qemu/hw/net/imx_fec.c
<<
>>
Prefs
   1/*
   2 * i.MX Fast Ethernet Controller emulation.
   3 *
   4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
   5 *
   6 * Based on Coldfire Fast Ethernet Controller emulation.
   7 *
   8 * Copyright (c) 2007 CodeSourcery.
   9 *
  10 *  This program is free software; you can redistribute it and/or modify it
  11 *  under the terms of the GNU General Public License as published by the
  12 *  Free Software Foundation; either version 2 of the License, or
  13 *  (at your option) any later version.
  14 *
  15 *  This program is distributed in the hope that it will be useful, but WITHOUT
  16 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  17 *  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  18 *  for more details.
  19 *
  20 *  You should have received a copy of the GNU General Public License along
  21 *  with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/irq.h"
  26#include "hw/net/imx_fec.h"
  27#include "hw/qdev-properties.h"
  28#include "migration/vmstate.h"
  29#include "sysemu/dma.h"
  30#include "qemu/log.h"
  31#include "qemu/module.h"
  32#include "net/checksum.h"
  33#include "net/eth.h"
  34#include "trace.h"
  35
  36/* For crc32 */
  37#include <zlib.h>
  38
  39#define IMX_MAX_DESC    1024
  40
  41static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
  42{
  43    static char tmp[20];
  44    sprintf(tmp, "index %d", index);
  45    return tmp;
  46}
  47
  48static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
  49{
  50    switch (index) {
  51    case ENET_FRBR:
  52        return "FRBR";
  53    case ENET_FRSR:
  54        return "FRSR";
  55    case ENET_MIIGSK_CFGR:
  56        return "MIIGSK_CFGR";
  57    case ENET_MIIGSK_ENR:
  58        return "MIIGSK_ENR";
  59    default:
  60        return imx_default_reg_name(s, index);
  61    }
  62}
  63
  64static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
  65{
  66    switch (index) {
  67    case ENET_RSFL:
  68        return "RSFL";
  69    case ENET_RSEM:
  70        return "RSEM";
  71    case ENET_RAEM:
  72        return "RAEM";
  73    case ENET_RAFL:
  74        return "RAFL";
  75    case ENET_TSEM:
  76        return "TSEM";
  77    case ENET_TAEM:
  78        return "TAEM";
  79    case ENET_TAFL:
  80        return "TAFL";
  81    case ENET_TIPG:
  82        return "TIPG";
  83    case ENET_FTRL:
  84        return "FTRL";
  85    case ENET_TACC:
  86        return "TACC";
  87    case ENET_RACC:
  88        return "RACC";
  89    case ENET_ATCR:
  90        return "ATCR";
  91    case ENET_ATVR:
  92        return "ATVR";
  93    case ENET_ATOFF:
  94        return "ATOFF";
  95    case ENET_ATPER:
  96        return "ATPER";
  97    case ENET_ATCOR:
  98        return "ATCOR";
  99    case ENET_ATINC:
 100        return "ATINC";
 101    case ENET_ATSTMP:
 102        return "ATSTMP";
 103    case ENET_TGSR:
 104        return "TGSR";
 105    case ENET_TCSR0:
 106        return "TCSR0";
 107    case ENET_TCCR0:
 108        return "TCCR0";
 109    case ENET_TCSR1:
 110        return "TCSR1";
 111    case ENET_TCCR1:
 112        return "TCCR1";
 113    case ENET_TCSR2:
 114        return "TCSR2";
 115    case ENET_TCCR2:
 116        return "TCCR2";
 117    case ENET_TCSR3:
 118        return "TCSR3";
 119    case ENET_TCCR3:
 120        return "TCCR3";
 121    default:
 122        return imx_default_reg_name(s, index);
 123    }
 124}
 125
 126static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
 127{
 128    switch (index) {
 129    case ENET_EIR:
 130        return "EIR";
 131    case ENET_EIMR:
 132        return "EIMR";
 133    case ENET_RDAR:
 134        return "RDAR";
 135    case ENET_TDAR:
 136        return "TDAR";
 137    case ENET_ECR:
 138        return "ECR";
 139    case ENET_MMFR:
 140        return "MMFR";
 141    case ENET_MSCR:
 142        return "MSCR";
 143    case ENET_MIBC:
 144        return "MIBC";
 145    case ENET_RCR:
 146        return "RCR";
 147    case ENET_TCR:
 148        return "TCR";
 149    case ENET_PALR:
 150        return "PALR";
 151    case ENET_PAUR:
 152        return "PAUR";
 153    case ENET_OPD:
 154        return "OPD";
 155    case ENET_IAUR:
 156        return "IAUR";
 157    case ENET_IALR:
 158        return "IALR";
 159    case ENET_GAUR:
 160        return "GAUR";
 161    case ENET_GALR:
 162        return "GALR";
 163    case ENET_TFWR:
 164        return "TFWR";
 165    case ENET_RDSR:
 166        return "RDSR";
 167    case ENET_TDSR:
 168        return "TDSR";
 169    case ENET_MRBR:
 170        return "MRBR";
 171    default:
 172        if (s->is_fec) {
 173            return imx_fec_reg_name(s, index);
 174        } else {
 175            return imx_enet_reg_name(s, index);
 176        }
 177    }
 178}
 179
 180/*
 181 * Versions of this device with more than one TX descriptor save the
 182 * 2nd and 3rd descriptors in a subsection, to maintain migration
 183 * compatibility with previous versions of the device that only
 184 * supported a single descriptor.
 185 */
 186static bool imx_eth_is_multi_tx_ring(void *opaque)
 187{
 188    IMXFECState *s = IMX_FEC(opaque);
 189
 190    return s->tx_ring_num > 1;
 191}
 192
 193static const VMStateDescription vmstate_imx_eth_txdescs = {
 194    .name = "imx.fec/txdescs",
 195    .version_id = 1,
 196    .minimum_version_id = 1,
 197    .needed = imx_eth_is_multi_tx_ring,
 198    .fields = (VMStateField[]) {
 199         VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
 200         VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
 201         VMSTATE_END_OF_LIST()
 202    }
 203};
 204
 205static const VMStateDescription vmstate_imx_eth = {
 206    .name = TYPE_IMX_FEC,
 207    .version_id = 2,
 208    .minimum_version_id = 2,
 209    .fields = (VMStateField[]) {
 210        VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
 211        VMSTATE_UINT32(rx_descriptor, IMXFECState),
 212        VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
 213        VMSTATE_UINT32(phy_status, IMXFECState),
 214        VMSTATE_UINT32(phy_control, IMXFECState),
 215        VMSTATE_UINT32(phy_advertise, IMXFECState),
 216        VMSTATE_UINT32(phy_int, IMXFECState),
 217        VMSTATE_UINT32(phy_int_mask, IMXFECState),
 218        VMSTATE_END_OF_LIST()
 219    },
 220    .subsections = (const VMStateDescription * []) {
 221        &vmstate_imx_eth_txdescs,
 222        NULL
 223    },
 224};
 225
 226#define PHY_INT_ENERGYON            (1 << 7)
 227#define PHY_INT_AUTONEG_COMPLETE    (1 << 6)
 228#define PHY_INT_FAULT               (1 << 5)
 229#define PHY_INT_DOWN                (1 << 4)
 230#define PHY_INT_AUTONEG_LP          (1 << 3)
 231#define PHY_INT_PARFAULT            (1 << 2)
 232#define PHY_INT_AUTONEG_PAGE        (1 << 1)
 233
 234static void imx_eth_update(IMXFECState *s);
 235
 236/*
 237 * The MII phy could raise a GPIO to the processor which in turn
 238 * could be handled as an interrpt by the OS.
 239 * For now we don't handle any GPIO/interrupt line, so the OS will
 240 * have to poll for the PHY status.
 241 */
 242static void imx_phy_update_irq(IMXFECState *s)
 243{
 244    imx_eth_update(s);
 245}
 246
 247static void imx_phy_update_link(IMXFECState *s)
 248{
 249    /* Autonegotiation status mirrors link status.  */
 250    if (qemu_get_queue(s->nic)->link_down) {
 251        trace_imx_phy_update_link("down");
 252        s->phy_status &= ~0x0024;
 253        s->phy_int |= PHY_INT_DOWN;
 254    } else {
 255        trace_imx_phy_update_link("up");
 256        s->phy_status |= 0x0024;
 257        s->phy_int |= PHY_INT_ENERGYON;
 258        s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
 259    }
 260    imx_phy_update_irq(s);
 261}
 262
 263static void imx_eth_set_link(NetClientState *nc)
 264{
 265    imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
 266}
 267
 268static void imx_phy_reset(IMXFECState *s)
 269{
 270    trace_imx_phy_reset();
 271
 272    s->phy_status = 0x7809;
 273    s->phy_control = 0x3000;
 274    s->phy_advertise = 0x01e1;
 275    s->phy_int_mask = 0;
 276    s->phy_int = 0;
 277    imx_phy_update_link(s);
 278}
 279
 280static uint32_t imx_phy_read(IMXFECState *s, int reg)
 281{
 282    uint32_t val;
 283    uint32_t phy = reg / 32;
 284
 285    if (phy != s->phy_num) {
 286        qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad phy num %u\n",
 287                      TYPE_IMX_FEC, __func__, phy);
 288        return 0;
 289    }
 290
 291    reg %= 32;
 292
 293    switch (reg) {
 294    case 0:     /* Basic Control */
 295        val = s->phy_control;
 296        break;
 297    case 1:     /* Basic Status */
 298        val = s->phy_status;
 299        break;
 300    case 2:     /* ID1 */
 301        val = 0x0007;
 302        break;
 303    case 3:     /* ID2 */
 304        val = 0xc0d1;
 305        break;
 306    case 4:     /* Auto-neg advertisement */
 307        val = s->phy_advertise;
 308        break;
 309    case 5:     /* Auto-neg Link Partner Ability */
 310        val = 0x0f71;
 311        break;
 312    case 6:     /* Auto-neg Expansion */
 313        val = 1;
 314        break;
 315    case 29:    /* Interrupt source.  */
 316        val = s->phy_int;
 317        s->phy_int = 0;
 318        imx_phy_update_irq(s);
 319        break;
 320    case 30:    /* Interrupt mask */
 321        val = s->phy_int_mask;
 322        break;
 323    case 17:
 324    case 18:
 325    case 27:
 326    case 31:
 327        qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
 328                      TYPE_IMX_FEC, __func__, reg);
 329        val = 0;
 330        break;
 331    default:
 332        qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
 333                      TYPE_IMX_FEC, __func__, reg);
 334        val = 0;
 335        break;
 336    }
 337
 338    trace_imx_phy_read(val, phy, reg);
 339
 340    return val;
 341}
 342
 343static void imx_phy_write(IMXFECState *s, int reg, uint32_t val)
 344{
 345    uint32_t phy = reg / 32;
 346
 347    if (phy != s->phy_num) {
 348        qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad phy num %u\n",
 349                      TYPE_IMX_FEC, __func__, phy);
 350        return;
 351    }
 352
 353    reg %= 32;
 354
 355    trace_imx_phy_write(val, phy, reg);
 356
 357    switch (reg) {
 358    case 0:     /* Basic Control */
 359        if (val & 0x8000) {
 360            imx_phy_reset(s);
 361        } else {
 362            s->phy_control = val & 0x7980;
 363            /* Complete autonegotiation immediately.  */
 364            if (val & 0x1000) {
 365                s->phy_status |= 0x0020;
 366            }
 367        }
 368        break;
 369    case 4:     /* Auto-neg advertisement */
 370        s->phy_advertise = (val & 0x2d7f) | 0x80;
 371        break;
 372    case 30:    /* Interrupt mask */
 373        s->phy_int_mask = val & 0xff;
 374        imx_phy_update_irq(s);
 375        break;
 376    case 17:
 377    case 18:
 378    case 27:
 379    case 31:
 380        qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
 381                      TYPE_IMX_FEC, __func__, reg);
 382        break;
 383    default:
 384        qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
 385                      TYPE_IMX_FEC, __func__, reg);
 386        break;
 387    }
 388}
 389
 390static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
 391{
 392    dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
 393
 394    trace_imx_fec_read_bd(addr, bd->flags, bd->length, bd->data);
 395}
 396
 397static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
 398{
 399    dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
 400}
 401
 402static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
 403{
 404    dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
 405
 406    trace_imx_enet_read_bd(addr, bd->flags, bd->length, bd->data,
 407                   bd->option, bd->status);
 408}
 409
 410static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
 411{
 412    dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
 413}
 414
 415static void imx_eth_update(IMXFECState *s)
 416{
 417    /*
 418     * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
 419     * interrupts swapped. This worked with older versions of Linux (4.14
 420     * and older) since Linux associated both interrupt lines with Ethernet
 421     * MAC interrupts. Specifically,
 422     * - Linux 4.15 and later have separate interrupt handlers for the MAC and
 423     *   timer interrupts. Those versions of Linux fail with versions of QEMU
 424     *   with swapped interrupt assignments.
 425     * - In linux 4.14, both interrupt lines were registered with the Ethernet
 426     *   MAC interrupt handler. As a result, all versions of qemu happen to
 427     *   work, though that is accidental.
 428     * - In Linux 4.9 and older, the timer interrupt was registered directly
 429     *   with the Ethernet MAC interrupt handler. The MAC interrupt was
 430     *   redirected to a GPIO interrupt to work around erratum ERR006687.
 431     *   This was implemented using the SOC's IOMUX block. In qemu, this GPIO
 432     *   interrupt never fired since IOMUX is currently not supported in qemu.
 433     *   Linux instead received MAC interrupts on the timer interrupt.
 434     *   As a result, qemu versions with the swapped interrupt assignment work,
 435     *   albeit accidentally, but qemu versions with the correct interrupt
 436     *   assignment fail.
 437     *
 438     * To ensure that all versions of Linux work, generate ENET_INT_MAC
 439     * interrrupts on both interrupt lines. This should be changed if and when
 440     * qemu supports IOMUX.
 441     */
 442    if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] &
 443        (ENET_INT_MAC | ENET_INT_TS_TIMER)) {
 444        qemu_set_irq(s->irq[1], 1);
 445    } else {
 446        qemu_set_irq(s->irq[1], 0);
 447    }
 448
 449    if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
 450        qemu_set_irq(s->irq[0], 1);
 451    } else {
 452        qemu_set_irq(s->irq[0], 0);
 453    }
 454}
 455
 456static void imx_fec_do_tx(IMXFECState *s)
 457{
 458    int frame_size = 0, descnt = 0;
 459    uint8_t *ptr = s->frame;
 460    uint32_t addr = s->tx_descriptor[0];
 461
 462    while (descnt++ < IMX_MAX_DESC) {
 463        IMXFECBufDesc bd;
 464        int len;
 465
 466        imx_fec_read_bd(&bd, addr);
 467        if ((bd.flags & ENET_BD_R) == 0) {
 468
 469            /* Run out of descriptors to transmit.  */
 470            trace_imx_eth_tx_bd_busy();
 471
 472            break;
 473        }
 474        len = bd.length;
 475        if (frame_size + len > ENET_MAX_FRAME_SIZE) {
 476            len = ENET_MAX_FRAME_SIZE - frame_size;
 477            s->regs[ENET_EIR] |= ENET_INT_BABT;
 478        }
 479        dma_memory_read(&address_space_memory, bd.data, ptr, len);
 480        ptr += len;
 481        frame_size += len;
 482        if (bd.flags & ENET_BD_L) {
 483            /* Last buffer in frame.  */
 484            qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
 485            ptr = s->frame;
 486            frame_size = 0;
 487            s->regs[ENET_EIR] |= ENET_INT_TXF;
 488        }
 489        s->regs[ENET_EIR] |= ENET_INT_TXB;
 490        bd.flags &= ~ENET_BD_R;
 491        /* Write back the modified descriptor.  */
 492        imx_fec_write_bd(&bd, addr);
 493        /* Advance to the next descriptor.  */
 494        if ((bd.flags & ENET_BD_W) != 0) {
 495            addr = s->regs[ENET_TDSR];
 496        } else {
 497            addr += sizeof(bd);
 498        }
 499    }
 500
 501    s->tx_descriptor[0] = addr;
 502
 503    imx_eth_update(s);
 504}
 505
 506static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
 507{
 508    int frame_size = 0, descnt = 0;
 509
 510    uint8_t *ptr = s->frame;
 511    uint32_t addr, int_txb, int_txf, tdsr;
 512    size_t ring;
 513
 514    switch (index) {
 515    case ENET_TDAR:
 516        ring    = 0;
 517        int_txb = ENET_INT_TXB;
 518        int_txf = ENET_INT_TXF;
 519        tdsr    = ENET_TDSR;
 520        break;
 521    case ENET_TDAR1:
 522        ring    = 1;
 523        int_txb = ENET_INT_TXB1;
 524        int_txf = ENET_INT_TXF1;
 525        tdsr    = ENET_TDSR1;
 526        break;
 527    case ENET_TDAR2:
 528        ring    = 2;
 529        int_txb = ENET_INT_TXB2;
 530        int_txf = ENET_INT_TXF2;
 531        tdsr    = ENET_TDSR2;
 532        break;
 533    default:
 534        qemu_log_mask(LOG_GUEST_ERROR,
 535                      "%s: bogus value for index %x\n",
 536                      __func__, index);
 537        abort();
 538        break;
 539    }
 540
 541    addr = s->tx_descriptor[ring];
 542
 543    while (descnt++ < IMX_MAX_DESC) {
 544        IMXENETBufDesc bd;
 545        int len;
 546
 547        imx_enet_read_bd(&bd, addr);
 548        if ((bd.flags & ENET_BD_R) == 0) {
 549            /* Run out of descriptors to transmit.  */
 550
 551            trace_imx_eth_tx_bd_busy();
 552
 553            break;
 554        }
 555        len = bd.length;
 556        if (frame_size + len > ENET_MAX_FRAME_SIZE) {
 557            len = ENET_MAX_FRAME_SIZE - frame_size;
 558            s->regs[ENET_EIR] |= ENET_INT_BABT;
 559        }
 560        dma_memory_read(&address_space_memory, bd.data, ptr, len);
 561        ptr += len;
 562        frame_size += len;
 563        if (bd.flags & ENET_BD_L) {
 564            int csum = 0;
 565
 566            if (bd.option & ENET_BD_PINS) {
 567                csum |= (CSUM_TCP | CSUM_UDP);
 568            }
 569            if (bd.option & ENET_BD_IINS) {
 570                csum |= CSUM_IP;
 571            }
 572            if (csum) {
 573                net_checksum_calculate(s->frame, frame_size, csum);
 574            }
 575
 576            /* Last buffer in frame.  */
 577
 578            qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
 579            ptr = s->frame;
 580
 581            frame_size = 0;
 582            if (bd.option & ENET_BD_TX_INT) {
 583                s->regs[ENET_EIR] |= int_txf;
 584            }
 585            /* Indicate that we've updated the last buffer descriptor. */
 586            bd.last_buffer = ENET_BD_BDU;
 587        }
 588        if (bd.option & ENET_BD_TX_INT) {
 589            s->regs[ENET_EIR] |= int_txb;
 590        }
 591        bd.flags &= ~ENET_BD_R;
 592        /* Write back the modified descriptor.  */
 593        imx_enet_write_bd(&bd, addr);
 594        /* Advance to the next descriptor.  */
 595        if ((bd.flags & ENET_BD_W) != 0) {
 596            addr = s->regs[tdsr];
 597        } else {
 598            addr += sizeof(bd);
 599        }
 600    }
 601
 602    s->tx_descriptor[ring] = addr;
 603
 604    imx_eth_update(s);
 605}
 606
 607static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
 608{
 609    if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
 610        imx_enet_do_tx(s, index);
 611    } else {
 612        imx_fec_do_tx(s);
 613    }
 614}
 615
 616static void imx_eth_enable_rx(IMXFECState *s, bool flush)
 617{
 618    IMXFECBufDesc bd;
 619
 620    imx_fec_read_bd(&bd, s->rx_descriptor);
 621
 622    s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
 623
 624    if (!s->regs[ENET_RDAR]) {
 625        trace_imx_eth_rx_bd_full();
 626    } else if (flush) {
 627        qemu_flush_queued_packets(qemu_get_queue(s->nic));
 628    }
 629}
 630
 631static void imx_eth_reset(DeviceState *d)
 632{
 633    IMXFECState *s = IMX_FEC(d);
 634
 635    /* Reset the Device */
 636    memset(s->regs, 0, sizeof(s->regs));
 637    s->regs[ENET_ECR]   = 0xf0000000;
 638    s->regs[ENET_MIBC]  = 0xc0000000;
 639    s->regs[ENET_RCR]   = 0x05ee0001;
 640    s->regs[ENET_OPD]   = 0x00010000;
 641
 642    s->regs[ENET_PALR]  = (s->conf.macaddr.a[0] << 24)
 643                          | (s->conf.macaddr.a[1] << 16)
 644                          | (s->conf.macaddr.a[2] << 8)
 645                          | s->conf.macaddr.a[3];
 646    s->regs[ENET_PAUR]  = (s->conf.macaddr.a[4] << 24)
 647                          | (s->conf.macaddr.a[5] << 16)
 648                          | 0x8808;
 649
 650    if (s->is_fec) {
 651        s->regs[ENET_FRBR]  = 0x00000600;
 652        s->regs[ENET_FRSR]  = 0x00000500;
 653        s->regs[ENET_MIIGSK_ENR]  = 0x00000006;
 654    } else {
 655        s->regs[ENET_RAEM]  = 0x00000004;
 656        s->regs[ENET_RAFL]  = 0x00000004;
 657        s->regs[ENET_TAEM]  = 0x00000004;
 658        s->regs[ENET_TAFL]  = 0x00000008;
 659        s->regs[ENET_TIPG]  = 0x0000000c;
 660        s->regs[ENET_FTRL]  = 0x000007ff;
 661        s->regs[ENET_ATPER] = 0x3b9aca00;
 662    }
 663
 664    s->rx_descriptor = 0;
 665    memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
 666
 667    /* We also reset the PHY */
 668    imx_phy_reset(s);
 669}
 670
 671static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
 672{
 673    qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
 674                  PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
 675    return 0;
 676}
 677
 678static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
 679{
 680    switch (index) {
 681    case ENET_FRBR:
 682    case ENET_FRSR:
 683    case ENET_MIIGSK_CFGR:
 684    case ENET_MIIGSK_ENR:
 685        return s->regs[index];
 686    default:
 687        return imx_default_read(s, index);
 688    }
 689}
 690
 691static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
 692{
 693    switch (index) {
 694    case ENET_RSFL:
 695    case ENET_RSEM:
 696    case ENET_RAEM:
 697    case ENET_RAFL:
 698    case ENET_TSEM:
 699    case ENET_TAEM:
 700    case ENET_TAFL:
 701    case ENET_TIPG:
 702    case ENET_FTRL:
 703    case ENET_TACC:
 704    case ENET_RACC:
 705    case ENET_ATCR:
 706    case ENET_ATVR:
 707    case ENET_ATOFF:
 708    case ENET_ATPER:
 709    case ENET_ATCOR:
 710    case ENET_ATINC:
 711    case ENET_ATSTMP:
 712    case ENET_TGSR:
 713    case ENET_TCSR0:
 714    case ENET_TCCR0:
 715    case ENET_TCSR1:
 716    case ENET_TCCR1:
 717    case ENET_TCSR2:
 718    case ENET_TCCR2:
 719    case ENET_TCSR3:
 720    case ENET_TCCR3:
 721        return s->regs[index];
 722    default:
 723        return imx_default_read(s, index);
 724    }
 725}
 726
 727static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
 728{
 729    uint32_t value = 0;
 730    IMXFECState *s = IMX_FEC(opaque);
 731    uint32_t index = offset >> 2;
 732
 733    switch (index) {
 734    case ENET_EIR:
 735    case ENET_EIMR:
 736    case ENET_RDAR:
 737    case ENET_TDAR:
 738    case ENET_ECR:
 739    case ENET_MMFR:
 740    case ENET_MSCR:
 741    case ENET_MIBC:
 742    case ENET_RCR:
 743    case ENET_TCR:
 744    case ENET_PALR:
 745    case ENET_PAUR:
 746    case ENET_OPD:
 747    case ENET_IAUR:
 748    case ENET_IALR:
 749    case ENET_GAUR:
 750    case ENET_GALR:
 751    case ENET_TFWR:
 752    case ENET_RDSR:
 753    case ENET_TDSR:
 754    case ENET_MRBR:
 755        value = s->regs[index];
 756        break;
 757    default:
 758        if (s->is_fec) {
 759            value = imx_fec_read(s, index);
 760        } else {
 761            value = imx_enet_read(s, index);
 762        }
 763        break;
 764    }
 765
 766    trace_imx_eth_read(index, imx_eth_reg_name(s, index), value);
 767
 768    return value;
 769}
 770
 771static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
 772{
 773    qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
 774                  PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
 775    return;
 776}
 777
 778static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
 779{
 780    switch (index) {
 781    case ENET_FRBR:
 782        /* FRBR is read only */
 783        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
 784                      TYPE_IMX_FEC, __func__);
 785        break;
 786    case ENET_FRSR:
 787        s->regs[index] = (value & 0x000003fc) | 0x00000400;
 788        break;
 789    case ENET_MIIGSK_CFGR:
 790        s->regs[index] = value & 0x00000053;
 791        break;
 792    case ENET_MIIGSK_ENR:
 793        s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
 794        break;
 795    default:
 796        imx_default_write(s, index, value);
 797        break;
 798    }
 799}
 800
 801static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
 802{
 803    switch (index) {
 804    case ENET_RSFL:
 805    case ENET_RSEM:
 806    case ENET_RAEM:
 807    case ENET_RAFL:
 808    case ENET_TSEM:
 809    case ENET_TAEM:
 810    case ENET_TAFL:
 811        s->regs[index] = value & 0x000001ff;
 812        break;
 813    case ENET_TIPG:
 814        s->regs[index] = value & 0x0000001f;
 815        break;
 816    case ENET_FTRL:
 817        s->regs[index] = value & 0x00003fff;
 818        break;
 819    case ENET_TACC:
 820        s->regs[index] = value & 0x00000019;
 821        break;
 822    case ENET_RACC:
 823        s->regs[index] = value & 0x000000C7;
 824        break;
 825    case ENET_ATCR:
 826        s->regs[index] = value & 0x00002a9d;
 827        break;
 828    case ENET_ATVR:
 829    case ENET_ATOFF:
 830    case ENET_ATPER:
 831        s->regs[index] = value;
 832        break;
 833    case ENET_ATSTMP:
 834        /* ATSTMP is read only */
 835        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
 836                      TYPE_IMX_FEC, __func__);
 837        break;
 838    case ENET_ATCOR:
 839        s->regs[index] = value & 0x7fffffff;
 840        break;
 841    case ENET_ATINC:
 842        s->regs[index] = value & 0x00007f7f;
 843        break;
 844    case ENET_TGSR:
 845        /* implement clear timer flag */
 846        s->regs[index] &= ~(value & 0x0000000f); /* all bits W1C */
 847        break;
 848    case ENET_TCSR0:
 849    case ENET_TCSR1:
 850    case ENET_TCSR2:
 851    case ENET_TCSR3:
 852        s->regs[index] &= ~(value & 0x00000080); /* W1C bits */
 853        s->regs[index] &= ~0x0000007d; /* writable fields */
 854        s->regs[index] |= (value & 0x0000007d);
 855        break;
 856    case ENET_TCCR0:
 857    case ENET_TCCR1:
 858    case ENET_TCCR2:
 859    case ENET_TCCR3:
 860        s->regs[index] = value;
 861        break;
 862    default:
 863        imx_default_write(s, index, value);
 864        break;
 865    }
 866}
 867
 868static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
 869                           unsigned size)
 870{
 871    IMXFECState *s = IMX_FEC(opaque);
 872    const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
 873    uint32_t index = offset >> 2;
 874
 875    trace_imx_eth_write(index, imx_eth_reg_name(s, index), value);
 876
 877    switch (index) {
 878    case ENET_EIR:
 879        s->regs[index] &= ~value;
 880        break;
 881    case ENET_EIMR:
 882        s->regs[index] = value;
 883        break;
 884    case ENET_RDAR:
 885        if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
 886            if (!s->regs[index]) {
 887                imx_eth_enable_rx(s, true);
 888            }
 889        } else {
 890            s->regs[index] = 0;
 891        }
 892        break;
 893    case ENET_TDAR1:
 894    case ENET_TDAR2:
 895        if (unlikely(single_tx_ring)) {
 896            qemu_log_mask(LOG_GUEST_ERROR,
 897                          "[%s]%s: trying to access TDAR2 or TDAR1\n",
 898                          TYPE_IMX_FEC, __func__);
 899            return;
 900        }
 901        /* fall through */
 902    case ENET_TDAR:
 903        if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
 904            s->regs[index] = ENET_TDAR_TDAR;
 905            imx_eth_do_tx(s, index);
 906        }
 907        s->regs[index] = 0;
 908        break;
 909    case ENET_ECR:
 910        if (value & ENET_ECR_RESET) {
 911            return imx_eth_reset(DEVICE(s));
 912        }
 913        s->regs[index] = value;
 914        if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
 915            s->regs[ENET_RDAR] = 0;
 916            s->rx_descriptor = s->regs[ENET_RDSR];
 917            s->regs[ENET_TDAR]  = 0;
 918            s->regs[ENET_TDAR1] = 0;
 919            s->regs[ENET_TDAR2] = 0;
 920            s->tx_descriptor[0] = s->regs[ENET_TDSR];
 921            s->tx_descriptor[1] = s->regs[ENET_TDSR1];
 922            s->tx_descriptor[2] = s->regs[ENET_TDSR2];
 923        }
 924        break;
 925    case ENET_MMFR:
 926        s->regs[index] = value;
 927        if (extract32(value, 29, 1)) {
 928            /* This is a read operation */
 929            s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
 930                                           imx_phy_read(s,
 931                                                       extract32(value,
 932                                                                 18, 10)));
 933        } else {
 934            /* This is a write operation */
 935            imx_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
 936        }
 937        /* raise the interrupt as the PHY operation is done */
 938        s->regs[ENET_EIR] |= ENET_INT_MII;
 939        break;
 940    case ENET_MSCR:
 941        s->regs[index] = value & 0xfe;
 942        break;
 943    case ENET_MIBC:
 944        /* TODO: Implement MIB.  */
 945        s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
 946        break;
 947    case ENET_RCR:
 948        s->regs[index] = value & 0x07ff003f;
 949        /* TODO: Implement LOOP mode.  */
 950        break;
 951    case ENET_TCR:
 952        /* We transmit immediately, so raise GRA immediately.  */
 953        s->regs[index] = value;
 954        if (value & 1) {
 955            s->regs[ENET_EIR] |= ENET_INT_GRA;
 956        }
 957        break;
 958    case ENET_PALR:
 959        s->regs[index] = value;
 960        s->conf.macaddr.a[0] = value >> 24;
 961        s->conf.macaddr.a[1] = value >> 16;
 962        s->conf.macaddr.a[2] = value >> 8;
 963        s->conf.macaddr.a[3] = value;
 964        break;
 965    case ENET_PAUR:
 966        s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
 967        s->conf.macaddr.a[4] = value >> 24;
 968        s->conf.macaddr.a[5] = value >> 16;
 969        break;
 970    case ENET_OPD:
 971        s->regs[index] = (value & 0x0000ffff) | 0x00010000;
 972        break;
 973    case ENET_IAUR:
 974    case ENET_IALR:
 975    case ENET_GAUR:
 976    case ENET_GALR:
 977        /* TODO: implement MAC hash filtering.  */
 978        break;
 979    case ENET_TFWR:
 980        if (s->is_fec) {
 981            s->regs[index] = value & 0x3;
 982        } else {
 983            s->regs[index] = value & 0x13f;
 984        }
 985        break;
 986    case ENET_RDSR:
 987        if (s->is_fec) {
 988            s->regs[index] = value & ~3;
 989        } else {
 990            s->regs[index] = value & ~7;
 991        }
 992        s->rx_descriptor = s->regs[index];
 993        break;
 994    case ENET_TDSR:
 995        if (s->is_fec) {
 996            s->regs[index] = value & ~3;
 997        } else {
 998            s->regs[index] = value & ~7;
 999        }
1000        s->tx_descriptor[0] = s->regs[index];
1001        break;
1002    case ENET_TDSR1:
1003        if (unlikely(single_tx_ring)) {
1004            qemu_log_mask(LOG_GUEST_ERROR,
1005                          "[%s]%s: trying to access TDSR1\n",
1006                          TYPE_IMX_FEC, __func__);
1007            return;
1008        }
1009
1010        s->regs[index] = value & ~7;
1011        s->tx_descriptor[1] = s->regs[index];
1012        break;
1013    case ENET_TDSR2:
1014        if (unlikely(single_tx_ring)) {
1015            qemu_log_mask(LOG_GUEST_ERROR,
1016                          "[%s]%s: trying to access TDSR2\n",
1017                          TYPE_IMX_FEC, __func__);
1018            return;
1019        }
1020
1021        s->regs[index] = value & ~7;
1022        s->tx_descriptor[2] = s->regs[index];
1023        break;
1024    case ENET_MRBR:
1025        s->regs[index] = value & 0x00003ff0;
1026        break;
1027    default:
1028        if (s->is_fec) {
1029            imx_fec_write(s, index, value);
1030        } else {
1031            imx_enet_write(s, index, value);
1032        }
1033        return;
1034    }
1035
1036    imx_eth_update(s);
1037}
1038
1039static bool imx_eth_can_receive(NetClientState *nc)
1040{
1041    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1042
1043    return !!s->regs[ENET_RDAR];
1044}
1045
1046static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
1047                               size_t len)
1048{
1049    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1050    IMXFECBufDesc bd;
1051    uint32_t flags = 0;
1052    uint32_t addr;
1053    uint32_t crc;
1054    uint32_t buf_addr;
1055    uint8_t *crc_ptr;
1056    unsigned int buf_len;
1057    size_t size = len;
1058
1059    trace_imx_fec_receive(size);
1060
1061    if (!s->regs[ENET_RDAR]) {
1062        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1063                      TYPE_IMX_FEC, __func__);
1064        return 0;
1065    }
1066
1067    /* 4 bytes for the CRC.  */
1068    size += 4;
1069    crc = cpu_to_be32(crc32(~0, buf, size));
1070    crc_ptr = (uint8_t *) &crc;
1071
1072    /* Huge frames are truncated.  */
1073    if (size > ENET_MAX_FRAME_SIZE) {
1074        size = ENET_MAX_FRAME_SIZE;
1075        flags |= ENET_BD_TR | ENET_BD_LG;
1076    }
1077
1078    /* Frames larger than the user limit just set error flags.  */
1079    if (size > (s->regs[ENET_RCR] >> 16)) {
1080        flags |= ENET_BD_LG;
1081    }
1082
1083    addr = s->rx_descriptor;
1084    while (size > 0) {
1085        imx_fec_read_bd(&bd, addr);
1086        if ((bd.flags & ENET_BD_E) == 0) {
1087            /* No descriptors available.  Bail out.  */
1088            /*
1089             * FIXME: This is wrong. We should probably either
1090             * save the remainder for when more RX buffers are
1091             * available, or flag an error.
1092             */
1093            qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1094                          TYPE_IMX_FEC, __func__);
1095            break;
1096        }
1097        buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1098        bd.length = buf_len;
1099        size -= buf_len;
1100
1101        trace_imx_fec_receive_len(addr, bd.length);
1102
1103        /* The last 4 bytes are the CRC.  */
1104        if (size < 4) {
1105            buf_len += size - 4;
1106        }
1107        buf_addr = bd.data;
1108        dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1109        buf += buf_len;
1110        if (size < 4) {
1111            dma_memory_write(&address_space_memory, buf_addr + buf_len,
1112                             crc_ptr, 4 - size);
1113            crc_ptr += 4 - size;
1114        }
1115        bd.flags &= ~ENET_BD_E;
1116        if (size == 0) {
1117            /* Last buffer in frame.  */
1118            bd.flags |= flags | ENET_BD_L;
1119
1120            trace_imx_fec_receive_last(bd.flags);
1121
1122            s->regs[ENET_EIR] |= ENET_INT_RXF;
1123        } else {
1124            s->regs[ENET_EIR] |= ENET_INT_RXB;
1125        }
1126        imx_fec_write_bd(&bd, addr);
1127        /* Advance to the next descriptor.  */
1128        if ((bd.flags & ENET_BD_W) != 0) {
1129            addr = s->regs[ENET_RDSR];
1130        } else {
1131            addr += sizeof(bd);
1132        }
1133    }
1134    s->rx_descriptor = addr;
1135    imx_eth_enable_rx(s, false);
1136    imx_eth_update(s);
1137    return len;
1138}
1139
1140static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1141                                size_t len)
1142{
1143    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1144    IMXENETBufDesc bd;
1145    uint32_t flags = 0;
1146    uint32_t addr;
1147    uint32_t crc;
1148    uint32_t buf_addr;
1149    uint8_t *crc_ptr;
1150    unsigned int buf_len;
1151    size_t size = len;
1152    bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
1153
1154    trace_imx_enet_receive(size);
1155
1156    if (!s->regs[ENET_RDAR]) {
1157        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1158                      TYPE_IMX_FEC, __func__);
1159        return 0;
1160    }
1161
1162    /* 4 bytes for the CRC.  */
1163    size += 4;
1164    crc = cpu_to_be32(crc32(~0, buf, size));
1165    crc_ptr = (uint8_t *) &crc;
1166
1167    if (shift16) {
1168        size += 2;
1169    }
1170
1171    /* Huge frames are truncated. */
1172    if (size > s->regs[ENET_FTRL]) {
1173        size = s->regs[ENET_FTRL];
1174        flags |= ENET_BD_TR | ENET_BD_LG;
1175    }
1176
1177    /* Frames larger than the user limit just set error flags.  */
1178    if (size > (s->regs[ENET_RCR] >> 16)) {
1179        flags |= ENET_BD_LG;
1180    }
1181
1182    addr = s->rx_descriptor;
1183    while (size > 0) {
1184        imx_enet_read_bd(&bd, addr);
1185        if ((bd.flags & ENET_BD_E) == 0) {
1186            /* No descriptors available.  Bail out.  */
1187            /*
1188             * FIXME: This is wrong. We should probably either
1189             * save the remainder for when more RX buffers are
1190             * available, or flag an error.
1191             */
1192            qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1193                          TYPE_IMX_FEC, __func__);
1194            break;
1195        }
1196        buf_len = MIN(size, s->regs[ENET_MRBR]);
1197        bd.length = buf_len;
1198        size -= buf_len;
1199
1200        trace_imx_enet_receive_len(addr, bd.length);
1201
1202        /* The last 4 bytes are the CRC.  */
1203        if (size < 4) {
1204            buf_len += size - 4;
1205        }
1206        buf_addr = bd.data;
1207
1208        if (shift16) {
1209            /*
1210             * If SHIFT16 bit of ENETx_RACC register is set we need to
1211             * align the payload to 4-byte boundary.
1212             */
1213            const uint8_t zeros[2] = { 0 };
1214
1215            dma_memory_write(&address_space_memory, buf_addr,
1216                             zeros, sizeof(zeros));
1217
1218            buf_addr += sizeof(zeros);
1219            buf_len  -= sizeof(zeros);
1220
1221            /* We only do this once per Ethernet frame */
1222            shift16 = false;
1223        }
1224
1225        dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1226        buf += buf_len;
1227        if (size < 4) {
1228            dma_memory_write(&address_space_memory, buf_addr + buf_len,
1229                             crc_ptr, 4 - size);
1230            crc_ptr += 4 - size;
1231        }
1232        bd.flags &= ~ENET_BD_E;
1233        if (size == 0) {
1234            /* Last buffer in frame.  */
1235            bd.flags |= flags | ENET_BD_L;
1236
1237            trace_imx_enet_receive_last(bd.flags);
1238
1239            /* Indicate that we've updated the last buffer descriptor. */
1240            bd.last_buffer = ENET_BD_BDU;
1241            if (bd.option & ENET_BD_RX_INT) {
1242                s->regs[ENET_EIR] |= ENET_INT_RXF;
1243            }
1244        } else {
1245            if (bd.option & ENET_BD_RX_INT) {
1246                s->regs[ENET_EIR] |= ENET_INT_RXB;
1247            }
1248        }
1249        imx_enet_write_bd(&bd, addr);
1250        /* Advance to the next descriptor.  */
1251        if ((bd.flags & ENET_BD_W) != 0) {
1252            addr = s->regs[ENET_RDSR];
1253        } else {
1254            addr += sizeof(bd);
1255        }
1256    }
1257    s->rx_descriptor = addr;
1258    imx_eth_enable_rx(s, false);
1259    imx_eth_update(s);
1260    return len;
1261}
1262
1263static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1264                                size_t len)
1265{
1266    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1267
1268    if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1269        return imx_enet_receive(nc, buf, len);
1270    } else {
1271        return imx_fec_receive(nc, buf, len);
1272    }
1273}
1274
1275static const MemoryRegionOps imx_eth_ops = {
1276    .read                  = imx_eth_read,
1277    .write                 = imx_eth_write,
1278    .valid.min_access_size = 4,
1279    .valid.max_access_size = 4,
1280    .endianness            = DEVICE_NATIVE_ENDIAN,
1281};
1282
1283static void imx_eth_cleanup(NetClientState *nc)
1284{
1285    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1286
1287    s->nic = NULL;
1288}
1289
1290static NetClientInfo imx_eth_net_info = {
1291    .type                = NET_CLIENT_DRIVER_NIC,
1292    .size                = sizeof(NICState),
1293    .can_receive         = imx_eth_can_receive,
1294    .receive             = imx_eth_receive,
1295    .cleanup             = imx_eth_cleanup,
1296    .link_status_changed = imx_eth_set_link,
1297};
1298
1299
1300static void imx_eth_realize(DeviceState *dev, Error **errp)
1301{
1302    IMXFECState *s = IMX_FEC(dev);
1303    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1304
1305    memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1306                          TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
1307    sysbus_init_mmio(sbd, &s->iomem);
1308    sysbus_init_irq(sbd, &s->irq[0]);
1309    sysbus_init_irq(sbd, &s->irq[1]);
1310
1311    qemu_macaddr_default_if_unset(&s->conf.macaddr);
1312
1313    s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1314                          object_get_typename(OBJECT(dev)),
1315                          dev->id, s);
1316
1317    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1318}
1319
1320static Property imx_eth_properties[] = {
1321    DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1322    DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
1323    DEFINE_PROP_UINT32("phy-num", IMXFECState, phy_num, 0),
1324    DEFINE_PROP_END_OF_LIST(),
1325};
1326
1327static void imx_eth_class_init(ObjectClass *klass, void *data)
1328{
1329    DeviceClass *dc = DEVICE_CLASS(klass);
1330
1331    dc->vmsd    = &vmstate_imx_eth;
1332    dc->reset   = imx_eth_reset;
1333    device_class_set_props(dc, imx_eth_properties);
1334    dc->realize = imx_eth_realize;
1335    dc->desc    = "i.MX FEC/ENET Ethernet Controller";
1336}
1337
1338static void imx_fec_init(Object *obj)
1339{
1340    IMXFECState *s = IMX_FEC(obj);
1341
1342    s->is_fec = true;
1343}
1344
1345static void imx_enet_init(Object *obj)
1346{
1347    IMXFECState *s = IMX_FEC(obj);
1348
1349    s->is_fec = false;
1350}
1351
1352static const TypeInfo imx_fec_info = {
1353    .name          = TYPE_IMX_FEC,
1354    .parent        = TYPE_SYS_BUS_DEVICE,
1355    .instance_size = sizeof(IMXFECState),
1356    .instance_init = imx_fec_init,
1357    .class_init    = imx_eth_class_init,
1358};
1359
1360static const TypeInfo imx_enet_info = {
1361    .name          = TYPE_IMX_ENET,
1362    .parent        = TYPE_IMX_FEC,
1363    .instance_init = imx_enet_init,
1364};
1365
1366static void imx_eth_register_types(void)
1367{
1368    type_register_static(&imx_fec_info);
1369    type_register_static(&imx_enet_info);
1370}
1371
1372type_init(imx_eth_register_types)
1373