qemu/hw/misc/imx25_ccm.c
<<
>>
Prefs
   1/*
   2 * IMX25 Clock Control Module
   3 *
   4 * Copyright (C) 2012 NICTA
   5 * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
   6 *
   7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   8 * See the COPYING file in the top-level directory.
   9 *
  10 * To get the timer frequencies right, we need to emulate at least part of
  11 * the CCM.
  12 */
  13
  14#include "qemu/osdep.h"
  15#include "hw/misc/imx25_ccm.h"
  16#include "migration/vmstate.h"
  17#include "qemu/log.h"
  18#include "qemu/module.h"
  19
  20#ifndef DEBUG_IMX25_CCM
  21#define DEBUG_IMX25_CCM 0
  22#endif
  23
  24#define DPRINTF(fmt, args...) \
  25    do { \
  26        if (DEBUG_IMX25_CCM) { \
  27            fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX25_CCM, \
  28                                             __func__, ##args); \
  29        } \
  30    } while (0)
  31
  32static const char *imx25_ccm_reg_name(uint32_t reg)
  33{
  34    static char unknown[20];
  35
  36    switch (reg) {
  37    case IMX25_CCM_MPCTL_REG:
  38        return "mpctl";
  39    case IMX25_CCM_UPCTL_REG:
  40        return "upctl";
  41    case IMX25_CCM_CCTL_REG:
  42        return "cctl";
  43    case IMX25_CCM_CGCR0_REG:
  44        return "cgcr0";
  45    case IMX25_CCM_CGCR1_REG:
  46        return "cgcr1";
  47    case IMX25_CCM_CGCR2_REG:
  48        return "cgcr2";
  49    case IMX25_CCM_PCDR0_REG:
  50        return "pcdr0";
  51    case IMX25_CCM_PCDR1_REG:
  52        return "pcdr1";
  53    case IMX25_CCM_PCDR2_REG:
  54        return "pcdr2";
  55    case IMX25_CCM_PCDR3_REG:
  56        return "pcdr3";
  57    case IMX25_CCM_RCSR_REG:
  58        return "rcsr";
  59    case IMX25_CCM_CRDR_REG:
  60        return "crdr";
  61    case IMX25_CCM_DCVR0_REG:
  62        return "dcvr0";
  63    case IMX25_CCM_DCVR1_REG:
  64        return "dcvr1";
  65    case IMX25_CCM_DCVR2_REG:
  66        return "dcvr2";
  67    case IMX25_CCM_DCVR3_REG:
  68        return "dcvr3";
  69    case IMX25_CCM_LTR0_REG:
  70        return "ltr0";
  71    case IMX25_CCM_LTR1_REG:
  72        return "ltr1";
  73    case IMX25_CCM_LTR2_REG:
  74        return "ltr2";
  75    case IMX25_CCM_LTR3_REG:
  76        return "ltr3";
  77    case IMX25_CCM_LTBR0_REG:
  78        return "ltbr0";
  79    case IMX25_CCM_LTBR1_REG:
  80        return "ltbr1";
  81    case IMX25_CCM_PMCR0_REG:
  82        return "pmcr0";
  83    case IMX25_CCM_PMCR1_REG:
  84        return "pmcr1";
  85    case IMX25_CCM_PMCR2_REG:
  86        return "pmcr2";
  87    case IMX25_CCM_MCR_REG:
  88        return "mcr";
  89    case IMX25_CCM_LPIMR0_REG:
  90        return "lpimr0";
  91    case IMX25_CCM_LPIMR1_REG:
  92        return "lpimr1";
  93    default:
  94        sprintf(unknown, "[%u ?]", reg);
  95        return unknown;
  96    }
  97}
  98#define CKIH_FREQ 24000000 /* 24MHz crystal input */
  99
 100static const VMStateDescription vmstate_imx25_ccm = {
 101    .name = TYPE_IMX25_CCM,
 102    .version_id = 1,
 103    .minimum_version_id = 1,
 104    .fields = (VMStateField[]) {
 105        VMSTATE_UINT32_ARRAY(reg, IMX25CCMState, IMX25_CCM_MAX_REG),
 106        VMSTATE_END_OF_LIST()
 107    },
 108};
 109
 110static uint32_t imx25_ccm_get_mpll_clk(IMXCCMState *dev)
 111{
 112    uint32_t freq;
 113    IMX25CCMState *s = IMX25_CCM(dev);
 114
 115    if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], MPLL_BYPASS)) {
 116        freq = CKIH_FREQ;
 117    } else {
 118        freq = imx_ccm_calc_pll(s->reg[IMX25_CCM_MPCTL_REG], CKIH_FREQ);
 119    }
 120
 121    DPRINTF("freq = %u\n", freq);
 122
 123    return freq;
 124}
 125
 126static uint32_t imx25_ccm_get_mcu_clk(IMXCCMState *dev)
 127{
 128    uint32_t freq;
 129    IMX25CCMState *s = IMX25_CCM(dev);
 130
 131    freq = imx25_ccm_get_mpll_clk(dev);
 132
 133    if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_SRC)) {
 134        freq = (freq * 3 / 4);
 135    }
 136
 137    freq = freq / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_CLK_DIV));
 138
 139    DPRINTF("freq = %u\n", freq);
 140
 141    return freq;
 142}
 143
 144static uint32_t imx25_ccm_get_ahb_clk(IMXCCMState *dev)
 145{
 146    uint32_t freq;
 147    IMX25CCMState *s = IMX25_CCM(dev);
 148
 149    freq = imx25_ccm_get_mcu_clk(dev)
 150           / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], AHB_CLK_DIV));
 151
 152    DPRINTF("freq = %u\n", freq);
 153
 154    return freq;
 155}
 156
 157static uint32_t imx25_ccm_get_ipg_clk(IMXCCMState *dev)
 158{
 159    uint32_t freq;
 160
 161    freq = imx25_ccm_get_ahb_clk(dev) / 2;
 162
 163    DPRINTF("freq = %u\n", freq);
 164
 165    return freq;
 166}
 167
 168static uint32_t imx25_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
 169{
 170    uint32_t freq = 0;
 171    DPRINTF("Clock = %d)\n", clock);
 172
 173    switch (clock) {
 174    case CLK_NONE:
 175        break;
 176    case CLK_IPG:
 177    case CLK_IPG_HIGH:
 178        freq = imx25_ccm_get_ipg_clk(dev);
 179        break;
 180    case CLK_32k:
 181        freq = CKIL_FREQ;
 182        break;
 183    default:
 184        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
 185                      TYPE_IMX25_CCM, __func__, clock);
 186        break;
 187    }
 188
 189    DPRINTF("Clock = %d) = %u\n", clock, freq);
 190
 191    return freq;
 192}
 193
 194static void imx25_ccm_reset(DeviceState *dev)
 195{
 196    IMX25CCMState *s = IMX25_CCM(dev);
 197
 198    DPRINTF("\n");
 199
 200    memset(s->reg, 0, IMX25_CCM_MAX_REG * sizeof(uint32_t));
 201    s->reg[IMX25_CCM_MPCTL_REG] = 0x800b2c01;
 202    s->reg[IMX25_CCM_UPCTL_REG] = 0x84042800;
 203    /* 
 204     * The value below gives:
 205     * CPU = 133 MHz, AHB = 66,5 MHz, IPG = 33 MHz. 
 206     */
 207    s->reg[IMX25_CCM_CCTL_REG]  = 0xd0030000;
 208    s->reg[IMX25_CCM_CGCR0_REG] = 0x028A0100;
 209    s->reg[IMX25_CCM_CGCR1_REG] = 0x04008100;
 210    s->reg[IMX25_CCM_CGCR2_REG] = 0x00000438;
 211    s->reg[IMX25_CCM_PCDR0_REG] = 0x01010101;
 212    s->reg[IMX25_CCM_PCDR1_REG] = 0x01010101;
 213    s->reg[IMX25_CCM_PCDR2_REG] = 0x01010101;
 214    s->reg[IMX25_CCM_PCDR3_REG] = 0x01010101;
 215    s->reg[IMX25_CCM_PMCR0_REG] = 0x00A00000;
 216    s->reg[IMX25_CCM_PMCR1_REG] = 0x0000A030;
 217    s->reg[IMX25_CCM_PMCR2_REG] = 0x0000A030;
 218    s->reg[IMX25_CCM_MCR_REG]   = 0x43000000;
 219
 220    /*
 221     * default boot will change the reset values to allow:
 222     * CPU = 399 MHz, AHB = 133 MHz, IPG = 66,5 MHz. 
 223     * For some reason, this doesn't work. With the value below, linux
 224     * detects a 88 MHz IPG CLK instead of 66,5 MHz.
 225    s->reg[IMX25_CCM_CCTL_REG]  = 0x20032000;
 226     */
 227}
 228
 229static uint64_t imx25_ccm_read(void *opaque, hwaddr offset, unsigned size)
 230{
 231    uint32_t value = 0;
 232    IMX25CCMState *s = (IMX25CCMState *)opaque;
 233
 234    if (offset < 0x70) {
 235        value = s->reg[offset >> 2];
 236    } else {
 237        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
 238                      HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset);
 239    }
 240
 241    DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2),
 242            value);
 243
 244    return value;
 245}
 246
 247static void imx25_ccm_write(void *opaque, hwaddr offset, uint64_t value,
 248                            unsigned size)
 249{
 250    IMX25CCMState *s = (IMX25CCMState *)opaque;
 251
 252    DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2),
 253            (uint32_t)value);
 254
 255    if (offset < 0x70) {
 256        /*
 257         * We will do a better implementation later. In particular some bits
 258         * cannot be written to.
 259         */
 260        s->reg[offset >> 2] = value;
 261    } else {
 262        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
 263                      HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset);
 264    }
 265}
 266
 267static const struct MemoryRegionOps imx25_ccm_ops = {
 268    .read = imx25_ccm_read,
 269    .write = imx25_ccm_write,
 270    .endianness = DEVICE_NATIVE_ENDIAN,
 271    .valid = {
 272        /*
 273         * Our device would not work correctly if the guest was doing
 274         * unaligned access. This might not be a limitation on the real
 275         * device but in practice there is no reason for a guest to access
 276         * this device unaligned.
 277         */
 278        .min_access_size = 4,
 279        .max_access_size = 4,
 280        .unaligned = false,
 281    },
 282};
 283
 284static void imx25_ccm_init(Object *obj)
 285{
 286    DeviceState *dev = DEVICE(obj);
 287    SysBusDevice *sd = SYS_BUS_DEVICE(obj);
 288    IMX25CCMState *s = IMX25_CCM(obj);
 289
 290    memory_region_init_io(&s->iomem, OBJECT(dev), &imx25_ccm_ops, s,
 291                          TYPE_IMX25_CCM, 0x1000);
 292    sysbus_init_mmio(sd, &s->iomem);
 293}
 294
 295static void imx25_ccm_class_init(ObjectClass *klass, void *data)
 296{
 297    DeviceClass *dc = DEVICE_CLASS(klass);
 298    IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
 299
 300    dc->reset = imx25_ccm_reset;
 301    dc->vmsd = &vmstate_imx25_ccm;
 302    dc->desc = "i.MX25 Clock Control Module";
 303
 304    ccm->get_clock_frequency = imx25_ccm_get_clock_frequency;
 305}
 306
 307static const TypeInfo imx25_ccm_info = {
 308    .name          = TYPE_IMX25_CCM,
 309    .parent        = TYPE_IMX_CCM,
 310    .instance_size = sizeof(IMX25CCMState),
 311    .instance_init = imx25_ccm_init,
 312    .class_init    = imx25_ccm_class_init,
 313};
 314
 315static void imx25_ccm_register_types(void)
 316{
 317    type_register_static(&imx25_ccm_info);
 318}
 319
 320type_init(imx25_ccm_register_types)
 321