qemu/hw/ppc/spapr_hcall.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "qemu/cutils.h"
   3#include "qapi/error.h"
   4#include "sysemu/hw_accel.h"
   5#include "sysemu/runstate.h"
   6#include "qemu/log.h"
   7#include "qemu/main-loop.h"
   8#include "qemu/module.h"
   9#include "qemu/error-report.h"
  10#include "cpu.h"
  11#include "exec/exec-all.h"
  12#include "helper_regs.h"
  13#include "hw/ppc/spapr.h"
  14#include "hw/ppc/spapr_cpu_core.h"
  15#include "mmu-hash64.h"
  16#include "cpu-models.h"
  17#include "trace.h"
  18#include "kvm_ppc.h"
  19#include "hw/ppc/fdt.h"
  20#include "hw/ppc/spapr_ovec.h"
  21#include "mmu-book3s-v3.h"
  22#include "hw/mem/memory-device.h"
  23
  24static bool has_spr(PowerPCCPU *cpu, int spr)
  25{
  26    /* We can test whether the SPR is defined by checking for a valid name */
  27    return cpu->env.spr_cb[spr].name != NULL;
  28}
  29
  30static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
  31{
  32    /*
  33     * hash value/pteg group index is normalized by HPT mask
  34     */
  35    if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
  36        return false;
  37    }
  38    return true;
  39}
  40
  41static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
  42{
  43    MachineState *machine = MACHINE(spapr);
  44    DeviceMemoryState *dms = machine->device_memory;
  45
  46    if (addr < machine->ram_size) {
  47        return true;
  48    }
  49    if ((addr >= dms->base)
  50        && ((addr - dms->base) < memory_region_size(&dms->mr))) {
  51        return true;
  52    }
  53
  54    return false;
  55}
  56
  57static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
  58                            target_ulong opcode, target_ulong *args)
  59{
  60    target_ulong flags = args[0];
  61    target_ulong ptex = args[1];
  62    target_ulong pteh = args[2];
  63    target_ulong ptel = args[3];
  64    unsigned apshift;
  65    target_ulong raddr;
  66    target_ulong slot;
  67    const ppc_hash_pte64_t *hptes;
  68
  69    apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
  70    if (!apshift) {
  71        /* Bad page size encoding */
  72        return H_PARAMETER;
  73    }
  74
  75    raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
  76
  77    if (is_ram_address(spapr, raddr)) {
  78        /* Regular RAM - should have WIMG=0010 */
  79        if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
  80            return H_PARAMETER;
  81        }
  82    } else {
  83        target_ulong wimg_flags;
  84        /* Looks like an IO address */
  85        /* FIXME: What WIMG combinations could be sensible for IO?
  86         * For now we allow WIMG=010x, but are there others? */
  87        /* FIXME: Should we check against registered IO addresses? */
  88        wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
  89
  90        if (wimg_flags != HPTE64_R_I &&
  91            wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
  92            return H_PARAMETER;
  93        }
  94    }
  95
  96    pteh &= ~0x60ULL;
  97
  98    if (!valid_ptex(cpu, ptex)) {
  99        return H_PARAMETER;
 100    }
 101
 102    slot = ptex & 7ULL;
 103    ptex = ptex & ~7ULL;
 104
 105    if (likely((flags & H_EXACT) == 0)) {
 106        hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 107        for (slot = 0; slot < 8; slot++) {
 108            if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
 109                break;
 110            }
 111        }
 112        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 113        if (slot == 8) {
 114            return H_PTEG_FULL;
 115        }
 116    } else {
 117        hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
 118        if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
 119            ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
 120            return H_PTEG_FULL;
 121        }
 122        ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 123    }
 124
 125    spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
 126
 127    args[0] = ptex + slot;
 128    return H_SUCCESS;
 129}
 130
 131typedef enum {
 132    REMOVE_SUCCESS = 0,
 133    REMOVE_NOT_FOUND = 1,
 134    REMOVE_PARM = 2,
 135    REMOVE_HW = 3,
 136} RemoveResult;
 137
 138static RemoveResult remove_hpte(PowerPCCPU *cpu
 139                                , target_ulong ptex,
 140                                target_ulong avpn,
 141                                target_ulong flags,
 142                                target_ulong *vp, target_ulong *rp)
 143{
 144    const ppc_hash_pte64_t *hptes;
 145    target_ulong v, r;
 146
 147    if (!valid_ptex(cpu, ptex)) {
 148        return REMOVE_PARM;
 149    }
 150
 151    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 152    v = ppc_hash64_hpte0(cpu, hptes, 0);
 153    r = ppc_hash64_hpte1(cpu, hptes, 0);
 154    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 155
 156    if ((v & HPTE64_V_VALID) == 0 ||
 157        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
 158        ((flags & H_ANDCOND) && (v & avpn) != 0)) {
 159        return REMOVE_NOT_FOUND;
 160    }
 161    *vp = v;
 162    *rp = r;
 163    spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
 164    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 165    return REMOVE_SUCCESS;
 166}
 167
 168static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
 169                             target_ulong opcode, target_ulong *args)
 170{
 171    CPUPPCState *env = &cpu->env;
 172    target_ulong flags = args[0];
 173    target_ulong ptex = args[1];
 174    target_ulong avpn = args[2];
 175    RemoveResult ret;
 176
 177    ret = remove_hpte(cpu, ptex, avpn, flags,
 178                      &args[0], &args[1]);
 179
 180    switch (ret) {
 181    case REMOVE_SUCCESS:
 182        check_tlb_flush(env, true);
 183        return H_SUCCESS;
 184
 185    case REMOVE_NOT_FOUND:
 186        return H_NOT_FOUND;
 187
 188    case REMOVE_PARM:
 189        return H_PARAMETER;
 190
 191    case REMOVE_HW:
 192        return H_HARDWARE;
 193    }
 194
 195    g_assert_not_reached();
 196}
 197
 198#define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
 199#define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
 200#define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
 201#define   H_BULK_REMOVE_END            0xc000000000000000ULL
 202#define H_BULK_REMOVE_CODE             0x3000000000000000ULL
 203#define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
 204#define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
 205#define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
 206#define   H_BULK_REMOVE_HW             0x3000000000000000ULL
 207#define H_BULK_REMOVE_RC               0x0c00000000000000ULL
 208#define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
 209#define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
 210#define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
 211#define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
 212#define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
 213
 214#define H_BULK_REMOVE_MAX_BATCH        4
 215
 216static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
 217                                  target_ulong opcode, target_ulong *args)
 218{
 219    CPUPPCState *env = &cpu->env;
 220    int i;
 221    target_ulong rc = H_SUCCESS;
 222
 223    for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
 224        target_ulong *tsh = &args[i*2];
 225        target_ulong tsl = args[i*2 + 1];
 226        target_ulong v, r, ret;
 227
 228        if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
 229            break;
 230        } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
 231            return H_PARAMETER;
 232        }
 233
 234        *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
 235        *tsh |= H_BULK_REMOVE_RESPONSE;
 236
 237        if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
 238            *tsh |= H_BULK_REMOVE_PARM;
 239            return H_PARAMETER;
 240        }
 241
 242        ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
 243                          (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
 244                          &v, &r);
 245
 246        *tsh |= ret << 60;
 247
 248        switch (ret) {
 249        case REMOVE_SUCCESS:
 250            *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
 251            break;
 252
 253        case REMOVE_PARM:
 254            rc = H_PARAMETER;
 255            goto exit;
 256
 257        case REMOVE_HW:
 258            rc = H_HARDWARE;
 259            goto exit;
 260        }
 261    }
 262 exit:
 263    check_tlb_flush(env, true);
 264
 265    return rc;
 266}
 267
 268static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
 269                              target_ulong opcode, target_ulong *args)
 270{
 271    CPUPPCState *env = &cpu->env;
 272    target_ulong flags = args[0];
 273    target_ulong ptex = args[1];
 274    target_ulong avpn = args[2];
 275    const ppc_hash_pte64_t *hptes;
 276    target_ulong v, r;
 277
 278    if (!valid_ptex(cpu, ptex)) {
 279        return H_PARAMETER;
 280    }
 281
 282    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 283    v = ppc_hash64_hpte0(cpu, hptes, 0);
 284    r = ppc_hash64_hpte1(cpu, hptes, 0);
 285    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 286
 287    if ((v & HPTE64_V_VALID) == 0 ||
 288        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
 289        return H_NOT_FOUND;
 290    }
 291
 292    r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
 293           HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
 294    r |= (flags << 55) & HPTE64_R_PP0;
 295    r |= (flags << 48) & HPTE64_R_KEY_HI;
 296    r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
 297    spapr_store_hpte(cpu, ptex,
 298                     (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
 299    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 300    /* Flush the tlb */
 301    check_tlb_flush(env, true);
 302    /* Don't need a memory barrier, due to qemu's global lock */
 303    spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
 304    return H_SUCCESS;
 305}
 306
 307static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
 308                           target_ulong opcode, target_ulong *args)
 309{
 310    target_ulong flags = args[0];
 311    target_ulong ptex = args[1];
 312    int i, ridx, n_entries = 1;
 313    const ppc_hash_pte64_t *hptes;
 314
 315    if (!valid_ptex(cpu, ptex)) {
 316        return H_PARAMETER;
 317    }
 318
 319    if (flags & H_READ_4) {
 320        /* Clear the two low order bits */
 321        ptex &= ~(3ULL);
 322        n_entries = 4;
 323    }
 324
 325    hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
 326    for (i = 0, ridx = 0; i < n_entries; i++) {
 327        args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
 328        args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
 329    }
 330    ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);
 331
 332    return H_SUCCESS;
 333}
 334
 335struct SpaprPendingHpt {
 336    /* These fields are read-only after initialization */
 337    int shift;
 338    QemuThread thread;
 339
 340    /* These fields are protected by the BQL */
 341    bool complete;
 342
 343    /* These fields are private to the preparation thread if
 344     * !complete, otherwise protected by the BQL */
 345    int ret;
 346    void *hpt;
 347};
 348
 349static void free_pending_hpt(SpaprPendingHpt *pending)
 350{
 351    if (pending->hpt) {
 352        qemu_vfree(pending->hpt);
 353    }
 354
 355    g_free(pending);
 356}
 357
 358static void *hpt_prepare_thread(void *opaque)
 359{
 360    SpaprPendingHpt *pending = opaque;
 361    size_t size = 1ULL << pending->shift;
 362
 363    pending->hpt = qemu_try_memalign(size, size);
 364    if (pending->hpt) {
 365        memset(pending->hpt, 0, size);
 366        pending->ret = H_SUCCESS;
 367    } else {
 368        pending->ret = H_NO_MEM;
 369    }
 370
 371    qemu_mutex_lock_iothread();
 372
 373    if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
 374        /* Ready to go */
 375        pending->complete = true;
 376    } else {
 377        /* We've been cancelled, clean ourselves up */
 378        free_pending_hpt(pending);
 379    }
 380
 381    qemu_mutex_unlock_iothread();
 382    return NULL;
 383}
 384
 385/* Must be called with BQL held */
 386static void cancel_hpt_prepare(SpaprMachineState *spapr)
 387{
 388    SpaprPendingHpt *pending = spapr->pending_hpt;
 389
 390    /* Let the thread know it's cancelled */
 391    spapr->pending_hpt = NULL;
 392
 393    if (!pending) {
 394        /* Nothing to do */
 395        return;
 396    }
 397
 398    if (!pending->complete) {
 399        /* thread will clean itself up */
 400        return;
 401    }
 402
 403    free_pending_hpt(pending);
 404}
 405
 406/* Convert a return code from the KVM ioctl()s implementing resize HPT
 407 * into a PAPR hypercall return code */
 408static target_ulong resize_hpt_convert_rc(int ret)
 409{
 410    if (ret >= 100000) {
 411        return H_LONG_BUSY_ORDER_100_SEC;
 412    } else if (ret >= 10000) {
 413        return H_LONG_BUSY_ORDER_10_SEC;
 414    } else if (ret >= 1000) {
 415        return H_LONG_BUSY_ORDER_1_SEC;
 416    } else if (ret >= 100) {
 417        return H_LONG_BUSY_ORDER_100_MSEC;
 418    } else if (ret >= 10) {
 419        return H_LONG_BUSY_ORDER_10_MSEC;
 420    } else if (ret > 0) {
 421        return H_LONG_BUSY_ORDER_1_MSEC;
 422    }
 423
 424    switch (ret) {
 425    case 0:
 426        return H_SUCCESS;
 427    case -EPERM:
 428        return H_AUTHORITY;
 429    case -EINVAL:
 430        return H_PARAMETER;
 431    case -ENXIO:
 432        return H_CLOSED;
 433    case -ENOSPC:
 434        return H_PTEG_FULL;
 435    case -EBUSY:
 436        return H_BUSY;
 437    case -ENOMEM:
 438        return H_NO_MEM;
 439    default:
 440        return H_HARDWARE;
 441    }
 442}
 443
 444static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
 445                                         SpaprMachineState *spapr,
 446                                         target_ulong opcode,
 447                                         target_ulong *args)
 448{
 449    target_ulong flags = args[0];
 450    int shift = args[1];
 451    SpaprPendingHpt *pending = spapr->pending_hpt;
 452    uint64_t current_ram_size;
 453    int rc;
 454
 455    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 456        return H_AUTHORITY;
 457    }
 458
 459    if (!spapr->htab_shift) {
 460        /* Radix guest, no HPT */
 461        return H_NOT_AVAILABLE;
 462    }
 463
 464    trace_spapr_h_resize_hpt_prepare(flags, shift);
 465
 466    if (flags != 0) {
 467        return H_PARAMETER;
 468    }
 469
 470    if (shift && ((shift < 18) || (shift > 46))) {
 471        return H_PARAMETER;
 472    }
 473
 474    current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
 475
 476    /* We only allow the guest to allocate an HPT one order above what
 477     * we'd normally give them (to stop a small guest claiming a huge
 478     * chunk of resources in the HPT */
 479    if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
 480        return H_RESOURCE;
 481    }
 482
 483    rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
 484    if (rc != -ENOSYS) {
 485        return resize_hpt_convert_rc(rc);
 486    }
 487
 488    if (pending) {
 489        /* something already in progress */
 490        if (pending->shift == shift) {
 491            /* and it's suitable */
 492            if (pending->complete) {
 493                return pending->ret;
 494            } else {
 495                return H_LONG_BUSY_ORDER_100_MSEC;
 496            }
 497        }
 498
 499        /* not suitable, cancel and replace */
 500        cancel_hpt_prepare(spapr);
 501    }
 502
 503    if (!shift) {
 504        /* nothing to do */
 505        return H_SUCCESS;
 506    }
 507
 508    /* start new prepare */
 509
 510    pending = g_new0(SpaprPendingHpt, 1);
 511    pending->shift = shift;
 512    pending->ret = H_HARDWARE;
 513
 514    qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
 515                       hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
 516
 517    spapr->pending_hpt = pending;
 518
 519    /* In theory we could estimate the time more accurately based on
 520     * the new size, but there's not much point */
 521    return H_LONG_BUSY_ORDER_100_MSEC;
 522}
 523
 524static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
 525{
 526    uint8_t *addr = htab;
 527
 528    addr += pteg * HASH_PTEG_SIZE_64;
 529    addr += slot * HASH_PTE_SIZE_64;
 530    return  ldq_p(addr);
 531}
 532
 533static void new_hpte_store(void *htab, uint64_t pteg, int slot,
 534                           uint64_t pte0, uint64_t pte1)
 535{
 536    uint8_t *addr = htab;
 537
 538    addr += pteg * HASH_PTEG_SIZE_64;
 539    addr += slot * HASH_PTE_SIZE_64;
 540
 541    stq_p(addr, pte0);
 542    stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
 543}
 544
 545static int rehash_hpte(PowerPCCPU *cpu,
 546                       const ppc_hash_pte64_t *hptes,
 547                       void *old_hpt, uint64_t oldsize,
 548                       void *new_hpt, uint64_t newsize,
 549                       uint64_t pteg, int slot)
 550{
 551    uint64_t old_hash_mask = (oldsize >> 7) - 1;
 552    uint64_t new_hash_mask = (newsize >> 7) - 1;
 553    target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
 554    target_ulong pte1;
 555    uint64_t avpn;
 556    unsigned base_pg_shift;
 557    uint64_t hash, new_pteg, replace_pte0;
 558
 559    if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
 560        return H_SUCCESS;
 561    }
 562
 563    pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
 564
 565    base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
 566    assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
 567    avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
 568
 569    if (pte0 & HPTE64_V_SECONDARY) {
 570        pteg = ~pteg;
 571    }
 572
 573    if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
 574        uint64_t offset, vsid;
 575
 576        /* We only have 28 - 23 bits of offset in avpn */
 577        offset = (avpn & 0x1f) << 23;
 578        vsid = avpn >> 5;
 579        /* We can find more bits from the pteg value */
 580        if (base_pg_shift < 23) {
 581            offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
 582        }
 583
 584        hash = vsid ^ (offset >> base_pg_shift);
 585    } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
 586        uint64_t offset, vsid;
 587
 588        /* We only have 40 - 23 bits of seg_off in avpn */
 589        offset = (avpn & 0x1ffff) << 23;
 590        vsid = avpn >> 17;
 591        if (base_pg_shift < 23) {
 592            offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
 593                << base_pg_shift;
 594        }
 595
 596        hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
 597    } else {
 598        error_report("rehash_pte: Bad segment size in HPTE");
 599        return H_HARDWARE;
 600    }
 601
 602    new_pteg = hash & new_hash_mask;
 603    if (pte0 & HPTE64_V_SECONDARY) {
 604        assert(~pteg == (hash & old_hash_mask));
 605        new_pteg = ~new_pteg;
 606    } else {
 607        assert(pteg == (hash & old_hash_mask));
 608    }
 609    assert((oldsize != newsize) || (pteg == new_pteg));
 610    replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
 611    /*
 612     * Strictly speaking, we don't need all these tests, since we only
 613     * ever rehash bolted HPTEs.  We might in future handle non-bolted
 614     * HPTEs, though so make the logic correct for those cases as
 615     * well.
 616     */
 617    if (replace_pte0 & HPTE64_V_VALID) {
 618        assert(newsize < oldsize);
 619        if (replace_pte0 & HPTE64_V_BOLTED) {
 620            if (pte0 & HPTE64_V_BOLTED) {
 621                /* Bolted collision, nothing we can do */
 622                return H_PTEG_FULL;
 623            } else {
 624                /* Discard this hpte */
 625                return H_SUCCESS;
 626            }
 627        }
 628    }
 629
 630    new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
 631    return H_SUCCESS;
 632}
 633
 634static int rehash_hpt(PowerPCCPU *cpu,
 635                      void *old_hpt, uint64_t oldsize,
 636                      void *new_hpt, uint64_t newsize)
 637{
 638    uint64_t n_ptegs = oldsize >> 7;
 639    uint64_t pteg;
 640    int slot;
 641    int rc;
 642
 643    for (pteg = 0; pteg < n_ptegs; pteg++) {
 644        hwaddr ptex = pteg * HPTES_PER_GROUP;
 645        const ppc_hash_pte64_t *hptes
 646            = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 647
 648        if (!hptes) {
 649            return H_HARDWARE;
 650        }
 651
 652        for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
 653            rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
 654                             pteg, slot);
 655            if (rc != H_SUCCESS) {
 656                ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 657                return rc;
 658            }
 659        }
 660        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 661    }
 662
 663    return H_SUCCESS;
 664}
 665
 666static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
 667{
 668    int ret;
 669
 670    cpu_synchronize_state(cs);
 671
 672    ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
 673    if (ret < 0) {
 674        error_report("failed to push sregs to KVM: %s", strerror(-ret));
 675        exit(1);
 676    }
 677}
 678
 679static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
 680{
 681    CPUState *cs;
 682
 683    /*
 684     * This is a hack for the benefit of KVM PR - it abuses the SDR1
 685     * slot in kvm_sregs to communicate the userspace address of the
 686     * HPT
 687     */
 688    if (!kvm_enabled() || !spapr->htab) {
 689        return;
 690    }
 691
 692    CPU_FOREACH(cs) {
 693        run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
 694    }
 695}
 696
 697static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
 698                                        SpaprMachineState *spapr,
 699                                        target_ulong opcode,
 700                                        target_ulong *args)
 701{
 702    target_ulong flags = args[0];
 703    target_ulong shift = args[1];
 704    SpaprPendingHpt *pending = spapr->pending_hpt;
 705    int rc;
 706    size_t newsize;
 707
 708    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 709        return H_AUTHORITY;
 710    }
 711
 712    if (!spapr->htab_shift) {
 713        /* Radix guest, no HPT */
 714        return H_NOT_AVAILABLE;
 715    }
 716
 717    trace_spapr_h_resize_hpt_commit(flags, shift);
 718
 719    rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
 720    if (rc != -ENOSYS) {
 721        rc = resize_hpt_convert_rc(rc);
 722        if (rc == H_SUCCESS) {
 723            /* Need to set the new htab_shift in the machine state */
 724            spapr->htab_shift = shift;
 725        }
 726        return rc;
 727    }
 728
 729    if (flags != 0) {
 730        return H_PARAMETER;
 731    }
 732
 733    if (!pending || (pending->shift != shift)) {
 734        /* no matching prepare */
 735        return H_CLOSED;
 736    }
 737
 738    if (!pending->complete) {
 739        /* prepare has not completed */
 740        return H_BUSY;
 741    }
 742
 743    /* Shouldn't have got past PREPARE without an HPT */
 744    g_assert(spapr->htab_shift);
 745
 746    newsize = 1ULL << pending->shift;
 747    rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
 748                    pending->hpt, newsize);
 749    if (rc == H_SUCCESS) {
 750        qemu_vfree(spapr->htab);
 751        spapr->htab = pending->hpt;
 752        spapr->htab_shift = pending->shift;
 753
 754        push_sregs_to_kvm_pr(spapr);
 755
 756        pending->hpt = NULL; /* so it's not free()d */
 757    }
 758
 759    /* Clean up */
 760    spapr->pending_hpt = NULL;
 761    free_pending_hpt(pending);
 762
 763    return rc;
 764}
 765
 766static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
 767                                target_ulong opcode, target_ulong *args)
 768{
 769    cpu_synchronize_state(CPU(cpu));
 770    cpu->env.spr[SPR_SPRG0] = args[0];
 771
 772    return H_SUCCESS;
 773}
 774
 775static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 776                               target_ulong opcode, target_ulong *args)
 777{
 778    if (!has_spr(cpu, SPR_DABR)) {
 779        return H_HARDWARE;              /* DABR register not available */
 780    }
 781    cpu_synchronize_state(CPU(cpu));
 782
 783    if (has_spr(cpu, SPR_DABRX)) {
 784        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
 785    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
 786        return H_RESERVED_DABR;
 787    }
 788
 789    cpu->env.spr[SPR_DABR] = args[0];
 790    return H_SUCCESS;
 791}
 792
 793static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 794                                target_ulong opcode, target_ulong *args)
 795{
 796    target_ulong dabrx = args[1];
 797
 798    if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
 799        return H_HARDWARE;
 800    }
 801
 802    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
 803        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
 804        return H_PARAMETER;
 805    }
 806
 807    cpu_synchronize_state(CPU(cpu));
 808    cpu->env.spr[SPR_DABRX] = dabrx;
 809    cpu->env.spr[SPR_DABR] = args[0];
 810
 811    return H_SUCCESS;
 812}
 813
 814static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
 815                                target_ulong opcode, target_ulong *args)
 816{
 817    target_ulong flags = args[0];
 818    hwaddr dst = args[1];
 819    hwaddr src = args[2];
 820    hwaddr len = TARGET_PAGE_SIZE;
 821    uint8_t *pdst, *psrc;
 822    target_long ret = H_SUCCESS;
 823
 824    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
 825                  | H_COPY_PAGE | H_ZERO_PAGE)) {
 826        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
 827                      flags);
 828        return H_PARAMETER;
 829    }
 830
 831    /* Map-in destination */
 832    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
 833        return H_PARAMETER;
 834    }
 835    pdst = cpu_physical_memory_map(dst, &len, true);
 836    if (!pdst || len != TARGET_PAGE_SIZE) {
 837        return H_PARAMETER;
 838    }
 839
 840    if (flags & H_COPY_PAGE) {
 841        /* Map-in source, copy to destination, and unmap source again */
 842        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
 843            ret = H_PARAMETER;
 844            goto unmap_out;
 845        }
 846        psrc = cpu_physical_memory_map(src, &len, false);
 847        if (!psrc || len != TARGET_PAGE_SIZE) {
 848            ret = H_PARAMETER;
 849            goto unmap_out;
 850        }
 851        memcpy(pdst, psrc, len);
 852        cpu_physical_memory_unmap(psrc, len, 0, len);
 853    } else if (flags & H_ZERO_PAGE) {
 854        memset(pdst, 0, len);          /* Just clear the destination page */
 855    }
 856
 857    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
 858        kvmppc_dcbst_range(cpu, pdst, len);
 859    }
 860    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
 861        if (kvm_enabled()) {
 862            kvmppc_icbi_range(cpu, pdst, len);
 863        } else {
 864            tb_flush(CPU(cpu));
 865        }
 866    }
 867
 868unmap_out:
 869    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
 870    return ret;
 871}
 872
 873#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
 874#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
 875#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
 876#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
 877#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
 878#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
 879
 880static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
 881{
 882    CPUState *cs = CPU(cpu);
 883    CPUPPCState *env = &cpu->env;
 884    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 885    uint16_t size;
 886    uint8_t tmp;
 887
 888    if (vpa == 0) {
 889        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
 890        return H_HARDWARE;
 891    }
 892
 893    if (vpa % env->dcache_line_size) {
 894        return H_PARAMETER;
 895    }
 896    /* FIXME: bounds check the address */
 897
 898    size = lduw_be_phys(cs->as, vpa + 0x4);
 899
 900    if (size < VPA_MIN_SIZE) {
 901        return H_PARAMETER;
 902    }
 903
 904    /* VPA is not allowed to cross a page boundary */
 905    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
 906        return H_PARAMETER;
 907    }
 908
 909    spapr_cpu->vpa_addr = vpa;
 910
 911    tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
 912    tmp |= VPA_SHARED_PROC_VAL;
 913    stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
 914
 915    return H_SUCCESS;
 916}
 917
 918static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
 919{
 920    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 921
 922    if (spapr_cpu->slb_shadow_addr) {
 923        return H_RESOURCE;
 924    }
 925
 926    if (spapr_cpu->dtl_addr) {
 927        return H_RESOURCE;
 928    }
 929
 930    spapr_cpu->vpa_addr = 0;
 931    return H_SUCCESS;
 932}
 933
 934static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 935{
 936    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 937    uint32_t size;
 938
 939    if (addr == 0) {
 940        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
 941        return H_HARDWARE;
 942    }
 943
 944    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 945    if (size < 0x8) {
 946        return H_PARAMETER;
 947    }
 948
 949    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
 950        return H_PARAMETER;
 951    }
 952
 953    if (!spapr_cpu->vpa_addr) {
 954        return H_RESOURCE;
 955    }
 956
 957    spapr_cpu->slb_shadow_addr = addr;
 958    spapr_cpu->slb_shadow_size = size;
 959
 960    return H_SUCCESS;
 961}
 962
 963static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 964{
 965    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 966
 967    spapr_cpu->slb_shadow_addr = 0;
 968    spapr_cpu->slb_shadow_size = 0;
 969    return H_SUCCESS;
 970}
 971
 972static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
 973{
 974    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 975    uint32_t size;
 976
 977    if (addr == 0) {
 978        hcall_dprintf("Can't cope with DTL at logical 0\n");
 979        return H_HARDWARE;
 980    }
 981
 982    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 983
 984    if (size < 48) {
 985        return H_PARAMETER;
 986    }
 987
 988    if (!spapr_cpu->vpa_addr) {
 989        return H_RESOURCE;
 990    }
 991
 992    spapr_cpu->dtl_addr = addr;
 993    spapr_cpu->dtl_size = size;
 994
 995    return H_SUCCESS;
 996}
 997
 998static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
 999{
1000    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1001
1002    spapr_cpu->dtl_addr = 0;
1003    spapr_cpu->dtl_size = 0;
1004
1005    return H_SUCCESS;
1006}
1007
1008static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
1009                                   target_ulong opcode, target_ulong *args)
1010{
1011    target_ulong flags = args[0];
1012    target_ulong procno = args[1];
1013    target_ulong vpa = args[2];
1014    target_ulong ret = H_PARAMETER;
1015    PowerPCCPU *tcpu;
1016
1017    tcpu = spapr_find_cpu(procno);
1018    if (!tcpu) {
1019        return H_PARAMETER;
1020    }
1021
1022    switch (flags) {
1023    case FLAGS_REGISTER_VPA:
1024        ret = register_vpa(tcpu, vpa);
1025        break;
1026
1027    case FLAGS_DEREGISTER_VPA:
1028        ret = deregister_vpa(tcpu, vpa);
1029        break;
1030
1031    case FLAGS_REGISTER_SLBSHADOW:
1032        ret = register_slb_shadow(tcpu, vpa);
1033        break;
1034
1035    case FLAGS_DEREGISTER_SLBSHADOW:
1036        ret = deregister_slb_shadow(tcpu, vpa);
1037        break;
1038
1039    case FLAGS_REGISTER_DTL:
1040        ret = register_dtl(tcpu, vpa);
1041        break;
1042
1043    case FLAGS_DEREGISTER_DTL:
1044        ret = deregister_dtl(tcpu, vpa);
1045        break;
1046    }
1047
1048    return ret;
1049}
1050
1051static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
1052                           target_ulong opcode, target_ulong *args)
1053{
1054    CPUPPCState *env = &cpu->env;
1055    CPUState *cs = CPU(cpu);
1056    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1057
1058    env->msr |= (1ULL << MSR_EE);
1059    hreg_compute_hflags(env);
1060
1061    if (spapr_cpu->prod) {
1062        spapr_cpu->prod = false;
1063        return H_SUCCESS;
1064    }
1065
1066    if (!cpu_has_work(cs)) {
1067        cs->halted = 1;
1068        cs->exception_index = EXCP_HLT;
1069        cs->exit_request = 1;
1070    }
1071
1072    return H_SUCCESS;
1073}
1074
1075/*
1076 * Confer to self, aka join. Cede could use the same pattern as well, if
1077 * EXCP_HLT can be changed to ECXP_HALTED.
1078 */
1079static target_ulong h_confer_self(PowerPCCPU *cpu)
1080{
1081    CPUState *cs = CPU(cpu);
1082    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1083
1084    if (spapr_cpu->prod) {
1085        spapr_cpu->prod = false;
1086        return H_SUCCESS;
1087    }
1088    cs->halted = 1;
1089    cs->exception_index = EXCP_HALTED;
1090    cs->exit_request = 1;
1091
1092    return H_SUCCESS;
1093}
1094
1095static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
1096                           target_ulong opcode, target_ulong *args)
1097{
1098    CPUPPCState *env = &cpu->env;
1099    CPUState *cs;
1100    bool last_unjoined = true;
1101
1102    if (env->msr & (1ULL << MSR_EE)) {
1103        return H_BAD_MODE;
1104    }
1105
1106    /*
1107     * Must not join the last CPU running. Interestingly, no such restriction
1108     * for H_CONFER-to-self, but that is probably not intended to be used
1109     * when H_JOIN is available.
1110     */
1111    CPU_FOREACH(cs) {
1112        PowerPCCPU *c = POWERPC_CPU(cs);
1113        CPUPPCState *e = &c->env;
1114        if (c == cpu) {
1115            continue;
1116        }
1117
1118        /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
1119        if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
1120            last_unjoined = false;
1121            break;
1122        }
1123    }
1124    if (last_unjoined) {
1125        return H_CONTINUE;
1126    }
1127
1128    return h_confer_self(cpu);
1129}
1130
1131static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
1132                           target_ulong opcode, target_ulong *args)
1133{
1134    target_long target = args[0];
1135    uint32_t dispatch = args[1];
1136    CPUState *cs = CPU(cpu);
1137    SpaprCpuState *spapr_cpu;
1138
1139    /*
1140     * -1 means confer to all other CPUs without dispatch counter check,
1141     *  otherwise it's a targeted confer.
1142     */
1143    if (target != -1) {
1144        PowerPCCPU *target_cpu = spapr_find_cpu(target);
1145        uint32_t target_dispatch;
1146
1147        if (!target_cpu) {
1148            return H_PARAMETER;
1149        }
1150
1151        /*
1152         * target == self is a special case, we wait until prodded, without
1153         * dispatch counter check.
1154         */
1155        if (cpu == target_cpu) {
1156            return h_confer_self(cpu);
1157        }
1158
1159        spapr_cpu = spapr_cpu_state(target_cpu);
1160        if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
1161            return H_SUCCESS;
1162        }
1163
1164        target_dispatch = ldl_be_phys(cs->as,
1165                                  spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
1166        if (target_dispatch != dispatch) {
1167            return H_SUCCESS;
1168        }
1169
1170        /*
1171         * The targeted confer does not do anything special beyond yielding
1172         * the current vCPU, but even this should be better than nothing.
1173         * At least for single-threaded tcg, it gives the target a chance to
1174         * run before we run again. Multi-threaded tcg does not really do
1175         * anything with EXCP_YIELD yet.
1176         */
1177    }
1178
1179    cs->exception_index = EXCP_YIELD;
1180    cs->exit_request = 1;
1181    cpu_loop_exit(cs);
1182
1183    return H_SUCCESS;
1184}
1185
1186static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
1187                           target_ulong opcode, target_ulong *args)
1188{
1189    target_long target = args[0];
1190    PowerPCCPU *tcpu;
1191    CPUState *cs;
1192    SpaprCpuState *spapr_cpu;
1193
1194    tcpu = spapr_find_cpu(target);
1195    cs = CPU(tcpu);
1196    if (!cs) {
1197        return H_PARAMETER;
1198    }
1199
1200    spapr_cpu = spapr_cpu_state(tcpu);
1201    spapr_cpu->prod = true;
1202    cs->halted = 0;
1203    qemu_cpu_kick(cs);
1204
1205    return H_SUCCESS;
1206}
1207
1208static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
1209                           target_ulong opcode, target_ulong *args)
1210{
1211    target_ulong rtas_r3 = args[0];
1212    uint32_t token = rtas_ld(rtas_r3, 0);
1213    uint32_t nargs = rtas_ld(rtas_r3, 1);
1214    uint32_t nret = rtas_ld(rtas_r3, 2);
1215
1216    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1217                           nret, rtas_r3 + 12 + 4*nargs);
1218}
1219
1220static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
1221                                   target_ulong opcode, target_ulong *args)
1222{
1223    CPUState *cs = CPU(cpu);
1224    target_ulong size = args[0];
1225    target_ulong addr = args[1];
1226
1227    switch (size) {
1228    case 1:
1229        args[0] = ldub_phys(cs->as, addr);
1230        return H_SUCCESS;
1231    case 2:
1232        args[0] = lduw_phys(cs->as, addr);
1233        return H_SUCCESS;
1234    case 4:
1235        args[0] = ldl_phys(cs->as, addr);
1236        return H_SUCCESS;
1237    case 8:
1238        args[0] = ldq_phys(cs->as, addr);
1239        return H_SUCCESS;
1240    }
1241    return H_PARAMETER;
1242}
1243
1244static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
1245                                    target_ulong opcode, target_ulong *args)
1246{
1247    CPUState *cs = CPU(cpu);
1248
1249    target_ulong size = args[0];
1250    target_ulong addr = args[1];
1251    target_ulong val  = args[2];
1252
1253    switch (size) {
1254    case 1:
1255        stb_phys(cs->as, addr, val);
1256        return H_SUCCESS;
1257    case 2:
1258        stw_phys(cs->as, addr, val);
1259        return H_SUCCESS;
1260    case 4:
1261        stl_phys(cs->as, addr, val);
1262        return H_SUCCESS;
1263    case 8:
1264        stq_phys(cs->as, addr, val);
1265        return H_SUCCESS;
1266    }
1267    return H_PARAMETER;
1268}
1269
1270static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
1271                                    target_ulong opcode, target_ulong *args)
1272{
1273    CPUState *cs = CPU(cpu);
1274
1275    target_ulong dst   = args[0]; /* Destination address */
1276    target_ulong src   = args[1]; /* Source address */
1277    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1278    target_ulong count = args[3]; /* Element count */
1279    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1280    uint64_t tmp;
1281    unsigned int mask = (1 << esize) - 1;
1282    int step = 1 << esize;
1283
1284    if (count > 0x80000000) {
1285        return H_PARAMETER;
1286    }
1287
1288    if ((dst & mask) || (src & mask) || (op > 1)) {
1289        return H_PARAMETER;
1290    }
1291
1292    if (dst >= src && dst < (src + (count << esize))) {
1293            dst = dst + ((count - 1) << esize);
1294            src = src + ((count - 1) << esize);
1295            step = -step;
1296    }
1297
1298    while (count--) {
1299        switch (esize) {
1300        case 0:
1301            tmp = ldub_phys(cs->as, src);
1302            break;
1303        case 1:
1304            tmp = lduw_phys(cs->as, src);
1305            break;
1306        case 2:
1307            tmp = ldl_phys(cs->as, src);
1308            break;
1309        case 3:
1310            tmp = ldq_phys(cs->as, src);
1311            break;
1312        default:
1313            return H_PARAMETER;
1314        }
1315        if (op == 1) {
1316            tmp = ~tmp;
1317        }
1318        switch (esize) {
1319        case 0:
1320            stb_phys(cs->as, dst, tmp);
1321            break;
1322        case 1:
1323            stw_phys(cs->as, dst, tmp);
1324            break;
1325        case 2:
1326            stl_phys(cs->as, dst, tmp);
1327            break;
1328        case 3:
1329            stq_phys(cs->as, dst, tmp);
1330            break;
1331        }
1332        dst = dst + step;
1333        src = src + step;
1334    }
1335
1336    return H_SUCCESS;
1337}
1338
1339static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
1340                                   target_ulong opcode, target_ulong *args)
1341{
1342    /* Nothing to do on emulation, KVM will trap this in the kernel */
1343    return H_SUCCESS;
1344}
1345
1346static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
1347                                   target_ulong opcode, target_ulong *args)
1348{
1349    /* Nothing to do on emulation, KVM will trap this in the kernel */
1350    return H_SUCCESS;
1351}
1352
1353static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1354                                           SpaprMachineState *spapr,
1355                                           target_ulong mflags,
1356                                           target_ulong value1,
1357                                           target_ulong value2)
1358{
1359    if (value1) {
1360        return H_P3;
1361    }
1362    if (value2) {
1363        return H_P4;
1364    }
1365
1366    switch (mflags) {
1367    case H_SET_MODE_ENDIAN_BIG:
1368        spapr_set_all_lpcrs(0, LPCR_ILE);
1369        spapr_pci_switch_vga(spapr, true);
1370        return H_SUCCESS;
1371
1372    case H_SET_MODE_ENDIAN_LITTLE:
1373        spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1374        spapr_pci_switch_vga(spapr, false);
1375        return H_SUCCESS;
1376    }
1377
1378    return H_UNSUPPORTED_FLAG;
1379}
1380
1381static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1382                                                        target_ulong mflags,
1383                                                        target_ulong value1,
1384                                                        target_ulong value2)
1385{
1386    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1387
1388    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1389        return H_P2;
1390    }
1391    if (value1) {
1392        return H_P3;
1393    }
1394    if (value2) {
1395        return H_P4;
1396    }
1397
1398    if (mflags == AIL_RESERVED) {
1399        return H_UNSUPPORTED_FLAG;
1400    }
1401
1402    spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1403
1404    return H_SUCCESS;
1405}
1406
1407static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
1408                               target_ulong opcode, target_ulong *args)
1409{
1410    target_ulong resource = args[1];
1411    target_ulong ret = H_P2;
1412
1413    switch (resource) {
1414    case H_SET_MODE_RESOURCE_LE:
1415        ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
1416        break;
1417    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1418        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1419                                                  args[2], args[3]);
1420        break;
1421    }
1422
1423    return ret;
1424}
1425
1426static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
1427                                target_ulong opcode, target_ulong *args)
1428{
1429    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1430                  opcode, " (H_CLEAN_SLB)");
1431    return H_FUNCTION;
1432}
1433
1434static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
1435                                     target_ulong opcode, target_ulong *args)
1436{
1437    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1438                  opcode, " (H_INVALIDATE_PID)");
1439    return H_FUNCTION;
1440}
1441
1442static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
1443                                       uint64_t patbe_old, uint64_t patbe_new)
1444{
1445    /*
1446     * We have 4 Options:
1447     * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1448     * HASH->RADIX                                  : Free HPT
1449     * RADIX->HASH                                  : Allocate HPT
1450     * NOTHING->HASH                                : Allocate HPT
1451     * Note: NOTHING implies the case where we said the guest could choose
1452     *       later and so assumed radix and now it's called H_REG_PROC_TBL
1453     */
1454
1455    if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
1456        /* We assume RADIX, so this catches all the "Do Nothing" cases */
1457    } else if (!(patbe_old & PATE1_GR)) {
1458        /* HASH->RADIX : Free HPT */
1459        spapr_free_hpt(spapr);
1460    } else if (!(patbe_new & PATE1_GR)) {
1461        /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1462        spapr_setup_hpt(spapr);
1463    }
1464    return;
1465}
1466
1467#define FLAGS_MASK              0x01FULL
1468#define FLAG_MODIFY             0x10
1469#define FLAG_REGISTER           0x08
1470#define FLAG_RADIX              0x04
1471#define FLAG_HASH_PROC_TBL      0x02
1472#define FLAG_GTSE               0x01
1473
1474static target_ulong h_register_process_table(PowerPCCPU *cpu,
1475                                             SpaprMachineState *spapr,
1476                                             target_ulong opcode,
1477                                             target_ulong *args)
1478{
1479    target_ulong flags = args[0];
1480    target_ulong proc_tbl = args[1];
1481    target_ulong page_size = args[2];
1482    target_ulong table_size = args[3];
1483    target_ulong update_lpcr = 0;
1484    uint64_t cproc;
1485
1486    if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1487        return H_PARAMETER;
1488    }
1489    if (flags & FLAG_MODIFY) {
1490        if (flags & FLAG_REGISTER) {
1491            if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1492                if (proc_tbl & 0xfff || proc_tbl >> 60) {
1493                    return H_P2;
1494                } else if (page_size) {
1495                    return H_P3;
1496                } else if (table_size > 24) {
1497                    return H_P4;
1498                }
1499                cproc = PATE1_GR | proc_tbl | table_size;
1500            } else { /* Register new HPT process table */
1501                if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1502                    /* TODO - Not Supported */
1503                    /* Technically caused by flag bits => H_PARAMETER */
1504                    return H_PARAMETER;
1505                } else { /* Hash with SLB */
1506                    if (proc_tbl >> 38) {
1507                        return H_P2;
1508                    } else if (page_size & ~0x7) {
1509                        return H_P3;
1510                    } else if (table_size > 24) {
1511                        return H_P4;
1512                    }
1513                }
1514                cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1515            }
1516
1517        } else { /* Deregister current process table */
1518            /*
1519             * Set to benign value: (current GR) | 0. This allows
1520             * deregistration in KVM to succeed even if the radix bit
1521             * in flags doesn't match the radix bit in the old PATE.
1522             */
1523            cproc = spapr->patb_entry & PATE1_GR;
1524        }
1525    } else { /* Maintain current registration */
1526        if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1527            /* Technically caused by flag bits => H_PARAMETER */
1528            return H_PARAMETER; /* Existing Process Table Mismatch */
1529        }
1530        cproc = spapr->patb_entry;
1531    }
1532
1533    /* Check if we need to setup OR free the hpt */
1534    spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1535
1536    spapr->patb_entry = cproc; /* Save new process table */
1537
1538    /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1539    if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
1540        update_lpcr |= (LPCR_UPRT | LPCR_HR);
1541    else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1542        update_lpcr |= LPCR_UPRT;
1543    if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
1544        update_lpcr |= LPCR_GTSE;
1545
1546    spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1547
1548    if (kvm_enabled()) {
1549        return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1550                                       flags & FLAG_GTSE, cproc);
1551    }
1552    return H_SUCCESS;
1553}
1554
1555#define H_SIGNAL_SYS_RESET_ALL         -1
1556#define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1557
1558static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1559                                       SpaprMachineState *spapr,
1560                                       target_ulong opcode, target_ulong *args)
1561{
1562    target_long target = args[0];
1563    CPUState *cs;
1564
1565    if (target < 0) {
1566        /* Broadcast */
1567        if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1568            return H_PARAMETER;
1569        }
1570
1571        CPU_FOREACH(cs) {
1572            PowerPCCPU *c = POWERPC_CPU(cs);
1573
1574            if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1575                if (c == cpu) {
1576                    continue;
1577                }
1578            }
1579            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1580        }
1581        return H_SUCCESS;
1582
1583    } else {
1584        /* Unicast */
1585        cs = CPU(spapr_find_cpu(target));
1586        if (cs) {
1587            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1588            return H_SUCCESS;
1589        }
1590        return H_PARAMETER;
1591    }
1592}
1593
1594/* Returns either a logical PVR or zero if none was found */
1595static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1596                              target_ulong *addr, bool *raw_mode_supported)
1597{
1598    bool explicit_match = false; /* Matched the CPU's real PVR */
1599    uint32_t best_compat = 0;
1600    int i;
1601
1602    /*
1603     * We scan the supplied table of PVRs looking for two things
1604     *   1. Is our real CPU PVR in the list?
1605     *   2. What's the "best" listed logical PVR
1606     */
1607    for (i = 0; i < 512; ++i) {
1608        uint32_t pvr, pvr_mask;
1609
1610        pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1611        pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1612        *addr += 8;
1613
1614        if (~pvr_mask & pvr) {
1615            break; /* Terminator record */
1616        }
1617
1618        if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1619            explicit_match = true;
1620        } else {
1621            if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1622                best_compat = pvr;
1623            }
1624        }
1625    }
1626
1627    *raw_mode_supported = explicit_match;
1628
1629    /* Parsing finished */
1630    trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1631
1632    return best_compat;
1633}
1634
1635static
1636target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1637                                            SpaprMachineState *spapr,
1638                                            target_ulong vec,
1639                                            target_ulong fdt_bufsize)
1640{
1641    target_ulong ov_table; /* Working address in data buffer */
1642    uint32_t cas_pvr;
1643    SpaprOptionVector *ov1_guest, *ov5_guest;
1644    bool guest_radix;
1645    bool raw_mode_supported = false;
1646    bool guest_xive;
1647    CPUState *cs;
1648    void *fdt;
1649    uint32_t max_compat = spapr->max_compat_pvr;
1650
1651    /* CAS is supposed to be called early when only the boot vCPU is active. */
1652    CPU_FOREACH(cs) {
1653        if (cs == CPU(cpu)) {
1654            continue;
1655        }
1656        if (!cs->halted) {
1657            warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1658            return H_MULTI_THREADS_ACTIVE;
1659        }
1660    }
1661
1662    cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1663    if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1664        /*
1665         * We couldn't find a suitable compatibility mode, and either
1666         * the guest doesn't support "raw" mode for this CPU, or "raw"
1667         * mode is disabled because a maximum compat mode is set.
1668         */
1669        error_report("Couldn't negotiate a suitable PVR during CAS");
1670        return H_HARDWARE;
1671    }
1672
1673    /* Update CPUs */
1674    if (cpu->compat_pvr != cas_pvr) {
1675        Error *local_err = NULL;
1676
1677        if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1678            /* We fail to set compat mode (likely because running with KVM PR),
1679             * but maybe we can fallback to raw mode if the guest supports it.
1680             */
1681            if (!raw_mode_supported) {
1682                error_report_err(local_err);
1683                return H_HARDWARE;
1684            }
1685            error_free(local_err);
1686        }
1687    }
1688
1689    /* For the future use: here @ov_table points to the first option vector */
1690    ov_table = vec;
1691
1692    ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1693    if (!ov1_guest) {
1694        warn_report("guest didn't provide option vector 1");
1695        return H_PARAMETER;
1696    }
1697    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1698    if (!ov5_guest) {
1699        spapr_ovec_cleanup(ov1_guest);
1700        warn_report("guest didn't provide option vector 5");
1701        return H_PARAMETER;
1702    }
1703    if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1704        error_report("guest requested hash and radix MMU, which is invalid.");
1705        exit(EXIT_FAILURE);
1706    }
1707    if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1708        error_report("guest requested an invalid interrupt mode");
1709        exit(EXIT_FAILURE);
1710    }
1711
1712    guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1713
1714    guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1715
1716    /*
1717     * HPT resizing is a bit of a special case, because when enabled
1718     * we assume an HPT guest will support it until it says it
1719     * doesn't, instead of assuming it won't support it until it says
1720     * it does.  Strictly speaking that approach could break for
1721     * guests which don't make a CAS call, but those are so old we
1722     * don't care about them.  Without that assumption we'd have to
1723     * make at least a temporary allocation of an HPT sized for max
1724     * memory, which could be impossibly difficult under KVM HV if
1725     * maxram is large.
1726     */
1727    if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1728        int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1729
1730        if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1731            error_report(
1732                "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1733            exit(1);
1734        }
1735
1736        if (spapr->htab_shift < maxshift) {
1737            /* Guest doesn't know about HPT resizing, so we
1738             * pre-emptively resize for the maximum permitted RAM.  At
1739             * the point this is called, nothing should have been
1740             * entered into the existing HPT */
1741            spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1742            push_sregs_to_kvm_pr(spapr);
1743        }
1744    }
1745
1746    /* NOTE: there are actually a number of ov5 bits where input from the
1747     * guest is always zero, and the platform/QEMU enables them independently
1748     * of guest input. To model these properly we'd want some sort of mask,
1749     * but since they only currently apply to memory migration as defined
1750     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1751     * to worry about this for now.
1752     */
1753
1754    /* full range of negotiated ov5 capabilities */
1755    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1756    spapr_ovec_cleanup(ov5_guest);
1757
1758    if (guest_radix) {
1759        if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1760            error_report("Guest requested unavailable MMU mode (radix).");
1761            exit(EXIT_FAILURE);
1762        }
1763    } else {
1764        if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1765            && !kvmppc_has_cap_mmu_hash_v3()) {
1766            error_report("Guest requested unavailable MMU mode (hash).");
1767            exit(EXIT_FAILURE);
1768        }
1769    }
1770    spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1771    spapr_ovec_cleanup(ov1_guest);
1772
1773    /*
1774     * Ensure the guest asks for an interrupt mode we support;
1775     * otherwise terminate the boot.
1776     */
1777    if (guest_xive) {
1778        if (!spapr->irq->xive) {
1779            error_report(
1780"Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1781            exit(EXIT_FAILURE);
1782        }
1783    } else {
1784        if (!spapr->irq->xics) {
1785            error_report(
1786"Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1787            exit(EXIT_FAILURE);
1788        }
1789    }
1790
1791    spapr_irq_update_active_intc(spapr);
1792
1793    /*
1794     * Process all pending hot-plug/unplug requests now. An updated full
1795     * rendered FDT will be returned to the guest.
1796     */
1797    spapr_drc_reset_all(spapr);
1798    spapr_clear_pending_hotplug_events(spapr);
1799
1800    /*
1801     * If spapr_machine_reset() did not set up a HPT but one is necessary
1802     * (because the guest isn't going to use radix) then set it up here.
1803     */
1804    if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1805        /* legacy hash or new hash: */
1806        spapr_setup_hpt(spapr);
1807    }
1808
1809    fdt = spapr_build_fdt(spapr, false, fdt_bufsize);
1810
1811    g_free(spapr->fdt_blob);
1812    spapr->fdt_size = fdt_totalsize(fdt);
1813    spapr->fdt_initial_size = spapr->fdt_size;
1814    spapr->fdt_blob = fdt;
1815
1816    return H_SUCCESS;
1817}
1818
1819static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1820                                                  SpaprMachineState *spapr,
1821                                                  target_ulong opcode,
1822                                                  target_ulong *args)
1823{
1824    target_ulong vec = ppc64_phys_to_real(args[0]);
1825    target_ulong fdt_buf = args[1];
1826    target_ulong fdt_bufsize = args[2];
1827    target_ulong ret;
1828    SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1829
1830    if (fdt_bufsize < sizeof(hdr)) {
1831        error_report("SLOF provided insufficient CAS buffer "
1832                     TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1833        exit(EXIT_FAILURE);
1834    }
1835
1836    fdt_bufsize -= sizeof(hdr);
1837
1838    ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1839    if (ret == H_SUCCESS) {
1840        _FDT((fdt_pack(spapr->fdt_blob)));
1841        spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1842        spapr->fdt_initial_size = spapr->fdt_size;
1843
1844        cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1845        cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1846                                  spapr->fdt_size);
1847        trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1848    }
1849
1850    return ret;
1851}
1852
1853static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1854                                              SpaprMachineState *spapr,
1855                                              target_ulong opcode,
1856                                              target_ulong *args)
1857{
1858    uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1859                               ~H_CPU_CHAR_THR_RECONF_TRIG;
1860    uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1861    uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1862    uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1863    uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1864    uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1865                                                     SPAPR_CAP_CCF_ASSIST);
1866
1867    switch (safe_cache) {
1868    case SPAPR_CAP_WORKAROUND:
1869        characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1870        characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1871        characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1872        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1873        break;
1874    case SPAPR_CAP_FIXED:
1875        break;
1876    default: /* broken */
1877        assert(safe_cache == SPAPR_CAP_BROKEN);
1878        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1879        break;
1880    }
1881
1882    switch (safe_bounds_check) {
1883    case SPAPR_CAP_WORKAROUND:
1884        characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1885        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1886        break;
1887    case SPAPR_CAP_FIXED:
1888        break;
1889    default: /* broken */
1890        assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1891        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1892        break;
1893    }
1894
1895    switch (safe_indirect_branch) {
1896    case SPAPR_CAP_FIXED_NA:
1897        break;
1898    case SPAPR_CAP_FIXED_CCD:
1899        characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1900        break;
1901    case SPAPR_CAP_FIXED_IBS:
1902        characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1903        break;
1904    case SPAPR_CAP_WORKAROUND:
1905        behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1906        if (count_cache_flush_assist) {
1907            characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1908        }
1909        break;
1910    default: /* broken */
1911        assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1912        break;
1913    }
1914
1915    args[0] = characteristics;
1916    args[1] = behaviour;
1917    return H_SUCCESS;
1918}
1919
1920static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1921                                target_ulong opcode, target_ulong *args)
1922{
1923    target_ulong dt = ppc64_phys_to_real(args[0]);
1924    struct fdt_header hdr = { 0 };
1925    unsigned cb;
1926    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1927    void *fdt;
1928
1929    cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1930    cb = fdt32_to_cpu(hdr.totalsize);
1931
1932    if (!smc->update_dt_enabled) {
1933        return H_SUCCESS;
1934    }
1935
1936    /* Check that the fdt did not grow out of proportion */
1937    if (cb > spapr->fdt_initial_size * 2) {
1938        trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1939                                          fdt32_to_cpu(hdr.magic));
1940        return H_PARAMETER;
1941    }
1942
1943    fdt = g_malloc0(cb);
1944    cpu_physical_memory_read(dt, fdt, cb);
1945
1946    /* Check the fdt consistency */
1947    if (fdt_check_full(fdt, cb)) {
1948        trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1949                                           fdt32_to_cpu(hdr.magic));
1950        return H_PARAMETER;
1951    }
1952
1953    g_free(spapr->fdt_blob);
1954    spapr->fdt_size = cb;
1955    spapr->fdt_blob = fdt;
1956    trace_spapr_update_dt(cb);
1957
1958    return H_SUCCESS;
1959}
1960
1961static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1962static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1963static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1964
1965void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1966{
1967    spapr_hcall_fn *slot;
1968
1969    if (opcode <= MAX_HCALL_OPCODE) {
1970        assert((opcode & 0x3) == 0);
1971
1972        slot = &papr_hypercall_table[opcode / 4];
1973    } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1974        /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1975        assert((opcode & 0x3) == 0);
1976
1977        slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1978    } else {
1979        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1980
1981        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1982    }
1983
1984    assert(!(*slot));
1985    *slot = fn;
1986}
1987
1988target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1989                             target_ulong *args)
1990{
1991    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1992
1993    if ((opcode <= MAX_HCALL_OPCODE)
1994        && ((opcode & 0x3) == 0)) {
1995        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1996
1997        if (fn) {
1998            return fn(cpu, spapr, opcode, args);
1999        }
2000    } else if ((opcode >= SVM_HCALL_BASE) &&
2001               (opcode <= SVM_HCALL_MAX)) {
2002        spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
2003
2004        if (fn) {
2005            return fn(cpu, spapr, opcode, args);
2006        }
2007    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
2008               (opcode <= KVMPPC_HCALL_MAX)) {
2009        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
2010
2011        if (fn) {
2012            return fn(cpu, spapr, opcode, args);
2013        }
2014    }
2015
2016    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
2017                  opcode);
2018    return H_FUNCTION;
2019}
2020
2021static void hypercall_register_types(void)
2022{
2023    /* hcall-pft */
2024    spapr_register_hypercall(H_ENTER, h_enter);
2025    spapr_register_hypercall(H_REMOVE, h_remove);
2026    spapr_register_hypercall(H_PROTECT, h_protect);
2027    spapr_register_hypercall(H_READ, h_read);
2028
2029    /* hcall-bulk */
2030    spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
2031
2032    /* hcall-hpt-resize */
2033    spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
2034    spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
2035
2036    /* hcall-splpar */
2037    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
2038    spapr_register_hypercall(H_CEDE, h_cede);
2039    spapr_register_hypercall(H_CONFER, h_confer);
2040    spapr_register_hypercall(H_PROD, h_prod);
2041
2042    /* hcall-join */
2043    spapr_register_hypercall(H_JOIN, h_join);
2044
2045    spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
2046
2047    /* processor register resource access h-calls */
2048    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
2049    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
2050    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
2051    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
2052    spapr_register_hypercall(H_SET_MODE, h_set_mode);
2053
2054    /* In Memory Table MMU h-calls */
2055    spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
2056    spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
2057    spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
2058
2059    /* hcall-get-cpu-characteristics */
2060    spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
2061                             h_get_cpu_characteristics);
2062
2063    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
2064     * here between the "CI" and the "CACHE" variants, they will use whatever
2065     * mapping attributes qemu is using. When using KVM, the kernel will
2066     * enforce the attributes more strongly
2067     */
2068    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
2069    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
2070    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
2071    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
2072    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
2073    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
2074    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
2075
2076    /* qemu/KVM-PPC specific hcalls */
2077    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
2078
2079    /* ibm,client-architecture-support support */
2080    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
2081
2082    spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
2083}
2084
2085type_init(hypercall_register_types)
2086