qemu/hw/nvram/fw_cfg.c
<<
>>
Prefs
   1/*
   2 * QEMU Firmware configuration device emulation
   3 *
   4 * Copyright (c) 2008 Gleb Natapov
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu-common.h"
  27#include "qemu/datadir.h"
  28#include "sysemu/sysemu.h"
  29#include "sysemu/dma.h"
  30#include "sysemu/reset.h"
  31#include "hw/boards.h"
  32#include "hw/nvram/fw_cfg.h"
  33#include "hw/qdev-properties.h"
  34#include "hw/sysbus.h"
  35#include "migration/qemu-file-types.h"
  36#include "migration/vmstate.h"
  37#include "trace.h"
  38#include "qemu/error-report.h"
  39#include "qemu/option.h"
  40#include "qemu/config-file.h"
  41#include "qemu/cutils.h"
  42#include "qapi/error.h"
  43#include "hw/acpi/aml-build.h"
  44#include "hw/pci/pci_bus.h"
  45
  46#define FW_CFG_FILE_SLOTS_DFLT 0x20
  47
  48/* FW_CFG_VERSION bits */
  49#define FW_CFG_VERSION      0x01
  50#define FW_CFG_VERSION_DMA  0x02
  51
  52/* FW_CFG_DMA_CONTROL bits */
  53#define FW_CFG_DMA_CTL_ERROR   0x01
  54#define FW_CFG_DMA_CTL_READ    0x02
  55#define FW_CFG_DMA_CTL_SKIP    0x04
  56#define FW_CFG_DMA_CTL_SELECT  0x08
  57#define FW_CFG_DMA_CTL_WRITE   0x10
  58
  59#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
  60
  61struct FWCfgEntry {
  62    uint32_t len;
  63    bool allow_write;
  64    uint8_t *data;
  65    void *callback_opaque;
  66    FWCfgCallback select_cb;
  67    FWCfgWriteCallback write_cb;
  68};
  69
  70/**
  71 * key_name:
  72 *
  73 * @key: The uint16 selector key.
  74 *
  75 * Returns: The stringified name if the selector refers to a well-known
  76 *          numerically defined item, or NULL on key lookup failure.
  77 */
  78static const char *key_name(uint16_t key)
  79{
  80    static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
  81        [FW_CFG_SIGNATURE] = "signature",
  82        [FW_CFG_ID] = "id",
  83        [FW_CFG_UUID] = "uuid",
  84        [FW_CFG_RAM_SIZE] = "ram_size",
  85        [FW_CFG_NOGRAPHIC] = "nographic",
  86        [FW_CFG_NB_CPUS] = "nb_cpus",
  87        [FW_CFG_MACHINE_ID] = "machine_id",
  88        [FW_CFG_KERNEL_ADDR] = "kernel_addr",
  89        [FW_CFG_KERNEL_SIZE] = "kernel_size",
  90        [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
  91        [FW_CFG_INITRD_ADDR] = "initrd_addr",
  92        [FW_CFG_INITRD_SIZE] = "initdr_size",
  93        [FW_CFG_BOOT_DEVICE] = "boot_device",
  94        [FW_CFG_NUMA] = "numa",
  95        [FW_CFG_BOOT_MENU] = "boot_menu",
  96        [FW_CFG_MAX_CPUS] = "max_cpus",
  97        [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
  98        [FW_CFG_KERNEL_DATA] = "kernel_data",
  99        [FW_CFG_INITRD_DATA] = "initrd_data",
 100        [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
 101        [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
 102        [FW_CFG_CMDLINE_DATA] = "cmdline_data",
 103        [FW_CFG_SETUP_ADDR] = "setup_addr",
 104        [FW_CFG_SETUP_SIZE] = "setup_size",
 105        [FW_CFG_SETUP_DATA] = "setup_data",
 106        [FW_CFG_FILE_DIR] = "file_dir",
 107    };
 108
 109    if (key & FW_CFG_ARCH_LOCAL) {
 110        return fw_cfg_arch_key_name(key);
 111    }
 112    if (key < FW_CFG_FILE_FIRST) {
 113        return fw_cfg_wellknown_keys[key];
 114    }
 115
 116    return NULL;
 117}
 118
 119static inline const char *trace_key_name(uint16_t key)
 120{
 121    const char *name = key_name(key);
 122
 123    return name ? name : "unknown";
 124}
 125
 126#define JPG_FILE 0
 127#define BMP_FILE 1
 128
 129static char *read_splashfile(char *filename, gsize *file_sizep,
 130                             int *file_typep)
 131{
 132    GError *err = NULL;
 133    gchar *content;
 134    int file_type;
 135    unsigned int filehead;
 136    int bmp_bpp;
 137
 138    if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
 139        error_report("failed to read splash file '%s': %s",
 140                     filename, err->message);
 141        g_error_free(err);
 142        return NULL;
 143    }
 144
 145    /* check file size */
 146    if (*file_sizep < 30) {
 147        goto error;
 148    }
 149
 150    /* check magic ID */
 151    filehead = lduw_le_p(content);
 152    if (filehead == 0xd8ff) {
 153        file_type = JPG_FILE;
 154    } else if (filehead == 0x4d42) {
 155        file_type = BMP_FILE;
 156    } else {
 157        goto error;
 158    }
 159
 160    /* check BMP bpp */
 161    if (file_type == BMP_FILE) {
 162        bmp_bpp = lduw_le_p(&content[28]);
 163        if (bmp_bpp != 24) {
 164            goto error;
 165        }
 166    }
 167
 168    /* return values */
 169    *file_typep = file_type;
 170
 171    return content;
 172
 173error:
 174    error_report("splash file '%s' format not recognized; must be JPEG "
 175                 "or 24 bit BMP", filename);
 176    g_free(content);
 177    return NULL;
 178}
 179
 180static void fw_cfg_bootsplash(FWCfgState *s)
 181{
 182    const char *boot_splash_filename = NULL;
 183    const char *boot_splash_time = NULL;
 184    char *filename, *file_data;
 185    gsize file_size;
 186    int file_type;
 187
 188    /* get user configuration */
 189    QemuOptsList *plist = qemu_find_opts("boot-opts");
 190    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 191    boot_splash_filename = qemu_opt_get(opts, "splash");
 192    boot_splash_time = qemu_opt_get(opts, "splash-time");
 193
 194    /* insert splash time if user configurated */
 195    if (boot_splash_time) {
 196        int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
 197        uint16_t bst_le16;
 198
 199        /* validate the input */
 200        if (bst_val < 0 || bst_val > 0xffff) {
 201            error_report("splash-time is invalid,"
 202                         "it should be a value between 0 and 65535");
 203            exit(1);
 204        }
 205        /* use little endian format */
 206        bst_le16 = cpu_to_le16(bst_val);
 207        fw_cfg_add_file(s, "etc/boot-menu-wait",
 208                        g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
 209    }
 210
 211    /* insert splash file if user configurated */
 212    if (boot_splash_filename) {
 213        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
 214        if (filename == NULL) {
 215            error_report("failed to find file '%s'", boot_splash_filename);
 216            return;
 217        }
 218
 219        /* loading file data */
 220        file_data = read_splashfile(filename, &file_size, &file_type);
 221        if (file_data == NULL) {
 222            g_free(filename);
 223            return;
 224        }
 225        g_free(boot_splash_filedata);
 226        boot_splash_filedata = (uint8_t *)file_data;
 227
 228        /* insert data */
 229        if (file_type == JPG_FILE) {
 230            fw_cfg_add_file(s, "bootsplash.jpg",
 231                            boot_splash_filedata, file_size);
 232        } else {
 233            fw_cfg_add_file(s, "bootsplash.bmp",
 234                            boot_splash_filedata, file_size);
 235        }
 236        g_free(filename);
 237    }
 238}
 239
 240static void fw_cfg_reboot(FWCfgState *s)
 241{
 242    const char *reboot_timeout = NULL;
 243    uint64_t rt_val = -1;
 244    uint32_t rt_le32;
 245
 246    /* get user configuration */
 247    QemuOptsList *plist = qemu_find_opts("boot-opts");
 248    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 249    reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
 250
 251    if (reboot_timeout) {
 252        rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
 253
 254        /* validate the input */
 255        if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
 256            error_report("reboot timeout is invalid,"
 257                         "it should be a value between -1 and 65535");
 258            exit(1);
 259        }
 260    }
 261
 262    rt_le32 = cpu_to_le32(rt_val);
 263    fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
 264}
 265
 266static void fw_cfg_write(FWCfgState *s, uint8_t value)
 267{
 268    /* nothing, write support removed in QEMU v2.4+ */
 269}
 270
 271static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
 272{
 273    return s->file_slots;
 274}
 275
 276/* Note: this function returns an exclusive limit. */
 277static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
 278{
 279    return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
 280}
 281
 282static int fw_cfg_select(FWCfgState *s, uint16_t key)
 283{
 284    int arch, ret;
 285    FWCfgEntry *e;
 286
 287    s->cur_offset = 0;
 288    if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
 289        s->cur_entry = FW_CFG_INVALID;
 290        ret = 0;
 291    } else {
 292        s->cur_entry = key;
 293        ret = 1;
 294        /* entry successfully selected, now run callback if present */
 295        arch = !!(key & FW_CFG_ARCH_LOCAL);
 296        e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
 297        if (e->select_cb) {
 298            e->select_cb(e->callback_opaque);
 299        }
 300    }
 301
 302    trace_fw_cfg_select(s, key, trace_key_name(key), ret);
 303    return ret;
 304}
 305
 306static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
 307{
 308    FWCfgState *s = opaque;
 309    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 310    FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 311                    &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 312    uint64_t value = 0;
 313
 314    assert(size > 0 && size <= sizeof(value));
 315    if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
 316        /* The least significant 'size' bytes of the return value are
 317         * expected to contain a string preserving portion of the item
 318         * data, padded with zeros on the right in case we run out early.
 319         * In technical terms, we're composing the host-endian representation
 320         * of the big endian interpretation of the fw_cfg string.
 321         */
 322        do {
 323            value = (value << 8) | e->data[s->cur_offset++];
 324        } while (--size && s->cur_offset < e->len);
 325        /* If size is still not zero, we *did* run out early, so continue
 326         * left-shifting, to add the appropriate number of padding zeros
 327         * on the right.
 328         */
 329        value <<= 8 * size;
 330    }
 331
 332    trace_fw_cfg_read(s, value);
 333    return value;
 334}
 335
 336static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
 337                                  uint64_t value, unsigned size)
 338{
 339    FWCfgState *s = opaque;
 340    unsigned i = size;
 341
 342    do {
 343        fw_cfg_write(s, value >> (8 * --i));
 344    } while (i);
 345}
 346
 347static void fw_cfg_dma_transfer(FWCfgState *s)
 348{
 349    dma_addr_t len;
 350    FWCfgDmaAccess dma;
 351    int arch;
 352    FWCfgEntry *e;
 353    int read = 0, write = 0;
 354    dma_addr_t dma_addr;
 355
 356    /* Reset the address before the next access */
 357    dma_addr = s->dma_addr;
 358    s->dma_addr = 0;
 359
 360    if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
 361        stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 362                   FW_CFG_DMA_CTL_ERROR);
 363        return;
 364    }
 365
 366    dma.address = be64_to_cpu(dma.address);
 367    dma.length = be32_to_cpu(dma.length);
 368    dma.control = be32_to_cpu(dma.control);
 369
 370    if (dma.control & FW_CFG_DMA_CTL_SELECT) {
 371        fw_cfg_select(s, dma.control >> 16);
 372    }
 373
 374    arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 375    e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 376        &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 377
 378    if (dma.control & FW_CFG_DMA_CTL_READ) {
 379        read = 1;
 380        write = 0;
 381    } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
 382        read = 0;
 383        write = 1;
 384    } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
 385        read = 0;
 386        write = 0;
 387    } else {
 388        dma.length = 0;
 389    }
 390
 391    dma.control = 0;
 392
 393    while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
 394        if (s->cur_entry == FW_CFG_INVALID || !e->data ||
 395                                s->cur_offset >= e->len) {
 396            len = dma.length;
 397
 398            /* If the access is not a read access, it will be a skip access,
 399             * tested before.
 400             */
 401            if (read) {
 402                if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
 403                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 404                }
 405            }
 406            if (write) {
 407                dma.control |= FW_CFG_DMA_CTL_ERROR;
 408            }
 409        } else {
 410            if (dma.length <= (e->len - s->cur_offset)) {
 411                len = dma.length;
 412            } else {
 413                len = (e->len - s->cur_offset);
 414            }
 415
 416            /* If the access is not a read access, it will be a skip access,
 417             * tested before.
 418             */
 419            if (read) {
 420                if (dma_memory_write(s->dma_as, dma.address,
 421                                    &e->data[s->cur_offset], len)) {
 422                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 423                }
 424            }
 425            if (write) {
 426                if (!e->allow_write ||
 427                    len != dma.length ||
 428                    dma_memory_read(s->dma_as, dma.address,
 429                                    &e->data[s->cur_offset], len)) {
 430                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 431                } else if (e->write_cb) {
 432                    e->write_cb(e->callback_opaque, s->cur_offset, len);
 433                }
 434            }
 435
 436            s->cur_offset += len;
 437        }
 438
 439        dma.address += len;
 440        dma.length  -= len;
 441
 442    }
 443
 444    stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 445                dma.control);
 446
 447    trace_fw_cfg_read(s, 0);
 448}
 449
 450static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
 451                                    unsigned size)
 452{
 453    /* Return a signature value (and handle various read sizes) */
 454    return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
 455}
 456
 457static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
 458                                 uint64_t value, unsigned size)
 459{
 460    FWCfgState *s = opaque;
 461
 462    if (size == 4) {
 463        if (addr == 0) {
 464            /* FWCfgDmaAccess high address */
 465            s->dma_addr = value << 32;
 466        } else if (addr == 4) {
 467            /* FWCfgDmaAccess low address */
 468            s->dma_addr |= value;
 469            fw_cfg_dma_transfer(s);
 470        }
 471    } else if (size == 8 && addr == 0) {
 472        s->dma_addr = value;
 473        fw_cfg_dma_transfer(s);
 474    }
 475}
 476
 477static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
 478                                 unsigned size, bool is_write,
 479                                 MemTxAttrs attrs)
 480{
 481    return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
 482                         (size == 8 && addr == 0));
 483}
 484
 485static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
 486                                  unsigned size, bool is_write,
 487                                  MemTxAttrs attrs)
 488{
 489    return addr == 0;
 490}
 491
 492static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
 493{
 494    return 0;
 495}
 496
 497static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
 498                                 uint64_t value, unsigned size)
 499{
 500    fw_cfg_select(opaque, (uint16_t)value);
 501}
 502
 503static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
 504                                 unsigned size, bool is_write,
 505                                 MemTxAttrs attrs)
 506{
 507    return is_write && size == 2;
 508}
 509
 510static void fw_cfg_comb_write(void *opaque, hwaddr addr,
 511                              uint64_t value, unsigned size)
 512{
 513    switch (size) {
 514    case 1:
 515        fw_cfg_write(opaque, (uint8_t)value);
 516        break;
 517    case 2:
 518        fw_cfg_select(opaque, (uint16_t)value);
 519        break;
 520    }
 521}
 522
 523static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
 524                              unsigned size, bool is_write,
 525                              MemTxAttrs attrs)
 526{
 527    return (size == 1) || (is_write && size == 2);
 528}
 529
 530static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
 531    .read = fw_cfg_ctl_mem_read,
 532    .write = fw_cfg_ctl_mem_write,
 533    .endianness = DEVICE_BIG_ENDIAN,
 534    .valid.accepts = fw_cfg_ctl_mem_valid,
 535};
 536
 537static const MemoryRegionOps fw_cfg_data_mem_ops = {
 538    .read = fw_cfg_data_read,
 539    .write = fw_cfg_data_mem_write,
 540    .endianness = DEVICE_BIG_ENDIAN,
 541    .valid = {
 542        .min_access_size = 1,
 543        .max_access_size = 1,
 544        .accepts = fw_cfg_data_mem_valid,
 545    },
 546};
 547
 548static const MemoryRegionOps fw_cfg_comb_mem_ops = {
 549    .read = fw_cfg_data_read,
 550    .write = fw_cfg_comb_write,
 551    .endianness = DEVICE_LITTLE_ENDIAN,
 552    .valid.accepts = fw_cfg_comb_valid,
 553};
 554
 555static const MemoryRegionOps fw_cfg_dma_mem_ops = {
 556    .read = fw_cfg_dma_mem_read,
 557    .write = fw_cfg_dma_mem_write,
 558    .endianness = DEVICE_BIG_ENDIAN,
 559    .valid.accepts = fw_cfg_dma_mem_valid,
 560    .valid.max_access_size = 8,
 561    .impl.max_access_size = 8,
 562};
 563
 564static void fw_cfg_reset(DeviceState *d)
 565{
 566    FWCfgState *s = FW_CFG(d);
 567
 568    /* we never register a read callback for FW_CFG_SIGNATURE */
 569    fw_cfg_select(s, FW_CFG_SIGNATURE);
 570}
 571
 572/* Save restore 32 bit int as uint16_t
 573   This is a Big hack, but it is how the old state did it.
 574   Or we broke compatibility in the state, or we can't use struct tm
 575 */
 576
 577static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
 578                                const VMStateField *field)
 579{
 580    uint32_t *v = pv;
 581    *v = qemu_get_be16(f);
 582    return 0;
 583}
 584
 585static int put_unused(QEMUFile *f, void *pv, size_t size,
 586                      const VMStateField *field, JSONWriter *vmdesc)
 587{
 588    fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
 589    fprintf(stderr, "This functions shouldn't be called.\n");
 590
 591    return 0;
 592}
 593
 594static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
 595    .name = "int32_as_uint16",
 596    .get  = get_uint32_as_uint16,
 597    .put  = put_unused,
 598};
 599
 600#define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
 601    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
 602
 603
 604static bool is_version_1(void *opaque, int version_id)
 605{
 606    return version_id == 1;
 607}
 608
 609bool fw_cfg_dma_enabled(void *opaque)
 610{
 611    FWCfgState *s = opaque;
 612
 613    return s->dma_enabled;
 614}
 615
 616static bool fw_cfg_acpi_mr_restore(void *opaque)
 617{
 618    FWCfgState *s = opaque;
 619    bool mr_aligned;
 620
 621    mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) &&
 622                 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) &&
 623                 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size);
 624    return s->acpi_mr_restore && !mr_aligned;
 625}
 626
 627static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
 628{
 629    MemoryRegion *mr;
 630    ram_addr_t offset;
 631    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 632    void *ptr;
 633
 634    key &= FW_CFG_ENTRY_MASK;
 635    assert(key < fw_cfg_max_entry(s));
 636
 637    ptr = s->entries[arch][key].data;
 638    mr = memory_region_from_host(ptr, &offset);
 639
 640    memory_region_ram_resize(mr, size, &error_abort);
 641}
 642
 643static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
 644{
 645    FWCfgState *s = opaque;
 646    int i, index;
 647
 648    assert(s->files);
 649
 650    index = be32_to_cpu(s->files->count);
 651
 652    for (i = 0; i < index; i++) {
 653        if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
 654            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
 655        } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
 656            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
 657        } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
 658            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
 659        }
 660    }
 661
 662    return 0;
 663}
 664
 665static const VMStateDescription vmstate_fw_cfg_dma = {
 666    .name = "fw_cfg/dma",
 667    .needed = fw_cfg_dma_enabled,
 668    .fields = (VMStateField[]) {
 669        VMSTATE_UINT64(dma_addr, FWCfgState),
 670        VMSTATE_END_OF_LIST()
 671    },
 672};
 673
 674static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
 675    .name = "fw_cfg/acpi_mr",
 676    .version_id = 1,
 677    .minimum_version_id = 1,
 678    .needed = fw_cfg_acpi_mr_restore,
 679    .post_load = fw_cfg_acpi_mr_restore_post_load,
 680    .fields = (VMStateField[]) {
 681        VMSTATE_UINT64(table_mr_size, FWCfgState),
 682        VMSTATE_UINT64(linker_mr_size, FWCfgState),
 683        VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
 684        VMSTATE_END_OF_LIST()
 685    },
 686};
 687
 688static const VMStateDescription vmstate_fw_cfg = {
 689    .name = "fw_cfg",
 690    .version_id = 2,
 691    .minimum_version_id = 1,
 692    .fields = (VMStateField[]) {
 693        VMSTATE_UINT16(cur_entry, FWCfgState),
 694        VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
 695        VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
 696        VMSTATE_END_OF_LIST()
 697    },
 698    .subsections = (const VMStateDescription*[]) {
 699        &vmstate_fw_cfg_dma,
 700        &vmstate_fw_cfg_acpi_mr,
 701        NULL,
 702    }
 703};
 704
 705static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
 706                                      FWCfgCallback select_cb,
 707                                      FWCfgWriteCallback write_cb,
 708                                      void *callback_opaque,
 709                                      void *data, size_t len,
 710                                      bool read_only)
 711{
 712    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 713
 714    key &= FW_CFG_ENTRY_MASK;
 715
 716    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 717    assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
 718
 719    s->entries[arch][key].data = data;
 720    s->entries[arch][key].len = (uint32_t)len;
 721    s->entries[arch][key].select_cb = select_cb;
 722    s->entries[arch][key].write_cb = write_cb;
 723    s->entries[arch][key].callback_opaque = callback_opaque;
 724    s->entries[arch][key].allow_write = !read_only;
 725}
 726
 727static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
 728                                              void *data, size_t len)
 729{
 730    void *ptr;
 731    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 732
 733    key &= FW_CFG_ENTRY_MASK;
 734
 735    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 736
 737    /* return the old data to the function caller, avoid memory leak */
 738    ptr = s->entries[arch][key].data;
 739    s->entries[arch][key].data = data;
 740    s->entries[arch][key].len = len;
 741    s->entries[arch][key].callback_opaque = NULL;
 742    s->entries[arch][key].allow_write = false;
 743
 744    return ptr;
 745}
 746
 747void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
 748{
 749    trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
 750    fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
 751}
 752
 753void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
 754{
 755    size_t sz = strlen(value) + 1;
 756
 757    trace_fw_cfg_add_string(key, trace_key_name(key), value);
 758    fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
 759}
 760
 761void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
 762{
 763    size_t sz = strlen(value) + 1;
 764    char *old;
 765
 766    old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
 767    g_free(old);
 768}
 769
 770void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
 771{
 772    uint16_t *copy;
 773
 774    copy = g_malloc(sizeof(value));
 775    *copy = cpu_to_le16(value);
 776    trace_fw_cfg_add_i16(key, trace_key_name(key), value);
 777    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 778}
 779
 780void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
 781{
 782    uint16_t *copy, *old;
 783
 784    copy = g_malloc(sizeof(value));
 785    *copy = cpu_to_le16(value);
 786    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 787    g_free(old);
 788}
 789
 790void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
 791{
 792    uint32_t *copy;
 793
 794    copy = g_malloc(sizeof(value));
 795    *copy = cpu_to_le32(value);
 796    trace_fw_cfg_add_i32(key, trace_key_name(key), value);
 797    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 798}
 799
 800void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
 801{
 802    uint32_t *copy, *old;
 803
 804    copy = g_malloc(sizeof(value));
 805    *copy = cpu_to_le32(value);
 806    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 807    g_free(old);
 808}
 809
 810void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
 811{
 812    uint64_t *copy;
 813
 814    copy = g_malloc(sizeof(value));
 815    *copy = cpu_to_le64(value);
 816    trace_fw_cfg_add_i64(key, trace_key_name(key), value);
 817    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 818}
 819
 820void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
 821{
 822    uint64_t *copy, *old;
 823
 824    copy = g_malloc(sizeof(value));
 825    *copy = cpu_to_le64(value);
 826    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 827    g_free(old);
 828}
 829
 830void fw_cfg_set_order_override(FWCfgState *s, int order)
 831{
 832    assert(s->fw_cfg_order_override == 0);
 833    s->fw_cfg_order_override = order;
 834}
 835
 836void fw_cfg_reset_order_override(FWCfgState *s)
 837{
 838    assert(s->fw_cfg_order_override != 0);
 839    s->fw_cfg_order_override = 0;
 840}
 841
 842/*
 843 * This is the legacy order list.  For legacy systems, files are in
 844 * the fw_cfg in the order defined below, by the "order" value.  Note
 845 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
 846 * specific area, but there may be more than one and they occur in the
 847 * order that the user specifies them on the command line.  Those are
 848 * handled in a special manner, using the order override above.
 849 *
 850 * For non-legacy, the files are sorted by filename to avoid this kind
 851 * of complexity in the future.
 852 *
 853 * This is only for x86, other arches don't implement versioning so
 854 * they won't set legacy mode.
 855 */
 856static struct {
 857    const char *name;
 858    int order;
 859} fw_cfg_order[] = {
 860    { "etc/boot-menu-wait", 10 },
 861    { "bootsplash.jpg", 11 },
 862    { "bootsplash.bmp", 12 },
 863    { "etc/boot-fail-wait", 15 },
 864    { "etc/smbios/smbios-tables", 20 },
 865    { "etc/smbios/smbios-anchor", 30 },
 866    { "etc/e820", 40 },
 867    { "etc/reserved-memory-end", 50 },
 868    { "genroms/kvmvapic.bin", 55 },
 869    { "genroms/linuxboot.bin", 60 },
 870    { }, /* VGA ROMs from pc_vga_init come here, 70. */
 871    { }, /* NIC option ROMs from pc_nic_init come here, 80. */
 872    { "etc/system-states", 90 },
 873    { }, /* User ROMs come here, 100. */
 874    { }, /* Device FW comes here, 110. */
 875    { "etc/extra-pci-roots", 120 },
 876    { "etc/acpi/tables", 130 },
 877    { "etc/table-loader", 140 },
 878    { "etc/tpm/log", 150 },
 879    { "etc/acpi/rsdp", 160 },
 880    { "bootorder", 170 },
 881
 882#define FW_CFG_ORDER_OVERRIDE_LAST 200
 883};
 884
 885/*
 886 * Any sub-page size update to these table MRs will be lost during migration,
 887 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
 888 * In order to avoid the inconsistency in sizes save them seperately and
 889 * migrate over in vmstate post_load().
 890 */
 891static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
 892{
 893    if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
 894        s->table_mr_size = len;
 895    } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
 896        s->linker_mr_size = len;
 897    } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
 898        s->rsdp_mr_size = len;
 899    }
 900}
 901
 902static int get_fw_cfg_order(FWCfgState *s, const char *name)
 903{
 904    int i;
 905
 906    if (s->fw_cfg_order_override > 0) {
 907        return s->fw_cfg_order_override;
 908    }
 909
 910    for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
 911        if (fw_cfg_order[i].name == NULL) {
 912            continue;
 913        }
 914
 915        if (strcmp(name, fw_cfg_order[i].name) == 0) {
 916            return fw_cfg_order[i].order;
 917        }
 918    }
 919
 920    /* Stick unknown stuff at the end. */
 921    warn_report("Unknown firmware file in legacy mode: %s", name);
 922    return FW_CFG_ORDER_OVERRIDE_LAST;
 923}
 924
 925void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
 926                              FWCfgCallback select_cb,
 927                              FWCfgWriteCallback write_cb,
 928                              void *callback_opaque,
 929                              void *data, size_t len, bool read_only)
 930{
 931    int i, index, count;
 932    size_t dsize;
 933    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 934    int order = 0;
 935
 936    if (!s->files) {
 937        dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
 938        s->files = g_malloc0(dsize);
 939        fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
 940    }
 941
 942    count = be32_to_cpu(s->files->count);
 943    assert(count < fw_cfg_file_slots(s));
 944
 945    /* Find the insertion point. */
 946    if (mc->legacy_fw_cfg_order) {
 947        /*
 948         * Sort by order. For files with the same order, we keep them
 949         * in the sequence in which they were added.
 950         */
 951        order = get_fw_cfg_order(s, filename);
 952        for (index = count;
 953             index > 0 && order < s->entry_order[index - 1];
 954             index--);
 955    } else {
 956        /* Sort by file name. */
 957        for (index = count;
 958             index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
 959             index--);
 960    }
 961
 962    /*
 963     * Move all the entries from the index point and after down one
 964     * to create a slot for the new entry.  Because calculations are
 965     * being done with the index, make it so that "i" is the current
 966     * index and "i - 1" is the one being copied from, thus the
 967     * unusual start and end in the for statement.
 968     */
 969    for (i = count; i > index; i--) {
 970        s->files->f[i] = s->files->f[i - 1];
 971        s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
 972        s->entries[0][FW_CFG_FILE_FIRST + i] =
 973            s->entries[0][FW_CFG_FILE_FIRST + i - 1];
 974        s->entry_order[i] = s->entry_order[i - 1];
 975    }
 976
 977    memset(&s->files->f[index], 0, sizeof(FWCfgFile));
 978    memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
 979
 980    pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
 981    for (i = 0; i <= count; i++) {
 982        if (i != index &&
 983            strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
 984            error_report("duplicate fw_cfg file name: %s",
 985                         s->files->f[index].name);
 986            exit(1);
 987        }
 988    }
 989
 990    fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
 991                              select_cb, write_cb,
 992                              callback_opaque, data, len,
 993                              read_only);
 994
 995    s->files->f[index].size   = cpu_to_be32(len);
 996    s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
 997    s->entry_order[index] = order;
 998    trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
 999
1000    s->files->count = cpu_to_be32(count+1);
1001    fw_cfg_acpi_mr_save(s, filename, len);
1002}
1003
1004void fw_cfg_add_file(FWCfgState *s,  const char *filename,
1005                     void *data, size_t len)
1006{
1007    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1008}
1009
1010void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1011                        void *data, size_t len)
1012{
1013    int i, index;
1014    void *ptr = NULL;
1015
1016    assert(s->files);
1017
1018    index = be32_to_cpu(s->files->count);
1019
1020    for (i = 0; i < index; i++) {
1021        if (strcmp(filename, s->files->f[i].name) == 0) {
1022            ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1023                                           data, len);
1024            s->files->f[i].size   = cpu_to_be32(len);
1025            fw_cfg_acpi_mr_save(s, filename, len);
1026            return ptr;
1027        }
1028    }
1029
1030    assert(index < fw_cfg_file_slots(s));
1031
1032    /* add new one */
1033    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1034    return NULL;
1035}
1036
1037bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1038                               const char *gen_id, Error **errp)
1039{
1040    FWCfgDataGeneratorClass *klass;
1041    GByteArray *array;
1042    Object *obj;
1043    gsize size;
1044
1045    obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1046    if (!obj) {
1047        error_setg(errp, "Cannot find object ID '%s'", gen_id);
1048        return false;
1049    }
1050    if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1051        error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1052                   gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1053        return false;
1054    }
1055    klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1056    array = klass->get_data(obj, errp);
1057    if (!array) {
1058        return false;
1059    }
1060    size = array->len;
1061    fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1062
1063    return true;
1064}
1065
1066void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1067{
1068    int extra_hosts = 0;
1069
1070    if (!bus) {
1071        return;
1072    }
1073
1074    QLIST_FOREACH(bus, &bus->child, sibling) {
1075        /* look for expander root buses */
1076        if (pci_bus_is_root(bus)) {
1077            extra_hosts++;
1078        }
1079    }
1080
1081    if (extra_hosts && s) {
1082        uint64_t *val = g_malloc(sizeof(*val));
1083        *val = cpu_to_le64(extra_hosts);
1084        fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1085    }
1086}
1087
1088static void fw_cfg_machine_reset(void *opaque)
1089{
1090    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1091    FWCfgState *s = opaque;
1092    void *ptr;
1093    size_t len;
1094    char *buf;
1095
1096    buf = get_boot_devices_list(&len);
1097    ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1098    g_free(ptr);
1099
1100    if (!mc->legacy_fw_cfg_order) {
1101        buf = get_boot_devices_lchs_list(&len);
1102        ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1103        g_free(ptr);
1104    }
1105}
1106
1107static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1108{
1109    FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1110    qemu_register_reset(fw_cfg_machine_reset, s);
1111}
1112
1113static Property fw_cfg_properties[] = {
1114    DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1115    DEFINE_PROP_END_OF_LIST(),
1116};
1117
1118static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1119{
1120    FWCfgState *s = FW_CFG(dev);
1121    MachineState *machine = MACHINE(qdev_get_machine());
1122    uint32_t version = FW_CFG_VERSION;
1123
1124    if (!fw_cfg_find()) {
1125        error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1126        return;
1127    }
1128
1129    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1130    fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1131    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1132    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
1133    fw_cfg_bootsplash(s);
1134    fw_cfg_reboot(s);
1135
1136    if (s->dma_enabled) {
1137        version |= FW_CFG_VERSION_DMA;
1138    }
1139
1140    fw_cfg_add_i32(s, FW_CFG_ID, version);
1141
1142    s->machine_ready.notify = fw_cfg_machine_ready;
1143    qemu_add_machine_init_done_notifier(&s->machine_ready);
1144}
1145
1146FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1147                                AddressSpace *dma_as)
1148{
1149    DeviceState *dev;
1150    SysBusDevice *sbd;
1151    FWCfgIoState *ios;
1152    FWCfgState *s;
1153    bool dma_requested = dma_iobase && dma_as;
1154
1155    dev = qdev_new(TYPE_FW_CFG_IO);
1156    if (!dma_requested) {
1157        qdev_prop_set_bit(dev, "dma_enabled", false);
1158    }
1159
1160    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1161                              OBJECT(dev));
1162
1163    sbd = SYS_BUS_DEVICE(dev);
1164    sysbus_realize_and_unref(sbd, &error_fatal);
1165    ios = FW_CFG_IO(dev);
1166    sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1167
1168    s = FW_CFG(dev);
1169
1170    if (s->dma_enabled) {
1171        /* 64 bits for the address field */
1172        s->dma_as = dma_as;
1173        s->dma_addr = 0;
1174        sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1175    }
1176
1177    return s;
1178}
1179
1180FWCfgState *fw_cfg_init_io(uint32_t iobase)
1181{
1182    return fw_cfg_init_io_dma(iobase, 0, NULL);
1183}
1184
1185FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1186                                 hwaddr data_addr, uint32_t data_width,
1187                                 hwaddr dma_addr, AddressSpace *dma_as)
1188{
1189    DeviceState *dev;
1190    SysBusDevice *sbd;
1191    FWCfgState *s;
1192    bool dma_requested = dma_addr && dma_as;
1193
1194    dev = qdev_new(TYPE_FW_CFG_MEM);
1195    qdev_prop_set_uint32(dev, "data_width", data_width);
1196    if (!dma_requested) {
1197        qdev_prop_set_bit(dev, "dma_enabled", false);
1198    }
1199
1200    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1201                              OBJECT(dev));
1202
1203    sbd = SYS_BUS_DEVICE(dev);
1204    sysbus_realize_and_unref(sbd, &error_fatal);
1205    sysbus_mmio_map(sbd, 0, ctl_addr);
1206    sysbus_mmio_map(sbd, 1, data_addr);
1207
1208    s = FW_CFG(dev);
1209
1210    if (s->dma_enabled) {
1211        s->dma_as = dma_as;
1212        s->dma_addr = 0;
1213        sysbus_mmio_map(sbd, 2, dma_addr);
1214    }
1215
1216    return s;
1217}
1218
1219FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1220{
1221    return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1222                                fw_cfg_data_mem_ops.valid.max_access_size,
1223                                0, NULL);
1224}
1225
1226
1227FWCfgState *fw_cfg_find(void)
1228{
1229    /* Returns NULL unless there is exactly one fw_cfg device */
1230    return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1231}
1232
1233
1234static void fw_cfg_class_init(ObjectClass *klass, void *data)
1235{
1236    DeviceClass *dc = DEVICE_CLASS(klass);
1237
1238    dc->reset = fw_cfg_reset;
1239    dc->vmsd = &vmstate_fw_cfg;
1240
1241    device_class_set_props(dc, fw_cfg_properties);
1242}
1243
1244static const TypeInfo fw_cfg_info = {
1245    .name          = TYPE_FW_CFG,
1246    .parent        = TYPE_SYS_BUS_DEVICE,
1247    .abstract      = true,
1248    .instance_size = sizeof(FWCfgState),
1249    .class_init    = fw_cfg_class_init,
1250};
1251
1252static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1253{
1254    uint16_t file_slots_max;
1255
1256    if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1257        error_setg(errp, "\"file_slots\" must be at least 0x%x",
1258                   FW_CFG_FILE_SLOTS_MIN);
1259        return;
1260    }
1261
1262    /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1263     * that we permit. The actual (exclusive) value coming from the
1264     * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1265    file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1266    if (fw_cfg_file_slots(s) > file_slots_max) {
1267        error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1268                   file_slots_max);
1269        return;
1270    }
1271
1272    s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1273    s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1274    s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1275}
1276
1277static Property fw_cfg_io_properties[] = {
1278    DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1279                     true),
1280    DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1281                       FW_CFG_FILE_SLOTS_DFLT),
1282    DEFINE_PROP_END_OF_LIST(),
1283};
1284
1285static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1286{
1287    ERRP_GUARD();
1288    FWCfgIoState *s = FW_CFG_IO(dev);
1289
1290    fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1291    if (*errp) {
1292        return;
1293    }
1294
1295    /* when using port i/o, the 8-bit data register ALWAYS overlaps
1296     * with half of the 16-bit control register. Hence, the total size
1297     * of the i/o region used is FW_CFG_CTL_SIZE */
1298    memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1299                          FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1300
1301    if (FW_CFG(s)->dma_enabled) {
1302        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1303                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1304                              sizeof(dma_addr_t));
1305    }
1306
1307    fw_cfg_common_realize(dev, errp);
1308}
1309
1310static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1311{
1312    DeviceClass *dc = DEVICE_CLASS(klass);
1313
1314    dc->realize = fw_cfg_io_realize;
1315    device_class_set_props(dc, fw_cfg_io_properties);
1316}
1317
1318static const TypeInfo fw_cfg_io_info = {
1319    .name          = TYPE_FW_CFG_IO,
1320    .parent        = TYPE_FW_CFG,
1321    .instance_size = sizeof(FWCfgIoState),
1322    .class_init    = fw_cfg_io_class_init,
1323};
1324
1325
1326static Property fw_cfg_mem_properties[] = {
1327    DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1328    DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1329                     true),
1330    DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1331                       FW_CFG_FILE_SLOTS_DFLT),
1332    DEFINE_PROP_END_OF_LIST(),
1333};
1334
1335static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1336{
1337    ERRP_GUARD();
1338    FWCfgMemState *s = FW_CFG_MEM(dev);
1339    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1340    const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1341
1342    fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1343    if (*errp) {
1344        return;
1345    }
1346
1347    memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1348                          FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1349    sysbus_init_mmio(sbd, &s->ctl_iomem);
1350
1351    if (s->data_width > data_ops->valid.max_access_size) {
1352        s->wide_data_ops = *data_ops;
1353
1354        s->wide_data_ops.valid.max_access_size = s->data_width;
1355        s->wide_data_ops.impl.max_access_size  = s->data_width;
1356        data_ops = &s->wide_data_ops;
1357    }
1358    memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1359                          "fwcfg.data", data_ops->valid.max_access_size);
1360    sysbus_init_mmio(sbd, &s->data_iomem);
1361
1362    if (FW_CFG(s)->dma_enabled) {
1363        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1364                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1365                              sizeof(dma_addr_t));
1366        sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1367    }
1368
1369    fw_cfg_common_realize(dev, errp);
1370}
1371
1372static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1373{
1374    DeviceClass *dc = DEVICE_CLASS(klass);
1375
1376    dc->realize = fw_cfg_mem_realize;
1377    device_class_set_props(dc, fw_cfg_mem_properties);
1378}
1379
1380static const TypeInfo fw_cfg_mem_info = {
1381    .name          = TYPE_FW_CFG_MEM,
1382    .parent        = TYPE_FW_CFG,
1383    .instance_size = sizeof(FWCfgMemState),
1384    .class_init    = fw_cfg_mem_class_init,
1385};
1386
1387static void fw_cfg_register_types(void)
1388{
1389    type_register_static(&fw_cfg_info);
1390    type_register_static(&fw_cfg_io_info);
1391    type_register_static(&fw_cfg_mem_info);
1392}
1393
1394type_init(fw_cfg_register_types)
1395