /* Since the counter is rounded down and now != last,
 276                           the counter == limit means that delta was adjusted
 277                           by +1 and right now it is that adjusted period.  */
 278                        return 0;
 279                    }
 280                }
 281            }
 282        }
 283
 284        if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
 285            /* If now == last then delta == limit, i.e. the counter already
 286               represents the correct value. It would be rounded down a 1ns
 287               later.  */
 288            if (now != last) {
 289                counter += 1;
 290            }
 291        }
 292    } else {
 293        counter = s->delta;
 294    }
 295    return counter;
 296}
 297
 298void ptimer_set_count(ptimer_state *s, uint64_t count)
 299{
 300    assert(s->in_transaction);
 301    s->delta = count;
 302    if (s->enabled) {
 303        s->need_reload = true;
 304    }
 305}
 306
 307void ptimer_run(ptimer_state *s, int oneshot)
 308{
 309    bool was_disabled = !s->enabled;
 310
 311    assert(s->in_transaction);
 312
 313    if (was_disabled && s->period == 0) {
 314        if (!qtest_enabled()) {
 315            fprintf(stderr, "Timer with period zero, disabling\n");
 316        }
 317        return;
 318    }
 319    s->enabled = oneshot ? 2 : 1;
 320    if (was_disabled) {
 321        s->need_reload = true;
 322    }
 323}
 324
 325/* Pause a timer.  Note that this may cause it to "lose" time, even if it
 326   is immediately restarted.  */
 327void ptimer_stop(ptimer_state *s)
 328{
 329    assert(s->in_transaction);
 330
 331    if (!s->enabled)
 332        return;
 333
 334    s->delta = ptimer_get_count(s);
 335    timer_del(s->timer);
 336    s->enabled = 0;
 337    s->need_reload = false;
 338}
 339
 340/* Set counter increment interval in nanoseconds.  */
 341void ptimer_set_period(ptimer_state *s, int64_t period)
 342{
 343    assert(s->in_transaction);
 344    s->delta = ptimer_get_count(s);
 345    s->period = period;
 346    s->period_frac = 0;
 347    if (s->enabled) {
 348        s->need_reload = true;
 349    }
 350}
 351
 352/* Set counter increment interval from a Clock */
 353void ptimer_set_period_from_clock(ptimer_state *s, const Clock *clk,
 354                                  unsigned int divisor)
 355{
 356    /*
 357     * The raw clock period is a 64-bit value in units of 2^-32 ns;
 358     * put another way it's a 32.32 fixed-point ns value. Our internal
 359     * representation of the period is 64.32 fixed point ns, so
 360     * the conversion is simple.
 361     */
 362    uint64_t raw_period = clock_get(clk);
 363    uint64_t period_frac;
 364
 365    assert(s->in_transaction);
 366    s->delta = ptimer_get_count(s);
 367    s->period = extract64(raw_period, 32, 32);
 368    period_frac = extract64(raw_period, 0, 32);
 369    /*
 370     * divisor specifies a possible frequency divisor between the
 371     * clock and the timer, so it is a multiplier on the period.
 372     * We do the multiply after splitting the raw period out into
 373     * period and frac to avoid having to do a 32*64->96 multiply.
 374     */
 375    s->period *= divisor;
 376    period_frac *= divisor;
 377    s->period += extract64(period_frac, 32, 32);
 378    s->period_frac = (uint32_t)period_frac;
 379
 380    if (s->enabled) {
 381        s->need_reload = true;
 382    }
 383}
 384
 385/* Set counter frequency in Hz.  */
 386void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 387{
 388    assert(s->in_transaction);
 389    s->delta = ptimer_get_count(s);
 390    s->period = 1000000000ll / freq;
 391    s->period_frac = (1000000000ll << 32) / freq;
 392    if (s->enabled) {
 393        s->need_reload = true;
 394    }
 395}
 396
 397/* Set the initial countdown value.  If reload is nonzero then also set
 398   count = limit.  */
 399void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 400{
 401    assert(s->in_transaction);
 402    s->limit = limit;
 403    if (reload)
 404        s->delta = limit;
 405    if (s->enabled && reload) {
 406        s->need_reload = true;
 407    }
 408}
 409
 410uint64_t ptimer_get_limit(ptimer_state *s)
 411{
 412    return s->limit;
 413}
 414
 415void ptimer_transaction_begin(ptimer_state *s)
 416{
 417    assert(!s->in_transaction);
 418    s->in_transaction = true;
 419    s->need_reload = false;
 420}
 421
 422void ptimer_transaction_commit(ptimer_state *s)
 423{
 424    assert(s->in_transaction);
 425    /*
 426     * We must loop here because ptimer_reload() can call the callback
 427     * function, which might then update ptimer state in a way that
 428     * means we need to do another reload and possibly another callback.
 429     * A disabled timer never needs reloading (and if we don't check
 430     * this then we loop forever if ptimer_reload() disables the timer).
 431     */
 432    while (s->need_reload && s->enabled) {
 433        s->need_reload = false;
 434        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 435        ptimer_reload(s, 0);
 436    }
 437    /* Now we've finished reload we can leave the transaction block. */
 438    s->in_transaction = false;
 439}
 440
 441const VMStateDescription vmstate_ptimer = {
 442    .name = "ptimer",
 443    .version_id = 1,
 444    .minimum_version_id = 1,
 445    .fields = (VMStateField[]) {
 446        VMSTATE_UINT8(enabled, ptimer_state),
 447        VMSTATE_UINT64(limit, ptimer_state),
 448        VMSTATE_UINT64(delta, ptimer_state),
 449        VMSTATE_UINT32(period_frac, ptimer_state),
 450        VMSTATE_INT64(period, ptimer_state),
 451        VMSTATE_INT64(last_event, ptimer_state),
 452        VMSTATE_INT64(next_event, ptimer_state),
 453        VMSTATE_TIMER_PTR(timer, ptimer_state),
 454        VMSTATE_END_OF_LIST()
 455    }
 456};
 457
 458ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
 459                          uint8_t policy_mask)
 460{
 461    ptimer_state *s;
 462
 463    /* The callback function is mandatory. */
 464    assert(callback);
 465
 466    s = g_new0(ptimer_state, 1);
 467    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
 468    s->policy_mask = policy_mask;
 469    s->callback = callback;
 470    s->callback_opaque = callback_opaque;
 471
 472    /*
 473     * These two policies are incompatible -- trigger-on-decrement implies
 474     * a timer trigger when the count becomes 0, but no-immediate-trigger
 475     * implies a trigger when the count stops being 0.
 476     */
 477    assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
 478             (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
 479    return s;
 480}
 481
 482void ptimer_free(ptimer_state *s)
 483{
 484    timer_free(s->timer);
 485    g_free(s);
 486}
 487