qemu/hw/mips/boston.c
<<
>>
Prefs
   1/*
   2 * MIPS Boston development board emulation.
   3 *
   4 * Copyright (c) 2016 Imagination Technologies
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/units.h"
  22
  23#include "exec/address-spaces.h"
  24#include "hw/boards.h"
  25#include "hw/char/serial.h"
  26#include "hw/ide/pci.h"
  27#include "hw/ide/ahci.h"
  28#include "hw/loader.h"
  29#include "hw/loader-fit.h"
  30#include "hw/mips/bootloader.h"
  31#include "hw/mips/cps.h"
  32#include "hw/pci-host/xilinx-pcie.h"
  33#include "hw/qdev-clock.h"
  34#include "hw/qdev-properties.h"
  35#include "qapi/error.h"
  36#include "qemu/error-report.h"
  37#include "qemu/log.h"
  38#include "chardev/char.h"
  39#include "sysemu/device_tree.h"
  40#include "sysemu/sysemu.h"
  41#include "sysemu/qtest.h"
  42#include "sysemu/runstate.h"
  43
  44#include <libfdt.h>
  45#include "qom/object.h"
  46
  47#define TYPE_BOSTON "mips-boston"
  48typedef struct BostonState BostonState;
  49DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
  50                         TYPE_BOSTON)
  51
  52struct BostonState {
  53    SysBusDevice parent_obj;
  54
  55    MachineState *mach;
  56    MIPSCPSState cps;
  57    SerialMM *uart;
  58    Clock *cpuclk;
  59
  60    CharBackend lcd_display;
  61    char lcd_content[8];
  62    bool lcd_inited;
  63
  64    hwaddr kernel_entry;
  65    hwaddr fdt_base;
  66};
  67
  68enum boston_plat_reg {
  69    PLAT_FPGA_BUILD     = 0x00,
  70    PLAT_CORE_CL        = 0x04,
  71    PLAT_WRAPPER_CL     = 0x08,
  72    PLAT_SYSCLK_STATUS  = 0x0c,
  73    PLAT_SOFTRST_CTL    = 0x10,
  74#define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
  75    PLAT_DDR3_STATUS    = 0x14,
  76#define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
  77#define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
  78    PLAT_PCIE_STATUS    = 0x18,
  79#define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
  80#define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
  81#define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
  82    PLAT_FLASH_CTL      = 0x1c,
  83    PLAT_SPARE0         = 0x20,
  84    PLAT_SPARE1         = 0x24,
  85    PLAT_SPARE2         = 0x28,
  86    PLAT_SPARE3         = 0x2c,
  87    PLAT_MMCM_DIV       = 0x30,
  88#define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
  89#define PLAT_MMCM_DIV_INPUT_SHIFT       8
  90#define PLAT_MMCM_DIV_MUL_SHIFT         16
  91#define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
  92    PLAT_BUILD_CFG      = 0x34,
  93#define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
  94#define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
  95#define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
  96#define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
  97    PLAT_DDR_CFG        = 0x38,
  98#define PLAT_DDR_CFG_SIZE               (0xf << 0)
  99#define PLAT_DDR_CFG_MHZ                (0xfff << 4)
 100    PLAT_NOC_PCIE0_ADDR = 0x3c,
 101    PLAT_NOC_PCIE1_ADDR = 0x40,
 102    PLAT_NOC_PCIE2_ADDR = 0x44,
 103    PLAT_SYS_CTL        = 0x48,
 104};
 105
 106static void boston_lcd_event(void *opaque, QEMUChrEvent event)
 107{
 108    BostonState *s = opaque;
 109    if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
 110        qemu_chr_fe_printf(&s->lcd_display, "        ");
 111        s->lcd_inited = true;
 112    }
 113}
 114
 115static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
 116                                unsigned size)
 117{
 118    BostonState *s = opaque;
 119    uint64_t val = 0;
 120
 121    switch (size) {
 122    case 8:
 123        val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
 124        val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
 125        val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
 126        val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
 127        /* fall through */
 128    case 4:
 129        val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
 130        val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
 131        /* fall through */
 132    case 2:
 133        val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
 134        /* fall through */
 135    case 1:
 136        val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
 137        break;
 138    }
 139
 140    return val;
 141}
 142
 143static void boston_lcd_write(void *opaque, hwaddr addr,
 144                             uint64_t val, unsigned size)
 145{
 146    BostonState *s = opaque;
 147
 148    switch (size) {
 149    case 8:
 150        s->lcd_content[(addr + 7) & 0x7] = val >> 56;
 151        s->lcd_content[(addr + 6) & 0x7] = val >> 48;
 152        s->lcd_content[(addr + 5) & 0x7] = val >> 40;
 153        s->lcd_content[(addr + 4) & 0x7] = val >> 32;
 154        /* fall through */
 155    case 4:
 156        s->lcd_content[(addr + 3) & 0x7] = val >> 24;
 157        s->lcd_content[(addr + 2) & 0x7] = val >> 16;
 158        /* fall through */
 159    case 2:
 160        s->lcd_content[(addr + 1) & 0x7] = val >> 8;
 161        /* fall through */
 162    case 1:
 163        s->lcd_content[(addr + 0) & 0x7] = val;
 164        break;
 165    }
 166
 167    qemu_chr_fe_printf(&s->lcd_display,
 168                       "\r%-8.8s", s->lcd_content);
 169}
 170
 171static const MemoryRegionOps boston_lcd_ops = {
 172    .read = boston_lcd_read,
 173    .write = boston_lcd_write,
 174    .endianness = DEVICE_NATIVE_ENDIAN,
 175};
 176
 177static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
 178                                    unsigned size)
 179{
 180    BostonState *s = opaque;
 181    uint32_t gic_freq, val;
 182
 183    if (size != 4) {
 184        qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
 185        return 0;
 186    }
 187
 188    switch (addr & 0xffff) {
 189    case PLAT_FPGA_BUILD:
 190    case PLAT_CORE_CL:
 191    case PLAT_WRAPPER_CL:
 192        return 0;
 193    case PLAT_DDR3_STATUS:
 194        return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
 195    case PLAT_MMCM_DIV:
 196        gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
 197        val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
 198        val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
 199        val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
 200        val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
 201        return val;
 202    case PLAT_BUILD_CFG:
 203        val = PLAT_BUILD_CFG_PCIE0_EN;
 204        val |= PLAT_BUILD_CFG_PCIE1_EN;
 205        val |= PLAT_BUILD_CFG_PCIE2_EN;
 206        return val;
 207    case PLAT_DDR_CFG:
 208        val = s->mach->ram_size / GiB;
 209        assert(!(val & ~PLAT_DDR_CFG_SIZE));
 210        val |= PLAT_DDR_CFG_MHZ;
 211        return val;
 212    default:
 213        qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
 214                      addr & 0xffff);
 215        return 0;
 216    }
 217}
 218
 219static void boston_platreg_write(void *opaque, hwaddr addr,
 220                                 uint64_t val, unsigned size)
 221{
 222    if (size != 4) {
 223        qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
 224        return;
 225    }
 226
 227    switch (addr & 0xffff) {
 228    case PLAT_FPGA_BUILD:
 229    case PLAT_CORE_CL:
 230    case PLAT_WRAPPER_CL:
 231    case PLAT_DDR3_STATUS:
 232    case PLAT_PCIE_STATUS:
 233    case PLAT_MMCM_DIV:
 234    case PLAT_BUILD_CFG:
 235    case PLAT_DDR_CFG:
 236        /* read only */
 237        break;
 238    case PLAT_SOFTRST_CTL:
 239        if (val & PLAT_SOFTRST_CTL_SYSRESET) {
 240            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 241        }
 242        break;
 243    default:
 244        qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
 245                      " = 0x%" PRIx64 "\n", addr & 0xffff, val);
 246        break;
 247    }
 248}
 249
 250static const MemoryRegionOps boston_platreg_ops = {
 251    .read = boston_platreg_read,
 252    .write = boston_platreg_write,
 253    .endianness = DEVICE_NATIVE_ENDIAN,
 254};
 255
 256static void mips_boston_instance_init(Object *obj)
 257{
 258    BostonState *s = BOSTON(obj);
 259
 260    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
 261    clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
 262}
 263
 264static const TypeInfo boston_device = {
 265    .name          = TYPE_BOSTON,
 266    .parent        = TYPE_SYS_BUS_DEVICE,
 267    .instance_size = sizeof(BostonState),
 268    .instance_init = mips_boston_instance_init,
 269};
 270
 271static void boston_register_types(void)
 272{
 273    type_register_static(&boston_device);
 274}
 275type_init(boston_register_types)
 276
 277static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
 278{
 279    const uint32_t cm_base = 0x16100000;
 280    const uint32_t gic_base = 0x16120000;
 281    const uint32_t cpc_base = 0x16200000;
 282
 283    /* Move CM GCRs */
 284    bl_gen_write_ulong(&p,
 285                       cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
 286                       cm_base);
 287
 288    /* Move & enable GIC GCRs */
 289    bl_gen_write_ulong(&p,
 290                       cpu_mips_phys_to_kseg1(NULL, cm_base + GCR_GIC_BASE_OFS),
 291                       gic_base | GCR_GIC_BASE_GICEN_MSK);
 292
 293    /* Move & enable CPC GCRs */
 294    bl_gen_write_ulong(&p,
 295                       cpu_mips_phys_to_kseg1(NULL, cm_base + GCR_CPC_BASE_OFS),
 296                       cpc_base | GCR_CPC_BASE_CPCEN_MSK);
 297
 298    /*
 299     * Setup argument registers to follow the UHI boot protocol:
 300     *
 301     * a0/$4 = -2
 302     * a1/$5 = virtual address of FDT
 303     * a2/$6 = 0
 304     * a3/$7 = 0
 305     */
 306    bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
 307}
 308
 309static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
 310                                     const void *match_data, hwaddr *load_addr)
 311{
 312    BostonState *s = BOSTON(opaque);
 313    MachineState *machine = s->mach;
 314    const char *cmdline;
 315    int err;
 316    size_t ram_low_sz, ram_high_sz;
 317    size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
 318    g_autofree void *fdt = g_malloc0(fdt_sz);
 319
 320    err = fdt_open_into(fdt_orig, fdt, fdt_sz);
 321    if (err) {
 322        fprintf(stderr, "unable to open FDT\n");
 323        return NULL;
 324    }
 325
 326    cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
 327            ? machine->kernel_cmdline : " ";
 328    err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 329    if (err < 0) {
 330        fprintf(stderr, "couldn't set /chosen/bootargs\n");
 331        return NULL;
 332    }
 333
 334    ram_low_sz = MIN(256 * MiB, machine->ram_size);
 335    ram_high_sz = machine->ram_size - ram_low_sz;
 336    qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
 337                                 1, 0x00000000, 1, ram_low_sz,
 338                                 1, 0x90000000, 1, ram_high_sz);
 339
 340    fdt = g_realloc(fdt, fdt_totalsize(fdt));
 341    qemu_fdt_dumpdtb(fdt, fdt_sz);
 342
 343    s->fdt_base = *load_addr;
 344
 345    return g_steal_pointer(&fdt);
 346}
 347
 348static const void *boston_kernel_filter(void *opaque, const void *kernel,
 349                                        hwaddr *load_addr, hwaddr *entry_addr)
 350{
 351    BostonState *s = BOSTON(opaque);
 352
 353    s->kernel_entry = *entry_addr;
 354
 355    return kernel;
 356}
 357
 358static const struct fit_loader_match boston_matches[] = {
 359    { "img,boston" },
 360    { NULL },
 361};
 362
 363static const struct fit_loader boston_fit_loader = {
 364    .matches = boston_matches,
 365    .addr_to_phys = cpu_mips_kseg0_to_phys,
 366    .fdt_filter = boston_fdt_filter,
 367    .kernel_filter = boston_kernel_filter,
 368};
 369
 370static inline XilinxPCIEHost *
 371xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
 372                 hwaddr cfg_base, uint64_t cfg_size,
 373                 hwaddr mmio_base, uint64_t mmio_size,
 374                 qemu_irq irq, bool link_up)
 375{
 376    DeviceState *dev;
 377    MemoryRegion *cfg, *mmio;
 378
 379    dev = qdev_new(TYPE_XILINX_PCIE_HOST);
 380
 381    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
 382    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
 383    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
 384    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
 385    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
 386    qdev_prop_set_bit(dev, "link_up", link_up);
 387
 388    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 389
 390    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 391    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
 392
 393    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 394    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
 395
 396    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
 397
 398    return XILINX_PCIE_HOST(dev);
 399}
 400
 401static void boston_mach_init(MachineState *machine)
 402{
 403    DeviceState *dev;
 404    BostonState *s;
 405    MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
 406    MemoryRegion *sys_mem = get_system_memory();
 407    XilinxPCIEHost *pcie2;
 408    PCIDevice *ahci;
 409    DriveInfo *hd[6];
 410    Chardev *chr;
 411    int fw_size, fit_err;
 412
 413    if ((machine->ram_size % GiB) ||
 414        (machine->ram_size > (2 * GiB))) {
 415        error_report("Memory size must be 1GB or 2GB");
 416        exit(1);
 417    }
 418
 419    dev = qdev_new(TYPE_BOSTON);
 420    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 421
 422    s = BOSTON(dev);
 423    s->mach = machine;
 424
 425    if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
 426        error_report("Boston requires CPUs which support CPS");
 427        exit(1);
 428    }
 429
 430    object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
 431    object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
 432                            &error_fatal);
 433    object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
 434                            &error_fatal);
 435    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
 436                          qdev_get_clock_out(dev, "cpu-refclk"));
 437    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
 438
 439    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
 440
 441    flash =  g_new(MemoryRegion, 1);
 442    memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB,
 443                           &error_fatal);
 444    memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
 445
 446    memory_region_add_subregion_overlap(sys_mem, 0x80000000, machine->ram, 0);
 447
 448    ddr_low_alias = g_new(MemoryRegion, 1);
 449    memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
 450                             machine->ram, 0,
 451                             MIN(machine->ram_size, (256 * MiB)));
 452    memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
 453
 454    xilinx_pcie_init(sys_mem, 0,
 455                     0x10000000, 32 * MiB,
 456                     0x40000000, 1 * GiB,
 457                     get_cps_irq(&s->cps, 2), false);
 458
 459    xilinx_pcie_init(sys_mem, 1,
 460                     0x12000000, 32 * MiB,
 461                     0x20000000, 512 * MiB,
 462                     get_cps_irq(&s->cps, 1), false);
 463
 464    pcie2 = xilinx_pcie_init(sys_mem, 2,
 465                             0x14000000, 32 * MiB,
 466                             0x16000000, 1 * MiB,
 467                             get_cps_irq(&s->cps, 0), true);
 468
 469    platreg = g_new(MemoryRegion, 1);
 470    memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
 471                          "boston-platregs", 0x1000);
 472    memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
 473
 474    s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
 475                             get_cps_irq(&s->cps, 3), 10000000,
 476                             serial_hd(0), DEVICE_NATIVE_ENDIAN);
 477
 478    lcd = g_new(MemoryRegion, 1);
 479    memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
 480    memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
 481
 482    chr = qemu_chr_new("lcd", "vc:320x240", NULL);
 483    qemu_chr_fe_init(&s->lcd_display, chr, NULL);
 484    qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
 485                             boston_lcd_event, NULL, s, NULL, true);
 486
 487    ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
 488                                           PCI_DEVFN(0, 0),
 489                                           true, TYPE_ICH9_AHCI);
 490    g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
 491    ide_drive_get(hd, ahci_get_num_ports(ahci));
 492    ahci_ide_create_devs(ahci, hd);
 493
 494    if (machine->firmware) {
 495        fw_size = load_image_targphys(machine->firmware,
 496                                      0x1fc00000, 4 * MiB);
 497        if (fw_size == -1) {
 498            error_report("unable to load firmware image '%s'",
 499                          machine->firmware);
 500            exit(1);
 501        }
 502    } else if (machine->kernel_filename) {
 503        fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
 504        if (fit_err) {
 505            error_report("unable to load FIT image");
 506            exit(1);
 507        }
 508
 509        gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
 510                     s->kernel_entry, s->fdt_base);
 511    } else if (!qtest_enabled()) {
 512        error_report("Please provide either a -kernel or -bios argument");
 513        exit(1);
 514    }
 515}
 516
 517static void boston_mach_class_init(MachineClass *mc)
 518{
 519    mc->desc = "MIPS Boston";
 520    mc->init = boston_mach_init;
 521    mc->block_default_type = IF_IDE;
 522    mc->default_ram_size = 1 * GiB;
 523    mc->default_ram_id = "boston.ddr";
 524    mc->max_cpus = 16;
 525    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
 526}
 527
 528DEFINE_MACHINE("boston", boston_mach_class_init)
 529