qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qemu/main-loop.h"
  25#include "qapi/error.h"
  26#include "hw/sysbus.h"
  27#include "exec/address-spaces.h"
  28#include "intel_iommu_internal.h"
  29#include "hw/pci/pci.h"
  30#include "hw/pci/pci_bus.h"
  31#include "hw/qdev-properties.h"
  32#include "hw/i386/pc.h"
  33#include "hw/i386/apic-msidef.h"
  34#include "hw/boards.h"
  35#include "hw/i386/x86-iommu.h"
  36#include "hw/pci-host/q35.h"
  37#include "sysemu/kvm.h"
  38#include "sysemu/dma.h"
  39#include "sysemu/sysemu.h"
  40#include "hw/i386/apic_internal.h"
  41#include "kvm/kvm_i386.h"
  42#include "migration/vmstate.h"
  43#include "trace.h"
  44
  45/* context entry operations */
  46#define VTD_CE_GET_RID2PASID(ce) \
  47    ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
  48#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
  49    ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
  50
  51/* pe operations */
  52#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
  53#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
  54#define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
  55    if (ret_fr) {                                                             \
  56        ret_fr = -ret_fr;                                                     \
  57        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {                   \
  58            trace_vtd_fault_disabled();                                       \
  59        } else {                                                              \
  60            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);      \
  61        }                                                                     \
  62        goto error;                                                           \
  63    }                                                                         \
  64}
  65
  66static void vtd_address_space_refresh_all(IntelIOMMUState *s);
  67static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
  68
  69static void vtd_panic_require_caching_mode(void)
  70{
  71    error_report("We need to set caching-mode=on for intel-iommu to enable "
  72                 "device assignment with IOMMU protection.");
  73    exit(1);
  74}
  75
  76static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  77                            uint64_t wmask, uint64_t w1cmask)
  78{
  79    stq_le_p(&s->csr[addr], val);
  80    stq_le_p(&s->wmask[addr], wmask);
  81    stq_le_p(&s->w1cmask[addr], w1cmask);
  82}
  83
  84static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  85{
  86    stq_le_p(&s->womask[addr], mask);
  87}
  88
  89static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  90                            uint32_t wmask, uint32_t w1cmask)
  91{
  92    stl_le_p(&s->csr[addr], val);
  93    stl_le_p(&s->wmask[addr], wmask);
  94    stl_le_p(&s->w1cmask[addr], w1cmask);
  95}
  96
  97static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  98{
  99    stl_le_p(&s->womask[addr], mask);
 100}
 101
 102/* "External" get/set operations */
 103static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 104{
 105    uint64_t oldval = ldq_le_p(&s->csr[addr]);
 106    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
 107    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
 108    stq_le_p(&s->csr[addr],
 109             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 110}
 111
 112static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
 113{
 114    uint32_t oldval = ldl_le_p(&s->csr[addr]);
 115    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
 116    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
 117    stl_le_p(&s->csr[addr],
 118             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 119}
 120
 121static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
 122{
 123    uint64_t val = ldq_le_p(&s->csr[addr]);
 124    uint64_t womask = ldq_le_p(&s->womask[addr]);
 125    return val & ~womask;
 126}
 127
 128static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
 129{
 130    uint32_t val = ldl_le_p(&s->csr[addr]);
 131    uint32_t womask = ldl_le_p(&s->womask[addr]);
 132    return val & ~womask;
 133}
 134
 135/* "Internal" get/set operations */
 136static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 137{
 138    return ldq_le_p(&s->csr[addr]);
 139}
 140
 141static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 142{
 143    return ldl_le_p(&s->csr[addr]);
 144}
 145
 146static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 147{
 148    stq_le_p(&s->csr[addr], val);
 149}
 150
 151static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 152                                        uint32_t clear, uint32_t mask)
 153{
 154    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 155    stl_le_p(&s->csr[addr], new_val);
 156    return new_val;
 157}
 158
 159static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 160                                        uint64_t clear, uint64_t mask)
 161{
 162    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 163    stq_le_p(&s->csr[addr], new_val);
 164    return new_val;
 165}
 166
 167static inline void vtd_iommu_lock(IntelIOMMUState *s)
 168{
 169    qemu_mutex_lock(&s->iommu_lock);
 170}
 171
 172static inline void vtd_iommu_unlock(IntelIOMMUState *s)
 173{
 174    qemu_mutex_unlock(&s->iommu_lock);
 175}
 176
 177static void vtd_update_scalable_state(IntelIOMMUState *s)
 178{
 179    uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
 180
 181    if (s->scalable_mode) {
 182        s->root_scalable = val & VTD_RTADDR_SMT;
 183    }
 184}
 185
 186/* Whether the address space needs to notify new mappings */
 187static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
 188{
 189    return as->notifier_flags & IOMMU_NOTIFIER_MAP;
 190}
 191
 192/* GHashTable functions */
 193static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 194{
 195    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 196}
 197
 198static guint vtd_uint64_hash(gconstpointer v)
 199{
 200    return (guint)*(const uint64_t *)v;
 201}
 202
 203static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 204                                          gpointer user_data)
 205{
 206    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 207    uint16_t domain_id = *(uint16_t *)user_data;
 208    return entry->domain_id == domain_id;
 209}
 210
 211/* The shift of an addr for a certain level of paging structure */
 212static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 213{
 214    assert(level != 0);
 215    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 216}
 217
 218static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 219{
 220    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 221}
 222
 223static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 224                                        gpointer user_data)
 225{
 226    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 227    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 228    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 229    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 230    return (entry->domain_id == info->domain_id) &&
 231            (((entry->gfn & info->mask) == gfn) ||
 232             (entry->gfn == gfn_tlb));
 233}
 234
 235/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 236 * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
 237 */
 238static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
 239{
 240    VTDAddressSpace *vtd_as;
 241    VTDBus *vtd_bus;
 242    GHashTableIter bus_it;
 243    uint32_t devfn_it;
 244
 245    trace_vtd_context_cache_reset();
 246
 247    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 248
 249    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 250        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
 251            vtd_as = vtd_bus->dev_as[devfn_it];
 252            if (!vtd_as) {
 253                continue;
 254            }
 255            vtd_as->context_cache_entry.context_cache_gen = 0;
 256        }
 257    }
 258    s->context_cache_gen = 1;
 259}
 260
 261/* Must be called with IOMMU lock held. */
 262static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
 263{
 264    assert(s->iotlb);
 265    g_hash_table_remove_all(s->iotlb);
 266}
 267
 268static void vtd_reset_iotlb(IntelIOMMUState *s)
 269{
 270    vtd_iommu_lock(s);
 271    vtd_reset_iotlb_locked(s);
 272    vtd_iommu_unlock(s);
 273}
 274
 275static void vtd_reset_caches(IntelIOMMUState *s)
 276{
 277    vtd_iommu_lock(s);
 278    vtd_reset_iotlb_locked(s);
 279    vtd_reset_context_cache_locked(s);
 280    vtd_iommu_unlock(s);
 281}
 282
 283static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
 284                                  uint32_t level)
 285{
 286    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 287           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 288}
 289
 290static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 291{
 292    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 293}
 294
 295/* Must be called with IOMMU lock held */
 296static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 297                                       hwaddr addr)
 298{
 299    VTDIOTLBEntry *entry;
 300    uint64_t key;
 301    int level;
 302
 303    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 304        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 305                                source_id, level);
 306        entry = g_hash_table_lookup(s->iotlb, &key);
 307        if (entry) {
 308            goto out;
 309        }
 310    }
 311
 312out:
 313    return entry;
 314}
 315
 316/* Must be with IOMMU lock held */
 317static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 318                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 319                             uint8_t access_flags, uint32_t level)
 320{
 321    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 322    uint64_t *key = g_malloc(sizeof(*key));
 323    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 324
 325    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 326    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 327        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 328        vtd_reset_iotlb_locked(s);
 329    }
 330
 331    entry->gfn = gfn;
 332    entry->domain_id = domain_id;
 333    entry->slpte = slpte;
 334    entry->access_flags = access_flags;
 335    entry->mask = vtd_slpt_level_page_mask(level);
 336    *key = vtd_get_iotlb_key(gfn, source_id, level);
 337    g_hash_table_replace(s->iotlb, key, entry);
 338}
 339
 340/* Given the reg addr of both the message data and address, generate an
 341 * interrupt via MSI.
 342 */
 343static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 344                                   hwaddr mesg_data_reg)
 345{
 346    MSIMessage msi;
 347
 348    assert(mesg_data_reg < DMAR_REG_SIZE);
 349    assert(mesg_addr_reg < DMAR_REG_SIZE);
 350
 351    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 352    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 353
 354    trace_vtd_irq_generate(msi.address, msi.data);
 355
 356    apic_get_class()->send_msi(&msi);
 357}
 358
 359/* Generate a fault event to software via MSI if conditions are met.
 360 * Notice that the value of FSTS_REG being passed to it should be the one
 361 * before any update.
 362 */
 363static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 364{
 365    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 366        pre_fsts & VTD_FSTS_IQE) {
 367        error_report_once("There are previous interrupt conditions "
 368                          "to be serviced by software, fault event "
 369                          "is not generated");
 370        return;
 371    }
 372    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 373    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 374        error_report_once("Interrupt Mask set, irq is not generated");
 375    } else {
 376        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 377        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 378    }
 379}
 380
 381/* Check if the Fault (F) field of the Fault Recording Register referenced by
 382 * @index is Set.
 383 */
 384static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 385{
 386    /* Each reg is 128-bit */
 387    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 388    addr += 8; /* Access the high 64-bit half */
 389
 390    assert(index < DMAR_FRCD_REG_NR);
 391
 392    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 393}
 394
 395/* Update the PPF field of Fault Status Register.
 396 * Should be called whenever change the F field of any fault recording
 397 * registers.
 398 */
 399static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 400{
 401    uint32_t i;
 402    uint32_t ppf_mask = 0;
 403
 404    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 405        if (vtd_is_frcd_set(s, i)) {
 406            ppf_mask = VTD_FSTS_PPF;
 407            break;
 408        }
 409    }
 410    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 411    trace_vtd_fsts_ppf(!!ppf_mask);
 412}
 413
 414static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 415{
 416    /* Each reg is 128-bit */
 417    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 418    addr += 8; /* Access the high 64-bit half */
 419
 420    assert(index < DMAR_FRCD_REG_NR);
 421
 422    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 423    vtd_update_fsts_ppf(s);
 424}
 425
 426/* Must not update F field now, should be done later */
 427static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 428                            uint16_t source_id, hwaddr addr,
 429                            VTDFaultReason fault, bool is_write)
 430{
 431    uint64_t hi = 0, lo;
 432    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 433
 434    assert(index < DMAR_FRCD_REG_NR);
 435
 436    lo = VTD_FRCD_FI(addr);
 437    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 438    if (!is_write) {
 439        hi |= VTD_FRCD_T;
 440    }
 441    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 442    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 443
 444    trace_vtd_frr_new(index, hi, lo);
 445}
 446
 447/* Try to collapse multiple pending faults from the same requester */
 448static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 449{
 450    uint32_t i;
 451    uint64_t frcd_reg;
 452    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 453
 454    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 455        frcd_reg = vtd_get_quad_raw(s, addr);
 456        if ((frcd_reg & VTD_FRCD_F) &&
 457            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 458            return true;
 459        }
 460        addr += 16; /* 128-bit for each */
 461    }
 462    return false;
 463}
 464
 465/* Log and report an DMAR (address translation) fault to software */
 466static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 467                                  hwaddr addr, VTDFaultReason fault,
 468                                  bool is_write)
 469{
 470    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 471
 472    assert(fault < VTD_FR_MAX);
 473
 474    if (fault == VTD_FR_RESERVED_ERR) {
 475        /* This is not a normal fault reason case. Drop it. */
 476        return;
 477    }
 478
 479    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 480
 481    if (fsts_reg & VTD_FSTS_PFO) {
 482        error_report_once("New fault is not recorded due to "
 483                          "Primary Fault Overflow");
 484        return;
 485    }
 486
 487    if (vtd_try_collapse_fault(s, source_id)) {
 488        error_report_once("New fault is not recorded due to "
 489                          "compression of faults");
 490        return;
 491    }
 492
 493    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 494        error_report_once("Next Fault Recording Reg is used, "
 495                          "new fault is not recorded, set PFO field");
 496        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 497        return;
 498    }
 499
 500    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 501
 502    if (fsts_reg & VTD_FSTS_PPF) {
 503        error_report_once("There are pending faults already, "
 504                          "fault event is not generated");
 505        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 506        s->next_frcd_reg++;
 507        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 508            s->next_frcd_reg = 0;
 509        }
 510    } else {
 511        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 512                                VTD_FSTS_FRI(s->next_frcd_reg));
 513        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 514        s->next_frcd_reg++;
 515        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 516            s->next_frcd_reg = 0;
 517        }
 518        /* This case actually cause the PPF to be Set.
 519         * So generate fault event (interrupt).
 520         */
 521         vtd_generate_fault_event(s, fsts_reg);
 522    }
 523}
 524
 525/* Handle Invalidation Queue Errors of queued invalidation interface error
 526 * conditions.
 527 */
 528static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 529{
 530    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 531
 532    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 533    vtd_generate_fault_event(s, fsts_reg);
 534}
 535
 536/* Set the IWC field and try to generate an invalidation completion interrupt */
 537static void vtd_generate_completion_event(IntelIOMMUState *s)
 538{
 539    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 540        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 541        return;
 542    }
 543    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 544    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 545    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 546        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 547                                    "new event not generated");
 548        return;
 549    } else {
 550        /* Generate the interrupt event */
 551        trace_vtd_inv_desc_wait_irq("Generating complete event");
 552        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 553        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 554    }
 555}
 556
 557static inline bool vtd_root_entry_present(IntelIOMMUState *s,
 558                                          VTDRootEntry *re,
 559                                          uint8_t devfn)
 560{
 561    if (s->root_scalable && devfn > UINT8_MAX / 2) {
 562        return re->hi & VTD_ROOT_ENTRY_P;
 563    }
 564
 565    return re->lo & VTD_ROOT_ENTRY_P;
 566}
 567
 568static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 569                              VTDRootEntry *re)
 570{
 571    dma_addr_t addr;
 572
 573    addr = s->root + index * sizeof(*re);
 574    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 575        re->lo = 0;
 576        return -VTD_FR_ROOT_TABLE_INV;
 577    }
 578    re->lo = le64_to_cpu(re->lo);
 579    re->hi = le64_to_cpu(re->hi);
 580    return 0;
 581}
 582
 583static inline bool vtd_ce_present(VTDContextEntry *context)
 584{
 585    return context->lo & VTD_CONTEXT_ENTRY_P;
 586}
 587
 588static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
 589                                           VTDRootEntry *re,
 590                                           uint8_t index,
 591                                           VTDContextEntry *ce)
 592{
 593    dma_addr_t addr, ce_size;
 594
 595    /* we have checked that root entry is present */
 596    ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
 597              VTD_CTX_ENTRY_LEGACY_SIZE;
 598
 599    if (s->root_scalable && index > UINT8_MAX / 2) {
 600        index = index & (~VTD_DEVFN_CHECK_MASK);
 601        addr = re->hi & VTD_ROOT_ENTRY_CTP;
 602    } else {
 603        addr = re->lo & VTD_ROOT_ENTRY_CTP;
 604    }
 605
 606    addr = addr + index * ce_size;
 607    if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
 608        return -VTD_FR_CONTEXT_TABLE_INV;
 609    }
 610
 611    ce->lo = le64_to_cpu(ce->lo);
 612    ce->hi = le64_to_cpu(ce->hi);
 613    if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
 614        ce->val[2] = le64_to_cpu(ce->val[2]);
 615        ce->val[3] = le64_to_cpu(ce->val[3]);
 616    }
 617    return 0;
 618}
 619
 620static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 621{
 622    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 623}
 624
 625static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
 626{
 627    return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
 628}
 629
 630/* Whether the pte indicates the address of the page frame */
 631static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 632{
 633    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 634}
 635
 636/* Get the content of a spte located in @base_addr[@index] */
 637static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 638{
 639    uint64_t slpte;
 640
 641    assert(index < VTD_SL_PT_ENTRY_NR);
 642
 643    if (dma_memory_read(&address_space_memory,
 644                        base_addr + index * sizeof(slpte), &slpte,
 645                        sizeof(slpte))) {
 646        slpte = (uint64_t)-1;
 647        return slpte;
 648    }
 649    slpte = le64_to_cpu(slpte);
 650    return slpte;
 651}
 652
 653/* Given an iova and the level of paging structure, return the offset
 654 * of current level.
 655 */
 656static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 657{
 658    return (iova >> vtd_slpt_level_shift(level)) &
 659            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 660}
 661
 662/* Check Capability Register to see if the @level of page-table is supported */
 663static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 664{
 665    return VTD_CAP_SAGAW_MASK & s->cap &
 666           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 667}
 668
 669/* Return true if check passed, otherwise false */
 670static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
 671                                     VTDPASIDEntry *pe)
 672{
 673    switch (VTD_PE_GET_TYPE(pe)) {
 674    case VTD_SM_PASID_ENTRY_FLT:
 675    case VTD_SM_PASID_ENTRY_SLT:
 676    case VTD_SM_PASID_ENTRY_NESTED:
 677        break;
 678    case VTD_SM_PASID_ENTRY_PT:
 679        if (!x86_iommu->pt_supported) {
 680            return false;
 681        }
 682        break;
 683    default:
 684        /* Unknwon type */
 685        return false;
 686    }
 687    return true;
 688}
 689
 690static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
 691{
 692    return pdire->val & 1;
 693}
 694
 695/**
 696 * Caller of this function should check present bit if wants
 697 * to use pdir entry for futher usage except for fpd bit check.
 698 */
 699static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
 700                                         uint32_t pasid,
 701                                         VTDPASIDDirEntry *pdire)
 702{
 703    uint32_t index;
 704    dma_addr_t addr, entry_size;
 705
 706    index = VTD_PASID_DIR_INDEX(pasid);
 707    entry_size = VTD_PASID_DIR_ENTRY_SIZE;
 708    addr = pasid_dir_base + index * entry_size;
 709    if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
 710        return -VTD_FR_PASID_TABLE_INV;
 711    }
 712
 713    return 0;
 714}
 715
 716static inline bool vtd_pe_present(VTDPASIDEntry *pe)
 717{
 718    return pe->val[0] & VTD_PASID_ENTRY_P;
 719}
 720
 721static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
 722                                          uint32_t pasid,
 723                                          dma_addr_t addr,
 724                                          VTDPASIDEntry *pe)
 725{
 726    uint32_t index;
 727    dma_addr_t entry_size;
 728    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 729
 730    index = VTD_PASID_TABLE_INDEX(pasid);
 731    entry_size = VTD_PASID_ENTRY_SIZE;
 732    addr = addr + index * entry_size;
 733    if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
 734        return -VTD_FR_PASID_TABLE_INV;
 735    }
 736
 737    /* Do translation type check */
 738    if (!vtd_pe_type_check(x86_iommu, pe)) {
 739        return -VTD_FR_PASID_TABLE_INV;
 740    }
 741
 742    if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
 743        return -VTD_FR_PASID_TABLE_INV;
 744    }
 745
 746    return 0;
 747}
 748
 749/**
 750 * Caller of this function should check present bit if wants
 751 * to use pasid entry for futher usage except for fpd bit check.
 752 */
 753static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
 754                                 uint32_t pasid,
 755                                 VTDPASIDDirEntry *pdire,
 756                                 VTDPASIDEntry *pe)
 757{
 758    dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
 759
 760    return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
 761}
 762
 763/**
 764 * This function gets a pasid entry from a specified pasid
 765 * table (includes dir and leaf table) with a specified pasid.
 766 * Sanity check should be done to ensure return a present
 767 * pasid entry to caller.
 768 */
 769static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
 770                                       dma_addr_t pasid_dir_base,
 771                                       uint32_t pasid,
 772                                       VTDPASIDEntry *pe)
 773{
 774    int ret;
 775    VTDPASIDDirEntry pdire;
 776
 777    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
 778                                        pasid, &pdire);
 779    if (ret) {
 780        return ret;
 781    }
 782
 783    if (!vtd_pdire_present(&pdire)) {
 784        return -VTD_FR_PASID_TABLE_INV;
 785    }
 786
 787    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
 788    if (ret) {
 789        return ret;
 790    }
 791
 792    if (!vtd_pe_present(pe)) {
 793        return -VTD_FR_PASID_TABLE_INV;
 794    }
 795
 796    return 0;
 797}
 798
 799static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
 800                                      VTDContextEntry *ce,
 801                                      VTDPASIDEntry *pe)
 802{
 803    uint32_t pasid;
 804    dma_addr_t pasid_dir_base;
 805    int ret = 0;
 806
 807    pasid = VTD_CE_GET_RID2PASID(ce);
 808    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 809    ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
 810
 811    return ret;
 812}
 813
 814static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
 815                                VTDContextEntry *ce,
 816                                bool *pe_fpd_set)
 817{
 818    int ret;
 819    uint32_t pasid;
 820    dma_addr_t pasid_dir_base;
 821    VTDPASIDDirEntry pdire;
 822    VTDPASIDEntry pe;
 823
 824    pasid = VTD_CE_GET_RID2PASID(ce);
 825    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 826
 827    /*
 828     * No present bit check since fpd is meaningful even
 829     * if the present bit is clear.
 830     */
 831    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
 832    if (ret) {
 833        return ret;
 834    }
 835
 836    if (pdire.val & VTD_PASID_DIR_FPD) {
 837        *pe_fpd_set = true;
 838        return 0;
 839    }
 840
 841    if (!vtd_pdire_present(&pdire)) {
 842        return -VTD_FR_PASID_TABLE_INV;
 843    }
 844
 845    /*
 846     * No present bit check since fpd is meaningful even
 847     * if the present bit is clear.
 848     */
 849    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
 850    if (ret) {
 851        return ret;
 852    }
 853
 854    if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
 855        *pe_fpd_set = true;
 856    }
 857
 858    return 0;
 859}
 860
 861/* Get the page-table level that hardware should use for the second-level
 862 * page-table walk from the Address Width field of context-entry.
 863 */
 864static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 865{
 866    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 867}
 868
 869static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
 870                                   VTDContextEntry *ce)
 871{
 872    VTDPASIDEntry pe;
 873
 874    if (s->root_scalable) {
 875        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 876        return VTD_PE_GET_LEVEL(&pe);
 877    }
 878
 879    return vtd_ce_get_level(ce);
 880}
 881
 882static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 883{
 884    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 885}
 886
 887static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
 888                                  VTDContextEntry *ce)
 889{
 890    VTDPASIDEntry pe;
 891
 892    if (s->root_scalable) {
 893        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 894        return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
 895    }
 896
 897    return vtd_ce_get_agaw(ce);
 898}
 899
 900static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 901{
 902    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 903}
 904
 905/* Only for Legacy Mode. Return true if check passed, otherwise false */
 906static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 907                                     VTDContextEntry *ce)
 908{
 909    switch (vtd_ce_get_type(ce)) {
 910    case VTD_CONTEXT_TT_MULTI_LEVEL:
 911        /* Always supported */
 912        break;
 913    case VTD_CONTEXT_TT_DEV_IOTLB:
 914        if (!x86_iommu->dt_supported) {
 915            error_report_once("%s: DT specified but not supported", __func__);
 916            return false;
 917        }
 918        break;
 919    case VTD_CONTEXT_TT_PASS_THROUGH:
 920        if (!x86_iommu->pt_supported) {
 921            error_report_once("%s: PT specified but not supported", __func__);
 922            return false;
 923        }
 924        break;
 925    default:
 926        /* Unknown type */
 927        error_report_once("%s: unknown ce type: %"PRIu32, __func__,
 928                          vtd_ce_get_type(ce));
 929        return false;
 930    }
 931    return true;
 932}
 933
 934static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
 935                                      VTDContextEntry *ce, uint8_t aw)
 936{
 937    uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
 938    return 1ULL << MIN(ce_agaw, aw);
 939}
 940
 941/* Return true if IOVA passes range check, otherwise false. */
 942static inline bool vtd_iova_range_check(IntelIOMMUState *s,
 943                                        uint64_t iova, VTDContextEntry *ce,
 944                                        uint8_t aw)
 945{
 946    /*
 947     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
 948     * in CAP_REG and AW in context-entry.
 949     */
 950    return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
 951}
 952
 953static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
 954                                          VTDContextEntry *ce)
 955{
 956    VTDPASIDEntry pe;
 957
 958    if (s->root_scalable) {
 959        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 960        return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
 961    }
 962
 963    return vtd_ce_get_slpt_base(ce);
 964}
 965
 966/*
 967 * Rsvd field masks for spte:
 968 *     vtd_spte_rsvd 4k pages
 969 *     vtd_spte_rsvd_large large pages
 970 */
 971static uint64_t vtd_spte_rsvd[5];
 972static uint64_t vtd_spte_rsvd_large[5];
 973
 974static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 975{
 976    uint64_t rsvd_mask = vtd_spte_rsvd[level];
 977
 978    if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
 979        (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
 980        /* large page */
 981        rsvd_mask = vtd_spte_rsvd_large[level];
 982    }
 983
 984    return slpte & rsvd_mask;
 985}
 986
 987/* Find the VTD address space associated with a given bus number */
 988static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 989{
 990    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 991    GHashTableIter iter;
 992
 993    if (vtd_bus) {
 994        return vtd_bus;
 995    }
 996
 997    /*
 998     * Iterate over the registered buses to find the one which
 999     * currently holds this bus number and update the bus_num
1000     * lookup table.
1001     */
1002    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1003    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1004        if (pci_bus_num(vtd_bus->bus) == bus_num) {
1005            s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1006            return vtd_bus;
1007        }
1008    }
1009
1010    return NULL;
1011}
1012
1013/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1014 * of the translation, can be used for deciding the size of large page.
1015 */
1016static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1017                             uint64_t iova, bool is_write,
1018                             uint64_t *slptep, uint32_t *slpte_level,
1019                             bool *reads, bool *writes, uint8_t aw_bits)
1020{
1021    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1022    uint32_t level = vtd_get_iova_level(s, ce);
1023    uint32_t offset;
1024    uint64_t slpte;
1025    uint64_t access_right_check;
1026
1027    if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1028        error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1029                          __func__, iova);
1030        return -VTD_FR_ADDR_BEYOND_MGAW;
1031    }
1032
1033    /* FIXME: what is the Atomics request here? */
1034    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1035
1036    while (true) {
1037        offset = vtd_iova_level_offset(iova, level);
1038        slpte = vtd_get_slpte(addr, offset);
1039
1040        if (slpte == (uint64_t)-1) {
1041            error_report_once("%s: detected read error on DMAR slpte "
1042                              "(iova=0x%" PRIx64 ")", __func__, iova);
1043            if (level == vtd_get_iova_level(s, ce)) {
1044                /* Invalid programming of context-entry */
1045                return -VTD_FR_CONTEXT_ENTRY_INV;
1046            } else {
1047                return -VTD_FR_PAGING_ENTRY_INV;
1048            }
1049        }
1050        *reads = (*reads) && (slpte & VTD_SL_R);
1051        *writes = (*writes) && (slpte & VTD_SL_W);
1052        if (!(slpte & access_right_check)) {
1053            error_report_once("%s: detected slpte permission error "
1054                              "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1055                              "slpte=0x%" PRIx64 ", write=%d)", __func__,
1056                              iova, level, slpte, is_write);
1057            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1058        }
1059        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1060            error_report_once("%s: detected splte reserve non-zero "
1061                              "iova=0x%" PRIx64 ", level=0x%" PRIx32
1062                              "slpte=0x%" PRIx64 ")", __func__, iova,
1063                              level, slpte);
1064            return -VTD_FR_PAGING_ENTRY_RSVD;
1065        }
1066
1067        if (vtd_is_last_slpte(slpte, level)) {
1068            *slptep = slpte;
1069            *slpte_level = level;
1070            return 0;
1071        }
1072        addr = vtd_get_slpte_addr(slpte, aw_bits);
1073        level--;
1074    }
1075}
1076
1077typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1078
1079/**
1080 * Constant information used during page walking
1081 *
1082 * @hook_fn: hook func to be called when detected page
1083 * @private: private data to be passed into hook func
1084 * @notify_unmap: whether we should notify invalid entries
1085 * @as: VT-d address space of the device
1086 * @aw: maximum address width
1087 * @domain: domain ID of the page walk
1088 */
1089typedef struct {
1090    VTDAddressSpace *as;
1091    vtd_page_walk_hook hook_fn;
1092    void *private;
1093    bool notify_unmap;
1094    uint8_t aw;
1095    uint16_t domain_id;
1096} vtd_page_walk_info;
1097
1098static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1099{
1100    VTDAddressSpace *as = info->as;
1101    vtd_page_walk_hook hook_fn = info->hook_fn;
1102    void *private = info->private;
1103    IOMMUTLBEntry *entry = &event->entry;
1104    DMAMap target = {
1105        .iova = entry->iova,
1106        .size = entry->addr_mask,
1107        .translated_addr = entry->translated_addr,
1108        .perm = entry->perm,
1109    };
1110    DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1111
1112    if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1113        trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1114        return 0;
1115    }
1116
1117    assert(hook_fn);
1118
1119    /* Update local IOVA mapped ranges */
1120    if (event->type == IOMMU_NOTIFIER_MAP) {
1121        if (mapped) {
1122            /* If it's exactly the same translation, skip */
1123            if (!memcmp(mapped, &target, sizeof(target))) {
1124                trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1125                                                 entry->translated_addr);
1126                return 0;
1127            } else {
1128                /*
1129                 * Translation changed.  Normally this should not
1130                 * happen, but it can happen when with buggy guest
1131                 * OSes.  Note that there will be a small window that
1132                 * we don't have map at all.  But that's the best
1133                 * effort we can do.  The ideal way to emulate this is
1134                 * atomically modify the PTE to follow what has
1135                 * changed, but we can't.  One example is that vfio
1136                 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1137                 * interface to modify a mapping (meanwhile it seems
1138                 * meaningless to even provide one).  Anyway, let's
1139                 * mark this as a TODO in case one day we'll have
1140                 * a better solution.
1141                 */
1142                IOMMUAccessFlags cache_perm = entry->perm;
1143                int ret;
1144
1145                /* Emulate an UNMAP */
1146                event->type = IOMMU_NOTIFIER_UNMAP;
1147                entry->perm = IOMMU_NONE;
1148                trace_vtd_page_walk_one(info->domain_id,
1149                                        entry->iova,
1150                                        entry->translated_addr,
1151                                        entry->addr_mask,
1152                                        entry->perm);
1153                ret = hook_fn(event, private);
1154                if (ret) {
1155                    return ret;
1156                }
1157                /* Drop any existing mapping */
1158                iova_tree_remove(as->iova_tree, &target);
1159                /* Recover the correct type */
1160                event->type = IOMMU_NOTIFIER_MAP;
1161                entry->perm = cache_perm;
1162            }
1163        }
1164        iova_tree_insert(as->iova_tree, &target);
1165    } else {
1166        if (!mapped) {
1167            /* Skip since we didn't map this range at all */
1168            trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1169            return 0;
1170        }
1171        iova_tree_remove(as->iova_tree, &target);
1172    }
1173
1174    trace_vtd_page_walk_one(info->domain_id, entry->iova,
1175                            entry->translated_addr, entry->addr_mask,
1176                            entry->perm);
1177    return hook_fn(event, private);
1178}
1179
1180/**
1181 * vtd_page_walk_level - walk over specific level for IOVA range
1182 *
1183 * @addr: base GPA addr to start the walk
1184 * @start: IOVA range start address
1185 * @end: IOVA range end address (start <= addr < end)
1186 * @read: whether parent level has read permission
1187 * @write: whether parent level has write permission
1188 * @info: constant information for the page walk
1189 */
1190static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1191                               uint64_t end, uint32_t level, bool read,
1192                               bool write, vtd_page_walk_info *info)
1193{
1194    bool read_cur, write_cur, entry_valid;
1195    uint32_t offset;
1196    uint64_t slpte;
1197    uint64_t subpage_size, subpage_mask;
1198    IOMMUTLBEvent event;
1199    uint64_t iova = start;
1200    uint64_t iova_next;
1201    int ret = 0;
1202
1203    trace_vtd_page_walk_level(addr, level, start, end);
1204
1205    subpage_size = 1ULL << vtd_slpt_level_shift(level);
1206    subpage_mask = vtd_slpt_level_page_mask(level);
1207
1208    while (iova < end) {
1209        iova_next = (iova & subpage_mask) + subpage_size;
1210
1211        offset = vtd_iova_level_offset(iova, level);
1212        slpte = vtd_get_slpte(addr, offset);
1213
1214        if (slpte == (uint64_t)-1) {
1215            trace_vtd_page_walk_skip_read(iova, iova_next);
1216            goto next;
1217        }
1218
1219        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1220            trace_vtd_page_walk_skip_reserve(iova, iova_next);
1221            goto next;
1222        }
1223
1224        /* Permissions are stacked with parents' */
1225        read_cur = read && (slpte & VTD_SL_R);
1226        write_cur = write && (slpte & VTD_SL_W);
1227
1228        /*
1229         * As long as we have either read/write permission, this is a
1230         * valid entry. The rule works for both page entries and page
1231         * table entries.
1232         */
1233        entry_valid = read_cur | write_cur;
1234
1235        if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1236            /*
1237             * This is a valid PDE (or even bigger than PDE).  We need
1238             * to walk one further level.
1239             */
1240            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1241                                      iova, MIN(iova_next, end), level - 1,
1242                                      read_cur, write_cur, info);
1243        } else {
1244            /*
1245             * This means we are either:
1246             *
1247             * (1) the real page entry (either 4K page, or huge page)
1248             * (2) the whole range is invalid
1249             *
1250             * In either case, we send an IOTLB notification down.
1251             */
1252            event.entry.target_as = &address_space_memory;
1253            event.entry.iova = iova & subpage_mask;
1254            event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1255            event.entry.addr_mask = ~subpage_mask;
1256            /* NOTE: this is only meaningful if entry_valid == true */
1257            event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1258            event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1259                                            IOMMU_NOTIFIER_UNMAP;
1260            ret = vtd_page_walk_one(&event, info);
1261        }
1262
1263        if (ret < 0) {
1264            return ret;
1265        }
1266
1267next:
1268        iova = iova_next;
1269    }
1270
1271    return 0;
1272}
1273
1274/**
1275 * vtd_page_walk - walk specific IOVA range, and call the hook
1276 *
1277 * @s: intel iommu state
1278 * @ce: context entry to walk upon
1279 * @start: IOVA address to start the walk
1280 * @end: IOVA range end address (start <= addr < end)
1281 * @info: page walking information struct
1282 */
1283static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1284                         uint64_t start, uint64_t end,
1285                         vtd_page_walk_info *info)
1286{
1287    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1288    uint32_t level = vtd_get_iova_level(s, ce);
1289
1290    if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1291        return -VTD_FR_ADDR_BEYOND_MGAW;
1292    }
1293
1294    if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1295        /* Fix end so that it reaches the maximum */
1296        end = vtd_iova_limit(s, ce, info->aw);
1297    }
1298
1299    return vtd_page_walk_level(addr, start, end, level, true, true, info);
1300}
1301
1302static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1303                                          VTDRootEntry *re)
1304{
1305    /* Legacy Mode reserved bits check */
1306    if (!s->root_scalable &&
1307        (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1308        goto rsvd_err;
1309
1310    /* Scalable Mode reserved bits check */
1311    if (s->root_scalable &&
1312        ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1313         (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1314        goto rsvd_err;
1315
1316    return 0;
1317
1318rsvd_err:
1319    error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1320                      ", lo=0x%"PRIx64,
1321                      __func__, re->hi, re->lo);
1322    return -VTD_FR_ROOT_ENTRY_RSVD;
1323}
1324
1325static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1326                                                    VTDContextEntry *ce)
1327{
1328    if (!s->root_scalable &&
1329        (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1330         ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1331        error_report_once("%s: invalid context entry: hi=%"PRIx64
1332                          ", lo=%"PRIx64" (reserved nonzero)",
1333                          __func__, ce->hi, ce->lo);
1334        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1335    }
1336
1337    if (s->root_scalable &&
1338        (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1339         ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1340         ce->val[2] ||
1341         ce->val[3])) {
1342        error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1343                          ", val[2]=%"PRIx64
1344                          ", val[1]=%"PRIx64
1345                          ", val[0]=%"PRIx64" (reserved nonzero)",
1346                          __func__, ce->val[3], ce->val[2],
1347                          ce->val[1], ce->val[0]);
1348        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1349    }
1350
1351    return 0;
1352}
1353
1354static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1355                                  VTDContextEntry *ce)
1356{
1357    VTDPASIDEntry pe;
1358
1359    /*
1360     * Make sure in Scalable Mode, a present context entry
1361     * has valid rid2pasid setting, which includes valid
1362     * rid2pasid field and corresponding pasid entry setting
1363     */
1364    return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1365}
1366
1367/* Map a device to its corresponding domain (context-entry) */
1368static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1369                                    uint8_t devfn, VTDContextEntry *ce)
1370{
1371    VTDRootEntry re;
1372    int ret_fr;
1373    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1374
1375    ret_fr = vtd_get_root_entry(s, bus_num, &re);
1376    if (ret_fr) {
1377        return ret_fr;
1378    }
1379
1380    if (!vtd_root_entry_present(s, &re, devfn)) {
1381        /* Not error - it's okay we don't have root entry. */
1382        trace_vtd_re_not_present(bus_num);
1383        return -VTD_FR_ROOT_ENTRY_P;
1384    }
1385
1386    ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1387    if (ret_fr) {
1388        return ret_fr;
1389    }
1390
1391    ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1392    if (ret_fr) {
1393        return ret_fr;
1394    }
1395
1396    if (!vtd_ce_present(ce)) {
1397        /* Not error - it's okay we don't have context entry. */
1398        trace_vtd_ce_not_present(bus_num, devfn);
1399        return -VTD_FR_CONTEXT_ENTRY_P;
1400    }
1401
1402    ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1403    if (ret_fr) {
1404        return ret_fr;
1405    }
1406
1407    /* Check if the programming of context-entry is valid */
1408    if (!s->root_scalable &&
1409        !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1410        error_report_once("%s: invalid context entry: hi=%"PRIx64
1411                          ", lo=%"PRIx64" (level %d not supported)",
1412                          __func__, ce->hi, ce->lo,
1413                          vtd_ce_get_level(ce));
1414        return -VTD_FR_CONTEXT_ENTRY_INV;
1415    }
1416
1417    if (!s->root_scalable) {
1418        /* Do translation type check */
1419        if (!vtd_ce_type_check(x86_iommu, ce)) {
1420            /* Errors dumped in vtd_ce_type_check() */
1421            return -VTD_FR_CONTEXT_ENTRY_INV;
1422        }
1423    } else {
1424        /*
1425         * Check if the programming of context-entry.rid2pasid
1426         * and corresponding pasid setting is valid, and thus
1427         * avoids to check pasid entry fetching result in future
1428         * helper function calling.
1429         */
1430        ret_fr = vtd_ce_rid2pasid_check(s, ce);
1431        if (ret_fr) {
1432            return ret_fr;
1433        }
1434    }
1435
1436    return 0;
1437}
1438
1439static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1440                                     void *private)
1441{
1442    memory_region_notify_iommu(private, 0, *event);
1443    return 0;
1444}
1445
1446static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1447                                  VTDContextEntry *ce)
1448{
1449    VTDPASIDEntry pe;
1450
1451    if (s->root_scalable) {
1452        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1453        return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1454    }
1455
1456    return VTD_CONTEXT_ENTRY_DID(ce->hi);
1457}
1458
1459static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1460                                            VTDContextEntry *ce,
1461                                            hwaddr addr, hwaddr size)
1462{
1463    IntelIOMMUState *s = vtd_as->iommu_state;
1464    vtd_page_walk_info info = {
1465        .hook_fn = vtd_sync_shadow_page_hook,
1466        .private = (void *)&vtd_as->iommu,
1467        .notify_unmap = true,
1468        .aw = s->aw_bits,
1469        .as = vtd_as,
1470        .domain_id = vtd_get_domain_id(s, ce),
1471    };
1472
1473    return vtd_page_walk(s, ce, addr, addr + size, &info);
1474}
1475
1476static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1477{
1478    int ret;
1479    VTDContextEntry ce;
1480    IOMMUNotifier *n;
1481
1482    if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
1483        return 0;
1484    }
1485
1486    ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1487                                   pci_bus_num(vtd_as->bus),
1488                                   vtd_as->devfn, &ce);
1489    if (ret) {
1490        if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1491            /*
1492             * It's a valid scenario to have a context entry that is
1493             * not present.  For example, when a device is removed
1494             * from an existing domain then the context entry will be
1495             * zeroed by the guest before it was put into another
1496             * domain.  When this happens, instead of synchronizing
1497             * the shadow pages we should invalidate all existing
1498             * mappings and notify the backends.
1499             */
1500            IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1501                vtd_address_space_unmap(vtd_as, n);
1502            }
1503            ret = 0;
1504        }
1505        return ret;
1506    }
1507
1508    return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1509}
1510
1511/*
1512 * Check if specific device is configed to bypass address
1513 * translation for DMA requests. In Scalable Mode, bypass
1514 * 1st-level translation or 2nd-level translation, it depends
1515 * on PGTT setting.
1516 */
1517static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1518{
1519    IntelIOMMUState *s;
1520    VTDContextEntry ce;
1521    VTDPASIDEntry pe;
1522    int ret;
1523
1524    assert(as);
1525
1526    s = as->iommu_state;
1527    ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1528                                   as->devfn, &ce);
1529    if (ret) {
1530        /*
1531         * Possibly failed to parse the context entry for some reason
1532         * (e.g., during init, or any guest configuration errors on
1533         * context entries). We should assume PT not enabled for
1534         * safety.
1535         */
1536        return false;
1537    }
1538
1539    if (s->root_scalable) {
1540        ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1541        if (ret) {
1542            error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1543                              __func__, ret);
1544            return false;
1545        }
1546        return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1547    }
1548
1549    return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1550}
1551
1552/* Return whether the device is using IOMMU translation. */
1553static bool vtd_switch_address_space(VTDAddressSpace *as)
1554{
1555    bool use_iommu;
1556    /* Whether we need to take the BQL on our own */
1557    bool take_bql = !qemu_mutex_iothread_locked();
1558
1559    assert(as);
1560
1561    use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1562
1563    trace_vtd_switch_address_space(pci_bus_num(as->bus),
1564                                   VTD_PCI_SLOT(as->devfn),
1565                                   VTD_PCI_FUNC(as->devfn),
1566                                   use_iommu);
1567
1568    /*
1569     * It's possible that we reach here without BQL, e.g., when called
1570     * from vtd_pt_enable_fast_path(). However the memory APIs need
1571     * it. We'd better make sure we have had it already, or, take it.
1572     */
1573    if (take_bql) {
1574        qemu_mutex_lock_iothread();
1575    }
1576
1577    /* Turn off first then on the other */
1578    if (use_iommu) {
1579        memory_region_set_enabled(&as->nodmar, false);
1580        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1581    } else {
1582        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1583        memory_region_set_enabled(&as->nodmar, true);
1584    }
1585
1586    if (take_bql) {
1587        qemu_mutex_unlock_iothread();
1588    }
1589
1590    return use_iommu;
1591}
1592
1593static void vtd_switch_address_space_all(IntelIOMMUState *s)
1594{
1595    GHashTableIter iter;
1596    VTDBus *vtd_bus;
1597    int i;
1598
1599    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1600    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1601        for (i = 0; i < PCI_DEVFN_MAX; i++) {
1602            if (!vtd_bus->dev_as[i]) {
1603                continue;
1604            }
1605            vtd_switch_address_space(vtd_bus->dev_as[i]);
1606        }
1607    }
1608}
1609
1610static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1611{
1612    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1613}
1614
1615static const bool vtd_qualified_faults[] = {
1616    [VTD_FR_RESERVED] = false,
1617    [VTD_FR_ROOT_ENTRY_P] = false,
1618    [VTD_FR_CONTEXT_ENTRY_P] = true,
1619    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1620    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1621    [VTD_FR_WRITE] = true,
1622    [VTD_FR_READ] = true,
1623    [VTD_FR_PAGING_ENTRY_INV] = true,
1624    [VTD_FR_ROOT_TABLE_INV] = false,
1625    [VTD_FR_CONTEXT_TABLE_INV] = false,
1626    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1627    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1628    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1629    [VTD_FR_PASID_TABLE_INV] = false,
1630    [VTD_FR_RESERVED_ERR] = false,
1631    [VTD_FR_MAX] = false,
1632};
1633
1634/* To see if a fault condition is "qualified", which is reported to software
1635 * only if the FPD field in the context-entry used to process the faulting
1636 * request is 0.
1637 */
1638static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1639{
1640    return vtd_qualified_faults[fault];
1641}
1642
1643static inline bool vtd_is_interrupt_addr(hwaddr addr)
1644{
1645    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1646}
1647
1648static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1649{
1650    VTDBus *vtd_bus;
1651    VTDAddressSpace *vtd_as;
1652    bool success = false;
1653
1654    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1655    if (!vtd_bus) {
1656        goto out;
1657    }
1658
1659    vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1660    if (!vtd_as) {
1661        goto out;
1662    }
1663
1664    if (vtd_switch_address_space(vtd_as) == false) {
1665        /* We switched off IOMMU region successfully. */
1666        success = true;
1667    }
1668
1669out:
1670    trace_vtd_pt_enable_fast_path(source_id, success);
1671}
1672
1673/* Map dev to context-entry then do a paging-structures walk to do a iommu
1674 * translation.
1675 *
1676 * Called from RCU critical section.
1677 *
1678 * @bus_num: The bus number
1679 * @devfn: The devfn, which is the  combined of device and function number
1680 * @is_write: The access is a write operation
1681 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1682 *
1683 * Returns true if translation is successful, otherwise false.
1684 */
1685static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1686                                   uint8_t devfn, hwaddr addr, bool is_write,
1687                                   IOMMUTLBEntry *entry)
1688{
1689    IntelIOMMUState *s = vtd_as->iommu_state;
1690    VTDContextEntry ce;
1691    uint8_t bus_num = pci_bus_num(bus);
1692    VTDContextCacheEntry *cc_entry;
1693    uint64_t slpte, page_mask;
1694    uint32_t level;
1695    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1696    int ret_fr;
1697    bool is_fpd_set = false;
1698    bool reads = true;
1699    bool writes = true;
1700    uint8_t access_flags;
1701    VTDIOTLBEntry *iotlb_entry;
1702
1703    /*
1704     * We have standalone memory region for interrupt addresses, we
1705     * should never receive translation requests in this region.
1706     */
1707    assert(!vtd_is_interrupt_addr(addr));
1708
1709    vtd_iommu_lock(s);
1710
1711    cc_entry = &vtd_as->context_cache_entry;
1712
1713    /* Try to fetch slpte form IOTLB */
1714    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1715    if (iotlb_entry) {
1716        trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1717                                 iotlb_entry->domain_id);
1718        slpte = iotlb_entry->slpte;
1719        access_flags = iotlb_entry->access_flags;
1720        page_mask = iotlb_entry->mask;
1721        goto out;
1722    }
1723
1724    /* Try to fetch context-entry from cache first */
1725    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1726        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1727                               cc_entry->context_entry.lo,
1728                               cc_entry->context_cache_gen);
1729        ce = cc_entry->context_entry;
1730        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1731        if (!is_fpd_set && s->root_scalable) {
1732            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1733            VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1734        }
1735    } else {
1736        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1737        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1738        if (!ret_fr && !is_fpd_set && s->root_scalable) {
1739            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1740        }
1741        VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1742        /* Update context-cache */
1743        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1744                                  cc_entry->context_cache_gen,
1745                                  s->context_cache_gen);
1746        cc_entry->context_entry = ce;
1747        cc_entry->context_cache_gen = s->context_cache_gen;
1748    }
1749
1750    /*
1751     * We don't need to translate for pass-through context entries.
1752     * Also, let's ignore IOTLB caching as well for PT devices.
1753     */
1754    if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1755        entry->iova = addr & VTD_PAGE_MASK_4K;
1756        entry->translated_addr = entry->iova;
1757        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1758        entry->perm = IOMMU_RW;
1759        trace_vtd_translate_pt(source_id, entry->iova);
1760
1761        /*
1762         * When this happens, it means firstly caching-mode is not
1763         * enabled, and this is the first passthrough translation for
1764         * the device. Let's enable the fast path for passthrough.
1765         *
1766         * When passthrough is disabled again for the device, we can
1767         * capture it via the context entry invalidation, then the
1768         * IOMMU region can be swapped back.
1769         */
1770        vtd_pt_enable_fast_path(s, source_id);
1771        vtd_iommu_unlock(s);
1772        return true;
1773    }
1774
1775    ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1776                               &reads, &writes, s->aw_bits);
1777    VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1778
1779    page_mask = vtd_slpt_level_page_mask(level);
1780    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1781    vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1782                     access_flags, level);
1783out:
1784    vtd_iommu_unlock(s);
1785    entry->iova = addr & page_mask;
1786    entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1787    entry->addr_mask = ~page_mask;
1788    entry->perm = access_flags;
1789    return true;
1790
1791error:
1792    vtd_iommu_unlock(s);
1793    entry->iova = 0;
1794    entry->translated_addr = 0;
1795    entry->addr_mask = 0;
1796    entry->perm = IOMMU_NONE;
1797    return false;
1798}
1799
1800static void vtd_root_table_setup(IntelIOMMUState *s)
1801{
1802    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1803    s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1804
1805    vtd_update_scalable_state(s);
1806
1807    trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1808}
1809
1810static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1811                               uint32_t index, uint32_t mask)
1812{
1813    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1814}
1815
1816static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1817{
1818    uint64_t value = 0;
1819    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1820    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1821    s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1822    s->intr_eime = value & VTD_IRTA_EIME;
1823
1824    /* Notify global invalidation */
1825    vtd_iec_notify_all(s, true, 0, 0);
1826
1827    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1828}
1829
1830static void vtd_iommu_replay_all(IntelIOMMUState *s)
1831{
1832    VTDAddressSpace *vtd_as;
1833
1834    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1835        vtd_sync_shadow_page_table(vtd_as);
1836    }
1837}
1838
1839static void vtd_context_global_invalidate(IntelIOMMUState *s)
1840{
1841    trace_vtd_inv_desc_cc_global();
1842    /* Protects context cache */
1843    vtd_iommu_lock(s);
1844    s->context_cache_gen++;
1845    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1846        vtd_reset_context_cache_locked(s);
1847    }
1848    vtd_iommu_unlock(s);
1849    vtd_address_space_refresh_all(s);
1850    /*
1851     * From VT-d spec 6.5.2.1, a global context entry invalidation
1852     * should be followed by a IOTLB global invalidation, so we should
1853     * be safe even without this. Hoewever, let's replay the region as
1854     * well to be safer, and go back here when we need finer tunes for
1855     * VT-d emulation codes.
1856     */
1857    vtd_iommu_replay_all(s);
1858}
1859
1860/* Do a context-cache device-selective invalidation.
1861 * @func_mask: FM field after shifting
1862 */
1863static void vtd_context_device_invalidate(IntelIOMMUState *s,
1864                                          uint16_t source_id,
1865                                          uint16_t func_mask)
1866{
1867    uint16_t mask;
1868    VTDBus *vtd_bus;
1869    VTDAddressSpace *vtd_as;
1870    uint8_t bus_n, devfn;
1871    uint16_t devfn_it;
1872
1873    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1874
1875    switch (func_mask & 3) {
1876    case 0:
1877        mask = 0;   /* No bits in the SID field masked */
1878        break;
1879    case 1:
1880        mask = 4;   /* Mask bit 2 in the SID field */
1881        break;
1882    case 2:
1883        mask = 6;   /* Mask bit 2:1 in the SID field */
1884        break;
1885    case 3:
1886        mask = 7;   /* Mask bit 2:0 in the SID field */
1887        break;
1888    default:
1889        g_assert_not_reached();
1890    }
1891    mask = ~mask;
1892
1893    bus_n = VTD_SID_TO_BUS(source_id);
1894    vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1895    if (vtd_bus) {
1896        devfn = VTD_SID_TO_DEVFN(source_id);
1897        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1898            vtd_as = vtd_bus->dev_as[devfn_it];
1899            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1900                trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1901                                             VTD_PCI_FUNC(devfn_it));
1902                vtd_iommu_lock(s);
1903                vtd_as->context_cache_entry.context_cache_gen = 0;
1904                vtd_iommu_unlock(s);
1905                /*
1906                 * Do switch address space when needed, in case if the
1907                 * device passthrough bit is switched.
1908                 */
1909                vtd_switch_address_space(vtd_as);
1910                /*
1911                 * So a device is moving out of (or moving into) a
1912                 * domain, resync the shadow page table.
1913                 * This won't bring bad even if we have no such
1914                 * notifier registered - the IOMMU notification
1915                 * framework will skip MAP notifications if that
1916                 * happened.
1917                 */
1918                vtd_sync_shadow_page_table(vtd_as);
1919            }
1920        }
1921    }
1922}
1923
1924/* Context-cache invalidation
1925 * Returns the Context Actual Invalidation Granularity.
1926 * @val: the content of the CCMD_REG
1927 */
1928static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1929{
1930    uint64_t caig;
1931    uint64_t type = val & VTD_CCMD_CIRG_MASK;
1932
1933    switch (type) {
1934    case VTD_CCMD_DOMAIN_INVL:
1935        /* Fall through */
1936    case VTD_CCMD_GLOBAL_INVL:
1937        caig = VTD_CCMD_GLOBAL_INVL_A;
1938        vtd_context_global_invalidate(s);
1939        break;
1940
1941    case VTD_CCMD_DEVICE_INVL:
1942        caig = VTD_CCMD_DEVICE_INVL_A;
1943        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1944        break;
1945
1946    default:
1947        error_report_once("%s: invalid context: 0x%" PRIx64,
1948                          __func__, val);
1949        caig = 0;
1950    }
1951    return caig;
1952}
1953
1954static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1955{
1956    trace_vtd_inv_desc_iotlb_global();
1957    vtd_reset_iotlb(s);
1958    vtd_iommu_replay_all(s);
1959}
1960
1961static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1962{
1963    VTDContextEntry ce;
1964    VTDAddressSpace *vtd_as;
1965
1966    trace_vtd_inv_desc_iotlb_domain(domain_id);
1967
1968    vtd_iommu_lock(s);
1969    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1970                                &domain_id);
1971    vtd_iommu_unlock(s);
1972
1973    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1974        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1975                                      vtd_as->devfn, &ce) &&
1976            domain_id == vtd_get_domain_id(s, &ce)) {
1977            vtd_sync_shadow_page_table(vtd_as);
1978        }
1979    }
1980}
1981
1982static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1983                                           uint16_t domain_id, hwaddr addr,
1984                                           uint8_t am)
1985{
1986    VTDAddressSpace *vtd_as;
1987    VTDContextEntry ce;
1988    int ret;
1989    hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1990
1991    QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1992        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1993                                       vtd_as->devfn, &ce);
1994        if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1995            if (vtd_as_has_map_notifier(vtd_as)) {
1996                /*
1997                 * As long as we have MAP notifications registered in
1998                 * any of our IOMMU notifiers, we need to sync the
1999                 * shadow page table.
2000                 */
2001                vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2002            } else {
2003                /*
2004                 * For UNMAP-only notifiers, we don't need to walk the
2005                 * page tables.  We just deliver the PSI down to
2006                 * invalidate caches.
2007                 */
2008                IOMMUTLBEvent event = {
2009                    .type = IOMMU_NOTIFIER_UNMAP,
2010                    .entry = {
2011                        .target_as = &address_space_memory,
2012                        .iova = addr,
2013                        .translated_addr = 0,
2014                        .addr_mask = size - 1,
2015                        .perm = IOMMU_NONE,
2016                    },
2017                };
2018                memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2019            }
2020        }
2021    }
2022}
2023
2024static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2025                                      hwaddr addr, uint8_t am)
2026{
2027    VTDIOTLBPageInvInfo info;
2028
2029    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2030
2031    assert(am <= VTD_MAMV);
2032    info.domain_id = domain_id;
2033    info.addr = addr;
2034    info.mask = ~((1 << am) - 1);
2035    vtd_iommu_lock(s);
2036    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2037    vtd_iommu_unlock(s);
2038    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2039}
2040
2041/* Flush IOTLB
2042 * Returns the IOTLB Actual Invalidation Granularity.
2043 * @val: the content of the IOTLB_REG
2044 */
2045static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2046{
2047    uint64_t iaig;
2048    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2049    uint16_t domain_id;
2050    hwaddr addr;
2051    uint8_t am;
2052
2053    switch (type) {
2054    case VTD_TLB_GLOBAL_FLUSH:
2055        iaig = VTD_TLB_GLOBAL_FLUSH_A;
2056        vtd_iotlb_global_invalidate(s);
2057        break;
2058
2059    case VTD_TLB_DSI_FLUSH:
2060        domain_id = VTD_TLB_DID(val);
2061        iaig = VTD_TLB_DSI_FLUSH_A;
2062        vtd_iotlb_domain_invalidate(s, domain_id);
2063        break;
2064
2065    case VTD_TLB_PSI_FLUSH:
2066        domain_id = VTD_TLB_DID(val);
2067        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2068        am = VTD_IVA_AM(addr);
2069        addr = VTD_IVA_ADDR(addr);
2070        if (am > VTD_MAMV) {
2071            error_report_once("%s: address mask overflow: 0x%" PRIx64,
2072                              __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2073            iaig = 0;
2074            break;
2075        }
2076        iaig = VTD_TLB_PSI_FLUSH_A;
2077        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2078        break;
2079
2080    default:
2081        error_report_once("%s: invalid granularity: 0x%" PRIx64,
2082                          __func__, val);
2083        iaig = 0;
2084    }
2085    return iaig;
2086}
2087
2088static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2089
2090static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2091{
2092    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2093           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2094}
2095
2096static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2097{
2098    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2099
2100    trace_vtd_inv_qi_enable(en);
2101
2102    if (en) {
2103        s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2104        /* 2^(x+8) entries */
2105        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2106        s->qi_enabled = true;
2107        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2108        /* Ok - report back to driver */
2109        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2110
2111        if (s->iq_tail != 0) {
2112            /*
2113             * This is a spec violation but Windows guests are known to set up
2114             * Queued Invalidation this way so we allow the write and process
2115             * Invalidation Descriptors right away.
2116             */
2117            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2118            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2119                vtd_fetch_inv_desc(s);
2120            }
2121        }
2122    } else {
2123        if (vtd_queued_inv_disable_check(s)) {
2124            /* disable Queued Invalidation */
2125            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2126            s->iq_head = 0;
2127            s->qi_enabled = false;
2128            /* Ok - report back to driver */
2129            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2130        } else {
2131            error_report_once("%s: detected improper state when disable QI "
2132                              "(head=0x%x, tail=0x%x, last_type=%d)",
2133                              __func__,
2134                              s->iq_head, s->iq_tail, s->iq_last_desc_type);
2135        }
2136    }
2137}
2138
2139/* Set Root Table Pointer */
2140static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2141{
2142    vtd_root_table_setup(s);
2143    /* Ok - report back to driver */
2144    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2145    vtd_reset_caches(s);
2146    vtd_address_space_refresh_all(s);
2147}
2148
2149/* Set Interrupt Remap Table Pointer */
2150static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2151{
2152    vtd_interrupt_remap_table_setup(s);
2153    /* Ok - report back to driver */
2154    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2155}
2156
2157/* Handle Translation Enable/Disable */
2158static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2159{
2160    if (s->dmar_enabled == en) {
2161        return;
2162    }
2163
2164    trace_vtd_dmar_enable(en);
2165
2166    if (en) {
2167        s->dmar_enabled = true;
2168        /* Ok - report back to driver */
2169        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2170    } else {
2171        s->dmar_enabled = false;
2172
2173        /* Clear the index of Fault Recording Register */
2174        s->next_frcd_reg = 0;
2175        /* Ok - report back to driver */
2176        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2177    }
2178
2179    vtd_reset_caches(s);
2180    vtd_address_space_refresh_all(s);
2181}
2182
2183/* Handle Interrupt Remap Enable/Disable */
2184static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2185{
2186    trace_vtd_ir_enable(en);
2187
2188    if (en) {
2189        s->intr_enabled = true;
2190        /* Ok - report back to driver */
2191        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2192    } else {
2193        s->intr_enabled = false;
2194        /* Ok - report back to driver */
2195        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2196    }
2197}
2198
2199/* Handle write to Global Command Register */
2200static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2201{
2202    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2203    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2204    uint32_t changed = status ^ val;
2205
2206    trace_vtd_reg_write_gcmd(status, val);
2207    if (changed & VTD_GCMD_TE) {
2208        /* Translation enable/disable */
2209        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2210    }
2211    if (val & VTD_GCMD_SRTP) {
2212        /* Set/update the root-table pointer */
2213        vtd_handle_gcmd_srtp(s);
2214    }
2215    if (changed & VTD_GCMD_QIE) {
2216        /* Queued Invalidation Enable */
2217        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2218    }
2219    if (val & VTD_GCMD_SIRTP) {
2220        /* Set/update the interrupt remapping root-table pointer */
2221        vtd_handle_gcmd_sirtp(s);
2222    }
2223    if (changed & VTD_GCMD_IRE) {
2224        /* Interrupt remap enable/disable */
2225        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2226    }
2227}
2228
2229/* Handle write to Context Command Register */
2230static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2231{
2232    uint64_t ret;
2233    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2234
2235    /* Context-cache invalidation request */
2236    if (val & VTD_CCMD_ICC) {
2237        if (s->qi_enabled) {
2238            error_report_once("Queued Invalidation enabled, "
2239                              "should not use register-based invalidation");
2240            return;
2241        }
2242        ret = vtd_context_cache_invalidate(s, val);
2243        /* Invalidation completed. Change something to show */
2244        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2245        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2246                                      ret);
2247    }
2248}
2249
2250/* Handle write to IOTLB Invalidation Register */
2251static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2252{
2253    uint64_t ret;
2254    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2255
2256    /* IOTLB invalidation request */
2257    if (val & VTD_TLB_IVT) {
2258        if (s->qi_enabled) {
2259            error_report_once("Queued Invalidation enabled, "
2260                              "should not use register-based invalidation");
2261            return;
2262        }
2263        ret = vtd_iotlb_flush(s, val);
2264        /* Invalidation completed. Change something to show */
2265        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2266        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2267                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2268    }
2269}
2270
2271/* Fetch an Invalidation Descriptor from the Invalidation Queue */
2272static bool vtd_get_inv_desc(IntelIOMMUState *s,
2273                             VTDInvDesc *inv_desc)
2274{
2275    dma_addr_t base_addr = s->iq;
2276    uint32_t offset = s->iq_head;
2277    uint32_t dw = s->iq_dw ? 32 : 16;
2278    dma_addr_t addr = base_addr + offset * dw;
2279
2280    if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2281        error_report_once("Read INV DESC failed.");
2282        return false;
2283    }
2284    inv_desc->lo = le64_to_cpu(inv_desc->lo);
2285    inv_desc->hi = le64_to_cpu(inv_desc->hi);
2286    if (dw == 32) {
2287        inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2288        inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2289    }
2290    return true;
2291}
2292
2293static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2294{
2295    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2296        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2297        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2298                          " (reserved nonzero)", __func__, inv_desc->hi,
2299                          inv_desc->lo);
2300        return false;
2301    }
2302    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2303        /* Status Write */
2304        uint32_t status_data = (uint32_t)(inv_desc->lo >>
2305                               VTD_INV_DESC_WAIT_DATA_SHIFT);
2306
2307        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2308
2309        /* FIXME: need to be masked with HAW? */
2310        dma_addr_t status_addr = inv_desc->hi;
2311        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2312        status_data = cpu_to_le32(status_data);
2313        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2314                             sizeof(status_data))) {
2315            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2316            return false;
2317        }
2318    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2319        /* Interrupt flag */
2320        vtd_generate_completion_event(s);
2321    } else {
2322        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2323                          " (unknown type)", __func__, inv_desc->hi,
2324                          inv_desc->lo);
2325        return false;
2326    }
2327    return true;
2328}
2329
2330static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2331                                           VTDInvDesc *inv_desc)
2332{
2333    uint16_t sid, fmask;
2334
2335    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2336        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2337                          " (reserved nonzero)", __func__, inv_desc->hi,
2338                          inv_desc->lo);
2339        return false;
2340    }
2341    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2342    case VTD_INV_DESC_CC_DOMAIN:
2343        trace_vtd_inv_desc_cc_domain(
2344            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2345        /* Fall through */
2346    case VTD_INV_DESC_CC_GLOBAL:
2347        vtd_context_global_invalidate(s);
2348        break;
2349
2350    case VTD_INV_DESC_CC_DEVICE:
2351        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2352        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2353        vtd_context_device_invalidate(s, sid, fmask);
2354        break;
2355
2356    default:
2357        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2358                          " (invalid type)", __func__, inv_desc->hi,
2359                          inv_desc->lo);
2360        return false;
2361    }
2362    return true;
2363}
2364
2365static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2366{
2367    uint16_t domain_id;
2368    uint8_t am;
2369    hwaddr addr;
2370
2371    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2372        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2373        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2374                          ", lo=0x%"PRIx64" (reserved bits unzero)",
2375                          __func__, inv_desc->hi, inv_desc->lo);
2376        return false;
2377    }
2378
2379    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2380    case VTD_INV_DESC_IOTLB_GLOBAL:
2381        vtd_iotlb_global_invalidate(s);
2382        break;
2383
2384    case VTD_INV_DESC_IOTLB_DOMAIN:
2385        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2386        vtd_iotlb_domain_invalidate(s, domain_id);
2387        break;
2388
2389    case VTD_INV_DESC_IOTLB_PAGE:
2390        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2391        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2392        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2393        if (am > VTD_MAMV) {
2394            error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2395                              ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2396                              __func__, inv_desc->hi, inv_desc->lo,
2397                              am, (unsigned)VTD_MAMV);
2398            return false;
2399        }
2400        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2401        break;
2402
2403    default:
2404        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2405                          ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2406                          __func__, inv_desc->hi, inv_desc->lo,
2407                          inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2408        return false;
2409    }
2410    return true;
2411}
2412
2413static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2414                                     VTDInvDesc *inv_desc)
2415{
2416    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2417                           inv_desc->iec.index,
2418                           inv_desc->iec.index_mask);
2419
2420    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2421                       inv_desc->iec.index,
2422                       inv_desc->iec.index_mask);
2423    return true;
2424}
2425
2426static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2427                                          VTDInvDesc *inv_desc)
2428{
2429    VTDAddressSpace *vtd_dev_as;
2430    IOMMUTLBEvent event;
2431    struct VTDBus *vtd_bus;
2432    hwaddr addr;
2433    uint64_t sz;
2434    uint16_t sid;
2435    uint8_t devfn;
2436    bool size;
2437    uint8_t bus_num;
2438
2439    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2440    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2441    devfn = sid & 0xff;
2442    bus_num = sid >> 8;
2443    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2444
2445    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2446        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2447        error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2448                          ", lo=%"PRIx64" (reserved nonzero)", __func__,
2449                          inv_desc->hi, inv_desc->lo);
2450        return false;
2451    }
2452
2453    vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2454    if (!vtd_bus) {
2455        goto done;
2456    }
2457
2458    vtd_dev_as = vtd_bus->dev_as[devfn];
2459    if (!vtd_dev_as) {
2460        goto done;
2461    }
2462
2463    /* According to ATS spec table 2.4:
2464     * S = 0, bits 15:12 = xxxx     range size: 4K
2465     * S = 1, bits 15:12 = xxx0     range size: 8K
2466     * S = 1, bits 15:12 = xx01     range size: 16K
2467     * S = 1, bits 15:12 = x011     range size: 32K
2468     * S = 1, bits 15:12 = 0111     range size: 64K
2469     * ...
2470     */
2471    if (size) {
2472        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2473        addr &= ~(sz - 1);
2474    } else {
2475        sz = VTD_PAGE_SIZE;
2476    }
2477
2478    event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2479    event.entry.target_as = &vtd_dev_as->as;
2480    event.entry.addr_mask = sz - 1;
2481    event.entry.iova = addr;
2482    event.entry.perm = IOMMU_NONE;
2483    event.entry.translated_addr = 0;
2484    memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2485
2486done:
2487    return true;
2488}
2489
2490static bool vtd_process_inv_desc(IntelIOMMUState *s)
2491{
2492    VTDInvDesc inv_desc;
2493    uint8_t desc_type;
2494
2495    trace_vtd_inv_qi_head(s->iq_head);
2496    if (!vtd_get_inv_desc(s, &inv_desc)) {
2497        s->iq_last_desc_type = VTD_INV_DESC_NONE;
2498        return false;
2499    }
2500
2501    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2502    /* FIXME: should update at first or at last? */
2503    s->iq_last_desc_type = desc_type;
2504
2505    switch (desc_type) {
2506    case VTD_INV_DESC_CC:
2507        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2508        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2509            return false;
2510        }
2511        break;
2512
2513    case VTD_INV_DESC_IOTLB:
2514        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2515        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2516            return false;
2517        }
2518        break;
2519
2520    /*
2521     * TODO: the entity of below two cases will be implemented in future series.
2522     * To make guest (which integrates scalable mode support patch set in
2523     * iommu driver) work, just return true is enough so far.
2524     */
2525    case VTD_INV_DESC_PC:
2526        break;
2527
2528    case VTD_INV_DESC_PIOTLB:
2529        break;
2530
2531    case VTD_INV_DESC_WAIT:
2532        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2533        if (!vtd_process_wait_desc(s, &inv_desc)) {
2534            return false;
2535        }
2536        break;
2537
2538    case VTD_INV_DESC_IEC:
2539        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2540        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2541            return false;
2542        }
2543        break;
2544
2545    case VTD_INV_DESC_DEVICE:
2546        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2547        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2548            return false;
2549        }
2550        break;
2551
2552    default:
2553        error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2554                          " (unknown type)", __func__, inv_desc.hi,
2555                          inv_desc.lo);
2556        return false;
2557    }
2558    s->iq_head++;
2559    if (s->iq_head == s->iq_size) {
2560        s->iq_head = 0;
2561    }
2562    return true;
2563}
2564
2565/* Try to fetch and process more Invalidation Descriptors */
2566static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2567{
2568    int qi_shift;
2569
2570    /* Refer to 10.4.23 of VT-d spec 3.0 */
2571    qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2572
2573    trace_vtd_inv_qi_fetch();
2574
2575    if (s->iq_tail >= s->iq_size) {
2576        /* Detects an invalid Tail pointer */
2577        error_report_once("%s: detected invalid QI tail "
2578                          "(tail=0x%x, size=0x%x)",
2579                          __func__, s->iq_tail, s->iq_size);
2580        vtd_handle_inv_queue_error(s);
2581        return;
2582    }
2583    while (s->iq_head != s->iq_tail) {
2584        if (!vtd_process_inv_desc(s)) {
2585            /* Invalidation Queue Errors */
2586            vtd_handle_inv_queue_error(s);
2587            break;
2588        }
2589        /* Must update the IQH_REG in time */
2590        vtd_set_quad_raw(s, DMAR_IQH_REG,
2591                         (((uint64_t)(s->iq_head)) << qi_shift) &
2592                         VTD_IQH_QH_MASK);
2593    }
2594}
2595
2596/* Handle write to Invalidation Queue Tail Register */
2597static void vtd_handle_iqt_write(IntelIOMMUState *s)
2598{
2599    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2600
2601    if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2602        error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2603                          __func__, val);
2604        return;
2605    }
2606    s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2607    trace_vtd_inv_qi_tail(s->iq_tail);
2608
2609    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2610        /* Process Invalidation Queue here */
2611        vtd_fetch_inv_desc(s);
2612    }
2613}
2614
2615static void vtd_handle_fsts_write(IntelIOMMUState *s)
2616{
2617    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2618    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2619    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2620
2621    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2622        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2623        trace_vtd_fsts_clear_ip();
2624    }
2625    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2626     * Descriptors if there are any when Queued Invalidation is enabled?
2627     */
2628}
2629
2630static void vtd_handle_fectl_write(IntelIOMMUState *s)
2631{
2632    uint32_t fectl_reg;
2633    /* FIXME: when software clears the IM field, check the IP field. But do we
2634     * need to compare the old value and the new value to conclude that
2635     * software clears the IM field? Or just check if the IM field is zero?
2636     */
2637    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2638
2639    trace_vtd_reg_write_fectl(fectl_reg);
2640
2641    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2642        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2643        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2644    }
2645}
2646
2647static void vtd_handle_ics_write(IntelIOMMUState *s)
2648{
2649    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2650    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2651
2652    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2653        trace_vtd_reg_ics_clear_ip();
2654        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2655    }
2656}
2657
2658static void vtd_handle_iectl_write(IntelIOMMUState *s)
2659{
2660    uint32_t iectl_reg;
2661    /* FIXME: when software clears the IM field, check the IP field. But do we
2662     * need to compare the old value and the new value to conclude that
2663     * software clears the IM field? Or just check if the IM field is zero?
2664     */
2665    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2666
2667    trace_vtd_reg_write_iectl(iectl_reg);
2668
2669    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2670        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2671        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2672    }
2673}
2674
2675static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2676{
2677    IntelIOMMUState *s = opaque;
2678    uint64_t val;
2679
2680    trace_vtd_reg_read(addr, size);
2681
2682    if (addr + size > DMAR_REG_SIZE) {
2683        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2684                          " size=0x%x", __func__, addr, size);
2685        return (uint64_t)-1;
2686    }
2687
2688    switch (addr) {
2689    /* Root Table Address Register, 64-bit */
2690    case DMAR_RTADDR_REG:
2691        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2692        if (size == 4) {
2693            val = val & ((1ULL << 32) - 1);
2694        }
2695        break;
2696
2697    case DMAR_RTADDR_REG_HI:
2698        assert(size == 4);
2699        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2700        break;
2701
2702    /* Invalidation Queue Address Register, 64-bit */
2703    case DMAR_IQA_REG:
2704        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2705        if (size == 4) {
2706            val = val & ((1ULL << 32) - 1);
2707        }
2708        break;
2709
2710    case DMAR_IQA_REG_HI:
2711        assert(size == 4);
2712        val = s->iq >> 32;
2713        break;
2714
2715    default:
2716        if (size == 4) {
2717            val = vtd_get_long(s, addr);
2718        } else {
2719            val = vtd_get_quad(s, addr);
2720        }
2721    }
2722
2723    return val;
2724}
2725
2726static void vtd_mem_write(void *opaque, hwaddr addr,
2727                          uint64_t val, unsigned size)
2728{
2729    IntelIOMMUState *s = opaque;
2730
2731    trace_vtd_reg_write(addr, size, val);
2732
2733    if (addr + size > DMAR_REG_SIZE) {
2734        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2735                          " size=0x%x", __func__, addr, size);
2736        return;
2737    }
2738
2739    switch (addr) {
2740    /* Global Command Register, 32-bit */
2741    case DMAR_GCMD_REG:
2742        vtd_set_long(s, addr, val);
2743        vtd_handle_gcmd_write(s);
2744        break;
2745
2746    /* Context Command Register, 64-bit */
2747    case DMAR_CCMD_REG:
2748        if (size == 4) {
2749            vtd_set_long(s, addr, val);
2750        } else {
2751            vtd_set_quad(s, addr, val);
2752            vtd_handle_ccmd_write(s);
2753        }
2754        break;
2755
2756    case DMAR_CCMD_REG_HI:
2757        assert(size == 4);
2758        vtd_set_long(s, addr, val);
2759        vtd_handle_ccmd_write(s);
2760        break;
2761
2762    /* IOTLB Invalidation Register, 64-bit */
2763    case DMAR_IOTLB_REG:
2764        if (size == 4) {
2765            vtd_set_long(s, addr, val);
2766        } else {
2767            vtd_set_quad(s, addr, val);
2768            vtd_handle_iotlb_write(s);
2769        }
2770        break;
2771
2772    case DMAR_IOTLB_REG_HI:
2773        assert(size == 4);
2774        vtd_set_long(s, addr, val);
2775        vtd_handle_iotlb_write(s);
2776        break;
2777
2778    /* Invalidate Address Register, 64-bit */
2779    case DMAR_IVA_REG:
2780        if (size == 4) {
2781            vtd_set_long(s, addr, val);
2782        } else {
2783            vtd_set_quad(s, addr, val);
2784        }
2785        break;
2786
2787    case DMAR_IVA_REG_HI:
2788        assert(size == 4);
2789        vtd_set_long(s, addr, val);
2790        break;
2791
2792    /* Fault Status Register, 32-bit */
2793    case DMAR_FSTS_REG:
2794        assert(size == 4);
2795        vtd_set_long(s, addr, val);
2796        vtd_handle_fsts_write(s);
2797        break;
2798
2799    /* Fault Event Control Register, 32-bit */
2800    case DMAR_FECTL_REG:
2801        assert(size == 4);
2802        vtd_set_long(s, addr, val);
2803        vtd_handle_fectl_write(s);
2804        break;
2805
2806    /* Fault Event Data Register, 32-bit */
2807    case DMAR_FEDATA_REG:
2808        assert(size == 4);
2809        vtd_set_long(s, addr, val);
2810        break;
2811
2812    /* Fault Event Address Register, 32-bit */
2813    case DMAR_FEADDR_REG:
2814        if (size == 4) {
2815            vtd_set_long(s, addr, val);
2816        } else {
2817            /*
2818             * While the register is 32-bit only, some guests (Xen...) write to
2819             * it with 64-bit.
2820             */
2821            vtd_set_quad(s, addr, val);
2822        }
2823        break;
2824
2825    /* Fault Event Upper Address Register, 32-bit */
2826    case DMAR_FEUADDR_REG:
2827        assert(size == 4);
2828        vtd_set_long(s, addr, val);
2829        break;
2830
2831    /* Protected Memory Enable Register, 32-bit */
2832    case DMAR_PMEN_REG:
2833        assert(size == 4);
2834        vtd_set_long(s, addr, val);
2835        break;
2836
2837    /* Root Table Address Register, 64-bit */
2838    case DMAR_RTADDR_REG:
2839        if (size == 4) {
2840            vtd_set_long(s, addr, val);
2841        } else {
2842            vtd_set_quad(s, addr, val);
2843        }
2844        break;
2845
2846    case DMAR_RTADDR_REG_HI:
2847        assert(size == 4);
2848        vtd_set_long(s, addr, val);
2849        break;
2850
2851    /* Invalidation Queue Tail Register, 64-bit */
2852    case DMAR_IQT_REG:
2853        if (size == 4) {
2854            vtd_set_long(s, addr, val);
2855        } else {
2856            vtd_set_quad(s, addr, val);
2857        }
2858        vtd_handle_iqt_write(s);
2859        break;
2860
2861    case DMAR_IQT_REG_HI:
2862        assert(size == 4);
2863        vtd_set_long(s, addr, val);
2864        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2865        break;
2866
2867    /* Invalidation Queue Address Register, 64-bit */
2868    case DMAR_IQA_REG:
2869        if (size == 4) {
2870            vtd_set_long(s, addr, val);
2871        } else {
2872            vtd_set_quad(s, addr, val);
2873        }
2874        if (s->ecap & VTD_ECAP_SMTS &&
2875            val & VTD_IQA_DW_MASK) {
2876            s->iq_dw = true;
2877        } else {
2878            s->iq_dw = false;
2879        }
2880        break;
2881
2882    case DMAR_IQA_REG_HI:
2883        assert(size == 4);
2884        vtd_set_long(s, addr, val);
2885        break;
2886
2887    /* Invalidation Completion Status Register, 32-bit */
2888    case DMAR_ICS_REG:
2889        assert(size == 4);
2890        vtd_set_long(s, addr, val);
2891        vtd_handle_ics_write(s);
2892        break;
2893
2894    /* Invalidation Event Control Register, 32-bit */
2895    case DMAR_IECTL_REG:
2896        assert(size == 4);
2897        vtd_set_long(s, addr, val);
2898        vtd_handle_iectl_write(s);
2899        break;
2900
2901    /* Invalidation Event Data Register, 32-bit */
2902    case DMAR_IEDATA_REG:
2903        assert(size == 4);
2904        vtd_set_long(s, addr, val);
2905        break;
2906
2907    /* Invalidation Event Address Register, 32-bit */
2908    case DMAR_IEADDR_REG:
2909        assert(size == 4);
2910        vtd_set_long(s, addr, val);
2911        break;
2912
2913    /* Invalidation Event Upper Address Register, 32-bit */
2914    case DMAR_IEUADDR_REG:
2915        assert(size == 4);
2916        vtd_set_long(s, addr, val);
2917        break;
2918
2919    /* Fault Recording Registers, 128-bit */
2920    case DMAR_FRCD_REG_0_0:
2921        if (size == 4) {
2922            vtd_set_long(s, addr, val);
2923        } else {
2924            vtd_set_quad(s, addr, val);
2925        }
2926        break;
2927
2928    case DMAR_FRCD_REG_0_1:
2929        assert(size == 4);
2930        vtd_set_long(s, addr, val);
2931        break;
2932
2933    case DMAR_FRCD_REG_0_2:
2934        if (size == 4) {
2935            vtd_set_long(s, addr, val);
2936        } else {
2937            vtd_set_quad(s, addr, val);
2938            /* May clear bit 127 (Fault), update PPF */
2939            vtd_update_fsts_ppf(s);
2940        }
2941        break;
2942
2943    case DMAR_FRCD_REG_0_3:
2944        assert(size == 4);
2945        vtd_set_long(s, addr, val);
2946        /* May clear bit 127 (Fault), update PPF */
2947        vtd_update_fsts_ppf(s);
2948        break;
2949
2950    case DMAR_IRTA_REG:
2951        if (size == 4) {
2952            vtd_set_long(s, addr, val);
2953        } else {
2954            vtd_set_quad(s, addr, val);
2955        }
2956        break;
2957
2958    case DMAR_IRTA_REG_HI:
2959        assert(size == 4);
2960        vtd_set_long(s, addr, val);
2961        break;
2962
2963    default:
2964        if (size == 4) {
2965            vtd_set_long(s, addr, val);
2966        } else {
2967            vtd_set_quad(s, addr, val);
2968        }
2969    }
2970}
2971
2972static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2973                                         IOMMUAccessFlags flag, int iommu_idx)
2974{
2975    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2976    IntelIOMMUState *s = vtd_as->iommu_state;
2977    IOMMUTLBEntry iotlb = {
2978        /* We'll fill in the rest later. */
2979        .target_as = &address_space_memory,
2980    };
2981    bool success;
2982
2983    if (likely(s->dmar_enabled)) {
2984        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2985                                         addr, flag & IOMMU_WO, &iotlb);
2986    } else {
2987        /* DMAR disabled, passthrough, use 4k-page*/
2988        iotlb.iova = addr & VTD_PAGE_MASK_4K;
2989        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2990        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2991        iotlb.perm = IOMMU_RW;
2992        success = true;
2993    }
2994
2995    if (likely(success)) {
2996        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2997                                 VTD_PCI_SLOT(vtd_as->devfn),
2998                                 VTD_PCI_FUNC(vtd_as->devfn),
2999                                 iotlb.iova, iotlb.translated_addr,
3000                                 iotlb.addr_mask);
3001    } else {
3002        error_report_once("%s: detected translation failure "
3003                          "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3004                          __func__, pci_bus_num(vtd_as->bus),
3005                          VTD_PCI_SLOT(vtd_as->devfn),
3006                          VTD_PCI_FUNC(vtd_as->devfn),
3007                          addr);
3008    }
3009
3010    return iotlb;
3011}
3012
3013static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3014                                         IOMMUNotifierFlag old,
3015                                         IOMMUNotifierFlag new,
3016                                         Error **errp)
3017{
3018    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3019    IntelIOMMUState *s = vtd_as->iommu_state;
3020
3021    /* Update per-address-space notifier flags */
3022    vtd_as->notifier_flags = new;
3023
3024    if (old == IOMMU_NOTIFIER_NONE) {
3025        QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3026    } else if (new == IOMMU_NOTIFIER_NONE) {
3027        QLIST_REMOVE(vtd_as, next);
3028    }
3029    return 0;
3030}
3031
3032static int vtd_post_load(void *opaque, int version_id)
3033{
3034    IntelIOMMUState *iommu = opaque;
3035
3036    /*
3037     * Memory regions are dynamically turned on/off depending on
3038     * context entry configurations from the guest. After migration,
3039     * we need to make sure the memory regions are still correct.
3040     */
3041    vtd_switch_address_space_all(iommu);
3042
3043    /*
3044     * We don't need to migrate the root_scalable because we can
3045     * simply do the calculation after the loading is complete.  We
3046     * can actually do similar things with root, dmar_enabled, etc.
3047     * however since we've had them already so we'd better keep them
3048     * for compatibility of migration.
3049     */
3050    vtd_update_scalable_state(iommu);
3051
3052    return 0;
3053}
3054
3055static const VMStateDescription vtd_vmstate = {
3056    .name = "iommu-intel",
3057    .version_id = 1,
3058    .minimum_version_id = 1,
3059    .priority = MIG_PRI_IOMMU,
3060    .post_load = vtd_post_load,
3061    .fields = (VMStateField[]) {
3062        VMSTATE_UINT64(root, IntelIOMMUState),
3063        VMSTATE_UINT64(intr_root, IntelIOMMUState),
3064        VMSTATE_UINT64(iq, IntelIOMMUState),
3065        VMSTATE_UINT32(intr_size, IntelIOMMUState),
3066        VMSTATE_UINT16(iq_head, IntelIOMMUState),
3067        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3068        VMSTATE_UINT16(iq_size, IntelIOMMUState),
3069        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3070        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3071        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3072        VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3073        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3074        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3075        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3076        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3077        VMSTATE_END_OF_LIST()
3078    }
3079};
3080
3081static const MemoryRegionOps vtd_mem_ops = {
3082    .read = vtd_mem_read,
3083    .write = vtd_mem_write,
3084    .endianness = DEVICE_LITTLE_ENDIAN,
3085    .impl = {
3086        .min_access_size = 4,
3087        .max_access_size = 8,
3088    },
3089    .valid = {
3090        .min_access_size = 4,
3091        .max_access_size = 8,
3092    },
3093};
3094
3095static Property vtd_properties[] = {
3096    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3097    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3098                            ON_OFF_AUTO_AUTO),
3099    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3100    DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3101                      VTD_HOST_ADDRESS_WIDTH),
3102    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3103    DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3104    DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3105    DEFINE_PROP_END_OF_LIST(),
3106};
3107
3108/* Read IRTE entry with specific index */
3109static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3110                        VTD_IR_TableEntry *entry, uint16_t sid)
3111{
3112    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3113        {0xffff, 0xfffb, 0xfff9, 0xfff8};
3114    dma_addr_t addr = 0x00;
3115    uint16_t mask, source_id;
3116    uint8_t bus, bus_max, bus_min;
3117
3118    if (index >= iommu->intr_size) {
3119        error_report_once("%s: index too large: ind=0x%x",
3120                          __func__, index);
3121        return -VTD_FR_IR_INDEX_OVER;
3122    }
3123
3124    addr = iommu->intr_root + index * sizeof(*entry);
3125    if (dma_memory_read(&address_space_memory, addr, entry,
3126                        sizeof(*entry))) {
3127        error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3128                          __func__, index, addr);
3129        return -VTD_FR_IR_ROOT_INVAL;
3130    }
3131
3132    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3133                          le64_to_cpu(entry->data[0]));
3134
3135    if (!entry->irte.present) {
3136        error_report_once("%s: detected non-present IRTE "
3137                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3138                          __func__, index, le64_to_cpu(entry->data[1]),
3139                          le64_to_cpu(entry->data[0]));
3140        return -VTD_FR_IR_ENTRY_P;
3141    }
3142
3143    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3144        entry->irte.__reserved_2) {
3145        error_report_once("%s: detected non-zero reserved IRTE "
3146                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3147                          __func__, index, le64_to_cpu(entry->data[1]),
3148                          le64_to_cpu(entry->data[0]));
3149        return -VTD_FR_IR_IRTE_RSVD;
3150    }
3151
3152    if (sid != X86_IOMMU_SID_INVALID) {
3153        /* Validate IRTE SID */
3154        source_id = le32_to_cpu(entry->irte.source_id);
3155        switch (entry->irte.sid_vtype) {
3156        case VTD_SVT_NONE:
3157            break;
3158
3159        case VTD_SVT_ALL:
3160            mask = vtd_svt_mask[entry->irte.sid_q];
3161            if ((source_id & mask) != (sid & mask)) {
3162                error_report_once("%s: invalid IRTE SID "
3163                                  "(index=%u, sid=%u, source_id=%u)",
3164                                  __func__, index, sid, source_id);
3165                return -VTD_FR_IR_SID_ERR;
3166            }
3167            break;
3168
3169        case VTD_SVT_BUS:
3170            bus_max = source_id >> 8;
3171            bus_min = source_id & 0xff;
3172            bus = sid >> 8;
3173            if (bus > bus_max || bus < bus_min) {
3174                error_report_once("%s: invalid SVT_BUS "
3175                                  "(index=%u, bus=%u, min=%u, max=%u)",
3176                                  __func__, index, bus, bus_min, bus_max);
3177                return -VTD_FR_IR_SID_ERR;
3178            }
3179            break;
3180
3181        default:
3182            error_report_once("%s: detected invalid IRTE SVT "
3183                              "(index=%u, type=%d)", __func__,
3184                              index, entry->irte.sid_vtype);
3185            /* Take this as verification failure. */
3186            return -VTD_FR_IR_SID_ERR;
3187        }
3188    }
3189
3190    return 0;
3191}
3192
3193/* Fetch IRQ information of specific IR index */
3194static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3195                             X86IOMMUIrq *irq, uint16_t sid)
3196{
3197    VTD_IR_TableEntry irte = {};
3198    int ret = 0;
3199
3200    ret = vtd_irte_get(iommu, index, &irte, sid);
3201    if (ret) {
3202        return ret;
3203    }
3204
3205    irq->trigger_mode = irte.irte.trigger_mode;
3206    irq->vector = irte.irte.vector;
3207    irq->delivery_mode = irte.irte.delivery_mode;
3208    irq->dest = le32_to_cpu(irte.irte.dest_id);
3209    if (!iommu->intr_eime) {
3210#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3211#define  VTD_IR_APIC_DEST_SHIFT        (8)
3212        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3213            VTD_IR_APIC_DEST_SHIFT;
3214    }
3215    irq->dest_mode = irte.irte.dest_mode;
3216    irq->redir_hint = irte.irte.redir_hint;
3217
3218    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3219                       irq->delivery_mode, irq->dest, irq->dest_mode);
3220
3221    return 0;
3222}
3223
3224/* Interrupt remapping for MSI/MSI-X entry */
3225static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3226                                   MSIMessage *origin,
3227                                   MSIMessage *translated,
3228                                   uint16_t sid)
3229{
3230    int ret = 0;
3231    VTD_IR_MSIAddress addr;
3232    uint16_t index;
3233    X86IOMMUIrq irq = {};
3234
3235    assert(origin && translated);
3236
3237    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3238
3239    if (!iommu || !iommu->intr_enabled) {
3240        memcpy(translated, origin, sizeof(*origin));
3241        goto out;
3242    }
3243
3244    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3245        error_report_once("%s: MSI address high 32 bits non-zero detected: "
3246                          "address=0x%" PRIx64, __func__, origin->address);
3247        return -VTD_FR_IR_REQ_RSVD;
3248    }
3249
3250    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3251    if (addr.addr.__head != 0xfee) {
3252        error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3253                          __func__, addr.data);
3254        return -VTD_FR_IR_REQ_RSVD;
3255    }
3256
3257    /* This is compatible mode. */
3258    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3259        memcpy(translated, origin, sizeof(*origin));
3260        goto out;
3261    }
3262
3263    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3264
3265#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3266#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3267
3268    if (addr.addr.sub_valid) {
3269        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3270        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3271    }
3272
3273    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3274    if (ret) {
3275        return ret;
3276    }
3277
3278    if (addr.addr.sub_valid) {
3279        trace_vtd_ir_remap_type("MSI");
3280        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3281            error_report_once("%s: invalid IR MSI "
3282                              "(sid=%u, address=0x%" PRIx64
3283                              ", data=0x%" PRIx32 ")",
3284                              __func__, sid, origin->address, origin->data);
3285            return -VTD_FR_IR_REQ_RSVD;
3286        }
3287    } else {
3288        uint8_t vector = origin->data & 0xff;
3289        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3290
3291        trace_vtd_ir_remap_type("IOAPIC");
3292        /* IOAPIC entry vector should be aligned with IRTE vector
3293         * (see vt-d spec 5.1.5.1). */
3294        if (vector != irq.vector) {
3295            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3296        }
3297
3298        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3299         * (see vt-d spec 5.1.5.1). */
3300        if (trigger_mode != irq.trigger_mode) {
3301            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3302                                      irq.trigger_mode);
3303        }
3304    }
3305
3306    /*
3307     * We'd better keep the last two bits, assuming that guest OS
3308     * might modify it. Keep it does not hurt after all.
3309     */
3310    irq.msi_addr_last_bits = addr.addr.__not_care;
3311
3312    /* Translate X86IOMMUIrq to MSI message */
3313    x86_iommu_irq_to_msi_message(&irq, translated);
3314
3315out:
3316    trace_vtd_ir_remap_msi(origin->address, origin->data,
3317                           translated->address, translated->data);
3318    return 0;
3319}
3320
3321static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3322                         MSIMessage *dst, uint16_t sid)
3323{
3324    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3325                                   src, dst, sid);
3326}
3327
3328static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3329                                   uint64_t *data, unsigned size,
3330                                   MemTxAttrs attrs)
3331{
3332    return MEMTX_OK;
3333}
3334
3335static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3336                                    uint64_t value, unsigned size,
3337                                    MemTxAttrs attrs)
3338{
3339    int ret = 0;
3340    MSIMessage from = {}, to = {};
3341    uint16_t sid = X86_IOMMU_SID_INVALID;
3342
3343    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3344    from.data = (uint32_t) value;
3345
3346    if (!attrs.unspecified) {
3347        /* We have explicit Source ID */
3348        sid = attrs.requester_id;
3349    }
3350
3351    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3352    if (ret) {
3353        /* TODO: report error */
3354        /* Drop this interrupt */
3355        return MEMTX_ERROR;
3356    }
3357
3358    apic_get_class()->send_msi(&to);
3359
3360    return MEMTX_OK;
3361}
3362
3363static const MemoryRegionOps vtd_mem_ir_ops = {
3364    .read_with_attrs = vtd_mem_ir_read,
3365    .write_with_attrs = vtd_mem_ir_write,
3366    .endianness = DEVICE_LITTLE_ENDIAN,
3367    .impl = {
3368        .min_access_size = 4,
3369        .max_access_size = 4,
3370    },
3371    .valid = {
3372        .min_access_size = 4,
3373        .max_access_size = 4,
3374    },
3375};
3376
3377VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3378{
3379    uintptr_t key = (uintptr_t)bus;
3380    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3381    VTDAddressSpace *vtd_dev_as;
3382    char name[128];
3383
3384    if (!vtd_bus) {
3385        uintptr_t *new_key = g_malloc(sizeof(*new_key));
3386        *new_key = (uintptr_t)bus;
3387        /* No corresponding free() */
3388        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3389                            PCI_DEVFN_MAX);
3390        vtd_bus->bus = bus;
3391        g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3392    }
3393
3394    vtd_dev_as = vtd_bus->dev_as[devfn];
3395
3396    if (!vtd_dev_as) {
3397        snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3398                 PCI_FUNC(devfn));
3399        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3400
3401        vtd_dev_as->bus = bus;
3402        vtd_dev_as->devfn = (uint8_t)devfn;
3403        vtd_dev_as->iommu_state = s;
3404        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3405        vtd_dev_as->iova_tree = iova_tree_new();
3406
3407        memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3408        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3409
3410        /*
3411         * Build the DMAR-disabled container with aliases to the
3412         * shared MRs.  Note that aliasing to a shared memory region
3413         * could help the memory API to detect same FlatViews so we
3414         * can have devices to share the same FlatView when DMAR is
3415         * disabled (either by not providing "intel_iommu=on" or with
3416         * "iommu=pt").  It will greatly reduce the total number of
3417         * FlatViews of the system hence VM runs faster.
3418         */
3419        memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3420                                 "vtd-nodmar", &s->mr_nodmar, 0,
3421                                 memory_region_size(&s->mr_nodmar));
3422
3423        /*
3424         * Build the per-device DMAR-enabled container.
3425         *
3426         * TODO: currently we have per-device IOMMU memory region only
3427         * because we have per-device IOMMU notifiers for devices.  If
3428         * one day we can abstract the IOMMU notifiers out of the
3429         * memory regions then we can also share the same memory
3430         * region here just like what we've done above with the nodmar
3431         * region.
3432         */
3433        strcat(name, "-dmar");
3434        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3435                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3436                                 name, UINT64_MAX);
3437        memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3438                                 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3439        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3440                                            VTD_INTERRUPT_ADDR_FIRST,
3441                                            &vtd_dev_as->iommu_ir, 1);
3442
3443        /*
3444         * Hook both the containers under the root container, we
3445         * switch between DMAR & noDMAR by enable/disable
3446         * corresponding sub-containers
3447         */
3448        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3449                                            MEMORY_REGION(&vtd_dev_as->iommu),
3450                                            0);
3451        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3452                                            &vtd_dev_as->nodmar, 0);
3453
3454        vtd_switch_address_space(vtd_dev_as);
3455    }
3456    return vtd_dev_as;
3457}
3458
3459/* Unmap the whole range in the notifier's scope. */
3460static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3461{
3462    hwaddr size, remain;
3463    hwaddr start = n->start;
3464    hwaddr end = n->end;
3465    IntelIOMMUState *s = as->iommu_state;
3466    DMAMap map;
3467
3468    /*
3469     * Note: all the codes in this function has a assumption that IOVA
3470     * bits are no more than VTD_MGAW bits (which is restricted by
3471     * VT-d spec), otherwise we need to consider overflow of 64 bits.
3472     */
3473
3474    if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3475        /*
3476         * Don't need to unmap regions that is bigger than the whole
3477         * VT-d supported address space size
3478         */
3479        end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3480    }
3481
3482    assert(start <= end);
3483    size = remain = end - start + 1;
3484
3485    while (remain >= VTD_PAGE_SIZE) {
3486        IOMMUTLBEvent event;
3487        uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3488        uint64_t size = mask + 1;
3489
3490        assert(size);
3491
3492        event.type = IOMMU_NOTIFIER_UNMAP;
3493        event.entry.iova = start;
3494        event.entry.addr_mask = mask;
3495        event.entry.target_as = &address_space_memory;
3496        event.entry.perm = IOMMU_NONE;
3497        /* This field is meaningless for unmap */
3498        event.entry.translated_addr = 0;
3499
3500        memory_region_notify_iommu_one(n, &event);
3501
3502        start += size;
3503        remain -= size;
3504    }
3505
3506    assert(!remain);
3507
3508    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3509                             VTD_PCI_SLOT(as->devfn),
3510                             VTD_PCI_FUNC(as->devfn),
3511                             n->start, size);
3512
3513    map.iova = n->start;
3514    map.size = size;
3515    iova_tree_remove(as->iova_tree, &map);
3516}
3517
3518static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3519{
3520    VTDAddressSpace *vtd_as;
3521    IOMMUNotifier *n;
3522
3523    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3524        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3525            vtd_address_space_unmap(vtd_as, n);
3526        }
3527    }
3528}
3529
3530static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3531{
3532    vtd_address_space_unmap_all(s);
3533    vtd_switch_address_space_all(s);
3534}
3535
3536static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3537{
3538    memory_region_notify_iommu_one(private, event);
3539    return 0;
3540}
3541
3542static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3543{
3544    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3545    IntelIOMMUState *s = vtd_as->iommu_state;
3546    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3547    VTDContextEntry ce;
3548
3549    /*
3550     * The replay can be triggered by either a invalidation or a newly
3551     * created entry. No matter what, we release existing mappings
3552     * (it means flushing caches for UNMAP-only registers).
3553     */
3554    vtd_address_space_unmap(vtd_as, n);
3555
3556    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3557        trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3558                                  "legacy mode",
3559                                  bus_n, PCI_SLOT(vtd_as->devfn),
3560                                  PCI_FUNC(vtd_as->devfn),
3561                                  vtd_get_domain_id(s, &ce),
3562                                  ce.hi, ce.lo);
3563        if (vtd_as_has_map_notifier(vtd_as)) {
3564            /* This is required only for MAP typed notifiers */
3565            vtd_page_walk_info info = {
3566                .hook_fn = vtd_replay_hook,
3567                .private = (void *)n,
3568                .notify_unmap = false,
3569                .aw = s->aw_bits,
3570                .as = vtd_as,
3571                .domain_id = vtd_get_domain_id(s, &ce),
3572            };
3573
3574            vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3575        }
3576    } else {
3577        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3578                                    PCI_FUNC(vtd_as->devfn));
3579    }
3580
3581    return;
3582}
3583
3584/* Do the initialization. It will also be called when reset, so pay
3585 * attention when adding new initialization stuff.
3586 */
3587static void vtd_init(IntelIOMMUState *s)
3588{
3589    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3590
3591    memset(s->csr, 0, DMAR_REG_SIZE);
3592    memset(s->wmask, 0, DMAR_REG_SIZE);
3593    memset(s->w1cmask, 0, DMAR_REG_SIZE);
3594    memset(s->womask, 0, DMAR_REG_SIZE);
3595
3596    s->root = 0;
3597    s->root_scalable = false;
3598    s->dmar_enabled = false;
3599    s->intr_enabled = false;
3600    s->iq_head = 0;
3601    s->iq_tail = 0;
3602    s->iq = 0;
3603    s->iq_size = 0;
3604    s->qi_enabled = false;
3605    s->iq_last_desc_type = VTD_INV_DESC_NONE;
3606    s->iq_dw = false;
3607    s->next_frcd_reg = 0;
3608    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3609             VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3610             VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3611    if (s->dma_drain) {
3612        s->cap |= VTD_CAP_DRAIN;
3613    }
3614    if (s->aw_bits == VTD_HOST_AW_48BIT) {
3615        s->cap |= VTD_CAP_SAGAW_48bit;
3616    }
3617    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3618
3619    /*
3620     * Rsvd field masks for spte
3621     */
3622    vtd_spte_rsvd[0] = ~0ULL;
3623    vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3624                                                  x86_iommu->dt_supported);
3625    vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3626    vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3627    vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3628
3629    vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3630                                                         x86_iommu->dt_supported);
3631    vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3632                                                         x86_iommu->dt_supported);
3633
3634    if (x86_iommu_ir_supported(x86_iommu)) {
3635        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3636        if (s->intr_eim == ON_OFF_AUTO_ON) {
3637            s->ecap |= VTD_ECAP_EIM;
3638        }
3639        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3640    }
3641
3642    if (x86_iommu->dt_supported) {
3643        s->ecap |= VTD_ECAP_DT;
3644    }
3645
3646    if (x86_iommu->pt_supported) {
3647        s->ecap |= VTD_ECAP_PT;
3648    }
3649
3650    if (s->caching_mode) {
3651        s->cap |= VTD_CAP_CM;
3652    }
3653
3654    /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3655    if (s->scalable_mode) {
3656        s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3657    }
3658
3659    vtd_reset_caches(s);
3660
3661    /* Define registers with default values and bit semantics */
3662    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3663    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3664    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3665    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3666    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3667    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3668    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3669    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3670    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3671
3672    /* Advanced Fault Logging not supported */
3673    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3674    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3675    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3676    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3677
3678    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3679     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3680     */
3681    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3682
3683    /* Treated as RO for implementations that PLMR and PHMR fields reported
3684     * as Clear in the CAP_REG.
3685     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3686     */
3687    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3688
3689    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3690    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3691    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3692    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3693    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3694    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3695    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3696    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3697    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3698
3699    /* IOTLB registers */
3700    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3701    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3702    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3703
3704    /* Fault Recording Registers, 128-bit */
3705    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3706    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3707
3708    /*
3709     * Interrupt remapping registers.
3710     */
3711    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3712}
3713
3714/* Should not reset address_spaces when reset because devices will still use
3715 * the address space they got at first (won't ask the bus again).
3716 */
3717static void vtd_reset(DeviceState *dev)
3718{
3719    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3720
3721    vtd_init(s);
3722    vtd_address_space_refresh_all(s);
3723}
3724
3725static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3726{
3727    IntelIOMMUState *s = opaque;
3728    VTDAddressSpace *vtd_as;
3729
3730    assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3731
3732    vtd_as = vtd_find_add_as(s, bus, devfn);
3733    return &vtd_as->as;
3734}
3735
3736static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3737{
3738    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3739
3740    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3741        error_setg(errp, "eim=on cannot be selected without intremap=on");
3742        return false;
3743    }
3744
3745    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3746        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3747                      && x86_iommu_ir_supported(x86_iommu) ?
3748                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3749    }
3750    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3751        if (!kvm_irqchip_in_kernel()) {
3752            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3753            return false;
3754        }
3755        if (!kvm_enable_x2apic()) {
3756            error_setg(errp, "eim=on requires support on the KVM side"
3757                             "(X2APIC_API, first shipped in v4.7)");
3758            return false;
3759        }
3760    }
3761
3762    /* Currently only address widths supported are 39 and 48 bits */
3763    if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3764        (s->aw_bits != VTD_HOST_AW_48BIT)) {
3765        error_setg(errp, "Supported values for aw-bits are: %d, %d",
3766                   VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3767        return false;
3768    }
3769
3770    if (s->scalable_mode && !s->dma_drain) {
3771        error_setg(errp, "Need to set dma_drain for scalable mode");
3772        return false;
3773    }
3774
3775    return true;
3776}
3777
3778static int vtd_machine_done_notify_one(Object *child, void *unused)
3779{
3780    IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3781
3782    /*
3783     * We hard-coded here because vfio-pci is the only special case
3784     * here.  Let's be more elegant in the future when we can, but so
3785     * far there seems to be no better way.
3786     */
3787    if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3788        vtd_panic_require_caching_mode();
3789    }
3790
3791    return 0;
3792}
3793
3794static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3795{
3796    object_child_foreach_recursive(object_get_root(),
3797                                   vtd_machine_done_notify_one, NULL);
3798}
3799
3800static Notifier vtd_machine_done_notify = {
3801    .notify = vtd_machine_done_hook,
3802};
3803
3804static void vtd_realize(DeviceState *dev, Error **errp)
3805{
3806    MachineState *ms = MACHINE(qdev_get_machine());
3807    PCMachineState *pcms = PC_MACHINE(ms);
3808    X86MachineState *x86ms = X86_MACHINE(ms);
3809    PCIBus *bus = pcms->bus;
3810    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3811    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3812
3813    x86_iommu->type = TYPE_INTEL;
3814
3815    if (!vtd_decide_config(s, errp)) {
3816        return;
3817    }
3818
3819    QLIST_INIT(&s->vtd_as_with_notifiers);
3820    qemu_mutex_init(&s->iommu_lock);
3821    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3822    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3823                          "intel_iommu", DMAR_REG_SIZE);
3824
3825    /* Create the shared memory regions by all devices */
3826    memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3827                       UINT64_MAX);
3828    memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3829                          s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3830    memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3831                             "vtd-sys-alias", get_system_memory(), 0,
3832                             memory_region_size(get_system_memory()));
3833    memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3834                                        &s->mr_sys_alias, 0);
3835    memory_region_add_subregion_overlap(&s->mr_nodmar,
3836                                        VTD_INTERRUPT_ADDR_FIRST,
3837                                        &s->mr_ir, 1);
3838
3839    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3840    /* No corresponding destroy */
3841    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3842                                     g_free, g_free);
3843    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3844                                              g_free, g_free);
3845    vtd_init(s);
3846    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3847    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3848    /* Pseudo address space under root PCI bus. */
3849    x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3850    qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3851}
3852
3853static void vtd_class_init(ObjectClass *klass, void *data)
3854{
3855    DeviceClass *dc = DEVICE_CLASS(klass);
3856    X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
3857
3858    dc->reset = vtd_reset;
3859    dc->vmsd = &vtd_vmstate;
3860    device_class_set_props(dc, vtd_properties);
3861    dc->hotpluggable = false;
3862    x86_class->realize = vtd_realize;
3863    x86_class->int_remap = vtd_int_remap;
3864    /* Supported by the pc-q35-* machine types */
3865    dc->user_creatable = true;
3866    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3867    dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3868}
3869
3870static const TypeInfo vtd_info = {
3871    .name          = TYPE_INTEL_IOMMU_DEVICE,
3872    .parent        = TYPE_X86_IOMMU_DEVICE,
3873    .instance_size = sizeof(IntelIOMMUState),
3874    .class_init    = vtd_class_init,
3875};
3876
3877static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3878                                                     void *data)
3879{
3880    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3881
3882    imrc->translate = vtd_iommu_translate;
3883    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3884    imrc->replay = vtd_iommu_replay;
3885}
3886
3887static const TypeInfo vtd_iommu_memory_region_info = {
3888    .parent = TYPE_IOMMU_MEMORY_REGION,
3889    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3890    .class_init = vtd_iommu_memory_region_class_init,
3891};
3892
3893static void vtd_register_types(void)
3894{
3895    type_register_static(&vtd_info);
3896    type_register_static(&vtd_iommu_memory_region_info);
3897}
3898
3899type_init(vtd_register_types)
3900