qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 */
  26
  27#include "qemu/osdep.h"
  28#include "qemu-common.h"
  29#include "qemu/datadir.h"
  30#include "qapi/error.h"
  31#include "qapi/qapi-events-machine.h"
  32#include "qapi/visitor.h"
  33#include "sysemu/sysemu.h"
  34#include "sysemu/hostmem.h"
  35#include "sysemu/numa.h"
  36#include "sysemu/qtest.h"
  37#include "sysemu/reset.h"
  38#include "sysemu/runstate.h"
  39#include "qemu/log.h"
  40#include "hw/fw-path-provider.h"
  41#include "elf.h"
  42#include "net/net.h"
  43#include "sysemu/device_tree.h"
  44#include "sysemu/cpus.h"
  45#include "sysemu/hw_accel.h"
  46#include "kvm_ppc.h"
  47#include "migration/misc.h"
  48#include "migration/qemu-file-types.h"
  49#include "migration/global_state.h"
  50#include "migration/register.h"
  51#include "migration/blocker.h"
  52#include "mmu-hash64.h"
  53#include "mmu-book3s-v3.h"
  54#include "cpu-models.h"
  55#include "hw/core/cpu.h"
  56
  57#include "hw/boards.h"
  58#include "hw/ppc/ppc.h"
  59#include "hw/loader.h"
  60
  61#include "hw/ppc/fdt.h"
  62#include "hw/ppc/spapr.h"
  63#include "hw/ppc/spapr_vio.h"
  64#include "hw/qdev-properties.h"
  65#include "hw/pci-host/spapr.h"
  66#include "hw/pci/msi.h"
  67
  68#include "hw/pci/pci.h"
  69#include "hw/scsi/scsi.h"
  70#include "hw/virtio/virtio-scsi.h"
  71#include "hw/virtio/vhost-scsi-common.h"
  72
  73#include "exec/address-spaces.h"
  74#include "exec/ram_addr.h"
  75#include "hw/usb.h"
  76#include "qemu/config-file.h"
  77#include "qemu/error-report.h"
  78#include "trace.h"
  79#include "hw/nmi.h"
  80#include "hw/intc/intc.h"
  81
  82#include "hw/ppc/spapr_cpu_core.h"
  83#include "hw/mem/memory-device.h"
  84#include "hw/ppc/spapr_tpm_proxy.h"
  85#include "hw/ppc/spapr_nvdimm.h"
  86#include "hw/ppc/spapr_numa.h"
  87#include "hw/ppc/pef.h"
  88
  89#include "monitor/monitor.h"
  90
  91#include <libfdt.h>
  92
  93/* SLOF memory layout:
  94 *
  95 * SLOF raw image loaded at 0, copies its romfs right below the flat
  96 * device-tree, then position SLOF itself 31M below that
  97 *
  98 * So we set FW_OVERHEAD to 40MB which should account for all of that
  99 * and more
 100 *
 101 * We load our kernel at 4M, leaving space for SLOF initial image
 102 */
 103#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
 104#define FW_MAX_SIZE             0x400000
 105#define FW_FILE_NAME            "slof.bin"
 106#define FW_OVERHEAD             0x2800000
 107#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
 108
 109#define MIN_RMA_SLOF            (128 * MiB)
 110
 111#define PHANDLE_INTC            0x00001111
 112
 113/* These two functions implement the VCPU id numbering: one to compute them
 114 * all and one to identify thread 0 of a VCORE. Any change to the first one
 115 * is likely to have an impact on the second one, so let's keep them close.
 116 */
 117static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
 118{
 119    MachineState *ms = MACHINE(spapr);
 120    unsigned int smp_threads = ms->smp.threads;
 121
 122    assert(spapr->vsmt);
 123    return
 124        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 125}
 126static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
 127                                      PowerPCCPU *cpu)
 128{
 129    assert(spapr->vsmt);
 130    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 131}
 132
 133static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 134{
 135    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 136     * and newer QEMUs don't even have them. In both cases, we don't want
 137     * to send anything on the wire.
 138     */
 139    return false;
 140}
 141
 142static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 143    .name = "icp/server",
 144    .version_id = 1,
 145    .minimum_version_id = 1,
 146    .needed = pre_2_10_vmstate_dummy_icp_needed,
 147    .fields = (VMStateField[]) {
 148        VMSTATE_UNUSED(4), /* uint32_t xirr */
 149        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 150        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 151        VMSTATE_END_OF_LIST()
 152    },
 153};
 154
 155static void pre_2_10_vmstate_register_dummy_icp(int i)
 156{
 157    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 158                     (void *)(uintptr_t) i);
 159}
 160
 161static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 162{
 163    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 164                       (void *)(uintptr_t) i);
 165}
 166
 167int spapr_max_server_number(SpaprMachineState *spapr)
 168{
 169    MachineState *ms = MACHINE(spapr);
 170
 171    assert(spapr->vsmt);
 172    return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
 173}
 174
 175static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 176                                  int smt_threads)
 177{
 178    int i, ret = 0;
 179    uint32_t servers_prop[smt_threads];
 180    uint32_t gservers_prop[smt_threads * 2];
 181    int index = spapr_get_vcpu_id(cpu);
 182
 183    if (cpu->compat_pvr) {
 184        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 185        if (ret < 0) {
 186            return ret;
 187        }
 188    }
 189
 190    /* Build interrupt servers and gservers properties */
 191    for (i = 0; i < smt_threads; i++) {
 192        servers_prop[i] = cpu_to_be32(index + i);
 193        /* Hack, direct the group queues back to cpu 0 */
 194        gservers_prop[i*2] = cpu_to_be32(index + i);
 195        gservers_prop[i*2 + 1] = 0;
 196    }
 197    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 198                      servers_prop, sizeof(servers_prop));
 199    if (ret < 0) {
 200        return ret;
 201    }
 202    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 203                      gservers_prop, sizeof(gservers_prop));
 204
 205    return ret;
 206}
 207
 208static void spapr_dt_pa_features(SpaprMachineState *spapr,
 209                                 PowerPCCPU *cpu,
 210                                 void *fdt, int offset)
 211{
 212    uint8_t pa_features_206[] = { 6, 0,
 213        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 214    uint8_t pa_features_207[] = { 24, 0,
 215        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 216        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 217        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 218        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 219    uint8_t pa_features_300[] = { 66, 0,
 220        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 221        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 222        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 223        /* 6: DS207 */
 224        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 225        /* 16: Vector */
 226        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 227        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 228        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 229        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 230        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 231        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 232        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 233        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 234        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 235        /* 42: PM, 44: PC RA, 46: SC vec'd */
 236        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 237        /* 48: SIMD, 50: QP BFP, 52: String */
 238        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 239        /* 54: DecFP, 56: DecI, 58: SHA */
 240        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 241        /* 60: NM atomic, 62: RNG */
 242        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 243    };
 244    uint8_t *pa_features = NULL;
 245    size_t pa_size;
 246
 247    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 248        pa_features = pa_features_206;
 249        pa_size = sizeof(pa_features_206);
 250    }
 251    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 252        pa_features = pa_features_207;
 253        pa_size = sizeof(pa_features_207);
 254    }
 255    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 256        pa_features = pa_features_300;
 257        pa_size = sizeof(pa_features_300);
 258    }
 259    if (!pa_features) {
 260        return;
 261    }
 262
 263    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 264        /*
 265         * Note: we keep CI large pages off by default because a 64K capable
 266         * guest provisioned with large pages might otherwise try to map a qemu
 267         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 268         * even if that qemu runs on a 4k host.
 269         * We dd this bit back here if we are confident this is not an issue
 270         */
 271        pa_features[3] |= 0x20;
 272    }
 273    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 274        pa_features[24] |= 0x80;    /* Transactional memory support */
 275    }
 276    if (spapr->cas_pre_isa3_guest && pa_size > 40) {
 277        /* Workaround for broken kernels that attempt (guest) radix
 278         * mode when they can't handle it, if they see the radix bit set
 279         * in pa-features. So hide it from them. */
 280        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 281    }
 282
 283    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 284}
 285
 286static hwaddr spapr_node0_size(MachineState *machine)
 287{
 288    if (machine->numa_state->num_nodes) {
 289        int i;
 290        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
 291            if (machine->numa_state->nodes[i].node_mem) {
 292                return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
 293                           machine->ram_size);
 294            }
 295        }
 296    }
 297    return machine->ram_size;
 298}
 299
 300static void add_str(GString *s, const gchar *s1)
 301{
 302    g_string_append_len(s, s1, strlen(s1) + 1);
 303}
 304
 305static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
 306                                hwaddr start, hwaddr size)
 307{
 308    char mem_name[32];
 309    uint64_t mem_reg_property[2];
 310    int off;
 311
 312    mem_reg_property[0] = cpu_to_be64(start);
 313    mem_reg_property[1] = cpu_to_be64(size);
 314
 315    sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
 316    off = fdt_add_subnode(fdt, 0, mem_name);
 317    _FDT(off);
 318    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 319    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 320                      sizeof(mem_reg_property))));
 321    spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
 322    return off;
 323}
 324
 325static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 326{
 327    MemoryDeviceInfoList *info;
 328
 329    for (info = list; info; info = info->next) {
 330        MemoryDeviceInfo *value = info->value;
 331
 332        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 333            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 334
 335            if (addr >= pcdimm_info->addr &&
 336                addr < (pcdimm_info->addr + pcdimm_info->size)) {
 337                return pcdimm_info->node;
 338            }
 339        }
 340    }
 341
 342    return -1;
 343}
 344
 345struct sPAPRDrconfCellV2 {
 346     uint32_t seq_lmbs;
 347     uint64_t base_addr;
 348     uint32_t drc_index;
 349     uint32_t aa_index;
 350     uint32_t flags;
 351} QEMU_PACKED;
 352
 353typedef struct DrconfCellQueue {
 354    struct sPAPRDrconfCellV2 cell;
 355    QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
 356} DrconfCellQueue;
 357
 358static DrconfCellQueue *
 359spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
 360                      uint32_t drc_index, uint32_t aa_index,
 361                      uint32_t flags)
 362{
 363    DrconfCellQueue *elem;
 364
 365    elem = g_malloc0(sizeof(*elem));
 366    elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
 367    elem->cell.base_addr = cpu_to_be64(base_addr);
 368    elem->cell.drc_index = cpu_to_be32(drc_index);
 369    elem->cell.aa_index = cpu_to_be32(aa_index);
 370    elem->cell.flags = cpu_to_be32(flags);
 371
 372    return elem;
 373}
 374
 375static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
 376                                      int offset, MemoryDeviceInfoList *dimms)
 377{
 378    MachineState *machine = MACHINE(spapr);
 379    uint8_t *int_buf, *cur_index;
 380    int ret;
 381    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 382    uint64_t addr, cur_addr, size;
 383    uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
 384    uint64_t mem_end = machine->device_memory->base +
 385                       memory_region_size(&machine->device_memory->mr);
 386    uint32_t node, buf_len, nr_entries = 0;
 387    SpaprDrc *drc;
 388    DrconfCellQueue *elem, *next;
 389    MemoryDeviceInfoList *info;
 390    QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
 391        = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
 392
 393    /* Entry to cover RAM and the gap area */
 394    elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
 395                                 SPAPR_LMB_FLAGS_RESERVED |
 396                                 SPAPR_LMB_FLAGS_DRC_INVALID);
 397    QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 398    nr_entries++;
 399
 400    cur_addr = machine->device_memory->base;
 401    for (info = dimms; info; info = info->next) {
 402        PCDIMMDeviceInfo *di = info->value->u.dimm.data;
 403
 404        addr = di->addr;
 405        size = di->size;
 406        node = di->node;
 407
 408        /*
 409         * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
 410         * area is marked hotpluggable in the next iteration for the bigger
 411         * chunk including the NVDIMM occupied area.
 412         */
 413        if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
 414            continue;
 415
 416        /* Entry for hot-pluggable area */
 417        if (cur_addr < addr) {
 418            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 419            g_assert(drc);
 420            elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
 421                                         cur_addr, spapr_drc_index(drc), -1, 0);
 422            QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 423            nr_entries++;
 424        }
 425
 426        /* Entry for DIMM */
 427        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
 428        g_assert(drc);
 429        elem = spapr_get_drconf_cell(size / lmb_size, addr,
 430                                     spapr_drc_index(drc), node,
 431                                     (SPAPR_LMB_FLAGS_ASSIGNED |
 432                                      SPAPR_LMB_FLAGS_HOTREMOVABLE));
 433        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 434        nr_entries++;
 435        cur_addr = addr + size;
 436    }
 437
 438    /* Entry for remaining hotpluggable area */
 439    if (cur_addr < mem_end) {
 440        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 441        g_assert(drc);
 442        elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
 443                                     cur_addr, spapr_drc_index(drc), -1, 0);
 444        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 445        nr_entries++;
 446    }
 447
 448    buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
 449    int_buf = cur_index = g_malloc0(buf_len);
 450    *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
 451    cur_index += sizeof(nr_entries);
 452
 453    QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
 454        memcpy(cur_index, &elem->cell, sizeof(elem->cell));
 455        cur_index += sizeof(elem->cell);
 456        QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
 457        g_free(elem);
 458    }
 459
 460    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
 461    g_free(int_buf);
 462    if (ret < 0) {
 463        return -1;
 464    }
 465    return 0;
 466}
 467
 468static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
 469                                   int offset, MemoryDeviceInfoList *dimms)
 470{
 471    MachineState *machine = MACHINE(spapr);
 472    int i, ret;
 473    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 474    uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
 475    uint32_t nr_lmbs = (machine->device_memory->base +
 476                       memory_region_size(&machine->device_memory->mr)) /
 477                       lmb_size;
 478    uint32_t *int_buf, *cur_index, buf_len;
 479
 480    /*
 481     * Allocate enough buffer size to fit in ibm,dynamic-memory
 482     */
 483    buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
 484    cur_index = int_buf = g_malloc0(buf_len);
 485    int_buf[0] = cpu_to_be32(nr_lmbs);
 486    cur_index++;
 487    for (i = 0; i < nr_lmbs; i++) {
 488        uint64_t addr = i * lmb_size;
 489        uint32_t *dynamic_memory = cur_index;
 490
 491        if (i >= device_lmb_start) {
 492            SpaprDrc *drc;
 493
 494            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 495            g_assert(drc);
 496
 497            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 498            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 499            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 500            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 501            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 502            if (memory_region_present(get_system_memory(), addr)) {
 503                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 504            } else {
 505                dynamic_memory[5] = cpu_to_be32(0);
 506            }
 507        } else {
 508            /*
 509             * LMB information for RMA, boot time RAM and gap b/n RAM and
 510             * device memory region -- all these are marked as reserved
 511             * and as having no valid DRC.
 512             */
 513            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 514            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 515            dynamic_memory[2] = cpu_to_be32(0);
 516            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 517            dynamic_memory[4] = cpu_to_be32(-1);
 518            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 519                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 520        }
 521
 522        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 523    }
 524    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 525    g_free(int_buf);
 526    if (ret < 0) {
 527        return -1;
 528    }
 529    return 0;
 530}
 531
 532/*
 533 * Adds ibm,dynamic-reconfiguration-memory node.
 534 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 535 * of this device tree node.
 536 */
 537static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
 538                                                   void *fdt)
 539{
 540    MachineState *machine = MACHINE(spapr);
 541    int ret, offset;
 542    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 543    uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
 544                                cpu_to_be32(lmb_size & 0xffffffff)};
 545    MemoryDeviceInfoList *dimms = NULL;
 546
 547    /*
 548     * Don't create the node if there is no device memory
 549     */
 550    if (machine->ram_size == machine->maxram_size) {
 551        return 0;
 552    }
 553
 554    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 555
 556    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 557                    sizeof(prop_lmb_size));
 558    if (ret < 0) {
 559        return ret;
 560    }
 561
 562    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 563    if (ret < 0) {
 564        return ret;
 565    }
 566
 567    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 568    if (ret < 0) {
 569        return ret;
 570    }
 571
 572    /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
 573    dimms = qmp_memory_device_list();
 574    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
 575        ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
 576    } else {
 577        ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
 578    }
 579    qapi_free_MemoryDeviceInfoList(dimms);
 580
 581    if (ret < 0) {
 582        return ret;
 583    }
 584
 585    ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
 586
 587    return ret;
 588}
 589
 590static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
 591{
 592    MachineState *machine = MACHINE(spapr);
 593    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 594    hwaddr mem_start, node_size;
 595    int i, nb_nodes = machine->numa_state->num_nodes;
 596    NodeInfo *nodes = machine->numa_state->nodes;
 597
 598    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 599        if (!nodes[i].node_mem) {
 600            continue;
 601        }
 602        if (mem_start >= machine->ram_size) {
 603            node_size = 0;
 604        } else {
 605            node_size = nodes[i].node_mem;
 606            if (node_size > machine->ram_size - mem_start) {
 607                node_size = machine->ram_size - mem_start;
 608            }
 609        }
 610        if (!mem_start) {
 611            /* spapr_machine_init() checks for rma_size <= node0_size
 612             * already */
 613            spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
 614            mem_start += spapr->rma_size;
 615            node_size -= spapr->rma_size;
 616        }
 617        for ( ; node_size; ) {
 618            hwaddr sizetmp = pow2floor(node_size);
 619
 620            /* mem_start != 0 here */
 621            if (ctzl(mem_start) < ctzl(sizetmp)) {
 622                sizetmp = 1ULL << ctzl(mem_start);
 623            }
 624
 625            spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
 626            node_size -= sizetmp;
 627            mem_start += sizetmp;
 628        }
 629    }
 630
 631    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 632    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
 633        int ret;
 634
 635        g_assert(smc->dr_lmb_enabled);
 636        ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
 637        if (ret) {
 638            return ret;
 639        }
 640    }
 641
 642    return 0;
 643}
 644
 645static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
 646                         SpaprMachineState *spapr)
 647{
 648    MachineState *ms = MACHINE(spapr);
 649    PowerPCCPU *cpu = POWERPC_CPU(cs);
 650    CPUPPCState *env = &cpu->env;
 651    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 652    int index = spapr_get_vcpu_id(cpu);
 653    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 654                       0xffffffff, 0xffffffff};
 655    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 656        : SPAPR_TIMEBASE_FREQ;
 657    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 658    uint32_t page_sizes_prop[64];
 659    size_t page_sizes_prop_size;
 660    unsigned int smp_threads = ms->smp.threads;
 661    uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
 662    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 663    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 664    SpaprDrc *drc;
 665    int drc_index;
 666    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 667    int i;
 668
 669    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 670    if (drc) {
 671        drc_index = spapr_drc_index(drc);
 672        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 673    }
 674
 675    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 676    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 677
 678    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 679    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 680                           env->dcache_line_size)));
 681    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 682                           env->dcache_line_size)));
 683    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 684                           env->icache_line_size)));
 685    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 686                           env->icache_line_size)));
 687
 688    if (pcc->l1_dcache_size) {
 689        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 690                               pcc->l1_dcache_size)));
 691    } else {
 692        warn_report("Unknown L1 dcache size for cpu");
 693    }
 694    if (pcc->l1_icache_size) {
 695        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 696                               pcc->l1_icache_size)));
 697    } else {
 698        warn_report("Unknown L1 icache size for cpu");
 699    }
 700
 701    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 702    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 703    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
 704    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 705    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 706    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 707
 708    if (env->spr_cb[SPR_PURR].oea_read) {
 709        _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
 710    }
 711    if (env->spr_cb[SPR_SPURR].oea_read) {
 712        _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
 713    }
 714
 715    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 716        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 717                          segs, sizeof(segs))));
 718    }
 719
 720    /* Advertise VSX (vector extensions) if available
 721     *   1               == VMX / Altivec available
 722     *   2               == VSX available
 723     *
 724     * Only CPUs for which we create core types in spapr_cpu_core.c
 725     * are possible, and all of those have VMX */
 726    if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 727        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 728    } else {
 729        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 730    }
 731
 732    /* Advertise DFP (Decimal Floating Point) if available
 733     *   0 / no property == no DFP
 734     *   1               == DFP available */
 735    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 736        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 737    }
 738
 739    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 740                                                      sizeof(page_sizes_prop));
 741    if (page_sizes_prop_size) {
 742        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 743                          page_sizes_prop, page_sizes_prop_size)));
 744    }
 745
 746    spapr_dt_pa_features(spapr, cpu, fdt, offset);
 747
 748    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 749                           cs->cpu_index / vcpus_per_socket)));
 750
 751    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 752                      pft_size_prop, sizeof(pft_size_prop))));
 753
 754    if (ms->numa_state->num_nodes > 1) {
 755        _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
 756    }
 757
 758    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 759
 760    if (pcc->radix_page_info) {
 761        for (i = 0; i < pcc->radix_page_info->count; i++) {
 762            radix_AP_encodings[i] =
 763                cpu_to_be32(pcc->radix_page_info->entries[i]);
 764        }
 765        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 766                          radix_AP_encodings,
 767                          pcc->radix_page_info->count *
 768                          sizeof(radix_AP_encodings[0]))));
 769    }
 770
 771    /*
 772     * We set this property to let the guest know that it can use the large
 773     * decrementer and its width in bits.
 774     */
 775    if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
 776        _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
 777                              pcc->lrg_decr_bits)));
 778}
 779
 780static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
 781{
 782    CPUState **rev;
 783    CPUState *cs;
 784    int n_cpus;
 785    int cpus_offset;
 786    int i;
 787
 788    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 789    _FDT(cpus_offset);
 790    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 791    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 792
 793    /*
 794     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 795     * created by fdt_add_subnode() end up in the right order in FDT
 796     * for the guest kernel the enumerate the CPUs correctly.
 797     *
 798     * The CPU list cannot be traversed in reverse order, so we need
 799     * to do extra work.
 800     */
 801    n_cpus = 0;
 802    rev = NULL;
 803    CPU_FOREACH(cs) {
 804        rev = g_renew(CPUState *, rev, n_cpus + 1);
 805        rev[n_cpus++] = cs;
 806    }
 807
 808    for (i = n_cpus - 1; i >= 0; i--) {
 809        CPUState *cs = rev[i];
 810        PowerPCCPU *cpu = POWERPC_CPU(cs);
 811        int index = spapr_get_vcpu_id(cpu);
 812        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 813        g_autofree char *nodename = NULL;
 814        int offset;
 815
 816        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 817            continue;
 818        }
 819
 820        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 821        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 822        _FDT(offset);
 823        spapr_dt_cpu(cs, fdt, offset, spapr);
 824    }
 825
 826    g_free(rev);
 827}
 828
 829static int spapr_dt_rng(void *fdt)
 830{
 831    int node;
 832    int ret;
 833
 834    node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
 835    if (node <= 0) {
 836        return -1;
 837    }
 838    ret = fdt_setprop_string(fdt, node, "device_type",
 839                             "ibm,platform-facilities");
 840    ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
 841    ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
 842
 843    node = fdt_add_subnode(fdt, node, "ibm,random-v1");
 844    if (node <= 0) {
 845        return -1;
 846    }
 847    ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
 848
 849    return ret ? -1 : 0;
 850}
 851
 852static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
 853{
 854    MachineState *ms = MACHINE(spapr);
 855    int rtas;
 856    GString *hypertas = g_string_sized_new(256);
 857    GString *qemu_hypertas = g_string_sized_new(256);
 858    uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
 859        memory_region_size(&MACHINE(spapr)->device_memory->mr);
 860    uint32_t lrdr_capacity[] = {
 861        cpu_to_be32(max_device_addr >> 32),
 862        cpu_to_be32(max_device_addr & 0xffffffff),
 863        cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
 864        cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
 865        cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
 866    };
 867
 868    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 869
 870    /* hypertas */
 871    add_str(hypertas, "hcall-pft");
 872    add_str(hypertas, "hcall-term");
 873    add_str(hypertas, "hcall-dabr");
 874    add_str(hypertas, "hcall-interrupt");
 875    add_str(hypertas, "hcall-tce");
 876    add_str(hypertas, "hcall-vio");
 877    add_str(hypertas, "hcall-splpar");
 878    add_str(hypertas, "hcall-join");
 879    add_str(hypertas, "hcall-bulk");
 880    add_str(hypertas, "hcall-set-mode");
 881    add_str(hypertas, "hcall-sprg0");
 882    add_str(hypertas, "hcall-copy");
 883    add_str(hypertas, "hcall-debug");
 884    add_str(hypertas, "hcall-vphn");
 885    add_str(qemu_hypertas, "hcall-memop1");
 886
 887    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 888        add_str(hypertas, "hcall-multi-tce");
 889    }
 890
 891    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 892        add_str(hypertas, "hcall-hpt-resize");
 893    }
 894
 895    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 896                     hypertas->str, hypertas->len));
 897    g_string_free(hypertas, TRUE);
 898    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 899                     qemu_hypertas->str, qemu_hypertas->len));
 900    g_string_free(qemu_hypertas, TRUE);
 901
 902    spapr_numa_write_rtas_dt(spapr, fdt, rtas);
 903
 904    /*
 905     * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
 906     * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
 907     *
 908     * The system reset requirements are driven by existing Linux and PowerVM
 909     * implementation which (contrary to PAPR) saves r3 in the error log
 910     * structure like machine check, so Linux expects to find the saved r3
 911     * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
 912     * does not look at the error value).
 913     *
 914     * System reset interrupts are not subject to interlock like machine
 915     * check, so this memory area could be corrupted if the sreset is
 916     * interrupted by a machine check (or vice versa) if it was shared. To
 917     * prevent this, system reset uses per-CPU areas for the sreset save
 918     * area. A system reset that interrupts a system reset handler could
 919     * still overwrite this area, but Linux doesn't try to recover in that
 920     * case anyway.
 921     *
 922     * The extra 8 bytes is required because Linux's FWNMI error log check
 923     * is off-by-one.
 924     */
 925    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
 926                          ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
 927    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 928                          RTAS_ERROR_LOG_MAX));
 929    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 930                          RTAS_EVENT_SCAN_RATE));
 931
 932    g_assert(msi_nonbroken);
 933    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 934
 935    /*
 936     * According to PAPR, rtas ibm,os-term does not guarantee a return
 937     * back to the guest cpu.
 938     *
 939     * While an additional ibm,extended-os-term property indicates
 940     * that rtas call return will always occur. Set this property.
 941     */
 942    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 943
 944    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 945                     lrdr_capacity, sizeof(lrdr_capacity)));
 946
 947    spapr_dt_rtas_tokens(fdt, rtas);
 948}
 949
 950/*
 951 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
 952 * and the XIVE features that the guest may request and thus the valid
 953 * values for bytes 23..26 of option vector 5:
 954 */
 955static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
 956                                          int chosen)
 957{
 958    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 959
 960    char val[2 * 4] = {
 961        23, 0x00, /* XICS / XIVE mode */
 962        24, 0x00, /* Hash/Radix, filled in below. */
 963        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
 964        26, 0x40, /* Radix options: GTSE == yes. */
 965    };
 966
 967    if (spapr->irq->xics && spapr->irq->xive) {
 968        val[1] = SPAPR_OV5_XIVE_BOTH;
 969    } else if (spapr->irq->xive) {
 970        val[1] = SPAPR_OV5_XIVE_EXPLOIT;
 971    } else {
 972        assert(spapr->irq->xics);
 973        val[1] = SPAPR_OV5_XIVE_LEGACY;
 974    }
 975
 976    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
 977                          first_ppc_cpu->compat_pvr)) {
 978        /*
 979         * If we're in a pre POWER9 compat mode then the guest should
 980         * do hash and use the legacy interrupt mode
 981         */
 982        val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
 983        val[3] = 0x00; /* Hash */
 984    } else if (kvm_enabled()) {
 985        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
 986            val[3] = 0x80; /* OV5_MMU_BOTH */
 987        } else if (kvmppc_has_cap_mmu_radix()) {
 988            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
 989        } else {
 990            val[3] = 0x00; /* Hash */
 991        }
 992    } else {
 993        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
 994        val[3] = 0xC0;
 995    }
 996    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
 997                     val, sizeof(val)));
 998}
 999
1000static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1001{
1002    MachineState *machine = MACHINE(spapr);
1003    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1004    int chosen;
1005
1006    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1007
1008    if (reset) {
1009        const char *boot_device = machine->boot_order;
1010        char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1011        size_t cb = 0;
1012        char *bootlist = get_boot_devices_list(&cb);
1013
1014        if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1015            _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1016                                    machine->kernel_cmdline));
1017        }
1018
1019        if (spapr->initrd_size) {
1020            _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1021                                  spapr->initrd_base));
1022            _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1023                                  spapr->initrd_base + spapr->initrd_size));
1024        }
1025
1026        if (spapr->kernel_size) {
1027            uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1028                                  cpu_to_be64(spapr->kernel_size) };
1029
1030            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1031                         &kprop, sizeof(kprop)));
1032            if (spapr->kernel_le) {
1033                _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1034            }
1035        }
1036        if (boot_menu) {
1037            _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1038        }
1039        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1040        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1041        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1042
1043        if (cb && bootlist) {
1044            int i;
1045
1046            for (i = 0; i < cb; i++) {
1047                if (bootlist[i] == '\n') {
1048                    bootlist[i] = ' ';
1049                }
1050            }
1051            _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1052        }
1053
1054        if (boot_device && strlen(boot_device)) {
1055            _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1056        }
1057
1058        if (!spapr->has_graphics && stdout_path) {
1059            /*
1060             * "linux,stdout-path" and "stdout" properties are
1061             * deprecated by linux kernel. New platforms should only
1062             * use the "stdout-path" property. Set the new property
1063             * and continue using older property to remain compatible
1064             * with the existing firmware.
1065             */
1066            _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1067            _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1068        }
1069
1070        /*
1071         * We can deal with BAR reallocation just fine, advertise it
1072         * to the guest
1073         */
1074        if (smc->linux_pci_probe) {
1075            _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1076        }
1077
1078        spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1079
1080        g_free(stdout_path);
1081        g_free(bootlist);
1082    }
1083
1084    _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1085}
1086
1087static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1088{
1089    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1090     * KVM to work under pHyp with some guest co-operation */
1091    int hypervisor;
1092    uint8_t hypercall[16];
1093
1094    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1095    /* indicate KVM hypercall interface */
1096    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1097    if (kvmppc_has_cap_fixup_hcalls()) {
1098        /*
1099         * Older KVM versions with older guest kernels were broken
1100         * with the magic page, don't allow the guest to map it.
1101         */
1102        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1103                                  sizeof(hypercall))) {
1104            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1105                             hypercall, sizeof(hypercall)));
1106        }
1107    }
1108}
1109
1110void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1111{
1112    MachineState *machine = MACHINE(spapr);
1113    MachineClass *mc = MACHINE_GET_CLASS(machine);
1114    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1115    uint32_t root_drc_type_mask = 0;
1116    int ret;
1117    void *fdt;
1118    SpaprPhbState *phb;
1119    char *buf;
1120
1121    fdt = g_malloc0(space);
1122    _FDT((fdt_create_empty_tree(fdt, space)));
1123
1124    /* Root node */
1125    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1126    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1127    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1128
1129    /* Guest UUID & Name*/
1130    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1131    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1132    if (qemu_uuid_set) {
1133        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1134    }
1135    g_free(buf);
1136
1137    if (qemu_get_vm_name()) {
1138        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1139                                qemu_get_vm_name()));
1140    }
1141
1142    /* Host Model & Serial Number */
1143    if (spapr->host_model) {
1144        _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1145    } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1146        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1147        g_free(buf);
1148    }
1149
1150    if (spapr->host_serial) {
1151        _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1152    } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1153        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1154        g_free(buf);
1155    }
1156
1157    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1158    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1159
1160    /* /interrupt controller */
1161    spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1162
1163    ret = spapr_dt_memory(spapr, fdt);
1164    if (ret < 0) {
1165        error_report("couldn't setup memory nodes in fdt");
1166        exit(1);
1167    }
1168
1169    /* /vdevice */
1170    spapr_dt_vdevice(spapr->vio_bus, fdt);
1171
1172    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1173        ret = spapr_dt_rng(fdt);
1174        if (ret < 0) {
1175            error_report("could not set up rng device in the fdt");
1176            exit(1);
1177        }
1178    }
1179
1180    QLIST_FOREACH(phb, &spapr->phbs, list) {
1181        ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1182        if (ret < 0) {
1183            error_report("couldn't setup PCI devices in fdt");
1184            exit(1);
1185        }
1186    }
1187
1188    spapr_dt_cpus(fdt, spapr);
1189
1190    /* ibm,drc-indexes and friends */
1191    if (smc->dr_lmb_enabled) {
1192        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1193    }
1194    if (smc->dr_phb_enabled) {
1195        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1196    }
1197    if (mc->nvdimm_supported) {
1198        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1199    }
1200    if (root_drc_type_mask) {
1201        _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1202    }
1203
1204    if (mc->has_hotpluggable_cpus) {
1205        int offset = fdt_path_offset(fdt, "/cpus");
1206        ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1207        if (ret < 0) {
1208            error_report("Couldn't set up CPU DR device tree properties");
1209            exit(1);
1210        }
1211    }
1212
1213    /* /event-sources */
1214    spapr_dt_events(spapr, fdt);
1215
1216    /* /rtas */
1217    spapr_dt_rtas(spapr, fdt);
1218
1219    /* /chosen */
1220    spapr_dt_chosen(spapr, fdt, reset);
1221
1222    /* /hypervisor */
1223    if (kvm_enabled()) {
1224        spapr_dt_hypervisor(spapr, fdt);
1225    }
1226
1227    /* Build memory reserve map */
1228    if (reset) {
1229        if (spapr->kernel_size) {
1230            _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1231                                  spapr->kernel_size)));
1232        }
1233        if (spapr->initrd_size) {
1234            _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1235                                  spapr->initrd_size)));
1236        }
1237    }
1238
1239    /* NVDIMM devices */
1240    if (mc->nvdimm_supported) {
1241        spapr_dt_persistent_memory(spapr, fdt);
1242    }
1243
1244    return fdt;
1245}
1246
1247static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1248{
1249    SpaprMachineState *spapr = opaque;
1250
1251    return (addr & 0x0fffffff) + spapr->kernel_addr;
1252}
1253
1254static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1255                                    PowerPCCPU *cpu)
1256{
1257    CPUPPCState *env = &cpu->env;
1258
1259    /* The TCG path should also be holding the BQL at this point */
1260    g_assert(qemu_mutex_iothread_locked());
1261
1262    if (msr_pr) {
1263        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1264        env->gpr[3] = H_PRIVILEGE;
1265    } else {
1266        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1267    }
1268}
1269
1270struct LPCRSyncState {
1271    target_ulong value;
1272    target_ulong mask;
1273};
1274
1275static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1276{
1277    struct LPCRSyncState *s = arg.host_ptr;
1278    PowerPCCPU *cpu = POWERPC_CPU(cs);
1279    CPUPPCState *env = &cpu->env;
1280    target_ulong lpcr;
1281
1282    cpu_synchronize_state(cs);
1283    lpcr = env->spr[SPR_LPCR];
1284    lpcr &= ~s->mask;
1285    lpcr |= s->value;
1286    ppc_store_lpcr(cpu, lpcr);
1287}
1288
1289void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1290{
1291    CPUState *cs;
1292    struct LPCRSyncState s = {
1293        .value = value,
1294        .mask = mask
1295    };
1296    CPU_FOREACH(cs) {
1297        run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1298    }
1299}
1300
1301static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1302{
1303    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1304
1305    /* Copy PATE1:GR into PATE0:HR */
1306    entry->dw0 = spapr->patb_entry & PATE0_HR;
1307    entry->dw1 = spapr->patb_entry;
1308}
1309
1310#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1311#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1312#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1313#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1314#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1315
1316/*
1317 * Get the fd to access the kernel htab, re-opening it if necessary
1318 */
1319static int get_htab_fd(SpaprMachineState *spapr)
1320{
1321    Error *local_err = NULL;
1322
1323    if (spapr->htab_fd >= 0) {
1324        return spapr->htab_fd;
1325    }
1326
1327    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1328    if (spapr->htab_fd < 0) {
1329        error_report_err(local_err);
1330    }
1331
1332    return spapr->htab_fd;
1333}
1334
1335void close_htab_fd(SpaprMachineState *spapr)
1336{
1337    if (spapr->htab_fd >= 0) {
1338        close(spapr->htab_fd);
1339    }
1340    spapr->htab_fd = -1;
1341}
1342
1343static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1344{
1345    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1346
1347    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1348}
1349
1350static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1351{
1352    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1353
1354    assert(kvm_enabled());
1355
1356    if (!spapr->htab) {
1357        return 0;
1358    }
1359
1360    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1361}
1362
1363static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1364                                                hwaddr ptex, int n)
1365{
1366    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1367    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1368
1369    if (!spapr->htab) {
1370        /*
1371         * HTAB is controlled by KVM. Fetch into temporary buffer
1372         */
1373        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1374        kvmppc_read_hptes(hptes, ptex, n);
1375        return hptes;
1376    }
1377
1378    /*
1379     * HTAB is controlled by QEMU. Just point to the internally
1380     * accessible PTEG.
1381     */
1382    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1383}
1384
1385static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1386                              const ppc_hash_pte64_t *hptes,
1387                              hwaddr ptex, int n)
1388{
1389    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1390
1391    if (!spapr->htab) {
1392        g_free((void *)hptes);
1393    }
1394
1395    /* Nothing to do for qemu managed HPT */
1396}
1397
1398void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1399                      uint64_t pte0, uint64_t pte1)
1400{
1401    SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1402    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1403
1404    if (!spapr->htab) {
1405        kvmppc_write_hpte(ptex, pte0, pte1);
1406    } else {
1407        if (pte0 & HPTE64_V_VALID) {
1408            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1409            /*
1410             * When setting valid, we write PTE1 first. This ensures
1411             * proper synchronization with the reading code in
1412             * ppc_hash64_pteg_search()
1413             */
1414            smp_wmb();
1415            stq_p(spapr->htab + offset, pte0);
1416        } else {
1417            stq_p(spapr->htab + offset, pte0);
1418            /*
1419             * When clearing it we set PTE0 first. This ensures proper
1420             * synchronization with the reading code in
1421             * ppc_hash64_pteg_search()
1422             */
1423            smp_wmb();
1424            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1425        }
1426    }
1427}
1428
1429static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1430                             uint64_t pte1)
1431{
1432    hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1433    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1434
1435    if (!spapr->htab) {
1436        /* There should always be a hash table when this is called */
1437        error_report("spapr_hpte_set_c called with no hash table !");
1438        return;
1439    }
1440
1441    /* The HW performs a non-atomic byte update */
1442    stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1443}
1444
1445static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1446                             uint64_t pte1)
1447{
1448    hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1449    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1450
1451    if (!spapr->htab) {
1452        /* There should always be a hash table when this is called */
1453        error_report("spapr_hpte_set_r called with no hash table !");
1454        return;
1455    }
1456
1457    /* The HW performs a non-atomic byte update */
1458    stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1459}
1460
1461int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1462{
1463    int shift;
1464
1465    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1466     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1467     * that's much more than is needed for Linux guests */
1468    shift = ctz64(pow2ceil(ramsize)) - 7;
1469    shift = MAX(shift, 18); /* Minimum architected size */
1470    shift = MIN(shift, 46); /* Maximum architected size */
1471    return shift;
1472}
1473
1474void spapr_free_hpt(SpaprMachineState *spapr)
1475{
1476    g_free(spapr->htab);
1477    spapr->htab = NULL;
1478    spapr->htab_shift = 0;
1479    close_htab_fd(spapr);
1480}
1481
1482int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1483{
1484    ERRP_GUARD();
1485    long rc;
1486
1487    /* Clean up any HPT info from a previous boot */
1488    spapr_free_hpt(spapr);
1489
1490    rc = kvmppc_reset_htab(shift);
1491
1492    if (rc == -EOPNOTSUPP) {
1493        error_setg(errp, "HPT not supported in nested guests");
1494        return -EOPNOTSUPP;
1495    }
1496
1497    if (rc < 0) {
1498        /* kernel-side HPT needed, but couldn't allocate one */
1499        error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1500                         shift);
1501        error_append_hint(errp, "Try smaller maxmem?\n");
1502        return -errno;
1503    } else if (rc > 0) {
1504        /* kernel-side HPT allocated */
1505        if (rc != shift) {
1506            error_setg(errp,
1507                       "Requested order %d HPT, but kernel allocated order %ld",
1508                       shift, rc);
1509            error_append_hint(errp, "Try smaller maxmem?\n");
1510            return -ENOSPC;
1511        }
1512
1513        spapr->htab_shift = shift;
1514        spapr->htab = NULL;
1515    } else {
1516        /* kernel-side HPT not needed, allocate in userspace instead */
1517        size_t size = 1ULL << shift;
1518        int i;
1519
1520        spapr->htab = qemu_memalign(size, size);
1521        memset(spapr->htab, 0, size);
1522        spapr->htab_shift = shift;
1523
1524        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1525            DIRTY_HPTE(HPTE(spapr->htab, i));
1526        }
1527    }
1528    /* We're setting up a hash table, so that means we're not radix */
1529    spapr->patb_entry = 0;
1530    spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1531    return 0;
1532}
1533
1534void spapr_setup_hpt(SpaprMachineState *spapr)
1535{
1536    int hpt_shift;
1537
1538    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1539        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1540    } else {
1541        uint64_t current_ram_size;
1542
1543        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1544        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1545    }
1546    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1547
1548    if (kvm_enabled()) {
1549        hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1550
1551        /* Check our RMA fits in the possible VRMA */
1552        if (vrma_limit < spapr->rma_size) {
1553            error_report("Unable to create %" HWADDR_PRIu
1554                         "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1555                         spapr->rma_size / MiB, vrma_limit / MiB);
1556            exit(EXIT_FAILURE);
1557        }
1558    }
1559}
1560
1561static void spapr_machine_reset(MachineState *machine)
1562{
1563    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1564    PowerPCCPU *first_ppc_cpu;
1565    hwaddr fdt_addr;
1566    void *fdt;
1567    int rc;
1568
1569    pef_kvm_reset(machine->cgs, &error_fatal);
1570    spapr_caps_apply(spapr);
1571
1572    first_ppc_cpu = POWERPC_CPU(first_cpu);
1573    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1574        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1575                              spapr->max_compat_pvr)) {
1576        /*
1577         * If using KVM with radix mode available, VCPUs can be started
1578         * without a HPT because KVM will start them in radix mode.
1579         * Set the GR bit in PATE so that we know there is no HPT.
1580         */
1581        spapr->patb_entry = PATE1_GR;
1582        spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1583    } else {
1584        spapr_setup_hpt(spapr);
1585    }
1586
1587    qemu_devices_reset();
1588
1589    spapr_ovec_cleanup(spapr->ov5_cas);
1590    spapr->ov5_cas = spapr_ovec_new();
1591
1592    ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1593
1594    /*
1595     * This is fixing some of the default configuration of the XIVE
1596     * devices. To be called after the reset of the machine devices.
1597     */
1598    spapr_irq_reset(spapr, &error_fatal);
1599
1600    /*
1601     * There is no CAS under qtest. Simulate one to please the code that
1602     * depends on spapr->ov5_cas. This is especially needed to test device
1603     * unplug, so we do that before resetting the DRCs.
1604     */
1605    if (qtest_enabled()) {
1606        spapr_ovec_cleanup(spapr->ov5_cas);
1607        spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1608    }
1609
1610    /* DRC reset may cause a device to be unplugged. This will cause troubles
1611     * if this device is used by another device (eg, a running vhost backend
1612     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1613     * situations, we reset DRCs after all devices have been reset.
1614     */
1615    spapr_drc_reset_all(spapr);
1616
1617    spapr_clear_pending_events(spapr);
1618
1619    /*
1620     * We place the device tree and RTAS just below either the top of the RMA,
1621     * or just below 2GB, whichever is lower, so that it can be
1622     * processed with 32-bit real mode code if necessary
1623     */
1624    fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1625
1626    fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1627
1628    rc = fdt_pack(fdt);
1629
1630    /* Should only fail if we've built a corrupted tree */
1631    assert(rc == 0);
1632
1633    /* Load the fdt */
1634    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1635    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1636    g_free(spapr->fdt_blob);
1637    spapr->fdt_size = fdt_totalsize(fdt);
1638    spapr->fdt_initial_size = spapr->fdt_size;
1639    spapr->fdt_blob = fdt;
1640
1641    /* Set up the entry state */
1642    spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1643    first_ppc_cpu->env.gpr[5] = 0;
1644
1645    spapr->fwnmi_system_reset_addr = -1;
1646    spapr->fwnmi_machine_check_addr = -1;
1647    spapr->fwnmi_machine_check_interlock = -1;
1648
1649    /* Signal all vCPUs waiting on this condition */
1650    qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1651
1652    migrate_del_blocker(spapr->fwnmi_migration_blocker);
1653}
1654
1655static void spapr_create_nvram(SpaprMachineState *spapr)
1656{
1657    DeviceState *dev = qdev_new("spapr-nvram");
1658    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1659
1660    if (dinfo) {
1661        qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1662                                &error_fatal);
1663    }
1664
1665    qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1666
1667    spapr->nvram = (struct SpaprNvram *)dev;
1668}
1669
1670static void spapr_rtc_create(SpaprMachineState *spapr)
1671{
1672    object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1673                                       sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1674                                       &error_fatal, NULL);
1675    qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1676    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1677                              "date");
1678}
1679
1680/* Returns whether we want to use VGA or not */
1681static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1682{
1683    switch (vga_interface_type) {
1684    case VGA_NONE:
1685        return false;
1686    case VGA_DEVICE:
1687        return true;
1688    case VGA_STD:
1689    case VGA_VIRTIO:
1690    case VGA_CIRRUS:
1691        return pci_vga_init(pci_bus) != NULL;
1692    default:
1693        error_setg(errp,
1694                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1695        return false;
1696    }
1697}
1698
1699static int spapr_pre_load(void *opaque)
1700{
1701    int rc;
1702
1703    rc = spapr_caps_pre_load(opaque);
1704    if (rc) {
1705        return rc;
1706    }
1707
1708    return 0;
1709}
1710
1711static int spapr_post_load(void *opaque, int version_id)
1712{
1713    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1714    int err = 0;
1715
1716    err = spapr_caps_post_migration(spapr);
1717    if (err) {
1718        return err;
1719    }
1720
1721    /*
1722     * In earlier versions, there was no separate qdev for the PAPR
1723     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1724     * So when migrating from those versions, poke the incoming offset
1725     * value into the RTC device
1726     */
1727    if (version_id < 3) {
1728        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1729        if (err) {
1730            return err;
1731        }
1732    }
1733
1734    if (kvm_enabled() && spapr->patb_entry) {
1735        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1736        bool radix = !!(spapr->patb_entry & PATE1_GR);
1737        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1738
1739        /*
1740         * Update LPCR:HR and UPRT as they may not be set properly in
1741         * the stream
1742         */
1743        spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1744                            LPCR_HR | LPCR_UPRT);
1745
1746        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1747        if (err) {
1748            error_report("Process table config unsupported by the host");
1749            return -EINVAL;
1750        }
1751    }
1752
1753    err = spapr_irq_post_load(spapr, version_id);
1754    if (err) {
1755        return err;
1756    }
1757
1758    return err;
1759}
1760
1761static int spapr_pre_save(void *opaque)
1762{
1763    int rc;
1764
1765    rc = spapr_caps_pre_save(opaque);
1766    if (rc) {
1767        return rc;
1768    }
1769
1770    return 0;
1771}
1772
1773static bool version_before_3(void *opaque, int version_id)
1774{
1775    return version_id < 3;
1776}
1777
1778static bool spapr_pending_events_needed(void *opaque)
1779{
1780    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1781    return !QTAILQ_EMPTY(&spapr->pending_events);
1782}
1783
1784static const VMStateDescription vmstate_spapr_event_entry = {
1785    .name = "spapr_event_log_entry",
1786    .version_id = 1,
1787    .minimum_version_id = 1,
1788    .fields = (VMStateField[]) {
1789        VMSTATE_UINT32(summary, SpaprEventLogEntry),
1790        VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1791        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1792                                     NULL, extended_length),
1793        VMSTATE_END_OF_LIST()
1794    },
1795};
1796
1797static const VMStateDescription vmstate_spapr_pending_events = {
1798    .name = "spapr_pending_events",
1799    .version_id = 1,
1800    .minimum_version_id = 1,
1801    .needed = spapr_pending_events_needed,
1802    .fields = (VMStateField[]) {
1803        VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1804                         vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1805        VMSTATE_END_OF_LIST()
1806    },
1807};
1808
1809static bool spapr_ov5_cas_needed(void *opaque)
1810{
1811    SpaprMachineState *spapr = opaque;
1812    SpaprOptionVector *ov5_mask = spapr_ovec_new();
1813    bool cas_needed;
1814
1815    /* Prior to the introduction of SpaprOptionVector, we had two option
1816     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1817     * Both of these options encode machine topology into the device-tree
1818     * in such a way that the now-booted OS should still be able to interact
1819     * appropriately with QEMU regardless of what options were actually
1820     * negotiatied on the source side.
1821     *
1822     * As such, we can avoid migrating the CAS-negotiated options if these
1823     * are the only options available on the current machine/platform.
1824     * Since these are the only options available for pseries-2.7 and
1825     * earlier, this allows us to maintain old->new/new->old migration
1826     * compatibility.
1827     *
1828     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1829     * via default pseries-2.8 machines and explicit command-line parameters.
1830     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1831     * of the actual CAS-negotiated values to continue working properly. For
1832     * example, availability of memory unplug depends on knowing whether
1833     * OV5_HP_EVT was negotiated via CAS.
1834     *
1835     * Thus, for any cases where the set of available CAS-negotiatable
1836     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1837     * include the CAS-negotiated options in the migration stream, unless
1838     * if they affect boot time behaviour only.
1839     */
1840    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1841    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1842    spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1843
1844    /* We need extra information if we have any bits outside the mask
1845     * defined above */
1846    cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1847
1848    spapr_ovec_cleanup(ov5_mask);
1849
1850    return cas_needed;
1851}
1852
1853static const VMStateDescription vmstate_spapr_ov5_cas = {
1854    .name = "spapr_option_vector_ov5_cas",
1855    .version_id = 1,
1856    .minimum_version_id = 1,
1857    .needed = spapr_ov5_cas_needed,
1858    .fields = (VMStateField[]) {
1859        VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1860                                 vmstate_spapr_ovec, SpaprOptionVector),
1861        VMSTATE_END_OF_LIST()
1862    },
1863};
1864
1865static bool spapr_patb_entry_needed(void *opaque)
1866{
1867    SpaprMachineState *spapr = opaque;
1868
1869    return !!spapr->patb_entry;
1870}
1871
1872static const VMStateDescription vmstate_spapr_patb_entry = {
1873    .name = "spapr_patb_entry",
1874    .version_id = 1,
1875    .minimum_version_id = 1,
1876    .needed = spapr_patb_entry_needed,
1877    .fields = (VMStateField[]) {
1878        VMSTATE_UINT64(patb_entry, SpaprMachineState),
1879        VMSTATE_END_OF_LIST()
1880    },
1881};
1882
1883static bool spapr_irq_map_needed(void *opaque)
1884{
1885    SpaprMachineState *spapr = opaque;
1886
1887    return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1888}
1889
1890static const VMStateDescription vmstate_spapr_irq_map = {
1891    .name = "spapr_irq_map",
1892    .version_id = 1,
1893    .minimum_version_id = 1,
1894    .needed = spapr_irq_map_needed,
1895    .fields = (VMStateField[]) {
1896        VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1897        VMSTATE_END_OF_LIST()
1898    },
1899};
1900
1901static bool spapr_dtb_needed(void *opaque)
1902{
1903    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1904
1905    return smc->update_dt_enabled;
1906}
1907
1908static int spapr_dtb_pre_load(void *opaque)
1909{
1910    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1911
1912    g_free(spapr->fdt_blob);
1913    spapr->fdt_blob = NULL;
1914    spapr->fdt_size = 0;
1915
1916    return 0;
1917}
1918
1919static const VMStateDescription vmstate_spapr_dtb = {
1920    .name = "spapr_dtb",
1921    .version_id = 1,
1922    .minimum_version_id = 1,
1923    .needed = spapr_dtb_needed,
1924    .pre_load = spapr_dtb_pre_load,
1925    .fields = (VMStateField[]) {
1926        VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1927        VMSTATE_UINT32(fdt_size, SpaprMachineState),
1928        VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1929                                     fdt_size),
1930        VMSTATE_END_OF_LIST()
1931    },
1932};
1933
1934static bool spapr_fwnmi_needed(void *opaque)
1935{
1936    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1937
1938    return spapr->fwnmi_machine_check_addr != -1;
1939}
1940
1941static int spapr_fwnmi_pre_save(void *opaque)
1942{
1943    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1944
1945    /*
1946     * Check if machine check handling is in progress and print a
1947     * warning message.
1948     */
1949    if (spapr->fwnmi_machine_check_interlock != -1) {
1950        warn_report("A machine check is being handled during migration. The"
1951                "handler may run and log hardware error on the destination");
1952    }
1953
1954    return 0;
1955}
1956
1957static const VMStateDescription vmstate_spapr_fwnmi = {
1958    .name = "spapr_fwnmi",
1959    .version_id = 1,
1960    .minimum_version_id = 1,
1961    .needed = spapr_fwnmi_needed,
1962    .pre_save = spapr_fwnmi_pre_save,
1963    .fields = (VMStateField[]) {
1964        VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1965        VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1966        VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1967        VMSTATE_END_OF_LIST()
1968    },
1969};
1970
1971static const VMStateDescription vmstate_spapr = {
1972    .name = "spapr",
1973    .version_id = 3,
1974    .minimum_version_id = 1,
1975    .pre_load = spapr_pre_load,
1976    .post_load = spapr_post_load,
1977    .pre_save = spapr_pre_save,
1978    .fields = (VMStateField[]) {
1979        /* used to be @next_irq */
1980        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1981
1982        /* RTC offset */
1983        VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1984
1985        VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1986        VMSTATE_END_OF_LIST()
1987    },
1988    .subsections = (const VMStateDescription*[]) {
1989        &vmstate_spapr_ov5_cas,
1990        &vmstate_spapr_patb_entry,
1991        &vmstate_spapr_pending_events,
1992        &vmstate_spapr_cap_htm,
1993        &vmstate_spapr_cap_vsx,
1994        &vmstate_spapr_cap_dfp,
1995        &vmstate_spapr_cap_cfpc,
1996        &vmstate_spapr_cap_sbbc,
1997        &vmstate_spapr_cap_ibs,
1998        &vmstate_spapr_cap_hpt_maxpagesize,
1999        &vmstate_spapr_irq_map,
2000        &vmstate_spapr_cap_nested_kvm_hv,
2001        &vmstate_spapr_dtb,
2002        &vmstate_spapr_cap_large_decr,
2003        &vmstate_spapr_cap_ccf_assist,
2004        &vmstate_spapr_cap_fwnmi,
2005        &vmstate_spapr_fwnmi,
2006        NULL
2007    }
2008};
2009
2010static int htab_save_setup(QEMUFile *f, void *opaque)
2011{
2012    SpaprMachineState *spapr = opaque;
2013
2014    /* "Iteration" header */
2015    if (!spapr->htab_shift) {
2016        qemu_put_be32(f, -1);
2017    } else {
2018        qemu_put_be32(f, spapr->htab_shift);
2019    }
2020
2021    if (spapr->htab) {
2022        spapr->htab_save_index = 0;
2023        spapr->htab_first_pass = true;
2024    } else {
2025        if (spapr->htab_shift) {
2026            assert(kvm_enabled());
2027        }
2028    }
2029
2030
2031    return 0;
2032}
2033
2034static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2035                            int chunkstart, int n_valid, int n_invalid)
2036{
2037    qemu_put_be32(f, chunkstart);
2038    qemu_put_be16(f, n_valid);
2039    qemu_put_be16(f, n_invalid);
2040    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2041                    HASH_PTE_SIZE_64 * n_valid);
2042}
2043
2044static void htab_save_end_marker(QEMUFile *f)
2045{
2046    qemu_put_be32(f, 0);
2047    qemu_put_be16(f, 0);
2048    qemu_put_be16(f, 0);
2049}
2050
2051static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2052                                 int64_t max_ns)
2053{
2054    bool has_timeout = max_ns != -1;
2055    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2056    int index = spapr->htab_save_index;
2057    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2058
2059    assert(spapr->htab_first_pass);
2060
2061    do {
2062        int chunkstart;
2063
2064        /* Consume invalid HPTEs */
2065        while ((index < htabslots)
2066               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2067            CLEAN_HPTE(HPTE(spapr->htab, index));
2068            index++;
2069        }
2070
2071        /* Consume valid HPTEs */
2072        chunkstart = index;
2073        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2074               && HPTE_VALID(HPTE(spapr->htab, index))) {
2075            CLEAN_HPTE(HPTE(spapr->htab, index));
2076            index++;
2077        }
2078
2079        if (index > chunkstart) {
2080            int n_valid = index - chunkstart;
2081
2082            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2083
2084            if (has_timeout &&
2085                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2086                break;
2087            }
2088        }
2089    } while ((index < htabslots) && !qemu_file_rate_limit(f));
2090
2091    if (index >= htabslots) {
2092        assert(index == htabslots);
2093        index = 0;
2094        spapr->htab_first_pass = false;
2095    }
2096    spapr->htab_save_index = index;
2097}
2098
2099static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2100                                int64_t max_ns)
2101{
2102    bool final = max_ns < 0;
2103    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2104    int examined = 0, sent = 0;
2105    int index = spapr->htab_save_index;
2106    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2107
2108    assert(!spapr->htab_first_pass);
2109
2110    do {
2111        int chunkstart, invalidstart;
2112
2113        /* Consume non-dirty HPTEs */
2114        while ((index < htabslots)
2115               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2116            index++;
2117            examined++;
2118        }
2119
2120        chunkstart = index;
2121        /* Consume valid dirty HPTEs */
2122        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2123               && HPTE_DIRTY(HPTE(spapr->htab, index))
2124               && HPTE_VALID(HPTE(spapr->htab, index))) {
2125            CLEAN_HPTE(HPTE(spapr->htab, index));
2126            index++;
2127            examined++;
2128        }
2129
2130        invalidstart = index;
2131        /* Consume invalid dirty HPTEs */
2132        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2133               && HPTE_DIRTY(HPTE(spapr->htab, index))
2134               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2135            CLEAN_HPTE(HPTE(spapr->htab, index));
2136            index++;
2137            examined++;
2138        }
2139
2140        if (index > chunkstart) {
2141            int n_valid = invalidstart - chunkstart;
2142            int n_invalid = index - invalidstart;
2143
2144            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2145            sent += index - chunkstart;
2146
2147            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2148                break;
2149            }
2150        }
2151
2152        if (examined >= htabslots) {
2153            break;
2154        }
2155
2156        if (index >= htabslots) {
2157            assert(index == htabslots);
2158            index = 0;
2159        }
2160    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2161
2162    if (index >= htabslots) {
2163        assert(index == htabslots);
2164        index = 0;
2165    }
2166
2167    spapr->htab_save_index = index;
2168
2169    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2170}
2171
2172#define MAX_ITERATION_NS    5000000 /* 5 ms */
2173#define MAX_KVM_BUF_SIZE    2048
2174
2175static int htab_save_iterate(QEMUFile *f, void *opaque)
2176{
2177    SpaprMachineState *spapr = opaque;
2178    int fd;
2179    int rc = 0;
2180
2181    /* Iteration header */
2182    if (!spapr->htab_shift) {
2183        qemu_put_be32(f, -1);
2184        return 1;
2185    } else {
2186        qemu_put_be32(f, 0);
2187    }
2188
2189    if (!spapr->htab) {
2190        assert(kvm_enabled());
2191
2192        fd = get_htab_fd(spapr);
2193        if (fd < 0) {
2194            return fd;
2195        }
2196
2197        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2198        if (rc < 0) {
2199            return rc;
2200        }
2201    } else  if (spapr->htab_first_pass) {
2202        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2203    } else {
2204        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2205    }
2206
2207    htab_save_end_marker(f);
2208
2209    return rc;
2210}
2211
2212static int htab_save_complete(QEMUFile *f, void *opaque)
2213{
2214    SpaprMachineState *spapr = opaque;
2215    int fd;
2216
2217    /* Iteration header */
2218    if (!spapr->htab_shift) {
2219        qemu_put_be32(f, -1);
2220        return 0;
2221    } else {
2222        qemu_put_be32(f, 0);
2223    }
2224
2225    if (!spapr->htab) {
2226        int rc;
2227
2228        assert(kvm_enabled());
2229
2230        fd = get_htab_fd(spapr);
2231        if (fd < 0) {
2232            return fd;
2233        }
2234
2235        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2236        if (rc < 0) {
2237            return rc;
2238        }
2239    } else {
2240        if (spapr->htab_first_pass) {
2241            htab_save_first_pass(f, spapr, -1);
2242        }
2243        htab_save_later_pass(f, spapr, -1);
2244    }
2245
2246    /* End marker */
2247    htab_save_end_marker(f);
2248
2249    return 0;
2250}
2251
2252static int htab_load(QEMUFile *f, void *opaque, int version_id)
2253{
2254    SpaprMachineState *spapr = opaque;
2255    uint32_t section_hdr;
2256    int fd = -1;
2257    Error *local_err = NULL;
2258
2259    if (version_id < 1 || version_id > 1) {
2260        error_report("htab_load() bad version");
2261        return -EINVAL;
2262    }
2263
2264    section_hdr = qemu_get_be32(f);
2265
2266    if (section_hdr == -1) {
2267        spapr_free_hpt(spapr);
2268        return 0;
2269    }
2270
2271    if (section_hdr) {
2272        int ret;
2273
2274        /* First section gives the htab size */
2275        ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2276        if (ret < 0) {
2277            error_report_err(local_err);
2278            return ret;
2279        }
2280        return 0;
2281    }
2282
2283    if (!spapr->htab) {
2284        assert(kvm_enabled());
2285
2286        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2287        if (fd < 0) {
2288            error_report_err(local_err);
2289            return fd;
2290        }
2291    }
2292
2293    while (true) {
2294        uint32_t index;
2295        uint16_t n_valid, n_invalid;
2296
2297        index = qemu_get_be32(f);
2298        n_valid = qemu_get_be16(f);
2299        n_invalid = qemu_get_be16(f);
2300
2301        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2302            /* End of Stream */
2303            break;
2304        }
2305
2306        if ((index + n_valid + n_invalid) >
2307            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2308            /* Bad index in stream */
2309            error_report(
2310                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2311                index, n_valid, n_invalid, spapr->htab_shift);
2312            return -EINVAL;
2313        }
2314
2315        if (spapr->htab) {
2316            if (n_valid) {
2317                qemu_get_buffer(f, HPTE(spapr->htab, index),
2318                                HASH_PTE_SIZE_64 * n_valid);
2319            }
2320            if (n_invalid) {
2321                memset(HPTE(spapr->htab, index + n_valid), 0,
2322                       HASH_PTE_SIZE_64 * n_invalid);
2323            }
2324        } else {
2325            int rc;
2326
2327            assert(fd >= 0);
2328
2329            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2330                                        &local_err);
2331            if (rc < 0) {
2332                error_report_err(local_err);
2333                return rc;
2334            }
2335        }
2336    }
2337
2338    if (!spapr->htab) {
2339        assert(fd >= 0);
2340        close(fd);
2341    }
2342
2343    return 0;
2344}
2345
2346static void htab_save_cleanup(void *opaque)
2347{
2348    SpaprMachineState *spapr = opaque;
2349
2350    close_htab_fd(spapr);
2351}
2352
2353static SaveVMHandlers savevm_htab_handlers = {
2354    .save_setup = htab_save_setup,
2355    .save_live_iterate = htab_save_iterate,
2356    .save_live_complete_precopy = htab_save_complete,
2357    .save_cleanup = htab_save_cleanup,
2358    .load_state = htab_load,
2359};
2360
2361static void spapr_boot_set(void *opaque, const char *boot_device,
2362                           Error **errp)
2363{
2364    MachineState *machine = MACHINE(opaque);
2365    machine->boot_order = g_strdup(boot_device);
2366}
2367
2368static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2369{
2370    MachineState *machine = MACHINE(spapr);
2371    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2372    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2373    int i;
2374
2375    for (i = 0; i < nr_lmbs; i++) {
2376        uint64_t addr;
2377
2378        addr = i * lmb_size + machine->device_memory->base;
2379        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2380                               addr / lmb_size);
2381    }
2382}
2383
2384/*
2385 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2386 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2387 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2388 */
2389static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2390{
2391    int i;
2392
2393    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2394        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2395                   " is not aligned to %" PRIu64 " MiB",
2396                   machine->ram_size,
2397                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2398        return;
2399    }
2400
2401    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2402        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2403                   " is not aligned to %" PRIu64 " MiB",
2404                   machine->ram_size,
2405                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2406        return;
2407    }
2408
2409    for (i = 0; i < machine->numa_state->num_nodes; i++) {
2410        if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2411            error_setg(errp,
2412                       "Node %d memory size 0x%" PRIx64
2413                       " is not aligned to %" PRIu64 " MiB",
2414                       i, machine->numa_state->nodes[i].node_mem,
2415                       SPAPR_MEMORY_BLOCK_SIZE / MiB);
2416            return;
2417        }
2418    }
2419}
2420
2421/* find cpu slot in machine->possible_cpus by core_id */
2422static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2423{
2424    int index = id / ms->smp.threads;
2425
2426    if (index >= ms->possible_cpus->len) {
2427        return NULL;
2428    }
2429    if (idx) {
2430        *idx = index;
2431    }
2432    return &ms->possible_cpus->cpus[index];
2433}
2434
2435static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2436{
2437    MachineState *ms = MACHINE(spapr);
2438    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2439    Error *local_err = NULL;
2440    bool vsmt_user = !!spapr->vsmt;
2441    int kvm_smt = kvmppc_smt_threads();
2442    int ret;
2443    unsigned int smp_threads = ms->smp.threads;
2444
2445    if (!kvm_enabled() && (smp_threads > 1)) {
2446        error_setg(errp, "TCG cannot support more than 1 thread/core "
2447                   "on a pseries machine");
2448        return;
2449    }
2450    if (!is_power_of_2(smp_threads)) {
2451        error_setg(errp, "Cannot support %d threads/core on a pseries "
2452                   "machine because it must be a power of 2", smp_threads);
2453        return;
2454    }
2455
2456    /* Detemine the VSMT mode to use: */
2457    if (vsmt_user) {
2458        if (spapr->vsmt < smp_threads) {
2459            error_setg(errp, "Cannot support VSMT mode %d"
2460                       " because it must be >= threads/core (%d)",
2461                       spapr->vsmt, smp_threads);
2462            return;
2463        }
2464        /* In this case, spapr->vsmt has been set by the command line */
2465    } else if (!smc->smp_threads_vsmt) {
2466        /*
2467         * Default VSMT value is tricky, because we need it to be as
2468         * consistent as possible (for migration), but this requires
2469         * changing it for at least some existing cases.  We pick 8 as
2470         * the value that we'd get with KVM on POWER8, the
2471         * overwhelmingly common case in production systems.
2472         */
2473        spapr->vsmt = MAX(8, smp_threads);
2474    } else {
2475        spapr->vsmt = smp_threads;
2476    }
2477
2478    /* KVM: If necessary, set the SMT mode: */
2479    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2480        ret = kvmppc_set_smt_threads(spapr->vsmt);
2481        if (ret) {
2482            /* Looks like KVM isn't able to change VSMT mode */
2483            error_setg(&local_err,
2484                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2485                       spapr->vsmt, ret);
2486            /* We can live with that if the default one is big enough
2487             * for the number of threads, and a submultiple of the one
2488             * we want.  In this case we'll waste some vcpu ids, but
2489             * behaviour will be correct */
2490            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2491                warn_report_err(local_err);
2492            } else {
2493                if (!vsmt_user) {
2494                    error_append_hint(&local_err,
2495                                      "On PPC, a VM with %d threads/core"
2496                                      " on a host with %d threads/core"
2497                                      " requires the use of VSMT mode %d.\n",
2498                                      smp_threads, kvm_smt, spapr->vsmt);
2499                }
2500                kvmppc_error_append_smt_possible_hint(&local_err);
2501                error_propagate(errp, local_err);
2502            }
2503        }
2504    }
2505    /* else TCG: nothing to do currently */
2506}
2507
2508static void spapr_init_cpus(SpaprMachineState *spapr)
2509{
2510    MachineState *machine = MACHINE(spapr);
2511    MachineClass *mc = MACHINE_GET_CLASS(machine);
2512    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2513    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2514    const CPUArchIdList *possible_cpus;
2515    unsigned int smp_cpus = machine->smp.cpus;
2516    unsigned int smp_threads = machine->smp.threads;
2517    unsigned int max_cpus = machine->smp.max_cpus;
2518    int boot_cores_nr = smp_cpus / smp_threads;
2519    int i;
2520
2521    possible_cpus = mc->possible_cpu_arch_ids(machine);
2522    if (mc->has_hotpluggable_cpus) {
2523        if (smp_cpus % smp_threads) {
2524            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2525                         smp_cpus, smp_threads);
2526            exit(1);
2527        }
2528        if (max_cpus % smp_threads) {
2529            error_report("max_cpus (%u) must be multiple of threads (%u)",
2530                         max_cpus, smp_threads);
2531            exit(1);
2532        }
2533    } else {
2534        if (max_cpus != smp_cpus) {
2535            error_report("This machine version does not support CPU hotplug");
2536            exit(1);
2537        }
2538        boot_cores_nr = possible_cpus->len;
2539    }
2540
2541    if (smc->pre_2_10_has_unused_icps) {
2542        int i;
2543
2544        for (i = 0; i < spapr_max_server_number(spapr); i++) {
2545            /* Dummy entries get deregistered when real ICPState objects
2546             * are registered during CPU core hotplug.
2547             */
2548            pre_2_10_vmstate_register_dummy_icp(i);
2549        }
2550    }
2551
2552    for (i = 0; i < possible_cpus->len; i++) {
2553        int core_id = i * smp_threads;
2554
2555        if (mc->has_hotpluggable_cpus) {
2556            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2557                                   spapr_vcpu_id(spapr, core_id));
2558        }
2559
2560        if (i < boot_cores_nr) {
2561            Object *core  = object_new(type);
2562            int nr_threads = smp_threads;
2563
2564            /* Handle the partially filled core for older machine types */
2565            if ((i + 1) * smp_threads >= smp_cpus) {
2566                nr_threads = smp_cpus - i * smp_threads;
2567            }
2568
2569            object_property_set_int(core, "nr-threads", nr_threads,
2570                                    &error_fatal);
2571            object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2572                                    &error_fatal);
2573            qdev_realize(DEVICE(core), NULL, &error_fatal);
2574
2575            object_unref(core);
2576        }
2577    }
2578}
2579
2580static PCIHostState *spapr_create_default_phb(void)
2581{
2582    DeviceState *dev;
2583
2584    dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2585    qdev_prop_set_uint32(dev, "index", 0);
2586    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2587
2588    return PCI_HOST_BRIDGE(dev);
2589}
2590
2591static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2592{
2593    MachineState *machine = MACHINE(spapr);
2594    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2595    hwaddr rma_size = machine->ram_size;
2596    hwaddr node0_size = spapr_node0_size(machine);
2597
2598    /* RMA has to fit in the first NUMA node */
2599    rma_size = MIN(rma_size, node0_size);
2600
2601    /*
2602     * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2603     * never exceed that
2604     */
2605    rma_size = MIN(rma_size, 1 * TiB);
2606
2607    /*
2608     * Clamp the RMA size based on machine type.  This is for
2609     * migration compatibility with older qemu versions, which limited
2610     * the RMA size for complicated and mostly bad reasons.
2611     */
2612    if (smc->rma_limit) {
2613        rma_size = MIN(rma_size, smc->rma_limit);
2614    }
2615
2616    if (rma_size < MIN_RMA_SLOF) {
2617        error_setg(errp,
2618                   "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2619                   "ldMiB guest RMA (Real Mode Area memory)",
2620                   MIN_RMA_SLOF / MiB);
2621        return 0;
2622    }
2623
2624    return rma_size;
2625}
2626
2627static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2628{
2629    MachineState *machine = MACHINE(spapr);
2630    int i;
2631
2632    for (i = 0; i < machine->ram_slots; i++) {
2633        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2634    }
2635}
2636
2637/* pSeries LPAR / sPAPR hardware init */
2638static void spapr_machine_init(MachineState *machine)
2639{
2640    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2641    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2642    MachineClass *mc = MACHINE_GET_CLASS(machine);
2643    const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2644    const char *kernel_filename = machine->kernel_filename;
2645    const char *initrd_filename = machine->initrd_filename;
2646    PCIHostState *phb;
2647    int i;
2648    MemoryRegion *sysmem = get_system_memory();
2649    long load_limit, fw_size;
2650    char *filename;
2651    Error *resize_hpt_err = NULL;
2652
2653    /*
2654     * if Secure VM (PEF) support is configured, then initialize it
2655     */
2656    pef_kvm_init(machine->cgs, &error_fatal);
2657
2658    msi_nonbroken = true;
2659
2660    QLIST_INIT(&spapr->phbs);
2661    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2662
2663    /* Determine capabilities to run with */
2664    spapr_caps_init(spapr);
2665
2666    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2667    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2668        /*
2669         * If the user explicitly requested a mode we should either
2670         * supply it, or fail completely (which we do below).  But if
2671         * it's not set explicitly, we reset our mode to something
2672         * that works
2673         */
2674        if (resize_hpt_err) {
2675            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2676            error_free(resize_hpt_err);
2677            resize_hpt_err = NULL;
2678        } else {
2679            spapr->resize_hpt = smc->resize_hpt_default;
2680        }
2681    }
2682
2683    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2684
2685    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2686        /*
2687         * User requested HPT resize, but this host can't supply it.  Bail out
2688         */
2689        error_report_err(resize_hpt_err);
2690        exit(1);
2691    }
2692    error_free(resize_hpt_err);
2693
2694    spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2695
2696    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2697    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2698
2699    /*
2700     * VSMT must be set in order to be able to compute VCPU ids, ie to
2701     * call spapr_max_server_number() or spapr_vcpu_id().
2702     */
2703    spapr_set_vsmt_mode(spapr, &error_fatal);
2704
2705    /* Set up Interrupt Controller before we create the VCPUs */
2706    spapr_irq_init(spapr, &error_fatal);
2707
2708    /* Set up containers for ibm,client-architecture-support negotiated options
2709     */
2710    spapr->ov5 = spapr_ovec_new();
2711    spapr->ov5_cas = spapr_ovec_new();
2712
2713    if (smc->dr_lmb_enabled) {
2714        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2715        spapr_validate_node_memory(machine, &error_fatal);
2716    }
2717
2718    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2719
2720    /* advertise support for dedicated HP event source to guests */
2721    if (spapr->use_hotplug_event_source) {
2722        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2723    }
2724
2725    /* advertise support for HPT resizing */
2726    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2727        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2728    }
2729
2730    /* advertise support for ibm,dyamic-memory-v2 */
2731    spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2732
2733    /* advertise XIVE on POWER9 machines */
2734    if (spapr->irq->xive) {
2735        spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2736    }
2737
2738    /* init CPUs */
2739    spapr_init_cpus(spapr);
2740
2741    /*
2742     * check we don't have a memory-less/cpu-less NUMA node
2743     * Firmware relies on the existing memory/cpu topology to provide the
2744     * NUMA topology to the kernel.
2745     * And the linux kernel needs to know the NUMA topology at start
2746     * to be able to hotplug CPUs later.
2747     */
2748    if (machine->numa_state->num_nodes) {
2749        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2750            /* check for memory-less node */
2751            if (machine->numa_state->nodes[i].node_mem == 0) {
2752                CPUState *cs;
2753                int found = 0;
2754                /* check for cpu-less node */
2755                CPU_FOREACH(cs) {
2756                    PowerPCCPU *cpu = POWERPC_CPU(cs);
2757                    if (cpu->node_id == i) {
2758                        found = 1;
2759                        break;
2760                    }
2761                }
2762                /* memory-less and cpu-less node */
2763                if (!found) {
2764                    error_report(
2765                       "Memory-less/cpu-less nodes are not supported (node %d)",
2766                                 i);
2767                    exit(1);
2768                }
2769            }
2770        }
2771
2772    }
2773
2774    spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2775
2776    /* Init numa_assoc_array */
2777    spapr_numa_associativity_init(spapr, machine);
2778
2779    if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2780        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2781                              spapr->max_compat_pvr)) {
2782        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2783        /* KVM and TCG always allow GTSE with radix... */
2784        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2785    }
2786    /* ... but not with hash (currently). */
2787
2788    if (kvm_enabled()) {
2789        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2790        kvmppc_enable_logical_ci_hcalls();
2791        kvmppc_enable_set_mode_hcall();
2792
2793        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2794        kvmppc_enable_clear_ref_mod_hcalls();
2795
2796        /* Enable H_PAGE_INIT */
2797        kvmppc_enable_h_page_init();
2798    }
2799
2800    /* map RAM */
2801    memory_region_add_subregion(sysmem, 0, machine->ram);
2802
2803    /* always allocate the device memory information */
2804    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2805
2806    /* initialize hotplug memory address space */
2807    if (machine->ram_size < machine->maxram_size) {
2808        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2809        /*
2810         * Limit the number of hotpluggable memory slots to half the number
2811         * slots that KVM supports, leaving the other half for PCI and other
2812         * devices. However ensure that number of slots doesn't drop below 32.
2813         */
2814        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2815                           SPAPR_MAX_RAM_SLOTS;
2816
2817        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2818            max_memslots = SPAPR_MAX_RAM_SLOTS;
2819        }
2820        if (machine->ram_slots > max_memslots) {
2821            error_report("Specified number of memory slots %"
2822                         PRIu64" exceeds max supported %d",
2823                         machine->ram_slots, max_memslots);
2824            exit(1);
2825        }
2826
2827        machine->device_memory->base = ROUND_UP(machine->ram_size,
2828                                                SPAPR_DEVICE_MEM_ALIGN);
2829        memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2830                           "device-memory", device_mem_size);
2831        memory_region_add_subregion(sysmem, machine->device_memory->base,
2832                                    &machine->device_memory->mr);
2833    }
2834
2835    if (smc->dr_lmb_enabled) {
2836        spapr_create_lmb_dr_connectors(spapr);
2837    }
2838
2839    if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2840        /* Create the error string for live migration blocker */
2841        error_setg(&spapr->fwnmi_migration_blocker,
2842            "A machine check is being handled during migration. The handler"
2843            "may run and log hardware error on the destination");
2844    }
2845
2846    if (mc->nvdimm_supported) {
2847        spapr_create_nvdimm_dr_connectors(spapr);
2848    }
2849
2850    /* Set up RTAS event infrastructure */
2851    spapr_events_init(spapr);
2852
2853    /* Set up the RTC RTAS interfaces */
2854    spapr_rtc_create(spapr);
2855
2856    /* Set up VIO bus */
2857    spapr->vio_bus = spapr_vio_bus_init();
2858
2859    for (i = 0; serial_hd(i); i++) {
2860        spapr_vty_create(spapr->vio_bus, serial_hd(i));
2861    }
2862
2863    /* We always have at least the nvram device on VIO */
2864    spapr_create_nvram(spapr);
2865
2866    /*
2867     * Setup hotplug / dynamic-reconfiguration connectors. top-level
2868     * connectors (described in root DT node's "ibm,drc-types" property)
2869     * are pre-initialized here. additional child connectors (such as
2870     * connectors for a PHBs PCI slots) are added as needed during their
2871     * parent's realization.
2872     */
2873    if (smc->dr_phb_enabled) {
2874        for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2875            spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2876        }
2877    }
2878
2879    /* Set up PCI */
2880    spapr_pci_rtas_init();
2881
2882    phb = spapr_create_default_phb();
2883
2884    for (i = 0; i < nb_nics; i++) {
2885        NICInfo *nd = &nd_table[i];
2886
2887        if (!nd->model) {
2888            nd->model = g_strdup("spapr-vlan");
2889        }
2890
2891        if (g_str_equal(nd->model, "spapr-vlan") ||
2892            g_str_equal(nd->model, "ibmveth")) {
2893            spapr_vlan_create(spapr->vio_bus, nd);
2894        } else {
2895            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2896        }
2897    }
2898
2899    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2900        spapr_vscsi_create(spapr->vio_bus);
2901    }
2902
2903    /* Graphics */
2904    if (spapr_vga_init(phb->bus, &error_fatal)) {
2905        spapr->has_graphics = true;
2906        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2907    }
2908
2909    if (machine->usb) {
2910        if (smc->use_ohci_by_default) {
2911            pci_create_simple(phb->bus, -1, "pci-ohci");
2912        } else {
2913            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2914        }
2915
2916        if (spapr->has_graphics) {
2917            USBBus *usb_bus = usb_bus_find(-1);
2918
2919            usb_create_simple(usb_bus, "usb-kbd");
2920            usb_create_simple(usb_bus, "usb-mouse");
2921        }
2922    }
2923
2924    if (kernel_filename) {
2925        spapr->kernel_size = load_elf(kernel_filename, NULL,
2926                                      translate_kernel_address, spapr,
2927                                      NULL, NULL, NULL, NULL, 1,
2928                                      PPC_ELF_MACHINE, 0, 0);
2929        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2930            spapr->kernel_size = load_elf(kernel_filename, NULL,
2931                                          translate_kernel_address, spapr,
2932                                          NULL, NULL, NULL, NULL, 0,
2933                                          PPC_ELF_MACHINE, 0, 0);
2934            spapr->kernel_le = spapr->kernel_size > 0;
2935        }
2936        if (spapr->kernel_size < 0) {
2937            error_report("error loading %s: %s", kernel_filename,
2938                         load_elf_strerror(spapr->kernel_size));
2939            exit(1);
2940        }
2941
2942        /* load initrd */
2943        if (initrd_filename) {
2944            /* Try to locate the initrd in the gap between the kernel
2945             * and the firmware. Add a bit of space just in case
2946             */
2947            spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2948                                  + 0x1ffff) & ~0xffff;
2949            spapr->initrd_size = load_image_targphys(initrd_filename,
2950                                                     spapr->initrd_base,
2951                                                     load_limit
2952                                                     - spapr->initrd_base);
2953            if (spapr->initrd_size < 0) {
2954                error_report("could not load initial ram disk '%s'",
2955                             initrd_filename);
2956                exit(1);
2957            }
2958        }
2959    }
2960
2961    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2962    if (!filename) {
2963        error_report("Could not find LPAR firmware '%s'", bios_name);
2964        exit(1);
2965    }
2966    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2967    if (fw_size <= 0) {
2968        error_report("Could not load LPAR firmware '%s'", filename);
2969        exit(1);
2970    }
2971    g_free(filename);
2972
2973    /* FIXME: Should register things through the MachineState's qdev
2974     * interface, this is a legacy from the sPAPREnvironment structure
2975     * which predated MachineState but had a similar function */
2976    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2977    register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2978                         &savevm_htab_handlers, spapr);
2979
2980    qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2981
2982    qemu_register_boot_set(spapr_boot_set, spapr);
2983
2984    /*
2985     * Nothing needs to be done to resume a suspended guest because
2986     * suspending does not change the machine state, so no need for
2987     * a ->wakeup method.
2988     */
2989    qemu_register_wakeup_support();
2990
2991    if (kvm_enabled()) {
2992        /* to stop and start vmclock */
2993        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2994                                         &spapr->tb);
2995
2996        kvmppc_spapr_enable_inkernel_multitce();
2997    }
2998
2999    qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3000}
3001
3002#define DEFAULT_KVM_TYPE "auto"
3003static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3004{
3005    /*
3006     * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3007     * accomodate the 'HV' and 'PV' formats that exists in the
3008     * wild. The 'auto' mode is being introduced already as
3009     * lower-case, thus we don't need to bother checking for
3010     * "AUTO".
3011     */
3012    if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3013        return 0;
3014    }
3015
3016    if (!g_ascii_strcasecmp(vm_type, "hv")) {
3017        return 1;
3018    }
3019
3020    if (!g_ascii_strcasecmp(vm_type, "pr")) {
3021        return 2;
3022    }
3023
3024    error_report("Unknown kvm-type specified '%s'", vm_type);
3025    exit(1);
3026}
3027
3028/*
3029 * Implementation of an interface to adjust firmware path
3030 * for the bootindex property handling.
3031 */
3032static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3033                                   DeviceState *dev)
3034{
3035#define CAST(type, obj, name) \
3036    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3037    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3038    SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3039    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3040    PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3041
3042    if (d) {
3043        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3044        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3045        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3046
3047        if (spapr) {
3048            /*
3049             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3050             * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3051             * 0x8000 | (target << 8) | (bus << 5) | lun
3052             * (see the "Logical unit addressing format" table in SAM5)
3053             */
3054            unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3055            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3056                                   (uint64_t)id << 48);
3057        } else if (virtio) {
3058            /*
3059             * We use SRP luns of the form 01000000 | (target << 8) | lun
3060             * in the top 32 bits of the 64-bit LUN
3061             * Note: the quote above is from SLOF and it is wrong,
3062             * the actual binding is:
3063             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3064             */
3065            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3066            if (d->lun >= 256) {
3067                /* Use the LUN "flat space addressing method" */
3068                id |= 0x4000;
3069            }
3070            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3071                                   (uint64_t)id << 32);
3072        } else if (usb) {
3073            /*
3074             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3075             * in the top 32 bits of the 64-bit LUN
3076             */
3077            unsigned usb_port = atoi(usb->port->path);
3078            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3079            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3080                                   (uint64_t)id << 32);
3081        }
3082    }
3083
3084    /*
3085     * SLOF probes the USB devices, and if it recognizes that the device is a
3086     * storage device, it changes its name to "storage" instead of "usb-host",
3087     * and additionally adds a child node for the SCSI LUN, so the correct
3088     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3089     */
3090    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3091        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3092        if (usb_host_dev_is_scsi_storage(usbdev)) {
3093            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3094        }
3095    }
3096
3097    if (phb) {
3098        /* Replace "pci" with "pci@800000020000000" */
3099        return g_strdup_printf("pci@%"PRIX64, phb->buid);
3100    }
3101
3102    if (vsc) {
3103        /* Same logic as virtio above */
3104        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3105        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3106    }
3107
3108    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3109        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3110        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3111        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3112    }
3113
3114    if (pcidev) {
3115        return spapr_pci_fw_dev_name(pcidev);
3116    }
3117
3118    return NULL;
3119}
3120
3121static char *spapr_get_kvm_type(Object *obj, Error **errp)
3122{
3123    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3124
3125    return g_strdup(spapr->kvm_type);
3126}
3127
3128static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3129{
3130    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3131
3132    g_free(spapr->kvm_type);
3133    spapr->kvm_type = g_strdup(value);
3134}
3135
3136static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3137{
3138    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3139
3140    return spapr->use_hotplug_event_source;
3141}
3142
3143static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3144                                            Error **errp)
3145{
3146    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3147
3148    spapr->use_hotplug_event_source = value;
3149}
3150
3151static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3152{
3153    return true;
3154}
3155
3156static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3157{
3158    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3159
3160    switch (spapr->resize_hpt) {
3161    case SPAPR_RESIZE_HPT_DEFAULT:
3162        return g_strdup("default");
3163    case SPAPR_RESIZE_HPT_DISABLED:
3164        return g_strdup("disabled");
3165    case SPAPR_RESIZE_HPT_ENABLED:
3166        return g_strdup("enabled");
3167    case SPAPR_RESIZE_HPT_REQUIRED:
3168        return g_strdup("required");
3169    }
3170    g_assert_not_reached();
3171}
3172
3173static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3174{
3175    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3176
3177    if (strcmp(value, "default") == 0) {
3178        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3179    } else if (strcmp(value, "disabled") == 0) {
3180        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3181    } else if (strcmp(value, "enabled") == 0) {
3182        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3183    } else if (strcmp(value, "required") == 0) {
3184        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3185    } else {
3186        error_setg(errp, "Bad value for \"resize-hpt\" property");
3187    }
3188}
3189
3190static char *spapr_get_ic_mode(Object *obj, Error **errp)
3191{
3192    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3193
3194    if (spapr->irq == &spapr_irq_xics_legacy) {
3195        return g_strdup("legacy");
3196    } else if (spapr->irq == &spapr_irq_xics) {
3197        return g_strdup("xics");
3198    } else if (spapr->irq == &spapr_irq_xive) {
3199        return g_strdup("xive");
3200    } else if (spapr->irq == &spapr_irq_dual) {
3201        return g_strdup("dual");
3202    }
3203    g_assert_not_reached();
3204}
3205
3206static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3207{
3208    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3209
3210    if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3211        error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3212        return;
3213    }
3214
3215    /* The legacy IRQ backend can not be set */
3216    if (strcmp(value, "xics") == 0) {
3217        spapr->irq = &spapr_irq_xics;
3218    } else if (strcmp(value, "xive") == 0) {
3219        spapr->irq = &spapr_irq_xive;
3220    } else if (strcmp(value, "dual") == 0) {
3221        spapr->irq = &spapr_irq_dual;
3222    } else {
3223        error_setg(errp, "Bad value for \"ic-mode\" property");
3224    }
3225}
3226
3227static char *spapr_get_host_model(Object *obj, Error **errp)
3228{
3229    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3230
3231    return g_strdup(spapr->host_model);
3232}
3233
3234static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3235{
3236    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3237
3238    g_free(spapr->host_model);
3239    spapr->host_model = g_strdup(value);
3240}
3241
3242static char *spapr_get_host_serial(Object *obj, Error **errp)
3243{
3244    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3245
3246    return g_strdup(spapr->host_serial);
3247}
3248
3249static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3250{
3251    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3252
3253    g_free(spapr->host_serial);
3254    spapr->host_serial = g_strdup(value);
3255}
3256
3257static void spapr_instance_init(Object *obj)
3258{
3259    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3261    MachineState *ms = MACHINE(spapr);
3262    MachineClass *mc = MACHINE_GET_CLASS(ms);
3263
3264    /*
3265     * NVDIMM support went live in 5.1 without considering that, in
3266     * other archs, the user needs to enable NVDIMM support with the
3267     * 'nvdimm' machine option and the default behavior is NVDIMM
3268     * support disabled. It is too late to roll back to the standard
3269     * behavior without breaking 5.1 guests.
3270     */
3271    if (mc->nvdimm_supported) {
3272        ms->nvdimms_state->is_enabled = true;
3273    }
3274
3275    spapr->htab_fd = -1;
3276    spapr->use_hotplug_event_source = true;
3277    spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3278    object_property_add_str(obj, "kvm-type",
3279                            spapr_get_kvm_type, spapr_set_kvm_type);
3280    object_property_set_description(obj, "kvm-type",
3281                                    "Specifies the KVM virtualization mode (auto,"
3282                                    " hv, pr). Defaults to 'auto'. This mode will use"
3283                                    " any available KVM module loaded in the host,"
3284                                    " where kvm_hv takes precedence if both kvm_hv and"
3285                                    " kvm_pr are loaded.");
3286    object_property_add_bool(obj, "modern-hotplug-events",
3287                            spapr_get_modern_hotplug_events,
3288                            spapr_set_modern_hotplug_events);
3289    object_property_set_description(obj, "modern-hotplug-events",
3290                                    "Use dedicated hotplug event mechanism in"
3291                                    " place of standard EPOW events when possible"
3292                                    " (required for memory hot-unplug support)");
3293    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3294                            "Maximum permitted CPU compatibility mode");
3295
3296    object_property_add_str(obj, "resize-hpt",
3297                            spapr_get_resize_hpt, spapr_set_resize_hpt);
3298    object_property_set_description(obj, "resize-hpt",
3299                                    "Resizing of the Hash Page Table (enabled, disabled, required)");
3300    object_property_add_uint32_ptr(obj, "vsmt",
3301                                   &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3302    object_property_set_description(obj, "vsmt",
3303                                    "Virtual SMT: KVM behaves as if this were"
3304                                    " the host's SMT mode");
3305
3306    object_property_add_bool(obj, "vfio-no-msix-emulation",
3307                             spapr_get_msix_emulation, NULL);
3308
3309    object_property_add_uint64_ptr(obj, "kernel-addr",
3310                                   &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3311    object_property_set_description(obj, "kernel-addr",
3312                                    stringify(KERNEL_LOAD_ADDR)
3313                                    " for -kernel is the default");
3314    spapr->kernel_addr = KERNEL_LOAD_ADDR;
3315    /* The machine class defines the default interrupt controller mode */
3316    spapr->irq = smc->irq;
3317    object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3318                            spapr_set_ic_mode);
3319    object_property_set_description(obj, "ic-mode",
3320                 "Specifies the interrupt controller mode (xics, xive, dual)");
3321
3322    object_property_add_str(obj, "host-model",
3323        spapr_get_host_model, spapr_set_host_model);
3324    object_property_set_description(obj, "host-model",
3325        "Host model to advertise in guest device tree");
3326    object_property_add_str(obj, "host-serial",
3327        spapr_get_host_serial, spapr_set_host_serial);
3328    object_property_set_description(obj, "host-serial",
3329        "Host serial number to advertise in guest device tree");
3330}
3331
3332static void spapr_machine_finalizefn(Object *obj)
3333{
3334    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3335
3336    g_free(spapr->kvm_type);
3337}
3338
3339void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3340{
3341    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3342    PowerPCCPU *cpu = POWERPC_CPU(cs);
3343    CPUPPCState *env = &cpu->env;
3344
3345    cpu_synchronize_state(cs);
3346    /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3347    if (spapr->fwnmi_system_reset_addr != -1) {
3348        uint64_t rtas_addr, addr;
3349
3350        /* get rtas addr from fdt */
3351        rtas_addr = spapr_get_rtas_addr();
3352        if (!rtas_addr) {
3353            qemu_system_guest_panicked(NULL);
3354            return;
3355        }
3356
3357        addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3358        stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3359        stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3360        env->gpr[3] = addr;
3361    }
3362    ppc_cpu_do_system_reset(cs);
3363    if (spapr->fwnmi_system_reset_addr != -1) {
3364        env->nip = spapr->fwnmi_system_reset_addr;
3365    }
3366}
3367
3368static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3369{
3370    CPUState *cs;
3371
3372    CPU_FOREACH(cs) {
3373        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3374    }
3375}
3376
3377int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3378                          void *fdt, int *fdt_start_offset, Error **errp)
3379{
3380    uint64_t addr;
3381    uint32_t node;
3382
3383    addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3384    node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3385                                    &error_abort);
3386    *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3387                                             SPAPR_MEMORY_BLOCK_SIZE);
3388    return 0;
3389}
3390
3391static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3392                           bool dedicated_hp_event_source)
3393{
3394    SpaprDrc *drc;
3395    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3396    int i;
3397    uint64_t addr = addr_start;
3398    bool hotplugged = spapr_drc_hotplugged(dev);
3399
3400    for (i = 0; i < nr_lmbs; i++) {
3401        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3402                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3403        g_assert(drc);
3404
3405        /*
3406         * memory_device_get_free_addr() provided a range of free addresses
3407         * that doesn't overlap with any existing mapping at pre-plug. The
3408         * corresponding LMB DRCs are thus assumed to be all attachable.
3409         */
3410        spapr_drc_attach(drc, dev);
3411        if (!hotplugged) {
3412            spapr_drc_reset(drc);
3413        }
3414        addr += SPAPR_MEMORY_BLOCK_SIZE;
3415    }
3416    /* send hotplug notification to the
3417     * guest only in case of hotplugged memory
3418     */
3419    if (hotplugged) {
3420        if (dedicated_hp_event_source) {
3421            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3422                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3423            g_assert(drc);
3424            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3425                                                   nr_lmbs,
3426                                                   spapr_drc_index(drc));
3427        } else {
3428            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3429                                           nr_lmbs);
3430        }
3431    }
3432}
3433
3434static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3435{
3436    SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3437    PCDIMMDevice *dimm = PC_DIMM(dev);
3438    uint64_t size, addr;
3439    int64_t slot;
3440    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3441
3442    size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3443
3444    pc_dimm_plug(dimm, MACHINE(ms));
3445
3446    if (!is_nvdimm) {
3447        addr = object_property_get_uint(OBJECT(dimm),
3448                                        PC_DIMM_ADDR_PROP, &error_abort);
3449        spapr_add_lmbs(dev, addr, size,
3450                       spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3451    } else {
3452        slot = object_property_get_int(OBJECT(dimm),
3453                                       PC_DIMM_SLOT_PROP, &error_abort);
3454        /* We should have valid slot number at this point */
3455        g_assert(slot >= 0);
3456        spapr_add_nvdimm(dev, slot);
3457    }
3458}
3459
3460static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3461                                  Error **errp)
3462{
3463    const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3464    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3465    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3466    PCDIMMDevice *dimm = PC_DIMM(dev);
3467    Error *local_err = NULL;
3468    uint64_t size;
3469    Object *memdev;
3470    hwaddr pagesize;
3471
3472    if (!smc->dr_lmb_enabled) {
3473        error_setg(errp, "Memory hotplug not supported for this machine");
3474        return;
3475    }
3476
3477    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3478    if (local_err) {
3479        error_propagate(errp, local_err);
3480        return;
3481    }
3482
3483    if (is_nvdimm) {
3484        if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3485            return;
3486        }
3487    } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3488        error_setg(errp, "Hotplugged memory size must be a multiple of "
3489                   "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3490        return;
3491    }
3492
3493    memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3494                                      &error_abort);
3495    pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3496    if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3497        return;
3498    }
3499
3500    pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3501}
3502
3503struct SpaprDimmState {
3504    PCDIMMDevice *dimm;
3505    uint32_t nr_lmbs;
3506    QTAILQ_ENTRY(SpaprDimmState) next;
3507};
3508
3509static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3510                                                       PCDIMMDevice *dimm)
3511{
3512    SpaprDimmState *dimm_state = NULL;
3513
3514    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3515        if (dimm_state->dimm == dimm) {
3516            break;
3517        }
3518    }
3519    return dimm_state;
3520}
3521
3522static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3523                                                      uint32_t nr_lmbs,
3524                                                      PCDIMMDevice *dimm)
3525{
3526    SpaprDimmState *ds = NULL;
3527
3528    /*
3529     * If this request is for a DIMM whose removal had failed earlier
3530     * (due to guest's refusal to remove the LMBs), we would have this
3531     * dimm already in the pending_dimm_unplugs list. In that
3532     * case don't add again.
3533     */
3534    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3535    if (!ds) {
3536        ds = g_malloc0(sizeof(SpaprDimmState));
3537        ds->nr_lmbs = nr_lmbs;
3538        ds->dimm = dimm;
3539        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3540    }
3541    return ds;
3542}
3543
3544static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3545                                              SpaprDimmState *dimm_state)
3546{
3547    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3548    g_free(dimm_state);
3549}
3550
3551static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3552                                                        PCDIMMDevice *dimm)
3553{
3554    SpaprDrc *drc;
3555    uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3556                                                  &error_abort);
3557    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3558    uint32_t avail_lmbs = 0;
3559    uint64_t addr_start, addr;
3560    int i;
3561
3562    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3563                                          &error_abort);
3564
3565    addr = addr_start;
3566    for (i = 0; i < nr_lmbs; i++) {
3567        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3568                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3569        g_assert(drc);
3570        if (drc->dev) {
3571            avail_lmbs++;
3572        }
3573        addr += SPAPR_MEMORY_BLOCK_SIZE;
3574    }
3575
3576    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3577}
3578
3579void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3580{
3581    SpaprDimmState *ds;
3582    PCDIMMDevice *dimm;
3583    SpaprDrc *drc;
3584    uint32_t nr_lmbs;
3585    uint64_t size, addr_start, addr;
3586    g_autofree char *qapi_error = NULL;
3587    int i;
3588
3589    if (!dev) {
3590        return;
3591    }
3592
3593    dimm = PC_DIMM(dev);
3594    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3595
3596    /*
3597     * 'ds == NULL' would mean that the DIMM doesn't have a pending
3598     * unplug state, but one of its DRC is marked as unplug_requested.
3599     * This is bad and weird enough to g_assert() out.
3600     */
3601    g_assert(ds);
3602
3603    spapr_pending_dimm_unplugs_remove(spapr, ds);
3604
3605    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3606    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3607
3608    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3609                                          &error_abort);
3610
3611    addr = addr_start;
3612    for (i = 0; i < nr_lmbs; i++) {
3613        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3614                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3615        g_assert(drc);
3616
3617        drc->unplug_requested = false;
3618        addr += SPAPR_MEMORY_BLOCK_SIZE;
3619    }
3620
3621    /*
3622     * Tell QAPI that something happened and the memory
3623     * hotunplug wasn't successful.
3624     */
3625    qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3626                                 "for device %s", dev->id);
3627    qapi_event_send_mem_unplug_error(dev->id, qapi_error);
3628}
3629
3630/* Callback to be called during DRC release. */
3631void spapr_lmb_release(DeviceState *dev)
3632{
3633    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3634    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3635    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3636
3637    /* This information will get lost if a migration occurs
3638     * during the unplug process. In this case recover it. */
3639    if (ds == NULL) {
3640        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3641        g_assert(ds);
3642        /* The DRC being examined by the caller at least must be counted */
3643        g_assert(ds->nr_lmbs);
3644    }
3645
3646    if (--ds->nr_lmbs) {
3647        return;
3648    }
3649
3650    /*
3651     * Now that all the LMBs have been removed by the guest, call the
3652     * unplug handler chain. This can never fail.
3653     */
3654    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3655    object_unparent(OBJECT(dev));
3656}
3657
3658static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3659{
3660    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3661    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3662
3663    /* We really shouldn't get this far without anything to unplug */
3664    g_assert(ds);
3665
3666    pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3667    qdev_unrealize(dev);
3668    spapr_pending_dimm_unplugs_remove(spapr, ds);
3669}
3670
3671static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3672                                        DeviceState *dev, Error **errp)
3673{
3674    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3675    PCDIMMDevice *dimm = PC_DIMM(dev);
3676    uint32_t nr_lmbs;
3677    uint64_t size, addr_start, addr;
3678    int i;
3679    SpaprDrc *drc;
3680
3681    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3682        error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3683        return;
3684    }
3685
3686    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3687    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3688
3689    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3690                                          &error_abort);
3691
3692    /*
3693     * An existing pending dimm state for this DIMM means that there is an
3694     * unplug operation in progress, waiting for the spapr_lmb_release
3695     * callback to complete the job (BQL can't cover that far). In this case,
3696     * bail out to avoid detaching DRCs that were already released.
3697     */
3698    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3699        error_setg(errp, "Memory unplug already in progress for device %s",
3700                   dev->id);
3701        return;
3702    }
3703
3704    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3705
3706    addr = addr_start;
3707    for (i = 0; i < nr_lmbs; i++) {
3708        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3709                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3710        g_assert(drc);
3711
3712        spapr_drc_unplug_request(drc);
3713        addr += SPAPR_MEMORY_BLOCK_SIZE;
3714    }
3715
3716    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3717                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3718    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3719                                              nr_lmbs, spapr_drc_index(drc));
3720}
3721
3722/* Callback to be called during DRC release. */
3723void spapr_core_release(DeviceState *dev)
3724{
3725    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3726
3727    /* Call the unplug handler chain. This can never fail. */
3728    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3729    object_unparent(OBJECT(dev));
3730}
3731
3732static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3733{
3734    MachineState *ms = MACHINE(hotplug_dev);
3735    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3736    CPUCore *cc = CPU_CORE(dev);
3737    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3738
3739    if (smc->pre_2_10_has_unused_icps) {
3740        SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3741        int i;
3742
3743        for (i = 0; i < cc->nr_threads; i++) {
3744            CPUState *cs = CPU(sc->threads[i]);
3745
3746            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3747        }
3748    }
3749
3750    assert(core_slot);
3751    core_slot->cpu = NULL;
3752    qdev_unrealize(dev);
3753}
3754
3755static
3756void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3757                               Error **errp)
3758{
3759    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3760    int index;
3761    SpaprDrc *drc;
3762    CPUCore *cc = CPU_CORE(dev);
3763
3764    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3765        error_setg(errp, "Unable to find CPU core with core-id: %d",
3766                   cc->core_id);
3767        return;
3768    }
3769    if (index == 0) {
3770        error_setg(errp, "Boot CPU core may not be unplugged");
3771        return;
3772    }
3773
3774    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3775                          spapr_vcpu_id(spapr, cc->core_id));
3776    g_assert(drc);
3777
3778    if (!spapr_drc_unplug_requested(drc)) {
3779        spapr_drc_unplug_request(drc);
3780    }
3781
3782    /*
3783     * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3784     * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3785     * pulses removing the same CPU. Otherwise, in an failed hotunplug
3786     * attempt (e.g. the kernel will refuse to remove the last online
3787     * CPU), we will never attempt it again because unplug_requested
3788     * will still be 'true' in that case.
3789     */
3790    spapr_hotplug_req_remove_by_index(drc);
3791}
3792
3793int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3794                           void *fdt, int *fdt_start_offset, Error **errp)
3795{
3796    SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3797    CPUState *cs = CPU(core->threads[0]);
3798    PowerPCCPU *cpu = POWERPC_CPU(cs);
3799    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3800    int id = spapr_get_vcpu_id(cpu);
3801    g_autofree char *nodename = NULL;
3802    int offset;
3803
3804    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3805    offset = fdt_add_subnode(fdt, 0, nodename);
3806
3807    spapr_dt_cpu(cs, fdt, offset, spapr);
3808
3809    /*
3810     * spapr_dt_cpu() does not fill the 'name' property in the
3811     * CPU node. The function is called during boot process, before
3812     * and after CAS, and overwriting the 'name' property written
3813     * by SLOF is not allowed.
3814     *
3815     * Write it manually after spapr_dt_cpu(). This makes the hotplug
3816     * CPUs more compatible with the coldplugged ones, which have
3817     * the 'name' property. Linux Kernel also relies on this
3818     * property to identify CPU nodes.
3819     */
3820    _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3821
3822    *fdt_start_offset = offset;
3823    return 0;
3824}
3825
3826static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3827{
3828    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3829    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3830    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3831    SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3832    CPUCore *cc = CPU_CORE(dev);
3833    CPUState *cs;
3834    SpaprDrc *drc;
3835    CPUArchId *core_slot;
3836    int index;
3837    bool hotplugged = spapr_drc_hotplugged(dev);
3838    int i;
3839
3840    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3841    g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3842
3843    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3844                          spapr_vcpu_id(spapr, cc->core_id));
3845
3846    g_assert(drc || !mc->has_hotpluggable_cpus);
3847
3848    if (drc) {
3849        /*
3850         * spapr_core_pre_plug() already buys us this is a brand new
3851         * core being plugged into a free slot. Nothing should already
3852         * be attached to the corresponding DRC.
3853         */
3854        spapr_drc_attach(drc, dev);
3855
3856        if (hotplugged) {
3857            /*
3858             * Send hotplug notification interrupt to the guest only
3859             * in case of hotplugged CPUs.
3860             */
3861            spapr_hotplug_req_add_by_index(drc);
3862        } else {
3863            spapr_drc_reset(drc);
3864        }
3865    }
3866
3867    core_slot->cpu = OBJECT(dev);
3868
3869    /*
3870     * Set compatibility mode to match the boot CPU, which was either set
3871     * by the machine reset code or by CAS. This really shouldn't fail at
3872     * this point.
3873     */
3874    if (hotplugged) {
3875        for (i = 0; i < cc->nr_threads; i++) {
3876            ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3877                           &error_abort);
3878        }
3879    }
3880
3881    if (smc->pre_2_10_has_unused_icps) {
3882        for (i = 0; i < cc->nr_threads; i++) {
3883            cs = CPU(core->threads[i]);
3884            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3885        }
3886    }
3887}
3888
3889static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3890                                Error **errp)
3891{
3892    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3893    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3894    CPUCore *cc = CPU_CORE(dev);
3895    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3896    const char *type = object_get_typename(OBJECT(dev));
3897    CPUArchId *core_slot;
3898    int index;
3899    unsigned int smp_threads = machine->smp.threads;
3900
3901    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3902        error_setg(errp, "CPU hotplug not supported for this machine");
3903        return;
3904    }
3905
3906    if (strcmp(base_core_type, type)) {
3907        error_setg(errp, "CPU core type should be %s", base_core_type);
3908        return;
3909    }
3910
3911    if (cc->core_id % smp_threads) {
3912        error_setg(errp, "invalid core id %d", cc->core_id);
3913        return;
3914    }
3915
3916    /*
3917     * In general we should have homogeneous threads-per-core, but old
3918     * (pre hotplug support) machine types allow the last core to have
3919     * reduced threads as a compatibility hack for when we allowed
3920     * total vcpus not a multiple of threads-per-core.
3921     */
3922    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3923        error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3924                   smp_threads);
3925        return;
3926    }
3927
3928    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3929    if (!core_slot) {
3930        error_setg(errp, "core id %d out of range", cc->core_id);
3931        return;
3932    }
3933
3934    if (core_slot->cpu) {
3935        error_setg(errp, "core %d already populated", cc->core_id);
3936        return;
3937    }
3938
3939    numa_cpu_pre_plug(core_slot, dev, errp);
3940}
3941
3942int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3943                          void *fdt, int *fdt_start_offset, Error **errp)
3944{
3945    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3946    int intc_phandle;
3947
3948    intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3949    if (intc_phandle <= 0) {
3950        return -1;
3951    }
3952
3953    if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3954        error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3955        return -1;
3956    }
3957
3958    /* generally SLOF creates these, for hotplug it's up to QEMU */
3959    _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3960
3961    return 0;
3962}
3963
3964static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3965                               Error **errp)
3966{
3967    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3968    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3969    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3970    const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3971    SpaprDrc *drc;
3972
3973    if (dev->hotplugged && !smc->dr_phb_enabled) {
3974        error_setg(errp, "PHB hotplug not supported for this machine");
3975        return false;
3976    }
3977
3978    if (sphb->index == (uint32_t)-1) {
3979        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3980        return false;
3981    }
3982
3983    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3984    if (drc && drc->dev) {
3985        error_setg(errp, "PHB %d already attached", sphb->index);
3986        return false;
3987    }
3988
3989    /*
3990     * This will check that sphb->index doesn't exceed the maximum number of
3991     * PHBs for the current machine type.
3992     */
3993    return
3994        smc->phb_placement(spapr, sphb->index,
3995                           &sphb->buid, &sphb->io_win_addr,
3996                           &sphb->mem_win_addr, &sphb->mem64_win_addr,
3997                           windows_supported, sphb->dma_liobn,
3998                           &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3999                           errp);
4000}
4001
4002static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4003{
4004    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4005    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4006    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4007    SpaprDrc *drc;
4008    bool hotplugged = spapr_drc_hotplugged(dev);
4009
4010    if (!smc->dr_phb_enabled) {
4011        return;
4012    }
4013
4014    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4015    /* hotplug hooks should check it's enabled before getting this far */
4016    assert(drc);
4017
4018    /* spapr_phb_pre_plug() already checked the DRC is attachable */
4019    spapr_drc_attach(drc, dev);
4020
4021    if (hotplugged) {
4022        spapr_hotplug_req_add_by_index(drc);
4023    } else {
4024        spapr_drc_reset(drc);
4025    }
4026}
4027
4028void spapr_phb_release(DeviceState *dev)
4029{
4030    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4031
4032    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4033    object_unparent(OBJECT(dev));
4034}
4035
4036static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4037{
4038    qdev_unrealize(dev);
4039}
4040
4041static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4042                                     DeviceState *dev, Error **errp)
4043{
4044    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4045    SpaprDrc *drc;
4046
4047    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4048    assert(drc);
4049
4050    if (!spapr_drc_unplug_requested(drc)) {
4051        spapr_drc_unplug_request(drc);
4052        spapr_hotplug_req_remove_by_index(drc);
4053    } else {
4054        error_setg(errp,
4055                   "PCI Host Bridge unplug already in progress for device %s",
4056                   dev->id);
4057    }
4058}
4059
4060static
4061bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4062                              Error **errp)
4063{
4064    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4065
4066    if (spapr->tpm_proxy != NULL) {
4067        error_setg(errp, "Only one TPM proxy can be specified for this machine");
4068        return false;
4069    }
4070
4071    return true;
4072}
4073
4074static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4075{
4076    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4077    SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4078
4079    /* Already checked in spapr_tpm_proxy_pre_plug() */
4080    g_assert(spapr->tpm_proxy == NULL);
4081
4082    spapr->tpm_proxy = tpm_proxy;
4083}
4084
4085static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4086{
4087    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4088
4089    qdev_unrealize(dev);
4090    object_unparent(OBJECT(dev));
4091    spapr->tpm_proxy = NULL;
4092}
4093
4094static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4095                                      DeviceState *dev, Error **errp)
4096{
4097    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4098        spapr_memory_plug(hotplug_dev, dev);
4099    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4100        spapr_core_plug(hotplug_dev, dev);
4101    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4102        spapr_phb_plug(hotplug_dev, dev);
4103    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4104        spapr_tpm_proxy_plug(hotplug_dev, dev);
4105    }
4106}
4107
4108static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4109                                        DeviceState *dev, Error **errp)
4110{
4111    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4112        spapr_memory_unplug(hotplug_dev, dev);
4113    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4114        spapr_core_unplug(hotplug_dev, dev);
4115    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4116        spapr_phb_unplug(hotplug_dev, dev);
4117    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4118        spapr_tpm_proxy_unplug(hotplug_dev, dev);
4119    }
4120}
4121
4122bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4123{
4124    return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4125        /*
4126         * CAS will process all pending unplug requests.
4127         *
4128         * HACK: a guest could theoretically have cleared all bits in OV5,
4129         * but none of the guests we care for do.
4130         */
4131        spapr_ovec_empty(spapr->ov5_cas);
4132}
4133
4134static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4135                                                DeviceState *dev, Error **errp)
4136{
4137    SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4138    MachineClass *mc = MACHINE_GET_CLASS(sms);
4139    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4140
4141    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4142        if (spapr_memory_hot_unplug_supported(sms)) {
4143            spapr_memory_unplug_request(hotplug_dev, dev, errp);
4144        } else {
4145            error_setg(errp, "Memory hot unplug not supported for this guest");
4146        }
4147    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4148        if (!mc->has_hotpluggable_cpus) {
4149            error_setg(errp, "CPU hot unplug not supported on this machine");
4150            return;
4151        }
4152        spapr_core_unplug_request(hotplug_dev, dev, errp);
4153    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4154        if (!smc->dr_phb_enabled) {
4155            error_setg(errp, "PHB hot unplug not supported on this machine");
4156            return;
4157        }
4158        spapr_phb_unplug_request(hotplug_dev, dev, errp);
4159    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4160        spapr_tpm_proxy_unplug(hotplug_dev, dev);
4161    }
4162}
4163
4164static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4165                                          DeviceState *dev, Error **errp)
4166{
4167    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4168        spapr_memory_pre_plug(hotplug_dev, dev, errp);
4169    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4170        spapr_core_pre_plug(hotplug_dev, dev, errp);
4171    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4172        spapr_phb_pre_plug(hotplug_dev, dev, errp);
4173    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4174        spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4175    }
4176}
4177
4178static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4179                                                 DeviceState *dev)
4180{
4181    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4182        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4183        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4184        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4185        return HOTPLUG_HANDLER(machine);
4186    }
4187    if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4188        PCIDevice *pcidev = PCI_DEVICE(dev);
4189        PCIBus *root = pci_device_root_bus(pcidev);
4190        SpaprPhbState *phb =
4191            (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4192                                                 TYPE_SPAPR_PCI_HOST_BRIDGE);
4193
4194        if (phb) {
4195            return HOTPLUG_HANDLER(phb);
4196        }
4197    }
4198    return NULL;
4199}
4200
4201static CpuInstanceProperties
4202spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4203{
4204    CPUArchId *core_slot;
4205    MachineClass *mc = MACHINE_GET_CLASS(machine);
4206
4207    /* make sure possible_cpu are intialized */
4208    mc->possible_cpu_arch_ids(machine);
4209    /* get CPU core slot containing thread that matches cpu_index */
4210    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4211    assert(core_slot);
4212    return core_slot->props;
4213}
4214
4215static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4216{
4217    return idx / ms->smp.cores % ms->numa_state->num_nodes;
4218}
4219
4220static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4221{
4222    int i;
4223    unsigned int smp_threads = machine->smp.threads;
4224    unsigned int smp_cpus = machine->smp.cpus;
4225    const char *core_type;
4226    int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4227    MachineClass *mc = MACHINE_GET_CLASS(machine);
4228
4229    if (!mc->has_hotpluggable_cpus) {
4230        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4231    }
4232    if (machine->possible_cpus) {
4233        assert(machine->possible_cpus->len == spapr_max_cores);
4234        return machine->possible_cpus;
4235    }
4236
4237    core_type = spapr_get_cpu_core_type(machine->cpu_type);
4238    if (!core_type) {
4239        error_report("Unable to find sPAPR CPU Core definition");
4240        exit(1);
4241    }
4242
4243    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4244                             sizeof(CPUArchId) * spapr_max_cores);
4245    machine->possible_cpus->len = spapr_max_cores;
4246    for (i = 0; i < machine->possible_cpus->len; i++) {
4247        int core_id = i * smp_threads;
4248
4249        machine->possible_cpus->cpus[i].type = core_type;
4250        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4251        machine->possible_cpus->cpus[i].arch_id = core_id;
4252        machine->possible_cpus->cpus[i].props.has_core_id = true;
4253        machine->possible_cpus->cpus[i].props.core_id = core_id;
4254    }
4255    return machine->possible_cpus;
4256}
4257
4258static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4259                                uint64_t *buid, hwaddr *pio,
4260                                hwaddr *mmio32, hwaddr *mmio64,
4261                                unsigned n_dma, uint32_t *liobns,
4262                                hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4263{
4264    /*
4265     * New-style PHB window placement.
4266     *
4267     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4268     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4269     * windows.
4270     *
4271     * Some guest kernels can't work with MMIO windows above 1<<46
4272     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4273     *
4274     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4275     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4276     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4277     * 1TiB 64-bit MMIO windows for each PHB.
4278     */
4279    const uint64_t base_buid = 0x800000020000000ULL;
4280    int i;
4281
4282    /* Sanity check natural alignments */
4283    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4284    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4285    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4286    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4287    /* Sanity check bounds */
4288    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4289                      SPAPR_PCI_MEM32_WIN_SIZE);
4290    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4291                      SPAPR_PCI_MEM64_WIN_SIZE);
4292
4293    if (index >= SPAPR_MAX_PHBS) {
4294        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4295                   SPAPR_MAX_PHBS - 1);
4296        return false;
4297    }
4298
4299    *buid = base_buid + index;
4300    for (i = 0; i < n_dma; ++i) {
4301        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4302    }
4303
4304    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4305    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4306    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4307
4308    *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4309    *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4310    return true;
4311}
4312
4313static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4314{
4315    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4316
4317    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4318}
4319
4320static void spapr_ics_resend(XICSFabric *dev)
4321{
4322    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4323
4324    ics_resend(spapr->ics);
4325}
4326
4327static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4328{
4329    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4330
4331    return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4332}
4333
4334static void spapr_pic_print_info(InterruptStatsProvider *obj,
4335                                 Monitor *mon)
4336{
4337    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4338
4339    spapr_irq_print_info(spapr, mon);
4340    monitor_printf(mon, "irqchip: %s\n",
4341                   kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4342}
4343
4344/*
4345 * This is a XIVE only operation
4346 */
4347static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4348                           uint8_t nvt_blk, uint32_t nvt_idx,
4349                           bool cam_ignore, uint8_t priority,
4350                           uint32_t logic_serv, XiveTCTXMatch *match)
4351{
4352    SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4353    XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4354    XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4355    int count;
4356
4357    count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4358                           priority, logic_serv, match);
4359    if (count < 0) {
4360        return count;
4361    }
4362
4363    /*
4364     * When we implement the save and restore of the thread interrupt
4365     * contexts in the enter/exit CPU handlers of the machine and the
4366     * escalations in QEMU, we should be able to handle non dispatched
4367     * vCPUs.
4368     *
4369     * Until this is done, the sPAPR machine should find at least one
4370     * matching context always.
4371     */
4372    if (count == 0) {
4373        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4374                      nvt_blk, nvt_idx);
4375    }
4376
4377    return count;
4378}
4379
4380int spapr_get_vcpu_id(PowerPCCPU *cpu)
4381{
4382    return cpu->vcpu_id;
4383}
4384
4385bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4386{
4387    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4388    MachineState *ms = MACHINE(spapr);
4389    int vcpu_id;
4390
4391    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4392
4393    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4394        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4395        error_append_hint(errp, "Adjust the number of cpus to %d "
4396                          "or try to raise the number of threads per core\n",
4397                          vcpu_id * ms->smp.threads / spapr->vsmt);
4398        return false;
4399    }
4400
4401    cpu->vcpu_id = vcpu_id;
4402    return true;
4403}
4404
4405PowerPCCPU *spapr_find_cpu(int vcpu_id)
4406{
4407    CPUState *cs;
4408
4409    CPU_FOREACH(cs) {
4410        PowerPCCPU *cpu = POWERPC_CPU(cs);
4411
4412        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4413            return cpu;
4414        }
4415    }
4416
4417    return NULL;
4418}
4419
4420static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4421{
4422    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4423
4424    /* These are only called by TCG, KVM maintains dispatch state */
4425
4426    spapr_cpu->prod = false;
4427    if (spapr_cpu->vpa_addr) {
4428        CPUState *cs = CPU(cpu);
4429        uint32_t dispatch;
4430
4431        dispatch = ldl_be_phys(cs->as,
4432                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4433        dispatch++;
4434        if ((dispatch & 1) != 0) {
4435            qemu_log_mask(LOG_GUEST_ERROR,
4436                          "VPA: incorrect dispatch counter value for "
4437                          "dispatched partition %u, correcting.\n", dispatch);
4438            dispatch++;
4439        }
4440        stl_be_phys(cs->as,
4441                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4442    }
4443}
4444
4445static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4446{
4447    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4448
4449    if (spapr_cpu->vpa_addr) {
4450        CPUState *cs = CPU(cpu);
4451        uint32_t dispatch;
4452
4453        dispatch = ldl_be_phys(cs->as,
4454                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4455        dispatch++;
4456        if ((dispatch & 1) != 1) {
4457            qemu_log_mask(LOG_GUEST_ERROR,
4458                          "VPA: incorrect dispatch counter value for "
4459                          "preempted partition %u, correcting.\n", dispatch);
4460            dispatch++;
4461        }
4462        stl_be_phys(cs->as,
4463                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4464    }
4465}
4466
4467static void spapr_machine_class_init(ObjectClass *oc, void *data)
4468{
4469    MachineClass *mc = MACHINE_CLASS(oc);
4470    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4471    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4472    NMIClass *nc = NMI_CLASS(oc);
4473    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4474    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4475    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4476    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4477    XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4478
4479    mc->desc = "pSeries Logical Partition (PAPR compliant)";
4480    mc->ignore_boot_device_suffixes = true;
4481
4482    /*
4483     * We set up the default / latest behaviour here.  The class_init
4484     * functions for the specific versioned machine types can override
4485     * these details for backwards compatibility
4486     */
4487    mc->init = spapr_machine_init;
4488    mc->reset = spapr_machine_reset;
4489    mc->block_default_type = IF_SCSI;
4490    mc->max_cpus = 1024;
4491    mc->no_parallel = 1;
4492    mc->default_boot_order = "";
4493    mc->default_ram_size = 512 * MiB;
4494    mc->default_ram_id = "ppc_spapr.ram";
4495    mc->default_display = "std";
4496    mc->kvm_type = spapr_kvm_type;
4497    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4498    mc->pci_allow_0_address = true;
4499    assert(!mc->get_hotplug_handler);
4500    mc->get_hotplug_handler = spapr_get_hotplug_handler;
4501    hc->pre_plug = spapr_machine_device_pre_plug;
4502    hc->plug = spapr_machine_device_plug;
4503    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4504    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4505    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4506    hc->unplug_request = spapr_machine_device_unplug_request;
4507    hc->unplug = spapr_machine_device_unplug;
4508
4509    smc->dr_lmb_enabled = true;
4510    smc->update_dt_enabled = true;
4511    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4512    mc->has_hotpluggable_cpus = true;
4513    mc->nvdimm_supported = true;
4514    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4515    fwc->get_dev_path = spapr_get_fw_dev_path;
4516    nc->nmi_monitor_handler = spapr_nmi;
4517    smc->phb_placement = spapr_phb_placement;
4518    vhc->hypercall = emulate_spapr_hypercall;
4519    vhc->hpt_mask = spapr_hpt_mask;
4520    vhc->map_hptes = spapr_map_hptes;
4521    vhc->unmap_hptes = spapr_unmap_hptes;
4522    vhc->hpte_set_c = spapr_hpte_set_c;
4523    vhc->hpte_set_r = spapr_hpte_set_r;
4524    vhc->get_pate = spapr_get_pate;
4525    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4526    vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4527    vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4528    xic->ics_get = spapr_ics_get;
4529    xic->ics_resend = spapr_ics_resend;
4530    xic->icp_get = spapr_icp_get;
4531    ispc->print_info = spapr_pic_print_info;
4532    /* Force NUMA node memory size to be a multiple of
4533     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4534     * in which LMBs are represented and hot-added
4535     */
4536    mc->numa_mem_align_shift = 28;
4537    mc->auto_enable_numa = true;
4538
4539    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4540    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4541    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4542    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4543    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4544    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4545    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4546    smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4547    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4548    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4549    smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4550    spapr_caps_add_properties(smc);
4551    smc->irq = &spapr_irq_dual;
4552    smc->dr_phb_enabled = true;
4553    smc->linux_pci_probe = true;
4554    smc->smp_threads_vsmt = true;
4555    smc->nr_xirqs = SPAPR_NR_XIRQS;
4556    xfc->match_nvt = spapr_match_nvt;
4557}
4558
4559static const TypeInfo spapr_machine_info = {
4560    .name          = TYPE_SPAPR_MACHINE,
4561    .parent        = TYPE_MACHINE,
4562    .abstract      = true,
4563    .instance_size = sizeof(SpaprMachineState),
4564    .instance_init = spapr_instance_init,
4565    .instance_finalize = spapr_machine_finalizefn,
4566    .class_size    = sizeof(SpaprMachineClass),
4567    .class_init    = spapr_machine_class_init,
4568    .interfaces = (InterfaceInfo[]) {
4569        { TYPE_FW_PATH_PROVIDER },
4570        { TYPE_NMI },
4571        { TYPE_HOTPLUG_HANDLER },
4572        { TYPE_PPC_VIRTUAL_HYPERVISOR },
4573        { TYPE_XICS_FABRIC },
4574        { TYPE_INTERRUPT_STATS_PROVIDER },
4575        { TYPE_XIVE_FABRIC },
4576        { }
4577    },
4578};
4579
4580static void spapr_machine_latest_class_options(MachineClass *mc)
4581{
4582    mc->alias = "pseries";
4583    mc->is_default = true;
4584}
4585
4586#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4587    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4588                                                    void *data)      \
4589    {                                                                \
4590        MachineClass *mc = MACHINE_CLASS(oc);                        \
4591        spapr_machine_##suffix##_class_options(mc);                  \
4592        if (latest) {                                                \
4593            spapr_machine_latest_class_options(mc);                  \
4594        }                                                            \
4595    }                                                                \
4596    static const TypeInfo spapr_machine_##suffix##_info = {          \
4597        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4598        .parent = TYPE_SPAPR_MACHINE,                                \
4599        .class_init = spapr_machine_##suffix##_class_init,           \
4600    };                                                               \
4601    static void spapr_machine_register_##suffix(void)                \
4602    {                                                                \
4603        type_register(&spapr_machine_##suffix##_info);               \
4604    }                                                                \
4605    type_init(spapr_machine_register_##suffix)
4606
4607/*
4608 * pseries-6.0
4609 */
4610static void spapr_machine_6_0_class_options(MachineClass *mc)
4611{
4612    /* Defaults for the latest behaviour inherited from the base class */
4613}
4614
4615DEFINE_SPAPR_MACHINE(6_0, "6.0", true);
4616
4617/*
4618 * pseries-5.2
4619 */
4620static void spapr_machine_5_2_class_options(MachineClass *mc)
4621{
4622    spapr_machine_6_0_class_options(mc);
4623    compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4624}
4625
4626DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4627
4628/*
4629 * pseries-5.1
4630 */
4631static void spapr_machine_5_1_class_options(MachineClass *mc)
4632{
4633    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4634
4635    spapr_machine_5_2_class_options(mc);
4636    compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4637    smc->pre_5_2_numa_associativity = true;
4638}
4639
4640DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4641
4642/*
4643 * pseries-5.0
4644 */
4645static void spapr_machine_5_0_class_options(MachineClass *mc)
4646{
4647    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4648    static GlobalProperty compat[] = {
4649        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4650    };
4651
4652    spapr_machine_5_1_class_options(mc);
4653    compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4654    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4655    mc->numa_mem_supported = true;
4656    smc->pre_5_1_assoc_refpoints = true;
4657}
4658
4659DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4660
4661/*
4662 * pseries-4.2
4663 */
4664static void spapr_machine_4_2_class_options(MachineClass *mc)
4665{
4666    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4667
4668    spapr_machine_5_0_class_options(mc);
4669    compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4670    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4671    smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4672    smc->rma_limit = 16 * GiB;
4673    mc->nvdimm_supported = false;
4674}
4675
4676DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4677
4678/*
4679 * pseries-4.1
4680 */
4681static void spapr_machine_4_1_class_options(MachineClass *mc)
4682{
4683    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4684    static GlobalProperty compat[] = {
4685        /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4686        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4687    };
4688
4689    spapr_machine_4_2_class_options(mc);
4690    smc->linux_pci_probe = false;
4691    smc->smp_threads_vsmt = false;
4692    compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4693    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4694}
4695
4696DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4697
4698/*
4699 * pseries-4.0
4700 */
4701static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4702                              uint64_t *buid, hwaddr *pio,
4703                              hwaddr *mmio32, hwaddr *mmio64,
4704                              unsigned n_dma, uint32_t *liobns,
4705                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4706{
4707    if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4708                             liobns, nv2gpa, nv2atsd, errp)) {
4709        return false;
4710    }
4711
4712    *nv2gpa = 0;
4713    *nv2atsd = 0;
4714    return true;
4715}
4716static void spapr_machine_4_0_class_options(MachineClass *mc)
4717{
4718    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4719
4720    spapr_machine_4_1_class_options(mc);
4721    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4722    smc->phb_placement = phb_placement_4_0;
4723    smc->irq = &spapr_irq_xics;
4724    smc->pre_4_1_migration = true;
4725}
4726
4727DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4728
4729/*
4730 * pseries-3.1
4731 */
4732static void spapr_machine_3_1_class_options(MachineClass *mc)
4733{
4734    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4735
4736    spapr_machine_4_0_class_options(mc);
4737    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4738
4739    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4740    smc->update_dt_enabled = false;
4741    smc->dr_phb_enabled = false;
4742    smc->broken_host_serial_model = true;
4743    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4744    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4745    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4746    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4747}
4748
4749DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4750
4751/*
4752 * pseries-3.0
4753 */
4754
4755static void spapr_machine_3_0_class_options(MachineClass *mc)
4756{
4757    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4758
4759    spapr_machine_3_1_class_options(mc);
4760    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4761
4762    smc->legacy_irq_allocation = true;
4763    smc->nr_xirqs = 0x400;
4764    smc->irq = &spapr_irq_xics_legacy;
4765}
4766
4767DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4768
4769/*
4770 * pseries-2.12
4771 */
4772static void spapr_machine_2_12_class_options(MachineClass *mc)
4773{
4774    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4775    static GlobalProperty compat[] = {
4776        { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4777        { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4778    };
4779
4780    spapr_machine_3_0_class_options(mc);
4781    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4782    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4783
4784    /* We depend on kvm_enabled() to choose a default value for the
4785     * hpt-max-page-size capability. Of course we can't do it here
4786     * because this is too early and the HW accelerator isn't initialzed
4787     * yet. Postpone this to machine init (see default_caps_with_cpu()).
4788     */
4789    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4790}
4791
4792DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4793
4794static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4795{
4796    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4797
4798    spapr_machine_2_12_class_options(mc);
4799    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4800    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4801    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4802}
4803
4804DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4805
4806/*
4807 * pseries-2.11
4808 */
4809
4810static void spapr_machine_2_11_class_options(MachineClass *mc)
4811{
4812    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4813
4814    spapr_machine_2_12_class_options(mc);
4815    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4816    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4817}
4818
4819DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4820
4821/*
4822 * pseries-2.10
4823 */
4824
4825static void spapr_machine_2_10_class_options(MachineClass *mc)
4826{
4827    spapr_machine_2_11_class_options(mc);
4828    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4829}
4830
4831DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4832
4833/*
4834 * pseries-2.9
4835 */
4836
4837static void spapr_machine_2_9_class_options(MachineClass *mc)
4838{
4839    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4840    static GlobalProperty compat[] = {
4841        { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4842    };
4843
4844    spapr_machine_2_10_class_options(mc);
4845    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4846    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4847    smc->pre_2_10_has_unused_icps = true;
4848    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4849}
4850
4851DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4852
4853/*
4854 * pseries-2.8
4855 */
4856
4857static void spapr_machine_2_8_class_options(MachineClass *mc)
4858{
4859    static GlobalProperty compat[] = {
4860        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4861    };
4862
4863    spapr_machine_2_9_class_options(mc);
4864    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4865    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4866    mc->numa_mem_align_shift = 23;
4867}
4868
4869DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4870
4871/*
4872 * pseries-2.7
4873 */
4874
4875static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4876                              uint64_t *buid, hwaddr *pio,
4877                              hwaddr *mmio32, hwaddr *mmio64,
4878                              unsigned n_dma, uint32_t *liobns,
4879                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4880{
4881    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4882    const uint64_t base_buid = 0x800000020000000ULL;
4883    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4884    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4885    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4886    const uint32_t max_index = 255;
4887    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4888
4889    uint64_t ram_top = MACHINE(spapr)->ram_size;
4890    hwaddr phb0_base, phb_base;
4891    int i;
4892
4893    /* Do we have device memory? */
4894    if (MACHINE(spapr)->maxram_size > ram_top) {
4895        /* Can't just use maxram_size, because there may be an
4896         * alignment gap between normal and device memory regions
4897         */
4898        ram_top = MACHINE(spapr)->device_memory->base +
4899            memory_region_size(&MACHINE(spapr)->device_memory->mr);
4900    }
4901
4902    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4903
4904    if (index > max_index) {
4905        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4906                   max_index);
4907        return false;
4908    }
4909
4910    *buid = base_buid + index;
4911    for (i = 0; i < n_dma; ++i) {
4912        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4913    }
4914
4915    phb_base = phb0_base + index * phb_spacing;
4916    *pio = phb_base + pio_offset;
4917    *mmio32 = phb_base + mmio_offset;
4918    /*
4919     * We don't set the 64-bit MMIO window, relying on the PHB's
4920     * fallback behaviour of automatically splitting a large "32-bit"
4921     * window into contiguous 32-bit and 64-bit windows
4922     */
4923
4924    *nv2gpa = 0;
4925    *nv2atsd = 0;
4926    return true;
4927}
4928
4929static void spapr_machine_2_7_class_options(MachineClass *mc)
4930{
4931    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4932    static GlobalProperty compat[] = {
4933        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4934        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4935        { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4936        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4937    };
4938
4939    spapr_machine_2_8_class_options(mc);
4940    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4941    mc->default_machine_opts = "modern-hotplug-events=off";
4942    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4943    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4944    smc->phb_placement = phb_placement_2_7;
4945}
4946
4947DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4948
4949/*
4950 * pseries-2.6
4951 */
4952
4953static void spapr_machine_2_6_class_options(MachineClass *mc)
4954{
4955    static GlobalProperty compat[] = {
4956        { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4957    };
4958
4959    spapr_machine_2_7_class_options(mc);
4960    mc->has_hotpluggable_cpus = false;
4961    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4962    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4963}
4964
4965DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4966
4967/*
4968 * pseries-2.5
4969 */
4970
4971static void spapr_machine_2_5_class_options(MachineClass *mc)
4972{
4973    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4974    static GlobalProperty compat[] = {
4975        { "spapr-vlan", "use-rx-buffer-pools", "off" },
4976    };
4977
4978    spapr_machine_2_6_class_options(mc);
4979    smc->use_ohci_by_default = true;
4980    compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4981    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4982}
4983
4984DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4985
4986/*
4987 * pseries-2.4
4988 */
4989
4990static void spapr_machine_2_4_class_options(MachineClass *mc)
4991{
4992    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4993
4994    spapr_machine_2_5_class_options(mc);
4995    smc->dr_lmb_enabled = false;
4996    compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4997}
4998
4999DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5000
5001/*
5002 * pseries-2.3
5003 */
5004
5005static void spapr_machine_2_3_class_options(MachineClass *mc)
5006{
5007    static GlobalProperty compat[] = {
5008        { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5009    };
5010    spapr_machine_2_4_class_options(mc);
5011    compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5012    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5013}
5014DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5015
5016/*
5017 * pseries-2.2
5018 */
5019
5020static void spapr_machine_2_2_class_options(MachineClass *mc)
5021{
5022    static GlobalProperty compat[] = {
5023        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5024    };
5025
5026    spapr_machine_2_3_class_options(mc);
5027    compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5028    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5029    mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5030}
5031DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5032
5033/*
5034 * pseries-2.1
5035 */
5036
5037static void spapr_machine_2_1_class_options(MachineClass *mc)
5038{
5039    spapr_machine_2_2_class_options(mc);
5040    compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5041}
5042DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5043
5044static void spapr_machine_register_types(void)
5045{
5046    type_register_static(&spapr_machine_info);
5047}
5048
5049type_init(spapr_machine_register_types)
5050