qemu/hw/intc/arm_gicv3_cpuif.c
<<
>>
Prefs
   1/*
   2 * ARM Generic Interrupt Controller v3
   3 *
   4 * Copyright (c) 2016 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This code is licensed under the GPL, version 2 or (at your option)
   8 * any later version.
   9 */
  10
  11/* This file contains the code for the system register interface
  12 * portions of the GICv3.
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qemu/bitops.h"
  17#include "qemu/main-loop.h"
  18#include "trace.h"
  19#include "gicv3_internal.h"
  20#include "hw/irq.h"
  21#include "cpu.h"
  22
  23void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
  24{
  25    ARMCPU *arm_cpu = ARM_CPU(cpu);
  26    CPUARMState *env = &arm_cpu->env;
  27
  28    env->gicv3state = (void *)s;
  29};
  30
  31static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
  32{
  33    return env->gicv3state;
  34}
  35
  36static bool gicv3_use_ns_bank(CPUARMState *env)
  37{
  38    /* Return true if we should use the NonSecure bank for a banked GIC
  39     * CPU interface register. Note that this differs from the
  40     * access_secure_reg() function because GICv3 banked registers are
  41     * banked even for AArch64, unlike the other CPU system registers.
  42     */
  43    return !arm_is_secure_below_el3(env);
  44}
  45
  46/* The minimum BPR for the virtual interface is a configurable property */
  47static inline int icv_min_vbpr(GICv3CPUState *cs)
  48{
  49    return 7 - cs->vprebits;
  50}
  51
  52/* Simple accessor functions for LR fields */
  53static uint32_t ich_lr_vintid(uint64_t lr)
  54{
  55    return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
  56}
  57
  58static uint32_t ich_lr_pintid(uint64_t lr)
  59{
  60    return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
  61}
  62
  63static uint32_t ich_lr_prio(uint64_t lr)
  64{
  65    return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
  66}
  67
  68static int ich_lr_state(uint64_t lr)
  69{
  70    return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
  71}
  72
  73static bool icv_access(CPUARMState *env, int hcr_flags)
  74{
  75    /* Return true if this ICC_ register access should really be
  76     * directed to an ICV_ access. hcr_flags is a mask of
  77     * HCR_EL2 bits to check: we treat this as an ICV_ access
  78     * if we are in NS EL1 and at least one of the specified
  79     * HCR_EL2 bits is set.
  80     *
  81     * ICV registers fall into four categories:
  82     *  * access if NS EL1 and HCR_EL2.FMO == 1:
  83     *    all ICV regs with '0' in their name
  84     *  * access if NS EL1 and HCR_EL2.IMO == 1:
  85     *    all ICV regs with '1' in their name
  86     *  * access if NS EL1 and either IMO or FMO == 1:
  87     *    CTLR, DIR, PMR, RPR
  88     */
  89    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
  90    bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
  91
  92    return flagmatch && arm_current_el(env) == 1
  93        && !arm_is_secure_below_el3(env);
  94}
  95
  96static int read_vbpr(GICv3CPUState *cs, int grp)
  97{
  98    /* Read VBPR value out of the VMCR field (caller must handle
  99     * VCBPR effects if required)
 100     */
 101    if (grp == GICV3_G0) {
 102        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 103                     ICH_VMCR_EL2_VBPR0_LENGTH);
 104    } else {
 105        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 106                         ICH_VMCR_EL2_VBPR1_LENGTH);
 107    }
 108}
 109
 110static void write_vbpr(GICv3CPUState *cs, int grp, int value)
 111{
 112    /* Write new VBPR1 value, handling the "writing a value less than
 113     * the minimum sets it to the minimum" semantics.
 114     */
 115    int min = icv_min_vbpr(cs);
 116
 117    if (grp != GICV3_G0) {
 118        min++;
 119    }
 120
 121    value = MAX(value, min);
 122
 123    if (grp == GICV3_G0) {
 124        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 125                                     ICH_VMCR_EL2_VBPR0_LENGTH, value);
 126    } else {
 127        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 128                                     ICH_VMCR_EL2_VBPR1_LENGTH, value);
 129    }
 130}
 131
 132static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
 133{
 134    /* Return a mask word which clears the unimplemented priority bits
 135     * from a priority value for a virtual interrupt. (Not to be confused
 136     * with the group priority, whose mask depends on the value of VBPR
 137     * for the interrupt group.)
 138     */
 139    return ~0U << (8 - cs->vpribits);
 140}
 141
 142static int ich_highest_active_virt_prio(GICv3CPUState *cs)
 143{
 144    /* Calculate the current running priority based on the set bits
 145     * in the ICH Active Priority Registers.
 146     */
 147    int i;
 148    int aprmax = 1 << (cs->vprebits - 5);
 149
 150    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
 151
 152    for (i = 0; i < aprmax; i++) {
 153        uint32_t apr = cs->ich_apr[GICV3_G0][i] |
 154            cs->ich_apr[GICV3_G1NS][i];
 155
 156        if (!apr) {
 157            continue;
 158        }
 159        return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
 160    }
 161    /* No current active interrupts: return idle priority */
 162    return 0xff;
 163}
 164
 165static int hppvi_index(GICv3CPUState *cs)
 166{
 167    /* Return the list register index of the highest priority pending
 168     * virtual interrupt, as per the HighestPriorityVirtualInterrupt
 169     * pseudocode. If no pending virtual interrupts, return -1.
 170     */
 171    int idx = -1;
 172    int i;
 173    /* Note that a list register entry with a priority of 0xff will
 174     * never be reported by this function; this is the architecturally
 175     * correct behaviour.
 176     */
 177    int prio = 0xff;
 178
 179    if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
 180        /* Both groups disabled, definitely nothing to do */
 181        return idx;
 182    }
 183
 184    for (i = 0; i < cs->num_list_regs; i++) {
 185        uint64_t lr = cs->ich_lr_el2[i];
 186        int thisprio;
 187
 188        if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
 189            /* Not Pending */
 190            continue;
 191        }
 192
 193        /* Ignore interrupts if relevant group enable not set */
 194        if (lr & ICH_LR_EL2_GROUP) {
 195            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 196                continue;
 197            }
 198        } else {
 199            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 200                continue;
 201            }
 202        }
 203
 204        thisprio = ich_lr_prio(lr);
 205
 206        if (thisprio < prio) {
 207            prio = thisprio;
 208            idx = i;
 209        }
 210    }
 211
 212    return idx;
 213}
 214
 215static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
 216{
 217    /* Return a mask word which clears the subpriority bits from
 218     * a priority value for a virtual interrupt in the specified group.
 219     * This depends on the VBPR value.
 220     * If using VBPR0 then:
 221     *  a BPR of 0 means the group priority bits are [7:1];
 222     *  a BPR of 1 means they are [7:2], and so on down to
 223     *  a BPR of 7 meaning no group priority bits at all.
 224     * If using VBPR1 then:
 225     *  a BPR of 0 is impossible (the minimum value is 1)
 226     *  a BPR of 1 means the group priority bits are [7:1];
 227     *  a BPR of 2 means they are [7:2], and so on down to
 228     *  a BPR of 7 meaning the group priority is [7].
 229     *
 230     * Which BPR to use depends on the group of the interrupt and
 231     * the current ICH_VMCR_EL2.VCBPR settings.
 232     *
 233     * This corresponds to the VGroupBits() pseudocode.
 234     */
 235    int bpr;
 236
 237    if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 238        group = GICV3_G0;
 239    }
 240
 241    bpr = read_vbpr(cs, group);
 242    if (group == GICV3_G1NS) {
 243        assert(bpr > 0);
 244        bpr--;
 245    }
 246
 247    return ~0U << (bpr + 1);
 248}
 249
 250static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
 251{
 252    /* Return true if we can signal this virtual interrupt defined by
 253     * the given list register value; see the pseudocode functions
 254     * CanSignalVirtualInterrupt and CanSignalVirtualInt.
 255     * Compare also icc_hppi_can_preempt() which is the non-virtual
 256     * equivalent of these checks.
 257     */
 258    int grp;
 259    uint32_t mask, prio, rprio, vpmr;
 260
 261    if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
 262        /* Virtual interface disabled */
 263        return false;
 264    }
 265
 266    /* We don't need to check that this LR is in Pending state because
 267     * that has already been done in hppvi_index().
 268     */
 269
 270    prio = ich_lr_prio(lr);
 271    vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 272                     ICH_VMCR_EL2_VPMR_LENGTH);
 273
 274    if (prio >= vpmr) {
 275        /* Priority mask masks this interrupt */
 276        return false;
 277    }
 278
 279    rprio = ich_highest_active_virt_prio(cs);
 280    if (rprio == 0xff) {
 281        /* No running interrupt so we can preempt */
 282        return true;
 283    }
 284
 285    grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 286
 287    mask = icv_gprio_mask(cs, grp);
 288
 289    /* We only preempt a running interrupt if the pending interrupt's
 290     * group priority is sufficient (the subpriorities are not considered).
 291     */
 292    if ((prio & mask) < (rprio & mask)) {
 293        return true;
 294    }
 295
 296    return false;
 297}
 298
 299static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
 300                                                uint32_t *misr)
 301{
 302    /* Return a set of bits indicating the EOI maintenance interrupt status
 303     * for each list register. The EOI maintenance interrupt status is
 304     * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
 305     * (see the GICv3 spec for the ICH_EISR_EL2 register).
 306     * If misr is not NULL then we should also collect the information
 307     * about the MISR.EOI, MISR.NP and MISR.U bits.
 308     */
 309    uint32_t value = 0;
 310    int validcount = 0;
 311    bool seenpending = false;
 312    int i;
 313
 314    for (i = 0; i < cs->num_list_regs; i++) {
 315        uint64_t lr = cs->ich_lr_el2[i];
 316
 317        if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
 318            == ICH_LR_EL2_EOI) {
 319            value |= (1 << i);
 320        }
 321        if ((lr & ICH_LR_EL2_STATE_MASK)) {
 322            validcount++;
 323        }
 324        if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
 325            seenpending = true;
 326        }
 327    }
 328
 329    if (misr) {
 330        if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
 331            *misr |= ICH_MISR_EL2_U;
 332        }
 333        if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
 334            *misr |= ICH_MISR_EL2_NP;
 335        }
 336        if (value) {
 337            *misr |= ICH_MISR_EL2_EOI;
 338        }
 339    }
 340    return value;
 341}
 342
 343static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
 344{
 345    /* Return a set of bits indicating the maintenance interrupt status
 346     * (as seen in the ICH_MISR_EL2 register).
 347     */
 348    uint32_t value = 0;
 349
 350    /* Scan list registers and fill in the U, NP and EOI bits */
 351    eoi_maintenance_interrupt_state(cs, &value);
 352
 353    if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
 354        value |= ICH_MISR_EL2_LRENP;
 355    }
 356
 357    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
 358        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 359        value |= ICH_MISR_EL2_VGRP0E;
 360    }
 361
 362    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
 363        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 364        value |= ICH_MISR_EL2_VGRP0D;
 365    }
 366    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
 367        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 368        value |= ICH_MISR_EL2_VGRP1E;
 369    }
 370
 371    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
 372        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 373        value |= ICH_MISR_EL2_VGRP1D;
 374    }
 375
 376    return value;
 377}
 378
 379static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
 380{
 381    /* Tell the CPU about any pending virtual interrupts or
 382     * maintenance interrupts, following a change to the state
 383     * of the CPU interface relevant to virtual interrupts.
 384     *
 385     * CAUTION: this function will call qemu_set_irq() on the
 386     * CPU maintenance IRQ line, which is typically wired up
 387     * to the GIC as a per-CPU interrupt. This means that it
 388     * will recursively call back into the GIC code via
 389     * gicv3_redist_set_irq() and thus into the CPU interface code's
 390     * gicv3_cpuif_update(). It is therefore important that this
 391     * function is only called as the final action of a CPU interface
 392     * register write implementation, after all the GIC state
 393     * fields have been updated. gicv3_cpuif_update() also must
 394     * not cause this function to be called, but that happens
 395     * naturally as a result of there being no architectural
 396     * linkage between the physical and virtual GIC logic.
 397     */
 398    int idx;
 399    int irqlevel = 0;
 400    int fiqlevel = 0;
 401    int maintlevel = 0;
 402    ARMCPU *cpu = ARM_CPU(cs->cpu);
 403
 404    idx = hppvi_index(cs);
 405    trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
 406    if (idx >= 0) {
 407        uint64_t lr = cs->ich_lr_el2[idx];
 408
 409        if (icv_hppi_can_preempt(cs, lr)) {
 410            /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
 411            if (lr & ICH_LR_EL2_GROUP) {
 412                irqlevel = 1;
 413            } else {
 414                fiqlevel = 1;
 415            }
 416        }
 417    }
 418
 419    if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
 420        maintlevel = maintenance_interrupt_state(cs);
 421    }
 422
 423    trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
 424                                    irqlevel, maintlevel);
 425
 426    qemu_set_irq(cs->parent_vfiq, fiqlevel);
 427    qemu_set_irq(cs->parent_virq, irqlevel);
 428    qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
 429}
 430
 431static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 432{
 433    GICv3CPUState *cs = icc_cs_from_env(env);
 434    int regno = ri->opc2 & 3;
 435    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 436    uint64_t value = cs->ich_apr[grp][regno];
 437
 438    trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 439    return value;
 440}
 441
 442static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 443                         uint64_t value)
 444{
 445    GICv3CPUState *cs = icc_cs_from_env(env);
 446    int regno = ri->opc2 & 3;
 447    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 448
 449    trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 450
 451    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
 452
 453    gicv3_cpuif_virt_update(cs);
 454    return;
 455}
 456
 457static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 458{
 459    GICv3CPUState *cs = icc_cs_from_env(env);
 460    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 461    uint64_t bpr;
 462    bool satinc = false;
 463
 464    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 465        /* reads return bpr0 + 1 saturated to 7, writes ignored */
 466        grp = GICV3_G0;
 467        satinc = true;
 468    }
 469
 470    bpr = read_vbpr(cs, grp);
 471
 472    if (satinc) {
 473        bpr++;
 474        bpr = MIN(bpr, 7);
 475    }
 476
 477    trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
 478
 479    return bpr;
 480}
 481
 482static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 483                          uint64_t value)
 484{
 485    GICv3CPUState *cs = icc_cs_from_env(env);
 486    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 487
 488    trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
 489                              gicv3_redist_affid(cs), value);
 490
 491    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 492        /* reads return bpr0 + 1 saturated to 7, writes ignored */
 493        return;
 494    }
 495
 496    write_vbpr(cs, grp, value);
 497
 498    gicv3_cpuif_virt_update(cs);
 499}
 500
 501static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 502{
 503    GICv3CPUState *cs = icc_cs_from_env(env);
 504    uint64_t value;
 505
 506    value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 507                      ICH_VMCR_EL2_VPMR_LENGTH);
 508
 509    trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
 510    return value;
 511}
 512
 513static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 514                          uint64_t value)
 515{
 516    GICv3CPUState *cs = icc_cs_from_env(env);
 517
 518    trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
 519
 520    value &= icv_fullprio_mask(cs);
 521
 522    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 523                                 ICH_VMCR_EL2_VPMR_LENGTH, value);
 524
 525    gicv3_cpuif_virt_update(cs);
 526}
 527
 528static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
 529{
 530    GICv3CPUState *cs = icc_cs_from_env(env);
 531    int enbit;
 532    uint64_t value;
 533
 534    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 535    value = extract64(cs->ich_vmcr_el2, enbit, 1);
 536
 537    trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
 538                                gicv3_redist_affid(cs), value);
 539    return value;
 540}
 541
 542static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
 543                             uint64_t value)
 544{
 545    GICv3CPUState *cs = icc_cs_from_env(env);
 546    int enbit;
 547
 548    trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
 549                                 gicv3_redist_affid(cs), value);
 550
 551    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 552
 553    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
 554    gicv3_cpuif_virt_update(cs);
 555}
 556
 557static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 558{
 559    GICv3CPUState *cs = icc_cs_from_env(env);
 560    uint64_t value;
 561
 562    /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
 563     * should match the ones reported in ich_vtr_read().
 564     */
 565    value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
 566        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
 567
 568    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
 569        value |= ICC_CTLR_EL1_EOIMODE;
 570    }
 571
 572    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 573        value |= ICC_CTLR_EL1_CBPR;
 574    }
 575
 576    trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
 577    return value;
 578}
 579
 580static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 581                               uint64_t value)
 582{
 583    GICv3CPUState *cs = icc_cs_from_env(env);
 584
 585    trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
 586
 587    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
 588                                 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
 589    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
 590                                 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
 591
 592    gicv3_cpuif_virt_update(cs);
 593}
 594
 595static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 596{
 597    GICv3CPUState *cs = icc_cs_from_env(env);
 598    int prio = ich_highest_active_virt_prio(cs);
 599
 600    trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
 601    return prio;
 602}
 603
 604static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
 605{
 606    GICv3CPUState *cs = icc_cs_from_env(env);
 607    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 608    int idx = hppvi_index(cs);
 609    uint64_t value = INTID_SPURIOUS;
 610
 611    if (idx >= 0) {
 612        uint64_t lr = cs->ich_lr_el2[idx];
 613        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 614
 615        if (grp == thisgrp) {
 616            value = ich_lr_vintid(lr);
 617        }
 618    }
 619
 620    trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
 621    return value;
 622}
 623
 624static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
 625{
 626    /* Activate the interrupt in the specified list register
 627     * by moving it from Pending to Active state, and update the
 628     * Active Priority Registers.
 629     */
 630    uint32_t mask = icv_gprio_mask(cs, grp);
 631    int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
 632    int aprbit = prio >> (8 - cs->vprebits);
 633    int regno = aprbit / 32;
 634    int regbit = aprbit % 32;
 635
 636    cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 637    cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
 638    cs->ich_apr[grp][regno] |= (1 << regbit);
 639}
 640
 641static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
 642{
 643    GICv3CPUState *cs = icc_cs_from_env(env);
 644    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 645    int idx = hppvi_index(cs);
 646    uint64_t intid = INTID_SPURIOUS;
 647
 648    if (idx >= 0) {
 649        uint64_t lr = cs->ich_lr_el2[idx];
 650        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 651
 652        if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
 653            intid = ich_lr_vintid(lr);
 654            if (intid < INTID_SECURE) {
 655                icv_activate_irq(cs, idx, grp);
 656            } else {
 657                /* Interrupt goes from Pending to Invalid */
 658                cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 659                /* We will now return the (bogus) ID from the list register,
 660                 * as per the pseudocode.
 661                 */
 662            }
 663        }
 664    }
 665
 666    trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
 667                             gicv3_redist_affid(cs), intid);
 668
 669    gicv3_cpuif_virt_update(cs);
 670
 671    return intid;
 672}
 673
 674static int icc_highest_active_prio(GICv3CPUState *cs)
 675{
 676    /* Calculate the current running priority based on the set bits
 677     * in the Active Priority Registers.
 678     */
 679    int i;
 680
 681    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
 682        uint32_t apr = cs->icc_apr[GICV3_G0][i] |
 683            cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
 684
 685        if (!apr) {
 686            continue;
 687        }
 688        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
 689    }
 690    /* No current active interrupts: return idle priority */
 691    return 0xff;
 692}
 693
 694static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
 695{
 696    /* Return a mask word which clears the subpriority bits from
 697     * a priority value for an interrupt in the specified group.
 698     * This depends on the BPR value. For CBPR0 (S or NS):
 699     *  a BPR of 0 means the group priority bits are [7:1];
 700     *  a BPR of 1 means they are [7:2], and so on down to
 701     *  a BPR of 7 meaning no group priority bits at all.
 702     * For CBPR1 NS:
 703     *  a BPR of 0 is impossible (the minimum value is 1)
 704     *  a BPR of 1 means the group priority bits are [7:1];
 705     *  a BPR of 2 means they are [7:2], and so on down to
 706     *  a BPR of 7 meaning the group priority is [7].
 707     *
 708     * Which BPR to use depends on the group of the interrupt and
 709     * the current ICC_CTLR.CBPR settings.
 710     *
 711     * This corresponds to the GroupBits() pseudocode.
 712     */
 713    int bpr;
 714
 715    if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
 716        (group == GICV3_G1NS &&
 717         cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
 718        group = GICV3_G0;
 719    }
 720
 721    bpr = cs->icc_bpr[group] & 7;
 722
 723    if (group == GICV3_G1NS) {
 724        assert(bpr > 0);
 725        bpr--;
 726    }
 727
 728    return ~0U << (bpr + 1);
 729}
 730
 731static bool icc_no_enabled_hppi(GICv3CPUState *cs)
 732{
 733    /* Return true if there is no pending interrupt, or the
 734     * highest priority pending interrupt is in a group which has been
 735     * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
 736     */
 737    return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
 738}
 739
 740static bool icc_hppi_can_preempt(GICv3CPUState *cs)
 741{
 742    /* Return true if we have a pending interrupt of sufficient
 743     * priority to preempt.
 744     */
 745    int rprio;
 746    uint32_t mask;
 747
 748    if (icc_no_enabled_hppi(cs)) {
 749        return false;
 750    }
 751
 752    if (cs->hppi.prio >= cs->icc_pmr_el1) {
 753        /* Priority mask masks this interrupt */
 754        return false;
 755    }
 756
 757    rprio = icc_highest_active_prio(cs);
 758    if (rprio == 0xff) {
 759        /* No currently running interrupt so we can preempt */
 760        return true;
 761    }
 762
 763    mask = icc_gprio_mask(cs, cs->hppi.grp);
 764
 765    /* We only preempt a running interrupt if the pending interrupt's
 766     * group priority is sufficient (the subpriorities are not considered).
 767     */
 768    if ((cs->hppi.prio & mask) < (rprio & mask)) {
 769        return true;
 770    }
 771
 772    return false;
 773}
 774
 775void gicv3_cpuif_update(GICv3CPUState *cs)
 776{
 777    /* Tell the CPU about its highest priority pending interrupt */
 778    int irqlevel = 0;
 779    int fiqlevel = 0;
 780    ARMCPU *cpu = ARM_CPU(cs->cpu);
 781    CPUARMState *env = &cpu->env;
 782
 783    g_assert(qemu_mutex_iothread_locked());
 784
 785    trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
 786                             cs->hppi.grp, cs->hppi.prio);
 787
 788    if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
 789        /* If a Security-enabled GIC sends a G1S interrupt to a
 790         * Security-disabled CPU, we must treat it as if it were G0.
 791         */
 792        cs->hppi.grp = GICV3_G0;
 793    }
 794
 795    if (icc_hppi_can_preempt(cs)) {
 796        /* We have an interrupt: should we signal it as IRQ or FIQ?
 797         * This is described in the GICv3 spec section 4.6.2.
 798         */
 799        bool isfiq;
 800
 801        switch (cs->hppi.grp) {
 802        case GICV3_G0:
 803            isfiq = true;
 804            break;
 805        case GICV3_G1:
 806            isfiq = (!arm_is_secure(env) ||
 807                     (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
 808            break;
 809        case GICV3_G1NS:
 810            isfiq = arm_is_secure(env);
 811            break;
 812        default:
 813            g_assert_not_reached();
 814        }
 815
 816        if (isfiq) {
 817            fiqlevel = 1;
 818        } else {
 819            irqlevel = 1;
 820        }
 821    }
 822
 823    trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
 824
 825    qemu_set_irq(cs->parent_fiq, fiqlevel);
 826    qemu_set_irq(cs->parent_irq, irqlevel);
 827}
 828
 829static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 830{
 831    GICv3CPUState *cs = icc_cs_from_env(env);
 832    uint32_t value = cs->icc_pmr_el1;
 833
 834    if (icv_access(env, HCR_FMO | HCR_IMO)) {
 835        return icv_pmr_read(env, ri);
 836    }
 837
 838    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 839        (env->cp15.scr_el3 & SCR_FIQ)) {
 840        /* NS access and Group 0 is inaccessible to NS: return the
 841         * NS view of the current priority
 842         */
 843        if ((value & 0x80) == 0) {
 844            /* Secure priorities not visible to NS */
 845            value = 0;
 846        } else if (value != 0xff) {
 847            value = (value << 1) & 0xff;
 848        }
 849    }
 850
 851    trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
 852
 853    return value;
 854}
 855
 856static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 857                          uint64_t value)
 858{
 859    GICv3CPUState *cs = icc_cs_from_env(env);
 860
 861    if (icv_access(env, HCR_FMO | HCR_IMO)) {
 862        return icv_pmr_write(env, ri, value);
 863    }
 864
 865    trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
 866
 867    value &= 0xff;
 868
 869    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 870        (env->cp15.scr_el3 & SCR_FIQ)) {
 871        /* NS access and Group 0 is inaccessible to NS: return the
 872         * NS view of the current priority
 873         */
 874        if (!(cs->icc_pmr_el1 & 0x80)) {
 875            /* Current PMR in the secure range, don't allow NS to change it */
 876            return;
 877        }
 878        value = (value >> 1) | 0x80;
 879    }
 880    cs->icc_pmr_el1 = value;
 881    gicv3_cpuif_update(cs);
 882}
 883
 884static void icc_activate_irq(GICv3CPUState *cs, int irq)
 885{
 886    /* Move the interrupt from the Pending state to Active, and update
 887     * the Active Priority Registers
 888     */
 889    uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
 890    int prio = cs->hppi.prio & mask;
 891    int aprbit = prio >> 1;
 892    int regno = aprbit / 32;
 893    int regbit = aprbit % 32;
 894
 895    cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
 896
 897    if (irq < GIC_INTERNAL) {
 898        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
 899        cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
 900        gicv3_redist_update(cs);
 901    } else {
 902        gicv3_gicd_active_set(cs->gic, irq);
 903        gicv3_gicd_pending_clear(cs->gic, irq);
 904        gicv3_update(cs->gic, irq, 1);
 905    }
 906}
 907
 908static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
 909{
 910    /* Return the highest priority pending interrupt register value
 911     * for group 0.
 912     */
 913    bool irq_is_secure;
 914
 915    if (cs->hppi.prio == 0xff) {
 916        return INTID_SPURIOUS;
 917    }
 918
 919    /* Check whether we can return the interrupt or if we should return
 920     * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
 921     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 922     * is always zero.)
 923     */
 924    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 925                     (cs->hppi.grp != GICV3_G1NS));
 926
 927    if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
 928        return INTID_SPURIOUS;
 929    }
 930    if (irq_is_secure && !arm_is_secure(env)) {
 931        /* Secure interrupts not visible to Nonsecure */
 932        return INTID_SPURIOUS;
 933    }
 934
 935    if (cs->hppi.grp != GICV3_G0) {
 936        /* Indicate to EL3 that there's a Group 1 interrupt for the other
 937         * state pending.
 938         */
 939        return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
 940    }
 941
 942    return cs->hppi.irq;
 943}
 944
 945static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
 946{
 947    /* Return the highest priority pending interrupt register value
 948     * for group 1.
 949     */
 950    bool irq_is_secure;
 951
 952    if (cs->hppi.prio == 0xff) {
 953        return INTID_SPURIOUS;
 954    }
 955
 956    /* Check whether we can return the interrupt or if we should return
 957     * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
 958     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 959     * is always zero.)
 960     */
 961    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 962                     (cs->hppi.grp != GICV3_G1NS));
 963
 964    if (cs->hppi.grp == GICV3_G0) {
 965        /* Group 0 interrupts not visible via HPPIR1 */
 966        return INTID_SPURIOUS;
 967    }
 968    if (irq_is_secure) {
 969        if (!arm_is_secure(env)) {
 970            /* Secure interrupts not visible in Non-secure */
 971            return INTID_SPURIOUS;
 972        }
 973    } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
 974        /* Group 1 non-secure interrupts not visible in Secure EL1 */
 975        return INTID_SPURIOUS;
 976    }
 977
 978    return cs->hppi.irq;
 979}
 980
 981static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 982{
 983    GICv3CPUState *cs = icc_cs_from_env(env);
 984    uint64_t intid;
 985
 986    if (icv_access(env, HCR_FMO)) {
 987        return icv_iar_read(env, ri);
 988    }
 989
 990    if (!icc_hppi_can_preempt(cs)) {
 991        intid = INTID_SPURIOUS;
 992    } else {
 993        intid = icc_hppir0_value(cs, env);
 994    }
 995
 996    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
 997        icc_activate_irq(cs, intid);
 998    }
 999
1000    trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1001    return intid;
1002}
1003
1004static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1005{
1006    GICv3CPUState *cs = icc_cs_from_env(env);
1007    uint64_t intid;
1008
1009    if (icv_access(env, HCR_IMO)) {
1010        return icv_iar_read(env, ri);
1011    }
1012
1013    if (!icc_hppi_can_preempt(cs)) {
1014        intid = INTID_SPURIOUS;
1015    } else {
1016        intid = icc_hppir1_value(cs, env);
1017    }
1018
1019    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1020        icc_activate_irq(cs, intid);
1021    }
1022
1023    trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1024    return intid;
1025}
1026
1027static void icc_drop_prio(GICv3CPUState *cs, int grp)
1028{
1029    /* Drop the priority of the currently active interrupt in
1030     * the specified group.
1031     *
1032     * Note that we can guarantee (because of the requirement to nest
1033     * ICC_IAR reads [which activate an interrupt and raise priority]
1034     * with ICC_EOIR writes [which drop the priority for the interrupt])
1035     * that the interrupt we're being called for is the highest priority
1036     * active interrupt, meaning that it has the lowest set bit in the
1037     * APR registers.
1038     *
1039     * If the guest does not honour the ordering constraints then the
1040     * behaviour of the GIC is UNPREDICTABLE, which for us means that
1041     * the values of the APR registers might become incorrect and the
1042     * running priority will be wrong, so interrupts that should preempt
1043     * might not do so, and interrupts that should not preempt might do so.
1044     */
1045    int i;
1046
1047    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1048        uint64_t *papr = &cs->icc_apr[grp][i];
1049
1050        if (!*papr) {
1051            continue;
1052        }
1053        /* Clear the lowest set bit */
1054        *papr &= *papr - 1;
1055        break;
1056    }
1057
1058    /* running priority change means we need an update for this cpu i/f */
1059    gicv3_cpuif_update(cs);
1060}
1061
1062static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1063{
1064    /* Return true if we should split priority drop and interrupt
1065     * deactivation, ie whether the relevant EOIMode bit is set.
1066     */
1067    if (arm_is_el3_or_mon(env)) {
1068        return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1069    }
1070    if (arm_is_secure_below_el3(env)) {
1071        return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1072    } else {
1073        return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1074    }
1075}
1076
1077static int icc_highest_active_group(GICv3CPUState *cs)
1078{
1079    /* Return the group with the highest priority active interrupt.
1080     * We can do this by just comparing the APRs to see which one
1081     * has the lowest set bit.
1082     * (If more than one group is active at the same priority then
1083     * we're in UNPREDICTABLE territory.)
1084     */
1085    int i;
1086
1087    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1088        int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1089        int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1090        int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1091
1092        if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1093            return GICV3_G1NS;
1094        }
1095        if (g1ctz < g0ctz) {
1096            return GICV3_G1;
1097        }
1098        if (g0ctz < 32) {
1099            return GICV3_G0;
1100        }
1101    }
1102    /* No set active bits? UNPREDICTABLE; return -1 so the caller
1103     * ignores the spurious EOI attempt.
1104     */
1105    return -1;
1106}
1107
1108static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1109{
1110    if (irq < GIC_INTERNAL) {
1111        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1112        gicv3_redist_update(cs);
1113    } else {
1114        gicv3_gicd_active_clear(cs->gic, irq);
1115        gicv3_update(cs->gic, irq, 1);
1116    }
1117}
1118
1119static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1120{
1121    /* Return true if we should split priority drop and interrupt
1122     * deactivation, ie whether the virtual EOIMode bit is set.
1123     */
1124    return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1125}
1126
1127static int icv_find_active(GICv3CPUState *cs, int irq)
1128{
1129    /* Given an interrupt number for an active interrupt, return the index
1130     * of the corresponding list register, or -1 if there is no match.
1131     * Corresponds to FindActiveVirtualInterrupt pseudocode.
1132     */
1133    int i;
1134
1135    for (i = 0; i < cs->num_list_regs; i++) {
1136        uint64_t lr = cs->ich_lr_el2[i];
1137
1138        if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1139            return i;
1140        }
1141    }
1142
1143    return -1;
1144}
1145
1146static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1147{
1148    /* Deactivate the interrupt in the specified list register index */
1149    uint64_t lr = cs->ich_lr_el2[idx];
1150
1151    if (lr & ICH_LR_EL2_HW) {
1152        /* Deactivate the associated physical interrupt */
1153        int pirq = ich_lr_pintid(lr);
1154
1155        if (pirq < INTID_SECURE) {
1156            icc_deactivate_irq(cs, pirq);
1157        }
1158    }
1159
1160    /* Clear the 'active' part of the state, so ActivePending->Pending
1161     * and Active->Invalid.
1162     */
1163    lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1164    cs->ich_lr_el2[idx] = lr;
1165}
1166
1167static void icv_increment_eoicount(GICv3CPUState *cs)
1168{
1169    /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1170    int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1171                             ICH_HCR_EL2_EOICOUNT_LENGTH);
1172
1173    cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1174                                ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1175}
1176
1177static int icv_drop_prio(GICv3CPUState *cs)
1178{
1179    /* Drop the priority of the currently active virtual interrupt
1180     * (favouring group 0 if there is a set active bit at
1181     * the same priority for both group 0 and group 1).
1182     * Return the priority value for the bit we just cleared,
1183     * or 0xff if no bits were set in the AP registers at all.
1184     * Note that though the ich_apr[] are uint64_t only the low
1185     * 32 bits are actually relevant.
1186     */
1187    int i;
1188    int aprmax = 1 << (cs->vprebits - 5);
1189
1190    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1191
1192    for (i = 0; i < aprmax; i++) {
1193        uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1194        uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1195        int apr0count, apr1count;
1196
1197        if (!*papr0 && !*papr1) {
1198            continue;
1199        }
1200
1201        /* We can't just use the bit-twiddling hack icc_drop_prio() does
1202         * because we need to return the bit number we cleared so
1203         * it can be compared against the list register's priority field.
1204         */
1205        apr0count = ctz32(*papr0);
1206        apr1count = ctz32(*papr1);
1207
1208        if (apr0count <= apr1count) {
1209            *papr0 &= *papr0 - 1;
1210            return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1211        } else {
1212            *papr1 &= *papr1 - 1;
1213            return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1214        }
1215    }
1216    return 0xff;
1217}
1218
1219static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220                          uint64_t value)
1221{
1222    /* Deactivate interrupt */
1223    GICv3CPUState *cs = icc_cs_from_env(env);
1224    int idx;
1225    int irq = value & 0xffffff;
1226
1227    trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1228
1229    if (irq >= cs->gic->num_irq) {
1230        /* Also catches special interrupt numbers and LPIs */
1231        return;
1232    }
1233
1234    if (!icv_eoi_split(env, cs)) {
1235        return;
1236    }
1237
1238    idx = icv_find_active(cs, irq);
1239
1240    if (idx < 0) {
1241        /* No list register matching this, so increment the EOI count
1242         * (might trigger a maintenance interrupt)
1243         */
1244        icv_increment_eoicount(cs);
1245    } else {
1246        icv_deactivate_irq(cs, idx);
1247    }
1248
1249    gicv3_cpuif_virt_update(cs);
1250}
1251
1252static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1253                           uint64_t value)
1254{
1255    /* End of Interrupt */
1256    GICv3CPUState *cs = icc_cs_from_env(env);
1257    int irq = value & 0xffffff;
1258    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1259    int idx, dropprio;
1260
1261    trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1262                               gicv3_redist_affid(cs), value);
1263
1264    if (irq >= cs->gic->num_irq) {
1265        /* Also catches special interrupt numbers and LPIs */
1266        return;
1267    }
1268
1269    /* We implement the IMPDEF choice of "drop priority before doing
1270     * error checks" (because that lets us avoid scanning the AP
1271     * registers twice).
1272     */
1273    dropprio = icv_drop_prio(cs);
1274    if (dropprio == 0xff) {
1275        /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1276         * whether the list registers are checked in this
1277         * situation; we choose not to.
1278         */
1279        return;
1280    }
1281
1282    idx = icv_find_active(cs, irq);
1283
1284    if (idx < 0) {
1285        /* No valid list register corresponding to EOI ID */
1286        icv_increment_eoicount(cs);
1287    } else {
1288        uint64_t lr = cs->ich_lr_el2[idx];
1289        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1290        int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1291
1292        if (thisgrp == grp && lr_gprio == dropprio) {
1293            if (!icv_eoi_split(env, cs)) {
1294                /* Priority drop and deactivate not split: deactivate irq now */
1295                icv_deactivate_irq(cs, idx);
1296            }
1297        }
1298    }
1299
1300    gicv3_cpuif_virt_update(cs);
1301}
1302
1303static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1304                           uint64_t value)
1305{
1306    /* End of Interrupt */
1307    GICv3CPUState *cs = icc_cs_from_env(env);
1308    int irq = value & 0xffffff;
1309    int grp;
1310
1311    if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1312        icv_eoir_write(env, ri, value);
1313        return;
1314    }
1315
1316    trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1317                               gicv3_redist_affid(cs), value);
1318
1319    if (ri->crm == 8) {
1320        /* EOIR0 */
1321        grp = GICV3_G0;
1322    } else {
1323        /* EOIR1 */
1324        if (arm_is_secure(env)) {
1325            grp = GICV3_G1;
1326        } else {
1327            grp = GICV3_G1NS;
1328        }
1329    }
1330
1331    if (irq >= cs->gic->num_irq) {
1332        /* This handles two cases:
1333         * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1334         * to the GICC_EOIR, the GIC ignores that write.
1335         * 2. If software writes the number of a non-existent interrupt
1336         * this must be a subcase of "value written does not match the last
1337         * valid interrupt value read from the Interrupt Acknowledge
1338         * register" and so this is UNPREDICTABLE. We choose to ignore it.
1339         */
1340        return;
1341    }
1342
1343    if (icc_highest_active_group(cs) != grp) {
1344        return;
1345    }
1346
1347    icc_drop_prio(cs, grp);
1348
1349    if (!icc_eoi_split(env, cs)) {
1350        /* Priority drop and deactivate not split: deactivate irq now */
1351        icc_deactivate_irq(cs, irq);
1352    }
1353}
1354
1355static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1356{
1357    GICv3CPUState *cs = icc_cs_from_env(env);
1358    uint64_t value;
1359
1360    if (icv_access(env, HCR_FMO)) {
1361        return icv_hppir_read(env, ri);
1362    }
1363
1364    value = icc_hppir0_value(cs, env);
1365    trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1366    return value;
1367}
1368
1369static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1370{
1371    GICv3CPUState *cs = icc_cs_from_env(env);
1372    uint64_t value;
1373
1374    if (icv_access(env, HCR_IMO)) {
1375        return icv_hppir_read(env, ri);
1376    }
1377
1378    value = icc_hppir1_value(cs, env);
1379    trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1380    return value;
1381}
1382
1383static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1384{
1385    GICv3CPUState *cs = icc_cs_from_env(env);
1386    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1387    bool satinc = false;
1388    uint64_t bpr;
1389
1390    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1391        return icv_bpr_read(env, ri);
1392    }
1393
1394    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1395        grp = GICV3_G1NS;
1396    }
1397
1398    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1399        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1400        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1401         * modify BPR0
1402         */
1403        grp = GICV3_G0;
1404    }
1405
1406    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1407        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1408        /* reads return bpr0 + 1 sat to 7, writes ignored */
1409        grp = GICV3_G0;
1410        satinc = true;
1411    }
1412
1413    bpr = cs->icc_bpr[grp];
1414    if (satinc) {
1415        bpr++;
1416        bpr = MIN(bpr, 7);
1417    }
1418
1419    trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1420
1421    return bpr;
1422}
1423
1424static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1425                          uint64_t value)
1426{
1427    GICv3CPUState *cs = icc_cs_from_env(env);
1428    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1429    uint64_t minval;
1430
1431    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1432        icv_bpr_write(env, ri, value);
1433        return;
1434    }
1435
1436    trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1437                              gicv3_redist_affid(cs), value);
1438
1439    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1440        grp = GICV3_G1NS;
1441    }
1442
1443    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1444        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1445        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1446         * modify BPR0
1447         */
1448        grp = GICV3_G0;
1449    }
1450
1451    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1452        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1453        /* reads return bpr0 + 1 sat to 7, writes ignored */
1454        return;
1455    }
1456
1457    minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1458    if (value < minval) {
1459        value = minval;
1460    }
1461
1462    cs->icc_bpr[grp] = value & 7;
1463    gicv3_cpuif_update(cs);
1464}
1465
1466static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1467{
1468    GICv3CPUState *cs = icc_cs_from_env(env);
1469    uint64_t value;
1470
1471    int regno = ri->opc2 & 3;
1472    int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1473
1474    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1475        return icv_ap_read(env, ri);
1476    }
1477
1478    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1479        grp = GICV3_G1NS;
1480    }
1481
1482    value = cs->icc_apr[grp][regno];
1483
1484    trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1485    return value;
1486}
1487
1488static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1489                         uint64_t value)
1490{
1491    GICv3CPUState *cs = icc_cs_from_env(env);
1492
1493    int regno = ri->opc2 & 3;
1494    int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1495
1496    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1497        icv_ap_write(env, ri, value);
1498        return;
1499    }
1500
1501    trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1502
1503    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1504        grp = GICV3_G1NS;
1505    }
1506
1507    /* It's not possible to claim that a Non-secure interrupt is active
1508     * at a priority outside the Non-secure range (128..255), since this
1509     * would otherwise allow malicious NS code to block delivery of S interrupts
1510     * by writing a bad value to these registers.
1511     */
1512    if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1513        return;
1514    }
1515
1516    cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1517    gicv3_cpuif_update(cs);
1518}
1519
1520static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521                          uint64_t value)
1522{
1523    /* Deactivate interrupt */
1524    GICv3CPUState *cs = icc_cs_from_env(env);
1525    int irq = value & 0xffffff;
1526    bool irq_is_secure, single_sec_state, irq_is_grp0;
1527    bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1528
1529    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1530        icv_dir_write(env, ri, value);
1531        return;
1532    }
1533
1534    trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1535
1536    if (irq >= cs->gic->num_irq) {
1537        /* Also catches special interrupt numbers and LPIs */
1538        return;
1539    }
1540
1541    if (!icc_eoi_split(env, cs)) {
1542        return;
1543    }
1544
1545    int grp = gicv3_irq_group(cs->gic, cs, irq);
1546
1547    single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1548    irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1549    irq_is_grp0 = grp == GICV3_G0;
1550
1551    /* Check whether we're allowed to deactivate this interrupt based
1552     * on its group and the current CPU state.
1553     * These checks are laid out to correspond to the spec's pseudocode.
1554     */
1555    route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1556    route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1557    /* No need to include !IsSecure in route_*_to_el2 as it's only
1558     * tested in cases where we know !IsSecure is true.
1559     */
1560    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1561    route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1562    route_irq_to_el2 = hcr_el2 & HCR_IMO;
1563
1564    switch (arm_current_el(env)) {
1565    case 3:
1566        break;
1567    case 2:
1568        if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1569            break;
1570        }
1571        if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1572            break;
1573        }
1574        return;
1575    case 1:
1576        if (!arm_is_secure_below_el3(env)) {
1577            if (single_sec_state && irq_is_grp0 &&
1578                !route_fiq_to_el3 && !route_fiq_to_el2) {
1579                break;
1580            }
1581            if (!irq_is_secure && !irq_is_grp0 &&
1582                !route_irq_to_el3 && !route_irq_to_el2) {
1583                break;
1584            }
1585        } else {
1586            if (irq_is_grp0 && !route_fiq_to_el3) {
1587                break;
1588            }
1589            if (!irq_is_grp0 &&
1590                (!irq_is_secure || !single_sec_state) &&
1591                !route_irq_to_el3) {
1592                break;
1593            }
1594        }
1595        return;
1596    default:
1597        g_assert_not_reached();
1598    }
1599
1600    icc_deactivate_irq(cs, irq);
1601}
1602
1603static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1604{
1605    GICv3CPUState *cs = icc_cs_from_env(env);
1606    int prio;
1607
1608    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1609        return icv_rpr_read(env, ri);
1610    }
1611
1612    prio = icc_highest_active_prio(cs);
1613
1614    if (arm_feature(env, ARM_FEATURE_EL3) &&
1615        !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1616        /* NS GIC access and Group 0 is inaccessible to NS */
1617        if ((prio & 0x80) == 0) {
1618            /* NS mustn't see priorities in the Secure half of the range */
1619            prio = 0;
1620        } else if (prio != 0xff) {
1621            /* Non-idle priority: show the Non-secure view of it */
1622            prio = (prio << 1) & 0xff;
1623        }
1624    }
1625
1626    trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1627    return prio;
1628}
1629
1630static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1631                             uint64_t value, int grp, bool ns)
1632{
1633    GICv3State *s = cs->gic;
1634
1635    /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1636    uint64_t aff = extract64(value, 48, 8) << 16 |
1637        extract64(value, 32, 8) << 8 |
1638        extract64(value, 16, 8);
1639    uint32_t targetlist = extract64(value, 0, 16);
1640    uint32_t irq = extract64(value, 24, 4);
1641    bool irm = extract64(value, 40, 1);
1642    int i;
1643
1644    if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1645        /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1646         * interrupts as Group 0 interrupts and must send Secure Group 0
1647         * interrupts to the target CPUs.
1648         */
1649        grp = GICV3_G0;
1650    }
1651
1652    trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1653                                 aff, targetlist);
1654
1655    for (i = 0; i < s->num_cpu; i++) {
1656        GICv3CPUState *ocs = &s->cpu[i];
1657
1658        if (irm) {
1659            /* IRM == 1 : route to all CPUs except self */
1660            if (cs == ocs) {
1661                continue;
1662            }
1663        } else {
1664            /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1665             * where the corresponding bit is set in targetlist
1666             */
1667            int aff0;
1668
1669            if (ocs->gicr_typer >> 40 != aff) {
1670                continue;
1671            }
1672            aff0 = extract64(ocs->gicr_typer, 32, 8);
1673            if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1674                continue;
1675            }
1676        }
1677
1678        /* The redistributor will check against its own GICR_NSACR as needed */
1679        gicv3_redist_send_sgi(ocs, grp, irq, ns);
1680    }
1681}
1682
1683static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1684                           uint64_t value)
1685{
1686    /* Generate Secure Group 0 SGI. */
1687    GICv3CPUState *cs = icc_cs_from_env(env);
1688    bool ns = !arm_is_secure(env);
1689
1690    icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1691}
1692
1693static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694                           uint64_t value)
1695{
1696    /* Generate Group 1 SGI for the current Security state */
1697    GICv3CPUState *cs = icc_cs_from_env(env);
1698    int grp;
1699    bool ns = !arm_is_secure(env);
1700
1701    grp = ns ? GICV3_G1NS : GICV3_G1;
1702    icc_generate_sgi(env, cs, value, grp, ns);
1703}
1704
1705static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706                             uint64_t value)
1707{
1708    /* Generate Group 1 SGI for the Security state that is not
1709     * the current state
1710     */
1711    GICv3CPUState *cs = icc_cs_from_env(env);
1712    int grp;
1713    bool ns = !arm_is_secure(env);
1714
1715    grp = ns ? GICV3_G1 : GICV3_G1NS;
1716    icc_generate_sgi(env, cs, value, grp, ns);
1717}
1718
1719static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1720{
1721    GICv3CPUState *cs = icc_cs_from_env(env);
1722    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1723    uint64_t value;
1724
1725    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1726        return icv_igrpen_read(env, ri);
1727    }
1728
1729    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1730        grp = GICV3_G1NS;
1731    }
1732
1733    value = cs->icc_igrpen[grp];
1734    trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1735                                gicv3_redist_affid(cs), value);
1736    return value;
1737}
1738
1739static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740                             uint64_t value)
1741{
1742    GICv3CPUState *cs = icc_cs_from_env(env);
1743    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1744
1745    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1746        icv_igrpen_write(env, ri, value);
1747        return;
1748    }
1749
1750    trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1751                                 gicv3_redist_affid(cs), value);
1752
1753    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1754        grp = GICV3_G1NS;
1755    }
1756
1757    cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1758    gicv3_cpuif_update(cs);
1759}
1760
1761static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1762{
1763    GICv3CPUState *cs = icc_cs_from_env(env);
1764    uint64_t value;
1765
1766    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1767    value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1768    trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1769    return value;
1770}
1771
1772static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773                                  uint64_t value)
1774{
1775    GICv3CPUState *cs = icc_cs_from_env(env);
1776
1777    trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1778
1779    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1780    cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1781    cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1782    gicv3_cpuif_update(cs);
1783}
1784
1785static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1786{
1787    GICv3CPUState *cs = icc_cs_from_env(env);
1788    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1789    uint64_t value;
1790
1791    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1792        return icv_ctlr_read(env, ri);
1793    }
1794
1795    value = cs->icc_ctlr_el1[bank];
1796    trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1797    return value;
1798}
1799
1800static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1801                               uint64_t value)
1802{
1803    GICv3CPUState *cs = icc_cs_from_env(env);
1804    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1805    uint64_t mask;
1806
1807    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1808        icv_ctlr_write(env, ri, value);
1809        return;
1810    }
1811
1812    trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1813
1814    /* Only CBPR and EOIMODE can be RW;
1815     * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1816     * the asseciated priority-based routing of them);
1817     * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1818     */
1819    if (arm_feature(env, ARM_FEATURE_EL3) &&
1820        ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1821        mask = ICC_CTLR_EL1_EOIMODE;
1822    } else {
1823        mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1824    }
1825
1826    cs->icc_ctlr_el1[bank] &= ~mask;
1827    cs->icc_ctlr_el1[bank] |= (value & mask);
1828    gicv3_cpuif_update(cs);
1829}
1830
1831
1832static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1833{
1834    GICv3CPUState *cs = icc_cs_from_env(env);
1835    uint64_t value;
1836
1837    value = cs->icc_ctlr_el3;
1838    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1839        value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1840    }
1841    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1842        value |= ICC_CTLR_EL3_CBPR_EL1NS;
1843    }
1844    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1845        value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1846    }
1847    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1848        value |= ICC_CTLR_EL3_CBPR_EL1S;
1849    }
1850
1851    trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1852    return value;
1853}
1854
1855static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1856                               uint64_t value)
1857{
1858    GICv3CPUState *cs = icc_cs_from_env(env);
1859    uint64_t mask;
1860
1861    trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1862
1863    /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1864    cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1865    if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1866        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1867    }
1868    if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1869        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1870    }
1871
1872    cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1873    if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1874        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1875    }
1876    if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1877        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1878    }
1879
1880    /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1881    mask = ICC_CTLR_EL3_EOIMODE_EL3;
1882
1883    cs->icc_ctlr_el3 &= ~mask;
1884    cs->icc_ctlr_el3 |= (value & mask);
1885    gicv3_cpuif_update(cs);
1886}
1887
1888static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1889                                          const ARMCPRegInfo *ri, bool isread)
1890{
1891    CPAccessResult r = CP_ACCESS_OK;
1892    GICv3CPUState *cs = icc_cs_from_env(env);
1893    int el = arm_current_el(env);
1894
1895    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1896        el == 1 && !arm_is_secure_below_el3(env)) {
1897        /* Takes priority over a possible EL3 trap */
1898        return CP_ACCESS_TRAP_EL2;
1899    }
1900
1901    if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1902        switch (el) {
1903        case 1:
1904            /* Note that arm_hcr_el2_eff takes secure state into account.  */
1905            if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
1906                r = CP_ACCESS_TRAP_EL3;
1907            }
1908            break;
1909        case 2:
1910            r = CP_ACCESS_TRAP_EL3;
1911            break;
1912        case 3:
1913            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1914                r = CP_ACCESS_TRAP_EL3;
1915            }
1916            break;
1917        default:
1918            g_assert_not_reached();
1919        }
1920    }
1921
1922    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1923        r = CP_ACCESS_TRAP;
1924    }
1925    return r;
1926}
1927
1928static CPAccessResult gicv3_dir_access(CPUARMState *env,
1929                                       const ARMCPRegInfo *ri, bool isread)
1930{
1931    GICv3CPUState *cs = icc_cs_from_env(env);
1932
1933    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1934        arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1935        /* Takes priority over a possible EL3 trap */
1936        return CP_ACCESS_TRAP_EL2;
1937    }
1938
1939    return gicv3_irqfiq_access(env, ri, isread);
1940}
1941
1942static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1943                                       const ARMCPRegInfo *ri, bool isread)
1944{
1945    if (arm_current_el(env) == 1 &&
1946        (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
1947        /* Takes priority over a possible EL3 trap */
1948        return CP_ACCESS_TRAP_EL2;
1949    }
1950
1951    return gicv3_irqfiq_access(env, ri, isread);
1952}
1953
1954static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1955                                       const ARMCPRegInfo *ri, bool isread)
1956{
1957    CPAccessResult r = CP_ACCESS_OK;
1958    GICv3CPUState *cs = icc_cs_from_env(env);
1959    int el = arm_current_el(env);
1960
1961    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1962        el == 1 && !arm_is_secure_below_el3(env)) {
1963        /* Takes priority over a possible EL3 trap */
1964        return CP_ACCESS_TRAP_EL2;
1965    }
1966
1967    if (env->cp15.scr_el3 & SCR_FIQ) {
1968        switch (el) {
1969        case 1:
1970            if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
1971                r = CP_ACCESS_TRAP_EL3;
1972            }
1973            break;
1974        case 2:
1975            r = CP_ACCESS_TRAP_EL3;
1976            break;
1977        case 3:
1978            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1979                r = CP_ACCESS_TRAP_EL3;
1980            }
1981            break;
1982        default:
1983            g_assert_not_reached();
1984        }
1985    }
1986
1987    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1988        r = CP_ACCESS_TRAP;
1989    }
1990    return r;
1991}
1992
1993static CPAccessResult gicv3_irq_access(CPUARMState *env,
1994                                       const ARMCPRegInfo *ri, bool isread)
1995{
1996    CPAccessResult r = CP_ACCESS_OK;
1997    GICv3CPUState *cs = icc_cs_from_env(env);
1998    int el = arm_current_el(env);
1999
2000    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2001        el == 1 && !arm_is_secure_below_el3(env)) {
2002        /* Takes priority over a possible EL3 trap */
2003        return CP_ACCESS_TRAP_EL2;
2004    }
2005
2006    if (env->cp15.scr_el3 & SCR_IRQ) {
2007        switch (el) {
2008        case 1:
2009            if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2010                r = CP_ACCESS_TRAP_EL3;
2011            }
2012            break;
2013        case 2:
2014            r = CP_ACCESS_TRAP_EL3;
2015            break;
2016        case 3:
2017            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2018                r = CP_ACCESS_TRAP_EL3;
2019            }
2020            break;
2021        default:
2022            g_assert_not_reached();
2023        }
2024    }
2025
2026    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2027        r = CP_ACCESS_TRAP;
2028    }
2029    return r;
2030}
2031
2032static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2033{
2034    GICv3CPUState *cs = icc_cs_from_env(env);
2035
2036    cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2037        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2038        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2039    cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2040        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2041        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2042    cs->icc_pmr_el1 = 0;
2043    cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2044    cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2045    cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2046    memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2047    memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2048    cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2049        (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2050        (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2051
2052    memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2053    cs->ich_hcr_el2 = 0;
2054    memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2055    cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2056        ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2057        (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2058}
2059
2060static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2061    { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2062      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2063      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2064      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2065      .readfn = icc_pmr_read,
2066      .writefn = icc_pmr_write,
2067      /* We hang the whole cpu interface reset routine off here
2068       * rather than parcelling it out into one little function
2069       * per register
2070       */
2071      .resetfn = icc_reset,
2072    },
2073    { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2074      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2075      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2076      .access = PL1_R, .accessfn = gicv3_fiq_access,
2077      .readfn = icc_iar0_read,
2078    },
2079    { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2080      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2081      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2082      .access = PL1_W, .accessfn = gicv3_fiq_access,
2083      .writefn = icc_eoir_write,
2084    },
2085    { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2086      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2087      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2088      .access = PL1_R, .accessfn = gicv3_fiq_access,
2089      .readfn = icc_hppir0_read,
2090    },
2091    { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2092      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2093      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2094      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2095      .readfn = icc_bpr_read,
2096      .writefn = icc_bpr_write,
2097    },
2098    { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2099      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2100      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2101      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2102      .readfn = icc_ap_read,
2103      .writefn = icc_ap_write,
2104    },
2105    { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2106      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2107      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2108      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2109      .readfn = icc_ap_read,
2110      .writefn = icc_ap_write,
2111    },
2112    { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2113      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2114      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2115      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2116      .readfn = icc_ap_read,
2117      .writefn = icc_ap_write,
2118    },
2119    { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2120      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2121      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2122      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2123      .readfn = icc_ap_read,
2124      .writefn = icc_ap_write,
2125    },
2126    /* All the ICC_AP1R*_EL1 registers are banked */
2127    { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2128      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2129      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2130      .access = PL1_RW, .accessfn = gicv3_irq_access,
2131      .readfn = icc_ap_read,
2132      .writefn = icc_ap_write,
2133    },
2134    { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2135      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2136      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2137      .access = PL1_RW, .accessfn = gicv3_irq_access,
2138      .readfn = icc_ap_read,
2139      .writefn = icc_ap_write,
2140    },
2141    { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2142      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2143      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2144      .access = PL1_RW, .accessfn = gicv3_irq_access,
2145      .readfn = icc_ap_read,
2146      .writefn = icc_ap_write,
2147    },
2148    { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2149      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2150      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2151      .access = PL1_RW, .accessfn = gicv3_irq_access,
2152      .readfn = icc_ap_read,
2153      .writefn = icc_ap_write,
2154    },
2155    { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2156      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2157      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2158      .access = PL1_W, .accessfn = gicv3_dir_access,
2159      .writefn = icc_dir_write,
2160    },
2161    { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2162      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2163      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2164      .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2165      .readfn = icc_rpr_read,
2166    },
2167    { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2168      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2169      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2170      .access = PL1_W, .accessfn = gicv3_sgi_access,
2171      .writefn = icc_sgi1r_write,
2172    },
2173    { .name = "ICC_SGI1R",
2174      .cp = 15, .opc1 = 0, .crm = 12,
2175      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2176      .access = PL1_W, .accessfn = gicv3_sgi_access,
2177      .writefn = icc_sgi1r_write,
2178    },
2179    { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2180      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2181      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2182      .access = PL1_W, .accessfn = gicv3_sgi_access,
2183      .writefn = icc_asgi1r_write,
2184    },
2185    { .name = "ICC_ASGI1R",
2186      .cp = 15, .opc1 = 1, .crm = 12,
2187      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2188      .access = PL1_W, .accessfn = gicv3_sgi_access,
2189      .writefn = icc_asgi1r_write,
2190    },
2191    { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2192      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2193      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2194      .access = PL1_W, .accessfn = gicv3_sgi_access,
2195      .writefn = icc_sgi0r_write,
2196    },
2197    { .name = "ICC_SGI0R",
2198      .cp = 15, .opc1 = 2, .crm = 12,
2199      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2200      .access = PL1_W, .accessfn = gicv3_sgi_access,
2201      .writefn = icc_sgi0r_write,
2202    },
2203    { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2204      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2205      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2206      .access = PL1_R, .accessfn = gicv3_irq_access,
2207      .readfn = icc_iar1_read,
2208    },
2209    { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2210      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2211      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2212      .access = PL1_W, .accessfn = gicv3_irq_access,
2213      .writefn = icc_eoir_write,
2214    },
2215    { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2216      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2217      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2218      .access = PL1_R, .accessfn = gicv3_irq_access,
2219      .readfn = icc_hppir1_read,
2220    },
2221    /* This register is banked */
2222    { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2223      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2224      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2225      .access = PL1_RW, .accessfn = gicv3_irq_access,
2226      .readfn = icc_bpr_read,
2227      .writefn = icc_bpr_write,
2228    },
2229    /* This register is banked */
2230    { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2231      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2232      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2233      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2234      .readfn = icc_ctlr_el1_read,
2235      .writefn = icc_ctlr_el1_write,
2236    },
2237    { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2238      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2239      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2240      .access = PL1_RW,
2241      /* We don't support IRQ/FIQ bypass and system registers are
2242       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2243       * This register is banked but since it's constant we don't
2244       * need to do anything special.
2245       */
2246      .resetvalue = 0x7,
2247    },
2248    { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2249      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2250      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2251      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2252      .readfn = icc_igrpen_read,
2253      .writefn = icc_igrpen_write,
2254    },
2255    /* This register is banked */
2256    { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2257      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2258      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2259      .access = PL1_RW, .accessfn = gicv3_irq_access,
2260      .readfn = icc_igrpen_read,
2261      .writefn = icc_igrpen_write,
2262    },
2263    { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2264      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2265      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2266      .access = PL2_RW,
2267      /* We don't support IRQ/FIQ bypass and system registers are
2268       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2269       */
2270      .resetvalue = 0xf,
2271    },
2272    { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2273      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2274      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2275      .access = PL3_RW,
2276      .readfn = icc_ctlr_el3_read,
2277      .writefn = icc_ctlr_el3_write,
2278    },
2279    { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2280      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2281      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2282      .access = PL3_RW,
2283      /* We don't support IRQ/FIQ bypass and system registers are
2284       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2285       */
2286      .resetvalue = 0xf,
2287    },
2288    { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2289      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2290      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2291      .access = PL3_RW,
2292      .readfn = icc_igrpen1_el3_read,
2293      .writefn = icc_igrpen1_el3_write,
2294    },
2295    REGINFO_SENTINEL
2296};
2297
2298static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2299{
2300    GICv3CPUState *cs = icc_cs_from_env(env);
2301    int regno = ri->opc2 & 3;
2302    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2303    uint64_t value;
2304
2305    value = cs->ich_apr[grp][regno];
2306    trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2307    return value;
2308}
2309
2310static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2311                         uint64_t value)
2312{
2313    GICv3CPUState *cs = icc_cs_from_env(env);
2314    int regno = ri->opc2 & 3;
2315    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2316
2317    trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2318
2319    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2320    gicv3_cpuif_virt_update(cs);
2321}
2322
2323static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2324{
2325    GICv3CPUState *cs = icc_cs_from_env(env);
2326    uint64_t value = cs->ich_hcr_el2;
2327
2328    trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2329    return value;
2330}
2331
2332static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2333                          uint64_t value)
2334{
2335    GICv3CPUState *cs = icc_cs_from_env(env);
2336
2337    trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2338
2339    value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2340        ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2341        ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2342        ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2343        ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2344
2345    cs->ich_hcr_el2 = value;
2346    gicv3_cpuif_virt_update(cs);
2347}
2348
2349static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2350{
2351    GICv3CPUState *cs = icc_cs_from_env(env);
2352    uint64_t value = cs->ich_vmcr_el2;
2353
2354    trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2355    return value;
2356}
2357
2358static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359                         uint64_t value)
2360{
2361    GICv3CPUState *cs = icc_cs_from_env(env);
2362
2363    trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2364
2365    value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2366        ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2367        ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2368    value |= ICH_VMCR_EL2_VFIQEN;
2369
2370    cs->ich_vmcr_el2 = value;
2371    /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2372     * by reading and writing back the fields.
2373     */
2374    write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2375    write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2376
2377    gicv3_cpuif_virt_update(cs);
2378}
2379
2380static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2381{
2382    GICv3CPUState *cs = icc_cs_from_env(env);
2383    int regno = ri->opc2 | ((ri->crm & 1) << 3);
2384    uint64_t value;
2385
2386    /* This read function handles all of:
2387     * 64-bit reads of the whole LR
2388     * 32-bit reads of the low half of the LR
2389     * 32-bit reads of the high half of the LR
2390     */
2391    if (ri->state == ARM_CP_STATE_AA32) {
2392        if (ri->crm >= 14) {
2393            value = extract64(cs->ich_lr_el2[regno], 32, 32);
2394            trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2395        } else {
2396            value = extract64(cs->ich_lr_el2[regno], 0, 32);
2397            trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2398        }
2399    } else {
2400        value = cs->ich_lr_el2[regno];
2401        trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2402    }
2403
2404    return value;
2405}
2406
2407static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2408                         uint64_t value)
2409{
2410    GICv3CPUState *cs = icc_cs_from_env(env);
2411    int regno = ri->opc2 | ((ri->crm & 1) << 3);
2412
2413    /* This write function handles all of:
2414     * 64-bit writes to the whole LR
2415     * 32-bit writes to the low half of the LR
2416     * 32-bit writes to the high half of the LR
2417     */
2418    if (ri->state == ARM_CP_STATE_AA32) {
2419        if (ri->crm >= 14) {
2420            trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2421            value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2422        } else {
2423            trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2424            value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2425        }
2426    } else {
2427        trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2428    }
2429
2430    /* Enforce RES0 bits in priority field */
2431    if (cs->vpribits < 8) {
2432        value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2433                          8 - cs->vpribits, 0);
2434    }
2435
2436    cs->ich_lr_el2[regno] = value;
2437    gicv3_cpuif_virt_update(cs);
2438}
2439
2440static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2441{
2442    GICv3CPUState *cs = icc_cs_from_env(env);
2443    uint64_t value;
2444
2445    value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2446        | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2447        | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2448        | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2449        | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2450
2451    trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2452    return value;
2453}
2454
2455static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2456{
2457    GICv3CPUState *cs = icc_cs_from_env(env);
2458    uint64_t value = maintenance_interrupt_state(cs);
2459
2460    trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2461    return value;
2462}
2463
2464static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2465{
2466    GICv3CPUState *cs = icc_cs_from_env(env);
2467    uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2468
2469    trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2470    return value;
2471}
2472
2473static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2474{
2475    GICv3CPUState *cs = icc_cs_from_env(env);
2476    uint64_t value = 0;
2477    int i;
2478
2479    for (i = 0; i < cs->num_list_regs; i++) {
2480        uint64_t lr = cs->ich_lr_el2[i];
2481
2482        if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2483            ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2484            value |= (1 << i);
2485        }
2486    }
2487
2488    trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2489    return value;
2490}
2491
2492static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2493    { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2494      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2495      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2496      .access = PL2_RW,
2497      .readfn = ich_ap_read,
2498      .writefn = ich_ap_write,
2499    },
2500    { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2501      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2502      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2503      .access = PL2_RW,
2504      .readfn = ich_ap_read,
2505      .writefn = ich_ap_write,
2506    },
2507    { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2508      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2509      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2510      .access = PL2_RW,
2511      .readfn = ich_hcr_read,
2512      .writefn = ich_hcr_write,
2513    },
2514    { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2515      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2516      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2517      .access = PL2_R,
2518      .readfn = ich_vtr_read,
2519    },
2520    { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2521      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2522      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2523      .access = PL2_R,
2524      .readfn = ich_misr_read,
2525    },
2526    { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2527      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2528      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2529      .access = PL2_R,
2530      .readfn = ich_eisr_read,
2531    },
2532    { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2533      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2534      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2535      .access = PL2_R,
2536      .readfn = ich_elrsr_read,
2537    },
2538    { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2539      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2540      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2541      .access = PL2_RW,
2542      .readfn = ich_vmcr_read,
2543      .writefn = ich_vmcr_write,
2544    },
2545    REGINFO_SENTINEL
2546};
2547
2548static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2549    { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2550      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2551      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2552      .access = PL2_RW,
2553      .readfn = ich_ap_read,
2554      .writefn = ich_ap_write,
2555    },
2556    { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2557      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2558      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2559      .access = PL2_RW,
2560      .readfn = ich_ap_read,
2561      .writefn = ich_ap_write,
2562    },
2563    REGINFO_SENTINEL
2564};
2565
2566static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2567    { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2568      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2569      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2570      .access = PL2_RW,
2571      .readfn = ich_ap_read,
2572      .writefn = ich_ap_write,
2573    },
2574    { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2575      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2576      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2577      .access = PL2_RW,
2578      .readfn = ich_ap_read,
2579      .writefn = ich_ap_write,
2580    },
2581    { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2582      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2583      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2584      .access = PL2_RW,
2585      .readfn = ich_ap_read,
2586      .writefn = ich_ap_write,
2587    },
2588    { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2589      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2590      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2591      .access = PL2_RW,
2592      .readfn = ich_ap_read,
2593      .writefn = ich_ap_write,
2594    },
2595    REGINFO_SENTINEL
2596};
2597
2598static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2599{
2600    GICv3CPUState *cs = opaque;
2601
2602    gicv3_cpuif_update(cs);
2603}
2604
2605void gicv3_init_cpuif(GICv3State *s)
2606{
2607    /* Called from the GICv3 realize function; register our system
2608     * registers with the CPU
2609     */
2610    int i;
2611
2612    for (i = 0; i < s->num_cpu; i++) {
2613        ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2614        GICv3CPUState *cs = &s->cpu[i];
2615
2616        /* Note that we can't just use the GICv3CPUState as an opaque pointer
2617         * in define_arm_cp_regs_with_opaque(), because when we're called back
2618         * it might be with code translated by CPU 0 but run by CPU 1, in
2619         * which case we'd get the wrong value.
2620         * So instead we define the regs with no ri->opaque info, and
2621         * get back to the GICv3CPUState from the CPUARMState.
2622         */
2623        define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2624        if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2625            && cpu->gic_num_lrs) {
2626            int j;
2627
2628            cs->num_list_regs = cpu->gic_num_lrs;
2629            cs->vpribits = cpu->gic_vpribits;
2630            cs->vprebits = cpu->gic_vprebits;
2631
2632            /* Check against architectural constraints: getting these
2633             * wrong would be a bug in the CPU code defining these,
2634             * and the implementation relies on them holding.
2635             */
2636            g_assert(cs->vprebits <= cs->vpribits);
2637            g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2638            g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2639
2640            define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2641
2642            for (j = 0; j < cs->num_list_regs; j++) {
2643                /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2644                 * are split into two cp15 regs, LR (the low part, with the
2645                 * same encoding as the AArch64 LR) and LRC (the high part).
2646                 */
2647                ARMCPRegInfo lr_regset[] = {
2648                    { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2649                      .opc0 = 3, .opc1 = 4, .crn = 12,
2650                      .crm = 12 + (j >> 3), .opc2 = j & 7,
2651                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2652                      .access = PL2_RW,
2653                      .readfn = ich_lr_read,
2654                      .writefn = ich_lr_write,
2655                    },
2656                    { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2657                      .cp = 15, .opc1 = 4, .crn = 12,
2658                      .crm = 14 + (j >> 3), .opc2 = j & 7,
2659                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2660                      .access = PL2_RW,
2661                      .readfn = ich_lr_read,
2662                      .writefn = ich_lr_write,
2663                    },
2664                    REGINFO_SENTINEL
2665                };
2666                define_arm_cp_regs(cpu, lr_regset);
2667            }
2668            if (cs->vprebits >= 6) {
2669                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2670            }
2671            if (cs->vprebits == 7) {
2672                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2673            }
2674        }
2675        arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2676    }
2677}
2678