qemu/hw/mips/malta.c
<<
>>
Prefs
   1/*
   2 * QEMU Malta board support
   3 *
   4 * Copyright (c) 2006 Aurelien Jarno
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "qemu/bitops.h"
  28#include "qemu-common.h"
  29#include "qemu/datadir.h"
  30#include "cpu.h"
  31#include "hw/clock.h"
  32#include "hw/southbridge/piix.h"
  33#include "hw/isa/superio.h"
  34#include "hw/char/serial.h"
  35#include "net/net.h"
  36#include "hw/boards.h"
  37#include "hw/i2c/smbus_eeprom.h"
  38#include "hw/block/flash.h"
  39#include "hw/mips/mips.h"
  40#include "hw/mips/cpudevs.h"
  41#include "hw/pci/pci.h"
  42#include "sysemu/sysemu.h"
  43#include "sysemu/arch_init.h"
  44#include "qemu/log.h"
  45#include "hw/mips/bios.h"
  46#include "hw/ide.h"
  47#include "hw/irq.h"
  48#include "hw/loader.h"
  49#include "elf.h"
  50#include "exec/address-spaces.h"
  51#include "qom/object.h"
  52#include "hw/sysbus.h"             /* SysBusDevice */
  53#include "qemu/host-utils.h"
  54#include "sysemu/qtest.h"
  55#include "sysemu/reset.h"
  56#include "sysemu/runstate.h"
  57#include "qapi/error.h"
  58#include "qemu/error-report.h"
  59#include "hw/misc/empty_slot.h"
  60#include "sysemu/kvm.h"
  61#include "semihosting/semihost.h"
  62#include "hw/mips/cps.h"
  63#include "hw/qdev-clock.h"
  64
  65#define ENVP_PADDR          0x2000
  66#define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
  67#define ENVP_NB_ENTRIES     16
  68#define ENVP_ENTRY_SIZE     256
  69
  70/* Hardware addresses */
  71#define FLASH_ADDRESS       0x1e000000ULL
  72#define FPGA_ADDRESS        0x1f000000ULL
  73#define RESET_ADDRESS       0x1fc00000ULL
  74
  75#define FLASH_SIZE          0x400000
  76
  77#define MAX_IDE_BUS         2
  78
  79typedef struct {
  80    MemoryRegion iomem;
  81    MemoryRegion iomem_lo; /* 0 - 0x900 */
  82    MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
  83    uint32_t leds;
  84    uint32_t brk;
  85    uint32_t gpout;
  86    uint32_t i2cin;
  87    uint32_t i2coe;
  88    uint32_t i2cout;
  89    uint32_t i2csel;
  90    CharBackend display;
  91    char display_text[9];
  92    SerialMM *uart;
  93    bool display_inited;
  94} MaltaFPGAState;
  95
  96#define TYPE_MIPS_MALTA "mips-malta"
  97OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
  98
  99struct MaltaState {
 100    SysBusDevice parent_obj;
 101
 102    Clock *cpuclk;
 103    MIPSCPSState cps;
 104    qemu_irq i8259[ISA_NUM_IRQS];
 105};
 106
 107static struct _loaderparams {
 108    int ram_size, ram_low_size;
 109    const char *kernel_filename;
 110    const char *kernel_cmdline;
 111    const char *initrd_filename;
 112} loaderparams;
 113
 114/* Malta FPGA */
 115static void malta_fpga_update_display(void *opaque)
 116{
 117    char leds_text[9];
 118    int i;
 119    MaltaFPGAState *s = opaque;
 120
 121    for (i = 7 ; i >= 0 ; i--) {
 122        if (s->leds & (1 << i)) {
 123            leds_text[i] = '#';
 124        } else {
 125            leds_text[i] = ' ';
 126        }
 127    }
 128    leds_text[8] = '\0';
 129
 130    qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
 131                       leds_text);
 132    qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
 133                       s->display_text);
 134}
 135
 136/*
 137 * EEPROM 24C01 / 24C02 emulation.
 138 *
 139 * Emulation for serial EEPROMs:
 140 * 24C01 - 1024 bit (128 x 8)
 141 * 24C02 - 2048 bit (256 x 8)
 142 *
 143 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
 144 */
 145
 146#if defined(DEBUG)
 147#  define logout(fmt, ...) \
 148          fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
 149#else
 150#  define logout(fmt, ...) ((void)0)
 151#endif
 152
 153struct _eeprom24c0x_t {
 154  uint8_t tick;
 155  uint8_t address;
 156  uint8_t command;
 157  uint8_t ack;
 158  uint8_t scl;
 159  uint8_t sda;
 160  uint8_t data;
 161  /* uint16_t size; */
 162  uint8_t contents[256];
 163};
 164
 165typedef struct _eeprom24c0x_t eeprom24c0x_t;
 166
 167static eeprom24c0x_t spd_eeprom = {
 168    .contents = {
 169        /* 00000000: */
 170        0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
 171        /* 00000008: */
 172        0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
 173        /* 00000010: */
 174        0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
 175        /* 00000018: */
 176        0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
 177        /* 00000020: */
 178        0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
 179        /* 00000028: */
 180        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 181        /* 00000030: */
 182        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 183        /* 00000038: */
 184        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
 185        /* 00000040: */
 186        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 187        /* 00000048: */
 188        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 189        /* 00000050: */
 190        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 191        /* 00000058: */
 192        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 193        /* 00000060: */
 194        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 195        /* 00000068: */
 196        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 197        /* 00000070: */
 198        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 199        /* 00000078: */
 200        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
 201    },
 202};
 203
 204static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
 205{
 206    enum { SDR = 0x4, DDR2 = 0x8 } type;
 207    uint8_t *spd = spd_eeprom.contents;
 208    uint8_t nbanks = 0;
 209    uint16_t density = 0;
 210    int i;
 211
 212    /* work in terms of MB */
 213    ram_size /= MiB;
 214
 215    while ((ram_size >= 4) && (nbanks <= 2)) {
 216        int sz_log2 = MIN(31 - clz32(ram_size), 14);
 217        nbanks++;
 218        density |= 1 << (sz_log2 - 2);
 219        ram_size -= 1 << sz_log2;
 220    }
 221
 222    /* split to 2 banks if possible */
 223    if ((nbanks == 1) && (density > 1)) {
 224        nbanks++;
 225        density >>= 1;
 226    }
 227
 228    if (density & 0xff00) {
 229        density = (density & 0xe0) | ((density >> 8) & 0x1f);
 230        type = DDR2;
 231    } else if (!(density & 0x1f)) {
 232        type = DDR2;
 233    } else {
 234        type = SDR;
 235    }
 236
 237    if (ram_size) {
 238        warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
 239                    " of SDRAM", ram_size);
 240    }
 241
 242    /* fill in SPD memory information */
 243    spd[2] = type;
 244    spd[5] = nbanks;
 245    spd[31] = density;
 246
 247    /* checksum */
 248    spd[63] = 0;
 249    for (i = 0; i < 63; i++) {
 250        spd[63] += spd[i];
 251    }
 252
 253    /* copy for SMBUS */
 254    memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
 255}
 256
 257static void generate_eeprom_serial(uint8_t *eeprom)
 258{
 259    int i, pos = 0;
 260    uint8_t mac[6] = { 0x00 };
 261    uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
 262
 263    /* version */
 264    eeprom[pos++] = 0x01;
 265
 266    /* count */
 267    eeprom[pos++] = 0x02;
 268
 269    /* MAC address */
 270    eeprom[pos++] = 0x01; /* MAC */
 271    eeprom[pos++] = 0x06; /* length */
 272    memcpy(&eeprom[pos], mac, sizeof(mac));
 273    pos += sizeof(mac);
 274
 275    /* serial number */
 276    eeprom[pos++] = 0x02; /* serial */
 277    eeprom[pos++] = 0x05; /* length */
 278    memcpy(&eeprom[pos], sn, sizeof(sn));
 279    pos += sizeof(sn);
 280
 281    /* checksum */
 282    eeprom[pos] = 0;
 283    for (i = 0; i < pos; i++) {
 284        eeprom[pos] += eeprom[i];
 285    }
 286}
 287
 288static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
 289{
 290    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
 291        eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
 292    return eeprom->sda;
 293}
 294
 295static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
 296{
 297    if (eeprom->scl && scl && (eeprom->sda != sda)) {
 298        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
 299                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
 300                sda ? "stop" : "start");
 301        if (!sda) {
 302            eeprom->tick = 1;
 303            eeprom->command = 0;
 304        }
 305    } else if (eeprom->tick == 0 && !eeprom->ack) {
 306        /* Waiting for start. */
 307        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
 308                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
 309    } else if (!eeprom->scl && scl) {
 310        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
 311                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
 312        if (eeprom->ack) {
 313            logout("\ti2c ack bit = 0\n");
 314            sda = 0;
 315            eeprom->ack = 0;
 316        } else if (eeprom->sda == sda) {
 317            uint8_t bit = (sda != 0);
 318            logout("\ti2c bit = %d\n", bit);
 319            if (eeprom->tick < 9) {
 320                eeprom->command <<= 1;
 321                eeprom->command += bit;
 322                eeprom->tick++;
 323                if (eeprom->tick == 9) {
 324                    logout("\tcommand 0x%04x, %s\n", eeprom->command,
 325                           bit ? "read" : "write");
 326                    eeprom->ack = 1;
 327                }
 328            } else if (eeprom->tick < 17) {
 329                if (eeprom->command & 1) {
 330                    sda = ((eeprom->data & 0x80) != 0);
 331                }
 332                eeprom->address <<= 1;
 333                eeprom->address += bit;
 334                eeprom->tick++;
 335                eeprom->data <<= 1;
 336                if (eeprom->tick == 17) {
 337                    eeprom->data = eeprom->contents[eeprom->address];
 338                    logout("\taddress 0x%04x, data 0x%02x\n",
 339                           eeprom->address, eeprom->data);
 340                    eeprom->ack = 1;
 341                    eeprom->tick = 0;
 342                }
 343            } else if (eeprom->tick >= 17) {
 344                sda = 0;
 345            }
 346        } else {
 347            logout("\tsda changed with raising scl\n");
 348        }
 349    } else {
 350        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
 351               scl, eeprom->sda, sda);
 352    }
 353    eeprom->scl = scl;
 354    eeprom->sda = sda;
 355}
 356
 357static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
 358                                unsigned size)
 359{
 360    MaltaFPGAState *s = opaque;
 361    uint32_t val = 0;
 362    uint32_t saddr;
 363
 364    saddr = (addr & 0xfffff);
 365
 366    switch (saddr) {
 367
 368    /* SWITCH Register */
 369    case 0x00200:
 370        val = 0x00000000;
 371        break;
 372
 373    /* STATUS Register */
 374    case 0x00208:
 375#ifdef TARGET_WORDS_BIGENDIAN
 376        val = 0x00000012;
 377#else
 378        val = 0x00000010;
 379#endif
 380        break;
 381
 382    /* JMPRS Register */
 383    case 0x00210:
 384        val = 0x00;
 385        break;
 386
 387    /* LEDBAR Register */
 388    case 0x00408:
 389        val = s->leds;
 390        break;
 391
 392    /* BRKRES Register */
 393    case 0x00508:
 394        val = s->brk;
 395        break;
 396
 397    /* UART Registers are handled directly by the serial device */
 398
 399    /* GPOUT Register */
 400    case 0x00a00:
 401        val = s->gpout;
 402        break;
 403
 404    /* XXX: implement a real I2C controller */
 405
 406    /* GPINP Register */
 407    case 0x00a08:
 408        /* IN = OUT until a real I2C control is implemented */
 409        if (s->i2csel) {
 410            val = s->i2cout;
 411        } else {
 412            val = 0x00;
 413        }
 414        break;
 415
 416    /* I2CINP Register */
 417    case 0x00b00:
 418        val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
 419        break;
 420
 421    /* I2COE Register */
 422    case 0x00b08:
 423        val = s->i2coe;
 424        break;
 425
 426    /* I2COUT Register */
 427    case 0x00b10:
 428        val = s->i2cout;
 429        break;
 430
 431    /* I2CSEL Register */
 432    case 0x00b18:
 433        val = s->i2csel;
 434        break;
 435
 436    default:
 437        qemu_log_mask(LOG_GUEST_ERROR,
 438                      "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
 439                      addr);
 440        break;
 441    }
 442    return val;
 443}
 444
 445static void malta_fpga_write(void *opaque, hwaddr addr,
 446                             uint64_t val, unsigned size)
 447{
 448    MaltaFPGAState *s = opaque;
 449    uint32_t saddr;
 450
 451    saddr = (addr & 0xfffff);
 452
 453    switch (saddr) {
 454
 455    /* SWITCH Register */
 456    case 0x00200:
 457        break;
 458
 459    /* JMPRS Register */
 460    case 0x00210:
 461        break;
 462
 463    /* LEDBAR Register */
 464    case 0x00408:
 465        s->leds = val & 0xff;
 466        malta_fpga_update_display(s);
 467        break;
 468
 469    /* ASCIIWORD Register */
 470    case 0x00410:
 471        snprintf(s->display_text, 9, "%08X", (uint32_t)val);
 472        malta_fpga_update_display(s);
 473        break;
 474
 475    /* ASCIIPOS0 to ASCIIPOS7 Registers */
 476    case 0x00418:
 477    case 0x00420:
 478    case 0x00428:
 479    case 0x00430:
 480    case 0x00438:
 481    case 0x00440:
 482    case 0x00448:
 483    case 0x00450:
 484        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
 485        malta_fpga_update_display(s);
 486        break;
 487
 488    /* SOFTRES Register */
 489    case 0x00500:
 490        if (val == 0x42) {
 491            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 492        }
 493        break;
 494
 495    /* BRKRES Register */
 496    case 0x00508:
 497        s->brk = val & 0xff;
 498        break;
 499
 500    /* UART Registers are handled directly by the serial device */
 501
 502    /* GPOUT Register */
 503    case 0x00a00:
 504        s->gpout = val & 0xff;
 505        break;
 506
 507    /* I2COE Register */
 508    case 0x00b08:
 509        s->i2coe = val & 0x03;
 510        break;
 511
 512    /* I2COUT Register */
 513    case 0x00b10:
 514        eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
 515        s->i2cout = val;
 516        break;
 517
 518    /* I2CSEL Register */
 519    case 0x00b18:
 520        s->i2csel = val & 0x01;
 521        break;
 522
 523    default:
 524        qemu_log_mask(LOG_GUEST_ERROR,
 525                      "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
 526                      addr);
 527        break;
 528    }
 529}
 530
 531static const MemoryRegionOps malta_fpga_ops = {
 532    .read = malta_fpga_read,
 533    .write = malta_fpga_write,
 534    .endianness = DEVICE_NATIVE_ENDIAN,
 535};
 536
 537static void malta_fpga_reset(void *opaque)
 538{
 539    MaltaFPGAState *s = opaque;
 540
 541    s->leds   = 0x00;
 542    s->brk    = 0x0a;
 543    s->gpout  = 0x00;
 544    s->i2cin  = 0x3;
 545    s->i2coe  = 0x0;
 546    s->i2cout = 0x3;
 547    s->i2csel = 0x1;
 548
 549    s->display_text[8] = '\0';
 550    snprintf(s->display_text, 9, "        ");
 551}
 552
 553static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
 554{
 555    MaltaFPGAState *s = opaque;
 556
 557    if (event == CHR_EVENT_OPENED && !s->display_inited) {
 558        qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
 559        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 560        qemu_chr_fe_printf(&s->display, "+        +\r\n");
 561        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 562        qemu_chr_fe_printf(&s->display, "\n");
 563        qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
 564        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 565        qemu_chr_fe_printf(&s->display, "+        +\r\n");
 566        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 567        s->display_inited = true;
 568    }
 569}
 570
 571static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
 572         hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
 573{
 574    MaltaFPGAState *s;
 575    Chardev *chr;
 576
 577    s = g_new0(MaltaFPGAState, 1);
 578
 579    memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
 580                          "malta-fpga", 0x100000);
 581    memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
 582                             &s->iomem, 0, 0x900);
 583    memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
 584                             &s->iomem, 0xa00, 0x100000 - 0xa00);
 585
 586    memory_region_add_subregion(address_space, base, &s->iomem_lo);
 587    memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
 588
 589    chr = qemu_chr_new("fpga", "vc:320x200", NULL);
 590    qemu_chr_fe_init(&s->display, chr, NULL);
 591    qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
 592                             malta_fgpa_display_event, NULL, s, NULL, true);
 593
 594    s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
 595                             230400, uart_chr, DEVICE_NATIVE_ENDIAN);
 596
 597    malta_fpga_reset(s);
 598    qemu_register_reset(malta_fpga_reset, s);
 599
 600    return s;
 601}
 602
 603/* Network support */
 604static void network_init(PCIBus *pci_bus)
 605{
 606    int i;
 607
 608    for (i = 0; i < nb_nics; i++) {
 609        NICInfo *nd = &nd_table[i];
 610        const char *default_devaddr = NULL;
 611
 612        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
 613            /* The malta board has a PCNet card using PCI SLOT 11 */
 614            default_devaddr = "0b";
 615
 616        pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
 617    }
 618}
 619
 620static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
 621                                      uint64_t kernel_entry)
 622{
 623    uint16_t *p;
 624
 625    /* Small bootloader */
 626    p = (uint16_t *)base;
 627
 628#define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
 629#define NM_HI2(VAL) \
 630          (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
 631#define NM_LO(VAL)  ((VAL) & 0xfff)
 632
 633    stw_p(p++, 0x2800); stw_p(p++, 0x001c);
 634                                /* bc to_here */
 635    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 636                                /* nop */
 637    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 638                                /* nop */
 639    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 640                                /* nop */
 641    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 642                                /* nop */
 643    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 644                                /* nop */
 645    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 646                                /* nop */
 647    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 648                                /* nop */
 649
 650    /* to_here: */
 651    if (semihosting_get_argc()) {
 652        /* Preserve a0 content as arguments have been passed    */
 653        stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 654                                /* nop                          */
 655    } else {
 656        stw_p(p++, 0x0080); stw_p(p++, 0x0002);
 657                                /* li a0,2                      */
 658    }
 659
 660    stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
 661
 662    stw_p(p++, NM_HI2(ENVP_VADDR - 64));
 663                                /* lui sp,%hi(ENVP_VADDR - 64)   */
 664
 665    stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
 666                                /* ori sp,sp,%lo(ENVP_VADDR - 64) */
 667
 668    stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
 669
 670    stw_p(p++, NM_HI2(ENVP_VADDR));
 671                                /* lui a1,%hi(ENVP_VADDR)        */
 672
 673    stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
 674                                /* ori a1,a1,%lo(ENVP_VADDR)     */
 675
 676    stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
 677
 678    stw_p(p++, NM_HI2(ENVP_VADDR + 8));
 679                                /* lui a2,%hi(ENVP_VADDR + 8)    */
 680
 681    stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
 682                                /* ori a2,a2,%lo(ENVP_VADDR + 8) */
 683
 684    stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
 685
 686    stw_p(p++, NM_HI2(loaderparams.ram_low_size));
 687                                /* lui a3,%hi(loaderparams.ram_low_size) */
 688
 689    stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
 690                                /* ori a3,a3,%lo(loaderparams.ram_low_size) */
 691
 692    /*
 693     * Load BAR registers as done by YAMON:
 694     *
 695     *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
 696     *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
 697     *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
 698     *
 699     */
 700    stw_p(p++, 0xe040); stw_p(p++, 0x0681);
 701                                /* lui t1, %hi(0xb4000000)      */
 702
 703#ifdef TARGET_WORDS_BIGENDIAN
 704
 705    stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
 706                                /* lui t0, %hi(0xdf000000)      */
 707
 708    /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
 709    stw_p(p++, 0x8422); stw_p(p++, 0x9068);
 710                                /* sw t0, 0x68(t1)              */
 711
 712    stw_p(p++, 0xe040); stw_p(p++, 0x077d);
 713                                /* lui t1, %hi(0xbbe00000)      */
 714
 715    stw_p(p++, 0xe020); stw_p(p++, 0x0801);
 716                                /* lui t0, %hi(0xc0000000)      */
 717
 718    /* 0x48 corresponds to GT_PCI0IOLD                          */
 719    stw_p(p++, 0x8422); stw_p(p++, 0x9048);
 720                                /* sw t0, 0x48(t1)              */
 721
 722    stw_p(p++, 0xe020); stw_p(p++, 0x0800);
 723                                /* lui t0, %hi(0x40000000)      */
 724
 725    /* 0x50 corresponds to GT_PCI0IOHD                          */
 726    stw_p(p++, 0x8422); stw_p(p++, 0x9050);
 727                                /* sw t0, 0x50(t1)              */
 728
 729    stw_p(p++, 0xe020); stw_p(p++, 0x0001);
 730                                /* lui t0, %hi(0x80000000)      */
 731
 732    /* 0x58 corresponds to GT_PCI0M0LD                          */
 733    stw_p(p++, 0x8422); stw_p(p++, 0x9058);
 734                                /* sw t0, 0x58(t1)              */
 735
 736    stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
 737                                /* lui t0, %hi(0x3f000000)      */
 738
 739    /* 0x60 corresponds to GT_PCI0M0HD                          */
 740    stw_p(p++, 0x8422); stw_p(p++, 0x9060);
 741                                /* sw t0, 0x60(t1)              */
 742
 743    stw_p(p++, 0xe020); stw_p(p++, 0x0821);
 744                                /* lui t0, %hi(0xc1000000)      */
 745
 746    /* 0x80 corresponds to GT_PCI0M1LD                          */
 747    stw_p(p++, 0x8422); stw_p(p++, 0x9080);
 748                                /* sw t0, 0x80(t1)              */
 749
 750    stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
 751                                /* lui t0, %hi(0x5e000000)      */
 752
 753#else
 754
 755    stw_p(p++, 0x0020); stw_p(p++, 0x00df);
 756                                /* addiu[32] t0, $0, 0xdf       */
 757
 758    /* 0x68 corresponds to GT_ISD                               */
 759    stw_p(p++, 0x8422); stw_p(p++, 0x9068);
 760                                /* sw t0, 0x68(t1)              */
 761
 762    /* Use kseg2 remapped address 0x1be00000                    */
 763    stw_p(p++, 0xe040); stw_p(p++, 0x077d);
 764                                /* lui t1, %hi(0xbbe00000)      */
 765
 766    stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
 767                                /* addiu[32] t0, $0, 0xc0       */
 768
 769    /* 0x48 corresponds to GT_PCI0IOLD                          */
 770    stw_p(p++, 0x8422); stw_p(p++, 0x9048);
 771                                /* sw t0, 0x48(t1)              */
 772
 773    stw_p(p++, 0x0020); stw_p(p++, 0x0040);
 774                                /* addiu[32] t0, $0, 0x40       */
 775
 776    /* 0x50 corresponds to GT_PCI0IOHD                          */
 777    stw_p(p++, 0x8422); stw_p(p++, 0x9050);
 778                                /* sw t0, 0x50(t1)              */
 779
 780    stw_p(p++, 0x0020); stw_p(p++, 0x0080);
 781                                /* addiu[32] t0, $0, 0x80       */
 782
 783    /* 0x58 corresponds to GT_PCI0M0LD                          */
 784    stw_p(p++, 0x8422); stw_p(p++, 0x9058);
 785                                /* sw t0, 0x58(t1)              */
 786
 787    stw_p(p++, 0x0020); stw_p(p++, 0x003f);
 788                                /* addiu[32] t0, $0, 0x3f       */
 789
 790    /* 0x60 corresponds to GT_PCI0M0HD                          */
 791    stw_p(p++, 0x8422); stw_p(p++, 0x9060);
 792                                /* sw t0, 0x60(t1)              */
 793
 794    stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
 795                                /* addiu[32] t0, $0, 0xc1       */
 796
 797    /* 0x80 corresponds to GT_PCI0M1LD                          */
 798    stw_p(p++, 0x8422); stw_p(p++, 0x9080);
 799                                /* sw t0, 0x80(t1)              */
 800
 801    stw_p(p++, 0x0020); stw_p(p++, 0x005e);
 802                                /* addiu[32] t0, $0, 0x5e       */
 803
 804#endif
 805
 806    /* 0x88 corresponds to GT_PCI0M1HD                          */
 807    stw_p(p++, 0x8422); stw_p(p++, 0x9088);
 808                                /* sw t0, 0x88(t1)              */
 809
 810    stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
 811
 812    stw_p(p++, NM_HI2(kernel_entry));
 813                                /* lui t9,%hi(kernel_entry)     */
 814
 815    stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
 816                                /* ori t9,t9,%lo(kernel_entry)  */
 817
 818    stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
 819                                /* jalrc   t8                   */
 820}
 821
 822/*
 823 * ROM and pseudo bootloader
 824 *
 825 * The following code implements a very very simple bootloader. It first
 826 * loads the registers a0 to a3 to the values expected by the OS, and
 827 * then jump at the kernel address.
 828 *
 829 * The bootloader should pass the locations of the kernel arguments and
 830 * environment variables tables. Those tables contain the 32-bit address
 831 * of NULL terminated strings. The environment variables table should be
 832 * terminated by a NULL address.
 833 *
 834 * For a simpler implementation, the number of kernel arguments is fixed
 835 * to two (the name of the kernel and the command line), and the two
 836 * tables are actually the same one.
 837 *
 838 * The registers a0 to a3 should contain the following values:
 839 *   a0 - number of kernel arguments
 840 *   a1 - 32-bit address of the kernel arguments table
 841 *   a2 - 32-bit address of the environment variables table
 842 *   a3 - RAM size in bytes
 843 */
 844static void write_bootloader(uint8_t *base, uint64_t run_addr,
 845                             uint64_t kernel_entry)
 846{
 847    uint32_t *p;
 848
 849    /* Small bootloader */
 850    p = (uint32_t *)base;
 851
 852    stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
 853                 ((run_addr + 0x580) & 0x0fffffff) >> 2);
 854    stl_p(p++, 0x00000000);                  /* nop */
 855
 856    /* YAMON service vector */
 857    stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
 858    stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
 859    stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
 860    stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
 861    stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
 862    stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
 863    stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
 864    stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
 865    stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
 866    stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
 867    stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
 868    stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
 869    stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
 870
 871
 872    /* Second part of the bootloader */
 873    p = (uint32_t *) (base + 0x580);
 874
 875    if (semihosting_get_argc()) {
 876        /* Preserve a0 content as arguments have been passed */
 877        stl_p(p++, 0x00000000);              /* nop */
 878    } else {
 879        stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
 880    }
 881
 882    /* lui sp, high(ENVP_VADDR) */
 883    stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
 884    /* ori sp, sp, low(ENVP_VADDR) */
 885    stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
 886    /* lui a1, high(ENVP_VADDR) */
 887    stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
 888    /* ori a1, a1, low(ENVP_VADDR) */
 889    stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
 890    /* lui a2, high(ENVP_VADDR + 8) */
 891    stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
 892    /* ori a2, a2, low(ENVP_VADDR + 8) */
 893    stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
 894    /* lui a3, high(ram_low_size) */
 895    stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
 896    /* ori a3, a3, low(ram_low_size) */
 897    stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
 898
 899    /* Load BAR registers as done by YAMON */
 900    stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */
 901
 902#ifdef TARGET_WORDS_BIGENDIAN
 903    stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
 904#else
 905    stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
 906#endif
 907    stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */
 908
 909    stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */
 910
 911#ifdef TARGET_WORDS_BIGENDIAN
 912    stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
 913#else
 914    stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
 915#endif
 916    stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
 917#ifdef TARGET_WORDS_BIGENDIAN
 918    stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
 919#else
 920    stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
 921#endif
 922    stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */
 923
 924#ifdef TARGET_WORDS_BIGENDIAN
 925    stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
 926#else
 927    stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
 928#endif
 929    stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
 930#ifdef TARGET_WORDS_BIGENDIAN
 931    stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
 932#else
 933    stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
 934#endif
 935    stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */
 936
 937#ifdef TARGET_WORDS_BIGENDIAN
 938    stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
 939#else
 940    stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
 941#endif
 942    stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
 943#ifdef TARGET_WORDS_BIGENDIAN
 944    stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
 945#else
 946    stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
 947#endif
 948    stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */
 949
 950    /* Jump to kernel code */
 951    stl_p(p++, 0x3c1f0000 |
 952          ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
 953    stl_p(p++, 0x37ff0000 |
 954          (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
 955    stl_p(p++, 0x03e00009);                  /* jalr ra */
 956    stl_p(p++, 0x00000000);                  /* nop */
 957
 958    /* YAMON subroutines */
 959    p = (uint32_t *) (base + 0x800);
 960    stl_p(p++, 0x03e00009);                  /* jalr ra */
 961    stl_p(p++, 0x24020000);                  /* li v0,0 */
 962    /* 808 YAMON print */
 963    stl_p(p++, 0x03e06821);                  /* move t5,ra */
 964    stl_p(p++, 0x00805821);                  /* move t3,a0 */
 965    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
 966    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
 967    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
 968    stl_p(p++, 0x10800005);                  /* beqz a0,834 */
 969    stl_p(p++, 0x00000000);                  /* nop */
 970    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
 971    stl_p(p++, 0x00000000);                  /* nop */
 972    stl_p(p++, 0x1000fff9);                  /* b 814 */
 973    stl_p(p++, 0x00000000);                  /* nop */
 974    stl_p(p++, 0x01a00009);                  /* jalr t5 */
 975    stl_p(p++, 0x01602021);                  /* move a0,t3 */
 976    /* 0x83c YAMON print_count */
 977    stl_p(p++, 0x03e06821);                  /* move t5,ra */
 978    stl_p(p++, 0x00805821);                  /* move t3,a0 */
 979    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
 980    stl_p(p++, 0x00c06021);                  /* move t4,a2 */
 981    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
 982    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
 983    stl_p(p++, 0x00000000);                  /* nop */
 984    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
 985    stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
 986    stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
 987    stl_p(p++, 0x00000000);                  /* nop */
 988    stl_p(p++, 0x01a00009);                  /* jalr t5 */
 989    stl_p(p++, 0x01602021);                  /* move a0,t3 */
 990    /* 0x870 */
 991    stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
 992    stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
 993    stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
 994    stl_p(p++, 0x00000000);                  /* nop */
 995    stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
 996    stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
 997    stl_p(p++, 0x00000000);                  /* nop */
 998    stl_p(p++, 0x03e00009);                  /* jalr ra */
 999    stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
1000
1001}
1002
1003static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
1004                                        const char *string, ...)
1005{
1006    va_list ap;
1007    uint32_t table_addr;
1008
1009    if (index >= ENVP_NB_ENTRIES) {
1010        return;
1011    }
1012
1013    if (string == NULL) {
1014        prom_buf[index] = 0;
1015        return;
1016    }
1017
1018    table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1019    prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
1020
1021    va_start(ap, string);
1022    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1023    va_end(ap);
1024}
1025
1026/* Kernel */
1027static uint64_t load_kernel(void)
1028{
1029    uint64_t kernel_entry, kernel_high, initrd_size;
1030    long kernel_size;
1031    ram_addr_t initrd_offset;
1032    int big_endian;
1033    uint32_t *prom_buf;
1034    long prom_size;
1035    int prom_index = 0;
1036    uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1037
1038#ifdef TARGET_WORDS_BIGENDIAN
1039    big_endian = 1;
1040#else
1041    big_endian = 0;
1042#endif
1043
1044    kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1045                           cpu_mips_kseg0_to_phys, NULL,
1046                           &kernel_entry, NULL,
1047                           &kernel_high, NULL, big_endian, EM_MIPS,
1048                           1, 0);
1049    if (kernel_size < 0) {
1050        error_report("could not load kernel '%s': %s",
1051                     loaderparams.kernel_filename,
1052                     load_elf_strerror(kernel_size));
1053        exit(1);
1054    }
1055
1056    /* Check where the kernel has been linked */
1057    if (kernel_entry & 0x80000000ll) {
1058        if (kvm_enabled()) {
1059            error_report("KVM guest kernels must be linked in useg. "
1060                         "Did you forget to enable CONFIG_KVM_GUEST?");
1061            exit(1);
1062        }
1063
1064        xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1065    } else {
1066        /* if kernel entry is in useg it is probably a KVM T&E kernel */
1067        mips_um_ksegs_enable();
1068
1069        xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1070    }
1071
1072    /* load initrd */
1073    initrd_size = 0;
1074    initrd_offset = 0;
1075    if (loaderparams.initrd_filename) {
1076        initrd_size = get_image_size(loaderparams.initrd_filename);
1077        if (initrd_size > 0) {
1078            /*
1079             * The kernel allocates the bootmap memory in the low memory after
1080             * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
1081             * pages.
1082             */
1083            initrd_offset = ROUND_UP(loaderparams.ram_low_size
1084                                     - (initrd_size + 128 * KiB),
1085                                     INITRD_PAGE_SIZE);
1086            if (kernel_high >= initrd_offset) {
1087                error_report("memory too small for initial ram disk '%s'",
1088                             loaderparams.initrd_filename);
1089                exit(1);
1090            }
1091            initrd_size = load_image_targphys(loaderparams.initrd_filename,
1092                                              initrd_offset,
1093                                              loaderparams.ram_size - initrd_offset);
1094        }
1095        if (initrd_size == (target_ulong) -1) {
1096            error_report("could not load initial ram disk '%s'",
1097                         loaderparams.initrd_filename);
1098            exit(1);
1099        }
1100    }
1101
1102    /* Setup prom parameters. */
1103    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1104    prom_buf = g_malloc(prom_size);
1105
1106    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1107    if (initrd_size > 0) {
1108        prom_set(prom_buf, prom_index++,
1109                 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1110                 xlate_to_kseg0(NULL, initrd_offset),
1111                 initrd_size, loaderparams.kernel_cmdline);
1112    } else {
1113        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1114    }
1115
1116    prom_set(prom_buf, prom_index++, "memsize");
1117    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1118
1119    prom_set(prom_buf, prom_index++, "ememsize");
1120    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1121
1122    prom_set(prom_buf, prom_index++, "modetty0");
1123    prom_set(prom_buf, prom_index++, "38400n8r");
1124    prom_set(prom_buf, prom_index++, NULL);
1125
1126    rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
1127
1128    g_free(prom_buf);
1129    return kernel_entry;
1130}
1131
1132static void malta_mips_config(MIPSCPU *cpu)
1133{
1134    MachineState *ms = MACHINE(qdev_get_machine());
1135    unsigned int smp_cpus = ms->smp.cpus;
1136    CPUMIPSState *env = &cpu->env;
1137    CPUState *cs = CPU(cpu);
1138
1139    if (ase_mt_available(env)) {
1140        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1141                                           CP0MVPC0_PTC, 8,
1142                                           smp_cpus * cs->nr_threads - 1);
1143        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1144                                           CP0MVPC0_PVPE, 4, smp_cpus - 1);
1145    }
1146}
1147
1148static void main_cpu_reset(void *opaque)
1149{
1150    MIPSCPU *cpu = opaque;
1151    CPUMIPSState *env = &cpu->env;
1152
1153    cpu_reset(CPU(cpu));
1154
1155    /*
1156     * The bootloader does not need to be rewritten as it is located in a
1157     * read only location. The kernel location and the arguments table
1158     * location does not change.
1159     */
1160    if (loaderparams.kernel_filename) {
1161        env->CP0_Status &= ~(1 << CP0St_ERL);
1162    }
1163
1164    malta_mips_config(cpu);
1165
1166    if (kvm_enabled()) {
1167        /* Start running from the bootloader we wrote to end of RAM */
1168        env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1169    }
1170}
1171
1172static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1173                                   qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1174{
1175    CPUMIPSState *env;
1176    MIPSCPU *cpu;
1177    int i;
1178
1179    for (i = 0; i < ms->smp.cpus; i++) {
1180        cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1181
1182        /* Init internal devices */
1183        cpu_mips_irq_init_cpu(cpu);
1184        cpu_mips_clock_init(cpu);
1185        qemu_register_reset(main_cpu_reset, cpu);
1186    }
1187
1188    cpu = MIPS_CPU(first_cpu);
1189    env = &cpu->env;
1190    *i8259_irq = env->irq[2];
1191    *cbus_irq = env->irq[4];
1192}
1193
1194static void create_cps(MachineState *ms, MaltaState *s,
1195                       qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1196{
1197    object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1198    object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1199                            &error_fatal);
1200    object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1201                            &error_fatal);
1202    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1203    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1204
1205    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1206
1207    *i8259_irq = get_cps_irq(&s->cps, 3);
1208    *cbus_irq = NULL;
1209}
1210
1211static void mips_create_cpu(MachineState *ms, MaltaState *s,
1212                            qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1213{
1214    if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1215        create_cps(ms, s, cbus_irq, i8259_irq);
1216    } else {
1217        create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1218    }
1219}
1220
1221static
1222void mips_malta_init(MachineState *machine)
1223{
1224    ram_addr_t ram_size = machine->ram_size;
1225    ram_addr_t ram_low_size;
1226    const char *kernel_filename = machine->kernel_filename;
1227    const char *kernel_cmdline = machine->kernel_cmdline;
1228    const char *initrd_filename = machine->initrd_filename;
1229    char *filename;
1230    PFlashCFI01 *fl;
1231    MemoryRegion *system_memory = get_system_memory();
1232    MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1233    MemoryRegion *ram_low_postio;
1234    MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1235    const size_t smbus_eeprom_size = 8 * 256;
1236    uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1237    uint64_t kernel_entry, bootloader_run_addr;
1238    PCIBus *pci_bus;
1239    ISABus *isa_bus;
1240    qemu_irq cbus_irq, i8259_irq;
1241    I2CBus *smbus;
1242    DriveInfo *dinfo;
1243    int fl_idx = 0;
1244    int be;
1245    MaltaState *s;
1246    DeviceState *dev;
1247
1248    s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1249    sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1250
1251    /* create CPU */
1252    mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1253
1254    /* allocate RAM */
1255    if (ram_size > 2 * GiB) {
1256        error_report("Too much memory for this machine: %" PRId64 "MB,"
1257                     " maximum 2048MB", ram_size / MiB);
1258        exit(1);
1259    }
1260
1261    /* register RAM at high address where it is undisturbed by IO */
1262    memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1263
1264    /* alias for pre IO hole access */
1265    memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1266                             machine->ram, 0, MIN(ram_size, 256 * MiB));
1267    memory_region_add_subregion(system_memory, 0, ram_low_preio);
1268
1269    /* alias for post IO hole access, if there is enough RAM */
1270    if (ram_size > 512 * MiB) {
1271        ram_low_postio = g_new(MemoryRegion, 1);
1272        memory_region_init_alias(ram_low_postio, NULL,
1273                                 "mips_malta_low_postio.ram",
1274                                 machine->ram, 512 * MiB,
1275                                 ram_size - 512 * MiB);
1276        memory_region_add_subregion(system_memory, 512 * MiB,
1277                                    ram_low_postio);
1278    }
1279
1280#ifdef TARGET_WORDS_BIGENDIAN
1281    be = 1;
1282#else
1283    be = 0;
1284#endif
1285
1286    /* FPGA */
1287
1288    /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1289    malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1290
1291    /* Load firmware in flash / BIOS. */
1292    dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1293    fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1294                               FLASH_SIZE,
1295                               dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1296                               65536,
1297                               4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1298    bios = pflash_cfi01_get_memory(fl);
1299    fl_idx++;
1300    if (kernel_filename) {
1301        ram_low_size = MIN(ram_size, 256 * MiB);
1302        /* For KVM we reserve 1MB of RAM for running bootloader */
1303        if (kvm_enabled()) {
1304            ram_low_size -= 0x100000;
1305            bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
1306        } else {
1307            bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1308        }
1309
1310        /* Write a small bootloader to the flash location. */
1311        loaderparams.ram_size = ram_size;
1312        loaderparams.ram_low_size = ram_low_size;
1313        loaderparams.kernel_filename = kernel_filename;
1314        loaderparams.kernel_cmdline = kernel_cmdline;
1315        loaderparams.initrd_filename = initrd_filename;
1316        kernel_entry = load_kernel();
1317
1318        if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1319            write_bootloader(memory_region_get_ram_ptr(bios),
1320                             bootloader_run_addr, kernel_entry);
1321        } else {
1322            write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1323                                      bootloader_run_addr, kernel_entry);
1324        }
1325        if (kvm_enabled()) {
1326            /* Write the bootloader code @ the end of RAM, 1MB reserved */
1327            write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1328                                    ram_low_size,
1329                             bootloader_run_addr, kernel_entry);
1330        }
1331    } else {
1332        target_long bios_size = FLASH_SIZE;
1333        /* The flash region isn't executable from a KVM guest */
1334        if (kvm_enabled()) {
1335            error_report("KVM enabled but no -kernel argument was specified. "
1336                         "Booting from flash is not supported with KVM.");
1337            exit(1);
1338        }
1339        /* Load firmware from flash. */
1340        if (!dinfo) {
1341            /* Load a BIOS image. */
1342            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1343                                      machine->firmware ?: BIOS_FILENAME);
1344            if (filename) {
1345                bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1346                                                BIOS_SIZE);
1347                g_free(filename);
1348            } else {
1349                bios_size = -1;
1350            }
1351            if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1352                machine->firmware && !qtest_enabled()) {
1353                error_report("Could not load MIPS bios '%s'", machine->firmware);
1354                exit(1);
1355            }
1356        }
1357        /*
1358         * In little endian mode the 32bit words in the bios are swapped,
1359         * a neat trick which allows bi-endian firmware.
1360         */
1361#ifndef TARGET_WORDS_BIGENDIAN
1362        {
1363            uint32_t *end, *addr;
1364            const size_t swapsize = MIN(bios_size, 0x3e0000);
1365            addr = rom_ptr(FLASH_ADDRESS, swapsize);
1366            if (!addr) {
1367                addr = memory_region_get_ram_ptr(bios);
1368            }
1369            end = (void *)addr + swapsize;
1370            while (addr < end) {
1371                bswap32s(addr);
1372                addr++;
1373            }
1374        }
1375#endif
1376    }
1377
1378    /*
1379     * Map the BIOS at a 2nd physical location, as on the real board.
1380     * Copy it so that we can patch in the MIPS revision, which cannot be
1381     * handled by an overlapping region as the resulting ROM code subpage
1382     * regions are not executable.
1383     */
1384    memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1385                           &error_fatal);
1386    if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1387                  FLASH_ADDRESS, BIOS_SIZE)) {
1388        memcpy(memory_region_get_ram_ptr(bios_copy),
1389               memory_region_get_ram_ptr(bios), BIOS_SIZE);
1390    }
1391    memory_region_set_readonly(bios_copy, true);
1392    memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1393
1394    /* Board ID = 0x420 (Malta Board with CoreLV) */
1395    stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1396
1397    /* Northbridge */
1398    pci_bus = gt64120_register(s->i8259);
1399    /*
1400     * The whole address space decoded by the GT-64120A doesn't generate
1401     * exception when accessing invalid memory. Create an empty slot to
1402     * emulate this feature.
1403     */
1404    empty_slot_init("GT64120", 0, 0x20000000);
1405
1406    /* Southbridge */
1407    dev = piix4_create(pci_bus, &isa_bus, &smbus);
1408
1409    /* Interrupt controller */
1410    qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1411    for (int i = 0; i < ISA_NUM_IRQS; i++) {
1412        s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1413    }
1414
1415    /* generate SPD EEPROM data */
1416    generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1417    generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1418    smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1419    g_free(smbus_eeprom_buf);
1420
1421    /* Super I/O: SMS FDC37M817 */
1422    isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1423
1424    /* Network card */
1425    network_init(pci_bus);
1426
1427    /* Optional PCI video card */
1428    pci_vga_init(pci_bus);
1429}
1430
1431static void mips_malta_instance_init(Object *obj)
1432{
1433    MaltaState *s = MIPS_MALTA(obj);
1434
1435    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1436    clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1437}
1438
1439static const TypeInfo mips_malta_device = {
1440    .name          = TYPE_MIPS_MALTA,
1441    .parent        = TYPE_SYS_BUS_DEVICE,
1442    .instance_size = sizeof(MaltaState),
1443    .instance_init = mips_malta_instance_init,
1444};
1445
1446static void mips_malta_machine_init(MachineClass *mc)
1447{
1448    mc->desc = "MIPS Malta Core LV";
1449    mc->init = mips_malta_init;
1450    mc->block_default_type = IF_IDE;
1451    mc->max_cpus = 16;
1452    mc->is_default = true;
1453#ifdef TARGET_MIPS64
1454    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1455#else
1456    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1457#endif
1458    mc->default_ram_id = "mips_malta.ram";
1459}
1460
1461DEFINE_MACHINE("malta", mips_malta_machine_init)
1462
1463static void mips_malta_register_types(void)
1464{
1465    type_register_static(&mips_malta_device);
1466}
1467
1468type_init(mips_malta_register_types)
1469