qemu/hw/i386/x86.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2003-2004 Fabrice Bellard
   3 * Copyright (c) 2019 Red Hat, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a copy
   6 * of this software and associated documentation files (the "Software"), to deal
   7 * in the Software without restriction, including without limitation the rights
   8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   9 * copies of the Software, and to permit persons to whom the Software is
  10 * furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21 * THE SOFTWARE.
  22 */
  23#include "qemu/osdep.h"
  24#include "qemu/error-report.h"
  25#include "qemu/option.h"
  26#include "qemu/cutils.h"
  27#include "qemu/units.h"
  28#include "qemu-common.h"
  29#include "qemu/datadir.h"
  30#include "qapi/error.h"
  31#include "qapi/qmp/qerror.h"
  32#include "qapi/qapi-visit-common.h"
  33#include "qapi/visitor.h"
  34#include "sysemu/qtest.h"
  35#include "sysemu/whpx.h"
  36#include "sysemu/numa.h"
  37#include "sysemu/replay.h"
  38#include "sysemu/sysemu.h"
  39#include "sysemu/cpu-timers.h"
  40#include "trace.h"
  41
  42#include "hw/i386/x86.h"
  43#include "target/i386/cpu.h"
  44#include "hw/i386/topology.h"
  45#include "hw/i386/fw_cfg.h"
  46#include "hw/intc/i8259.h"
  47#include "hw/rtc/mc146818rtc.h"
  48
  49#include "hw/acpi/cpu_hotplug.h"
  50#include "hw/irq.h"
  51#include "hw/nmi.h"
  52#include "hw/loader.h"
  53#include "multiboot.h"
  54#include "elf.h"
  55#include "standard-headers/asm-x86/bootparam.h"
  56#include CONFIG_DEVICES
  57#include "kvm/kvm_i386.h"
  58
  59/* Physical Address of PVH entry point read from kernel ELF NOTE */
  60static size_t pvh_start_addr;
  61
  62inline void init_topo_info(X86CPUTopoInfo *topo_info,
  63                           const X86MachineState *x86ms)
  64{
  65    MachineState *ms = MACHINE(x86ms);
  66
  67    topo_info->dies_per_pkg = x86ms->smp_dies;
  68    topo_info->cores_per_die = ms->smp.cores;
  69    topo_info->threads_per_core = ms->smp.threads;
  70}
  71
  72/*
  73 * Calculates initial APIC ID for a specific CPU index
  74 *
  75 * Currently we need to be able to calculate the APIC ID from the CPU index
  76 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
  77 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
  78 * all CPUs up to max_cpus.
  79 */
  80uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
  81                                    unsigned int cpu_index)
  82{
  83    X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
  84    X86CPUTopoInfo topo_info;
  85    uint32_t correct_id;
  86    static bool warned;
  87
  88    init_topo_info(&topo_info, x86ms);
  89
  90    correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index);
  91    if (x86mc->compat_apic_id_mode) {
  92        if (cpu_index != correct_id && !warned && !qtest_enabled()) {
  93            error_report("APIC IDs set in compatibility mode, "
  94                         "CPU topology won't match the configuration");
  95            warned = true;
  96        }
  97        return cpu_index;
  98    } else {
  99        return correct_id;
 100    }
 101}
 102
 103
 104void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
 105{
 106    Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
 107
 108    if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
 109        goto out;
 110    }
 111    qdev_realize(DEVICE(cpu), NULL, errp);
 112
 113out:
 114    object_unref(cpu);
 115}
 116
 117void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
 118{
 119    int i;
 120    const CPUArchIdList *possible_cpus;
 121    MachineState *ms = MACHINE(x86ms);
 122    MachineClass *mc = MACHINE_GET_CLASS(x86ms);
 123
 124    x86_cpu_set_default_version(default_cpu_version);
 125
 126    /*
 127     * Calculates the limit to CPU APIC ID values
 128     *
 129     * Limit for the APIC ID value, so that all
 130     * CPU APIC IDs are < x86ms->apic_id_limit.
 131     *
 132     * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
 133     */
 134    x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
 135                                                      ms->smp.max_cpus - 1) + 1;
 136    possible_cpus = mc->possible_cpu_arch_ids(ms);
 137    for (i = 0; i < ms->smp.cpus; i++) {
 138        x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
 139    }
 140}
 141
 142void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
 143{
 144    if (cpus_count > 0xff) {
 145        /*
 146         * If the number of CPUs can't be represented in 8 bits, the
 147         * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
 148         * to make old BIOSes fail more predictably.
 149         */
 150        rtc_set_memory(rtc, 0x5f, 0);
 151    } else {
 152        rtc_set_memory(rtc, 0x5f, cpus_count - 1);
 153    }
 154}
 155
 156static int x86_apic_cmp(const void *a, const void *b)
 157{
 158   CPUArchId *apic_a = (CPUArchId *)a;
 159   CPUArchId *apic_b = (CPUArchId *)b;
 160
 161   return apic_a->arch_id - apic_b->arch_id;
 162}
 163
 164/*
 165 * returns pointer to CPUArchId descriptor that matches CPU's apic_id
 166 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
 167 * entry corresponding to CPU's apic_id returns NULL.
 168 */
 169CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
 170{
 171    CPUArchId apic_id, *found_cpu;
 172
 173    apic_id.arch_id = id;
 174    found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
 175        ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
 176        x86_apic_cmp);
 177    if (found_cpu && idx) {
 178        *idx = found_cpu - ms->possible_cpus->cpus;
 179    }
 180    return found_cpu;
 181}
 182
 183void x86_cpu_plug(HotplugHandler *hotplug_dev,
 184                  DeviceState *dev, Error **errp)
 185{
 186    CPUArchId *found_cpu;
 187    Error *local_err = NULL;
 188    X86CPU *cpu = X86_CPU(dev);
 189    X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
 190
 191    if (x86ms->acpi_dev) {
 192        hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
 193        if (local_err) {
 194            goto out;
 195        }
 196    }
 197
 198    /* increment the number of CPUs */
 199    x86ms->boot_cpus++;
 200    if (x86ms->rtc) {
 201        x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
 202    }
 203    if (x86ms->fw_cfg) {
 204        fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
 205    }
 206
 207    found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
 208    found_cpu->cpu = OBJECT(dev);
 209out:
 210    error_propagate(errp, local_err);
 211}
 212
 213void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
 214                               DeviceState *dev, Error **errp)
 215{
 216    int idx = -1;
 217    X86CPU *cpu = X86_CPU(dev);
 218    X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
 219
 220    if (!x86ms->acpi_dev) {
 221        error_setg(errp, "CPU hot unplug not supported without ACPI");
 222        return;
 223    }
 224
 225    x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
 226    assert(idx != -1);
 227    if (idx == 0) {
 228        error_setg(errp, "Boot CPU is unpluggable");
 229        return;
 230    }
 231
 232    hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
 233                                   errp);
 234}
 235
 236void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
 237                       DeviceState *dev, Error **errp)
 238{
 239    CPUArchId *found_cpu;
 240    Error *local_err = NULL;
 241    X86CPU *cpu = X86_CPU(dev);
 242    X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
 243
 244    hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
 245    if (local_err) {
 246        goto out;
 247    }
 248
 249    found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
 250    found_cpu->cpu = NULL;
 251    qdev_unrealize(dev);
 252
 253    /* decrement the number of CPUs */
 254    x86ms->boot_cpus--;
 255    /* Update the number of CPUs in CMOS */
 256    x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
 257    fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
 258 out:
 259    error_propagate(errp, local_err);
 260}
 261
 262void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
 263                      DeviceState *dev, Error **errp)
 264{
 265    int idx;
 266    CPUState *cs;
 267    CPUArchId *cpu_slot;
 268    X86CPUTopoIDs topo_ids;
 269    X86CPU *cpu = X86_CPU(dev);
 270    CPUX86State *env = &cpu->env;
 271    MachineState *ms = MACHINE(hotplug_dev);
 272    X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
 273    unsigned int smp_cores = ms->smp.cores;
 274    unsigned int smp_threads = ms->smp.threads;
 275    X86CPUTopoInfo topo_info;
 276
 277    if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
 278        error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
 279                   ms->cpu_type);
 280        return;
 281    }
 282
 283    if (x86ms->acpi_dev) {
 284        Error *local_err = NULL;
 285
 286        hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
 287                                 &local_err);
 288        if (local_err) {
 289            error_propagate(errp, local_err);
 290            return;
 291        }
 292    }
 293
 294    init_topo_info(&topo_info, x86ms);
 295
 296    env->nr_dies = x86ms->smp_dies;
 297
 298    /*
 299     * If APIC ID is not set,
 300     * set it based on socket/die/core/thread properties.
 301     */
 302    if (cpu->apic_id == UNASSIGNED_APIC_ID) {
 303        int max_socket = (ms->smp.max_cpus - 1) /
 304                                smp_threads / smp_cores / x86ms->smp_dies;
 305
 306        /*
 307         * die-id was optional in QEMU 4.0 and older, so keep it optional
 308         * if there's only one die per socket.
 309         */
 310        if (cpu->die_id < 0 && x86ms->smp_dies == 1) {
 311            cpu->die_id = 0;
 312        }
 313
 314        if (cpu->socket_id < 0) {
 315            error_setg(errp, "CPU socket-id is not set");
 316            return;
 317        } else if (cpu->socket_id > max_socket) {
 318            error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
 319                       cpu->socket_id, max_socket);
 320            return;
 321        }
 322        if (cpu->die_id < 0) {
 323            error_setg(errp, "CPU die-id is not set");
 324            return;
 325        } else if (cpu->die_id > x86ms->smp_dies - 1) {
 326            error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
 327                       cpu->die_id, x86ms->smp_dies - 1);
 328            return;
 329        }
 330        if (cpu->core_id < 0) {
 331            error_setg(errp, "CPU core-id is not set");
 332            return;
 333        } else if (cpu->core_id > (smp_cores - 1)) {
 334            error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
 335                       cpu->core_id, smp_cores - 1);
 336            return;
 337        }
 338        if (cpu->thread_id < 0) {
 339            error_setg(errp, "CPU thread-id is not set");
 340            return;
 341        } else if (cpu->thread_id > (smp_threads - 1)) {
 342            error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
 343                       cpu->thread_id, smp_threads - 1);
 344            return;
 345        }
 346
 347        topo_ids.pkg_id = cpu->socket_id;
 348        topo_ids.die_id = cpu->die_id;
 349        topo_ids.core_id = cpu->core_id;
 350        topo_ids.smt_id = cpu->thread_id;
 351        cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
 352    }
 353
 354    cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
 355    if (!cpu_slot) {
 356        MachineState *ms = MACHINE(x86ms);
 357
 358        x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
 359        error_setg(errp,
 360            "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
 361            " APIC ID %" PRIu32 ", valid index range 0:%d",
 362            topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
 363            cpu->apic_id, ms->possible_cpus->len - 1);
 364        return;
 365    }
 366
 367    if (cpu_slot->cpu) {
 368        error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
 369                   idx, cpu->apic_id);
 370        return;
 371    }
 372
 373    /* if 'address' properties socket-id/core-id/thread-id are not set, set them
 374     * so that machine_query_hotpluggable_cpus would show correct values
 375     */
 376    /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
 377     * once -smp refactoring is complete and there will be CPU private
 378     * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
 379    x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
 380    if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
 381        error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
 382            " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
 383            topo_ids.pkg_id);
 384        return;
 385    }
 386    cpu->socket_id = topo_ids.pkg_id;
 387
 388    if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
 389        error_setg(errp, "property die-id: %u doesn't match set apic-id:"
 390            " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
 391        return;
 392    }
 393    cpu->die_id = topo_ids.die_id;
 394
 395    if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
 396        error_setg(errp, "property core-id: %u doesn't match set apic-id:"
 397            " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
 398            topo_ids.core_id);
 399        return;
 400    }
 401    cpu->core_id = topo_ids.core_id;
 402
 403    if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
 404        error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
 405            " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
 406            topo_ids.smt_id);
 407        return;
 408    }
 409    cpu->thread_id = topo_ids.smt_id;
 410
 411    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
 412        !kvm_hv_vpindex_settable()) {
 413        error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
 414        return;
 415    }
 416
 417    cs = CPU(cpu);
 418    cs->cpu_index = idx;
 419
 420    numa_cpu_pre_plug(cpu_slot, dev, errp);
 421}
 422
 423CpuInstanceProperties
 424x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
 425{
 426    MachineClass *mc = MACHINE_GET_CLASS(ms);
 427    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
 428
 429    assert(cpu_index < possible_cpus->len);
 430    return possible_cpus->cpus[cpu_index].props;
 431}
 432
 433int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
 434{
 435   X86CPUTopoIDs topo_ids;
 436   X86MachineState *x86ms = X86_MACHINE(ms);
 437   X86CPUTopoInfo topo_info;
 438
 439   init_topo_info(&topo_info, x86ms);
 440
 441   assert(idx < ms->possible_cpus->len);
 442   x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
 443                            &topo_info, &topo_ids);
 444   return topo_ids.pkg_id % ms->numa_state->num_nodes;
 445}
 446
 447const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
 448{
 449    X86MachineState *x86ms = X86_MACHINE(ms);
 450    unsigned int max_cpus = ms->smp.max_cpus;
 451    X86CPUTopoInfo topo_info;
 452    int i;
 453
 454    if (ms->possible_cpus) {
 455        /*
 456         * make sure that max_cpus hasn't changed since the first use, i.e.
 457         * -smp hasn't been parsed after it
 458         */
 459        assert(ms->possible_cpus->len == max_cpus);
 460        return ms->possible_cpus;
 461    }
 462
 463    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
 464                                  sizeof(CPUArchId) * max_cpus);
 465    ms->possible_cpus->len = max_cpus;
 466
 467    init_topo_info(&topo_info, x86ms);
 468
 469    for (i = 0; i < ms->possible_cpus->len; i++) {
 470        X86CPUTopoIDs topo_ids;
 471
 472        ms->possible_cpus->cpus[i].type = ms->cpu_type;
 473        ms->possible_cpus->cpus[i].vcpus_count = 1;
 474        ms->possible_cpus->cpus[i].arch_id =
 475            x86_cpu_apic_id_from_index(x86ms, i);
 476        x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
 477                                 &topo_info, &topo_ids);
 478        ms->possible_cpus->cpus[i].props.has_socket_id = true;
 479        ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
 480        if (x86ms->smp_dies > 1) {
 481            ms->possible_cpus->cpus[i].props.has_die_id = true;
 482            ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
 483        }
 484        ms->possible_cpus->cpus[i].props.has_core_id = true;
 485        ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
 486        ms->possible_cpus->cpus[i].props.has_thread_id = true;
 487        ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
 488    }
 489    return ms->possible_cpus;
 490}
 491
 492static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
 493{
 494    /* cpu index isn't used */
 495    CPUState *cs;
 496
 497    CPU_FOREACH(cs) {
 498        X86CPU *cpu = X86_CPU(cs);
 499
 500        if (!cpu->apic_state) {
 501            cpu_interrupt(cs, CPU_INTERRUPT_NMI);
 502        } else {
 503            apic_deliver_nmi(cpu->apic_state);
 504        }
 505    }
 506}
 507
 508static long get_file_size(FILE *f)
 509{
 510    long where, size;
 511
 512    /* XXX: on Unix systems, using fstat() probably makes more sense */
 513
 514    where = ftell(f);
 515    fseek(f, 0, SEEK_END);
 516    size = ftell(f);
 517    fseek(f, where, SEEK_SET);
 518
 519    return size;
 520}
 521
 522/* TSC handling */
 523uint64_t cpu_get_tsc(CPUX86State *env)
 524{
 525    return cpus_get_elapsed_ticks();
 526}
 527
 528/* IRQ handling */
 529static void pic_irq_request(void *opaque, int irq, int level)
 530{
 531    CPUState *cs = first_cpu;
 532    X86CPU *cpu = X86_CPU(cs);
 533
 534    trace_x86_pic_interrupt(irq, level);
 535    if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
 536        !whpx_apic_in_platform()) {
 537        CPU_FOREACH(cs) {
 538            cpu = X86_CPU(cs);
 539            if (apic_accept_pic_intr(cpu->apic_state)) {
 540                apic_deliver_pic_intr(cpu->apic_state, level);
 541            }
 542        }
 543    } else {
 544        if (level) {
 545            cpu_interrupt(cs, CPU_INTERRUPT_HARD);
 546        } else {
 547            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
 548        }
 549    }
 550}
 551
 552qemu_irq x86_allocate_cpu_irq(void)
 553{
 554    return qemu_allocate_irq(pic_irq_request, NULL, 0);
 555}
 556
 557int cpu_get_pic_interrupt(CPUX86State *env)
 558{
 559    X86CPU *cpu = env_archcpu(env);
 560    int intno;
 561
 562    if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
 563        intno = apic_get_interrupt(cpu->apic_state);
 564        if (intno >= 0) {
 565            return intno;
 566        }
 567        /* read the irq from the PIC */
 568        if (!apic_accept_pic_intr(cpu->apic_state)) {
 569            return -1;
 570        }
 571    }
 572
 573    intno = pic_read_irq(isa_pic);
 574    return intno;
 575}
 576
 577DeviceState *cpu_get_current_apic(void)
 578{
 579    if (current_cpu) {
 580        X86CPU *cpu = X86_CPU(current_cpu);
 581        return cpu->apic_state;
 582    } else {
 583        return NULL;
 584    }
 585}
 586
 587void gsi_handler(void *opaque, int n, int level)
 588{
 589    GSIState *s = opaque;
 590
 591    trace_x86_gsi_interrupt(n, level);
 592    switch (n) {
 593    case 0 ... ISA_NUM_IRQS - 1:
 594        if (s->i8259_irq[n]) {
 595            /* Under KVM, Kernel will forward to both PIC and IOAPIC */
 596            qemu_set_irq(s->i8259_irq[n], level);
 597        }
 598        /* fall through */
 599    case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
 600        qemu_set_irq(s->ioapic_irq[n], level);
 601        break;
 602    case IO_APIC_SECONDARY_IRQBASE
 603        ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
 604        qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
 605        break;
 606    }
 607}
 608
 609void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
 610{
 611    DeviceState *dev;
 612    SysBusDevice *d;
 613    unsigned int i;
 614
 615    assert(parent_name);
 616    if (kvm_ioapic_in_kernel()) {
 617        dev = qdev_new(TYPE_KVM_IOAPIC);
 618    } else {
 619        dev = qdev_new(TYPE_IOAPIC);
 620    }
 621    object_property_add_child(object_resolve_path(parent_name, NULL),
 622                              "ioapic", OBJECT(dev));
 623    d = SYS_BUS_DEVICE(dev);
 624    sysbus_realize_and_unref(d, &error_fatal);
 625    sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
 626
 627    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
 628        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
 629    }
 630}
 631
 632DeviceState *ioapic_init_secondary(GSIState *gsi_state)
 633{
 634    DeviceState *dev;
 635    SysBusDevice *d;
 636    unsigned int i;
 637
 638    dev = qdev_new(TYPE_IOAPIC);
 639    d = SYS_BUS_DEVICE(dev);
 640    sysbus_realize_and_unref(d, &error_fatal);
 641    sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
 642
 643    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
 644        gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
 645    }
 646    return dev;
 647}
 648
 649struct setup_data {
 650    uint64_t next;
 651    uint32_t type;
 652    uint32_t len;
 653    uint8_t data[];
 654} __attribute__((packed));
 655
 656
 657/*
 658 * The entry point into the kernel for PVH boot is different from
 659 * the native entry point.  The PVH entry is defined by the x86/HVM
 660 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
 661 *
 662 * This function is passed to load_elf() when it is called from
 663 * load_elfboot() which then additionally checks for an ELF Note of
 664 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
 665 * parse the PVH entry address from the ELF Note.
 666 *
 667 * Due to trickery in elf_opts.h, load_elf() is actually available as
 668 * load_elf32() or load_elf64() and this routine needs to be able
 669 * to deal with being called as 32 or 64 bit.
 670 *
 671 * The address of the PVH entry point is saved to the 'pvh_start_addr'
 672 * global variable.  (although the entry point is 32-bit, the kernel
 673 * binary can be either 32-bit or 64-bit).
 674 */
 675static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
 676{
 677    size_t *elf_note_data_addr;
 678
 679    /* Check if ELF Note header passed in is valid */
 680    if (arg1 == NULL) {
 681        return 0;
 682    }
 683
 684    if (is64) {
 685        struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
 686        uint64_t nhdr_size64 = sizeof(struct elf64_note);
 687        uint64_t phdr_align = *(uint64_t *)arg2;
 688        uint64_t nhdr_namesz = nhdr64->n_namesz;
 689
 690        elf_note_data_addr =
 691            ((void *)nhdr64) + nhdr_size64 +
 692            QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
 693
 694        pvh_start_addr = *elf_note_data_addr;
 695    } else {
 696        struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
 697        uint32_t nhdr_size32 = sizeof(struct elf32_note);
 698        uint32_t phdr_align = *(uint32_t *)arg2;
 699        uint32_t nhdr_namesz = nhdr32->n_namesz;
 700
 701        elf_note_data_addr =
 702            ((void *)nhdr32) + nhdr_size32 +
 703            QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
 704
 705        pvh_start_addr = *(uint32_t *)elf_note_data_addr;
 706    }
 707
 708    return pvh_start_addr;
 709}
 710
 711static bool load_elfboot(const char *kernel_filename,
 712                         int kernel_file_size,
 713                         uint8_t *header,
 714                         size_t pvh_xen_start_addr,
 715                         FWCfgState *fw_cfg)
 716{
 717    uint32_t flags = 0;
 718    uint32_t mh_load_addr = 0;
 719    uint32_t elf_kernel_size = 0;
 720    uint64_t elf_entry;
 721    uint64_t elf_low, elf_high;
 722    int kernel_size;
 723
 724    if (ldl_p(header) != 0x464c457f) {
 725        return false; /* no elfboot */
 726    }
 727
 728    bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
 729    flags = elf_is64 ?
 730        ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
 731
 732    if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
 733        error_report("elfboot unsupported flags = %x", flags);
 734        exit(1);
 735    }
 736
 737    uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
 738    kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
 739                           NULL, &elf_note_type, &elf_entry,
 740                           &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
 741                           0, 0);
 742
 743    if (kernel_size < 0) {
 744        error_report("Error while loading elf kernel");
 745        exit(1);
 746    }
 747    mh_load_addr = elf_low;
 748    elf_kernel_size = elf_high - elf_low;
 749
 750    if (pvh_start_addr == 0) {
 751        error_report("Error loading uncompressed kernel without PVH ELF Note");
 752        exit(1);
 753    }
 754    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
 755    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
 756    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
 757
 758    return true;
 759}
 760
 761void x86_load_linux(X86MachineState *x86ms,
 762                    FWCfgState *fw_cfg,
 763                    int acpi_data_size,
 764                    bool pvh_enabled,
 765                    bool linuxboot_dma_enabled)
 766{
 767    uint16_t protocol;
 768    int setup_size, kernel_size, cmdline_size;
 769    int dtb_size, setup_data_offset;
 770    uint32_t initrd_max;
 771    uint8_t header[8192], *setup, *kernel;
 772    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
 773    FILE *f;
 774    char *vmode;
 775    MachineState *machine = MACHINE(x86ms);
 776    struct setup_data *setup_data;
 777    const char *kernel_filename = machine->kernel_filename;
 778    const char *initrd_filename = machine->initrd_filename;
 779    const char *dtb_filename = machine->dtb;
 780    const char *kernel_cmdline = machine->kernel_cmdline;
 781
 782    /* Align to 16 bytes as a paranoia measure */
 783    cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
 784
 785    /* load the kernel header */
 786    f = fopen(kernel_filename, "rb");
 787    if (!f) {
 788        fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
 789                kernel_filename, strerror(errno));
 790        exit(1);
 791    }
 792
 793    kernel_size = get_file_size(f);
 794    if (!kernel_size ||
 795        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
 796        MIN(ARRAY_SIZE(header), kernel_size)) {
 797        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
 798                kernel_filename, strerror(errno));
 799        exit(1);
 800    }
 801
 802    /* kernel protocol version */
 803    if (ldl_p(header + 0x202) == 0x53726448) {
 804        protocol = lduw_p(header + 0x206);
 805    } else {
 806        /*
 807         * This could be a multiboot kernel. If it is, let's stop treating it
 808         * like a Linux kernel.
 809         * Note: some multiboot images could be in the ELF format (the same of
 810         * PVH), so we try multiboot first since we check the multiboot magic
 811         * header before to load it.
 812         */
 813        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
 814                           kernel_cmdline, kernel_size, header)) {
 815            return;
 816        }
 817        /*
 818         * Check if the file is an uncompressed kernel file (ELF) and load it,
 819         * saving the PVH entry point used by the x86/HVM direct boot ABI.
 820         * If load_elfboot() is successful, populate the fw_cfg info.
 821         */
 822        if (pvh_enabled &&
 823            load_elfboot(kernel_filename, kernel_size,
 824                         header, pvh_start_addr, fw_cfg)) {
 825            fclose(f);
 826
 827            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
 828                strlen(kernel_cmdline) + 1);
 829            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
 830
 831            fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
 832            fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
 833                             header, sizeof(header));
 834
 835            /* load initrd */
 836            if (initrd_filename) {
 837                GMappedFile *mapped_file;
 838                gsize initrd_size;
 839                gchar *initrd_data;
 840                GError *gerr = NULL;
 841
 842                mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
 843                if (!mapped_file) {
 844                    fprintf(stderr, "qemu: error reading initrd %s: %s\n",
 845                            initrd_filename, gerr->message);
 846                    exit(1);
 847                }
 848                x86ms->initrd_mapped_file = mapped_file;
 849
 850                initrd_data = g_mapped_file_get_contents(mapped_file);
 851                initrd_size = g_mapped_file_get_length(mapped_file);
 852                initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
 853                if (initrd_size >= initrd_max) {
 854                    fprintf(stderr, "qemu: initrd is too large, cannot support."
 855                            "(max: %"PRIu32", need %"PRId64")\n",
 856                            initrd_max, (uint64_t)initrd_size);
 857                    exit(1);
 858                }
 859
 860                initrd_addr = (initrd_max - initrd_size) & ~4095;
 861
 862                fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
 863                fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
 864                fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
 865                                 initrd_size);
 866            }
 867
 868            option_rom[nb_option_roms].bootindex = 0;
 869            option_rom[nb_option_roms].name = "pvh.bin";
 870            nb_option_roms++;
 871
 872            return;
 873        }
 874        protocol = 0;
 875    }
 876
 877    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
 878        /* Low kernel */
 879        real_addr    = 0x90000;
 880        cmdline_addr = 0x9a000 - cmdline_size;
 881        prot_addr    = 0x10000;
 882    } else if (protocol < 0x202) {
 883        /* High but ancient kernel */
 884        real_addr    = 0x90000;
 885        cmdline_addr = 0x9a000 - cmdline_size;
 886        prot_addr    = 0x100000;
 887    } else {
 888        /* High and recent kernel */
 889        real_addr    = 0x10000;
 890        cmdline_addr = 0x20000;
 891        prot_addr    = 0x100000;
 892    }
 893
 894    /* highest address for loading the initrd */
 895    if (protocol >= 0x20c &&
 896        lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
 897        /*
 898         * Linux has supported initrd up to 4 GB for a very long time (2007,
 899         * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
 900         * though it only sets initrd_max to 2 GB to "work around bootloader
 901         * bugs". Luckily, QEMU firmware(which does something like bootloader)
 902         * has supported this.
 903         *
 904         * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
 905         * be loaded into any address.
 906         *
 907         * In addition, initrd_max is uint32_t simply because QEMU doesn't
 908         * support the 64-bit boot protocol (specifically the ext_ramdisk_image
 909         * field).
 910         *
 911         * Therefore here just limit initrd_max to UINT32_MAX simply as well.
 912         */
 913        initrd_max = UINT32_MAX;
 914    } else if (protocol >= 0x203) {
 915        initrd_max = ldl_p(header + 0x22c);
 916    } else {
 917        initrd_max = 0x37ffffff;
 918    }
 919
 920    if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
 921        initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
 922    }
 923
 924    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
 925    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
 926    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
 927
 928    if (protocol >= 0x202) {
 929        stl_p(header + 0x228, cmdline_addr);
 930    } else {
 931        stw_p(header + 0x20, 0xA33F);
 932        stw_p(header + 0x22, cmdline_addr - real_addr);
 933    }
 934
 935    /* handle vga= parameter */
 936    vmode = strstr(kernel_cmdline, "vga=");
 937    if (vmode) {
 938        unsigned int video_mode;
 939        const char *end;
 940        int ret;
 941        /* skip "vga=" */
 942        vmode += 4;
 943        if (!strncmp(vmode, "normal", 6)) {
 944            video_mode = 0xffff;
 945        } else if (!strncmp(vmode, "ext", 3)) {
 946            video_mode = 0xfffe;
 947        } else if (!strncmp(vmode, "ask", 3)) {
 948            video_mode = 0xfffd;
 949        } else {
 950            ret = qemu_strtoui(vmode, &end, 0, &video_mode);
 951            if (ret != 0 || (*end && *end != ' ')) {
 952                fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
 953                exit(1);
 954            }
 955        }
 956        stw_p(header + 0x1fa, video_mode);
 957    }
 958
 959    /* loader type */
 960    /*
 961     * High nybble = B reserved for QEMU; low nybble is revision number.
 962     * If this code is substantially changed, you may want to consider
 963     * incrementing the revision.
 964     */
 965    if (protocol >= 0x200) {
 966        header[0x210] = 0xB0;
 967    }
 968    /* heap */
 969    if (protocol >= 0x201) {
 970        header[0x211] |= 0x80; /* CAN_USE_HEAP */
 971        stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
 972    }
 973
 974    /* load initrd */
 975    if (initrd_filename) {
 976        GMappedFile *mapped_file;
 977        gsize initrd_size;
 978        gchar *initrd_data;
 979        GError *gerr = NULL;
 980
 981        if (protocol < 0x200) {
 982            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
 983            exit(1);
 984        }
 985
 986        mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
 987        if (!mapped_file) {
 988            fprintf(stderr, "qemu: error reading initrd %s: %s\n",
 989                    initrd_filename, gerr->message);
 990            exit(1);
 991        }
 992        x86ms->initrd_mapped_file = mapped_file;
 993
 994        initrd_data = g_mapped_file_get_contents(mapped_file);
 995        initrd_size = g_mapped_file_get_length(mapped_file);
 996        if (initrd_size >= initrd_max) {
 997            fprintf(stderr, "qemu: initrd is too large, cannot support."
 998                    "(max: %"PRIu32", need %"PRId64")\n",
 999                    initrd_max, (uint64_t)initrd_size);
1000            exit(1);
1001        }
1002
1003        initrd_addr = (initrd_max - initrd_size) & ~4095;
1004
1005        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1006        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1007        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1008
1009        stl_p(header + 0x218, initrd_addr);
1010        stl_p(header + 0x21c, initrd_size);
1011    }
1012
1013    /* load kernel and setup */
1014    setup_size = header[0x1f1];
1015    if (setup_size == 0) {
1016        setup_size = 4;
1017    }
1018    setup_size = (setup_size + 1) * 512;
1019    if (setup_size > kernel_size) {
1020        fprintf(stderr, "qemu: invalid kernel header\n");
1021        exit(1);
1022    }
1023    kernel_size -= setup_size;
1024
1025    setup  = g_malloc(setup_size);
1026    kernel = g_malloc(kernel_size);
1027    fseek(f, 0, SEEK_SET);
1028    if (fread(setup, 1, setup_size, f) != setup_size) {
1029        fprintf(stderr, "fread() failed\n");
1030        exit(1);
1031    }
1032    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1033        fprintf(stderr, "fread() failed\n");
1034        exit(1);
1035    }
1036    fclose(f);
1037
1038    /* append dtb to kernel */
1039    if (dtb_filename) {
1040        if (protocol < 0x209) {
1041            fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1042            exit(1);
1043        }
1044
1045        dtb_size = get_image_size(dtb_filename);
1046        if (dtb_size <= 0) {
1047            fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1048                    dtb_filename, strerror(errno));
1049            exit(1);
1050        }
1051
1052        setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1053        kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1054        kernel = g_realloc(kernel, kernel_size);
1055
1056        stq_p(header + 0x250, prot_addr + setup_data_offset);
1057
1058        setup_data = (struct setup_data *)(kernel + setup_data_offset);
1059        setup_data->next = 0;
1060        setup_data->type = cpu_to_le32(SETUP_DTB);
1061        setup_data->len = cpu_to_le32(dtb_size);
1062
1063        load_image_size(dtb_filename, setup_data->data, dtb_size);
1064    }
1065
1066    memcpy(setup, header, MIN(sizeof(header), setup_size));
1067
1068    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1069    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1070    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1071
1072    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1073    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1074    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1075
1076    option_rom[nb_option_roms].bootindex = 0;
1077    option_rom[nb_option_roms].name = "linuxboot.bin";
1078    if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1079        option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1080    }
1081    nb_option_roms++;
1082}
1083
1084void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1085                       MemoryRegion *rom_memory, bool isapc_ram_fw)
1086{
1087    const char *bios_name;
1088    char *filename;
1089    MemoryRegion *bios, *isa_bios;
1090    int bios_size, isa_bios_size;
1091    int ret;
1092
1093    /* BIOS load */
1094    bios_name = ms->firmware ?: default_firmware;
1095    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1096    if (filename) {
1097        bios_size = get_image_size(filename);
1098    } else {
1099        bios_size = -1;
1100    }
1101    if (bios_size <= 0 ||
1102        (bios_size % 65536) != 0) {
1103        goto bios_error;
1104    }
1105    bios = g_malloc(sizeof(*bios));
1106    memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1107    if (!isapc_ram_fw) {
1108        memory_region_set_readonly(bios, true);
1109    }
1110    ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1111    if (ret != 0) {
1112    bios_error:
1113        fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1114        exit(1);
1115    }
1116    g_free(filename);
1117
1118    /* map the last 128KB of the BIOS in ISA space */
1119    isa_bios_size = MIN(bios_size, 128 * KiB);
1120    isa_bios = g_malloc(sizeof(*isa_bios));
1121    memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1122                             bios_size - isa_bios_size, isa_bios_size);
1123    memory_region_add_subregion_overlap(rom_memory,
1124                                        0x100000 - isa_bios_size,
1125                                        isa_bios,
1126                                        1);
1127    if (!isapc_ram_fw) {
1128        memory_region_set_readonly(isa_bios, true);
1129    }
1130
1131    /* map all the bios at the top of memory */
1132    memory_region_add_subregion(rom_memory,
1133                                (uint32_t)(-bios_size),
1134                                bios);
1135}
1136
1137bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1138{
1139    bool smm_available = false;
1140
1141    if (x86ms->smm == ON_OFF_AUTO_OFF) {
1142        return false;
1143    }
1144
1145    if (tcg_enabled() || qtest_enabled()) {
1146        smm_available = true;
1147    } else if (kvm_enabled()) {
1148        smm_available = kvm_has_smm();
1149    }
1150
1151    if (smm_available) {
1152        return true;
1153    }
1154
1155    if (x86ms->smm == ON_OFF_AUTO_ON) {
1156        error_report("System Management Mode not supported by this hypervisor.");
1157        exit(1);
1158    }
1159    return false;
1160}
1161
1162static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1163                               void *opaque, Error **errp)
1164{
1165    X86MachineState *x86ms = X86_MACHINE(obj);
1166    OnOffAuto smm = x86ms->smm;
1167
1168    visit_type_OnOffAuto(v, name, &smm, errp);
1169}
1170
1171static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1172                               void *opaque, Error **errp)
1173{
1174    X86MachineState *x86ms = X86_MACHINE(obj);
1175
1176    visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1177}
1178
1179bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1180{
1181    if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1182        return false;
1183    }
1184    return true;
1185}
1186
1187static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1188                                 void *opaque, Error **errp)
1189{
1190    X86MachineState *x86ms = X86_MACHINE(obj);
1191    OnOffAuto acpi = x86ms->acpi;
1192
1193    visit_type_OnOffAuto(v, name, &acpi, errp);
1194}
1195
1196static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1197                                 void *opaque, Error **errp)
1198{
1199    X86MachineState *x86ms = X86_MACHINE(obj);
1200
1201    visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1202}
1203
1204static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1205{
1206    X86MachineState *x86ms = X86_MACHINE(obj);
1207
1208    return g_strdup(x86ms->oem_id);
1209}
1210
1211static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1212{
1213    X86MachineState *x86ms = X86_MACHINE(obj);
1214    size_t len = strlen(value);
1215
1216    if (len > 6) {
1217        error_setg(errp,
1218                   "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1219                   "6 bytes in size");
1220        return;
1221    }
1222
1223    strncpy(x86ms->oem_id, value, 6);
1224}
1225
1226static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1227{
1228    X86MachineState *x86ms = X86_MACHINE(obj);
1229
1230    return g_strdup(x86ms->oem_table_id);
1231}
1232
1233static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1234                                         Error **errp)
1235{
1236    X86MachineState *x86ms = X86_MACHINE(obj);
1237    size_t len = strlen(value);
1238
1239    if (len > 8) {
1240        error_setg(errp,
1241                   "User specified "X86_MACHINE_OEM_TABLE_ID
1242                   " value is bigger than "
1243                   "8 bytes in size");
1244        return;
1245    }
1246    strncpy(x86ms->oem_table_id, value, 8);
1247}
1248
1249static void x86_machine_initfn(Object *obj)
1250{
1251    X86MachineState *x86ms = X86_MACHINE(obj);
1252
1253    x86ms->smm = ON_OFF_AUTO_AUTO;
1254    x86ms->acpi = ON_OFF_AUTO_AUTO;
1255    x86ms->smp_dies = 1;
1256    x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1257    x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1258    x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1259}
1260
1261static void x86_machine_class_init(ObjectClass *oc, void *data)
1262{
1263    MachineClass *mc = MACHINE_CLASS(oc);
1264    X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1265    NMIClass *nc = NMI_CLASS(oc);
1266
1267    mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1268    mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1269    mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1270    x86mc->compat_apic_id_mode = false;
1271    x86mc->save_tsc_khz = true;
1272    nc->nmi_monitor_handler = x86_nmi;
1273
1274    object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1275        x86_machine_get_smm, x86_machine_set_smm,
1276        NULL, NULL);
1277    object_class_property_set_description(oc, X86_MACHINE_SMM,
1278        "Enable SMM");
1279
1280    object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1281        x86_machine_get_acpi, x86_machine_set_acpi,
1282        NULL, NULL);
1283    object_class_property_set_description(oc, X86_MACHINE_ACPI,
1284        "Enable ACPI");
1285
1286    object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1287                                  x86_machine_get_oem_id,
1288                                  x86_machine_set_oem_id);
1289    object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1290                                          "Override the default value of field OEMID "
1291                                          "in ACPI table header."
1292                                          "The string may be up to 6 bytes in size");
1293
1294
1295    object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1296                                  x86_machine_get_oem_table_id,
1297                                  x86_machine_set_oem_table_id);
1298    object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1299                                          "Override the default value of field OEM Table ID "
1300                                          "in ACPI table header."
1301                                          "The string may be up to 8 bytes in size");
1302}
1303
1304static const TypeInfo x86_machine_info = {
1305    .name = TYPE_X86_MACHINE,
1306    .parent = TYPE_MACHINE,
1307    .abstract = true,
1308    .instance_size = sizeof(X86MachineState),
1309    .instance_init = x86_machine_initfn,
1310    .class_size = sizeof(X86MachineClass),
1311    .class_init = x86_machine_class_init,
1312    .interfaces = (InterfaceInfo[]) {
1313         { TYPE_NMI },
1314         { }
1315    },
1316};
1317
1318static void x86_machine_register_types(void)
1319{
1320    type_register_static(&x86_machine_info);
1321}
1322
1323type_init(x86_machine_register_types)
1324