qemu/hw/ppc/spapr_numa.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
   3 *
   4 * Copyright IBM Corp. 2020
   5 *
   6 * Authors:
   7 *  Daniel Henrique Barboza      <danielhb413@gmail.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "qemu-common.h"
  15#include "hw/ppc/spapr_numa.h"
  16#include "hw/pci-host/spapr.h"
  17#include "hw/ppc/fdt.h"
  18
  19/* Moved from hw/ppc/spapr_pci_nvlink2.c */
  20#define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
  21
  22static bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
  23{
  24    MachineState *machine = MACHINE(spapr);
  25    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
  26
  27    return smc->pre_5_2_numa_associativity ||
  28           machine->numa_state->num_nodes <= 1;
  29}
  30
  31static bool spapr_numa_is_symmetrical(MachineState *ms)
  32{
  33    int src, dst;
  34    int nb_numa_nodes = ms->numa_state->num_nodes;
  35    NodeInfo *numa_info = ms->numa_state->nodes;
  36
  37    for (src = 0; src < nb_numa_nodes; src++) {
  38        for (dst = src; dst < nb_numa_nodes; dst++) {
  39            if (numa_info[src].distance[dst] !=
  40                numa_info[dst].distance[src]) {
  41                return false;
  42            }
  43        }
  44    }
  45
  46    return true;
  47}
  48
  49/*
  50 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
  51 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
  52 * called from vPHB reset handler so we initialize the counter here.
  53 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
  54 * must be equally distant from any other node.
  55 * The final value of spapr->gpu_numa_id is going to be written to
  56 * max-associativity-domains in spapr_build_fdt().
  57 */
  58unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
  59{
  60    return MAX(1, machine->numa_state->num_nodes);
  61}
  62
  63/*
  64 * This function will translate the user distances into
  65 * what the kernel understand as possible values: 10
  66 * (local distance), 20, 40, 80 and 160, and return the equivalent
  67 * NUMA level for each. Current heuristic is:
  68 *  - local distance (10) returns numa_level = 0x4, meaning there is
  69 *    no rounding for local distance
  70 *  - distances between 11 and 30 inclusive -> rounded to 20,
  71 *    numa_level = 0x3
  72 *  - distances between 31 and 60 inclusive -> rounded to 40,
  73 *    numa_level = 0x2
  74 *  - distances between 61 and 120 inclusive -> rounded to 80,
  75 *    numa_level = 0x1
  76 *  - everything above 120 returns numa_level = 0 to indicate that
  77 *    there is no match. This will be calculated as disntace = 160
  78 *    by the kernel (as of v5.9)
  79 */
  80static uint8_t spapr_numa_get_numa_level(uint8_t distance)
  81{
  82    if (distance == 10) {
  83        return 0x4;
  84    } else if (distance > 11 && distance <= 30) {
  85        return 0x3;
  86    } else if (distance > 31 && distance <= 60) {
  87        return 0x2;
  88    } else if (distance > 61 && distance <= 120) {
  89        return 0x1;
  90    }
  91
  92    return 0;
  93}
  94
  95static void spapr_numa_define_associativity_domains(SpaprMachineState *spapr)
  96{
  97    MachineState *ms = MACHINE(spapr);
  98    NodeInfo *numa_info = ms->numa_state->nodes;
  99    int nb_numa_nodes = ms->numa_state->num_nodes;
 100    int src, dst, i;
 101
 102    for (src = 0; src < nb_numa_nodes; src++) {
 103        for (dst = src; dst < nb_numa_nodes; dst++) {
 104            /*
 105             * This is how the associativity domain between A and B
 106             * is calculated:
 107             *
 108             * - get the distance D between them
 109             * - get the correspondent NUMA level 'n_level' for D
 110             * - all associativity arrays were initialized with their own
 111             * numa_ids, and we're calculating the distance in node_id
 112             * ascending order, starting from node id 0 (the first node
 113             * retrieved by numa_state). This will have a cascade effect in
 114             * the algorithm because the associativity domains that node 0
 115             * defines will be carried over to other nodes, and node 1
 116             * associativities will be carried over after taking node 0
 117             * associativities into account, and so on. This happens because
 118             * we'll assign assoc_src as the associativity domain of dst
 119             * as well, for all NUMA levels beyond and including n_level.
 120             *
 121             * The PPC kernel expects the associativity domains of node 0 to
 122             * be always 0, and this algorithm will grant that by default.
 123             */
 124            uint8_t distance = numa_info[src].distance[dst];
 125            uint8_t n_level = spapr_numa_get_numa_level(distance);
 126            uint32_t assoc_src;
 127
 128            /*
 129             * n_level = 0 means that the distance is greater than our last
 130             * rounded value (120). In this case there is no NUMA level match
 131             * between src and dst and we can skip the remaining of the loop.
 132             *
 133             * The Linux kernel will assume that the distance between src and
 134             * dst, in this case of no match, is 10 (local distance) doubled
 135             * for each NUMA it didn't match. We have MAX_DISTANCE_REF_POINTS
 136             * levels (4), so this gives us 10*2*2*2*2 = 160.
 137             *
 138             * This logic can be seen in the Linux kernel source code, as of
 139             * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
 140             */
 141            if (n_level == 0) {
 142                continue;
 143            }
 144
 145            /*
 146             * We must assign all assoc_src to dst, starting from n_level
 147             * and going up to 0x1.
 148             */
 149            for (i = n_level; i > 0; i--) {
 150                assoc_src = spapr->numa_assoc_array[src][i];
 151                spapr->numa_assoc_array[dst][i] = assoc_src;
 152            }
 153        }
 154    }
 155
 156}
 157
 158void spapr_numa_associativity_init(SpaprMachineState *spapr,
 159                                   MachineState *machine)
 160{
 161    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 162    int nb_numa_nodes = machine->numa_state->num_nodes;
 163    int i, j, max_nodes_with_gpus;
 164    bool using_legacy_numa = spapr_machine_using_legacy_numa(spapr);
 165
 166    /*
 167     * For all associativity arrays: first position is the size,
 168     * position MAX_DISTANCE_REF_POINTS is always the numa_id,
 169     * represented by the index 'i'.
 170     *
 171     * This will break on sparse NUMA setups, when/if QEMU starts
 172     * to support it, because there will be no more guarantee that
 173     * 'i' will be a valid node_id set by the user.
 174     */
 175    for (i = 0; i < nb_numa_nodes; i++) {
 176        spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
 177        spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
 178
 179        /*
 180         * Fill all associativity domains of non-zero NUMA nodes with
 181         * node_id. This is required because the default value (0) is
 182         * considered a match with associativity domains of node 0.
 183         */
 184        if (!using_legacy_numa && i != 0) {
 185            for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
 186                spapr->numa_assoc_array[i][j] = cpu_to_be32(i);
 187            }
 188        }
 189    }
 190
 191    /*
 192     * Initialize NVLink GPU associativity arrays. We know that
 193     * the first GPU will take the first available NUMA id, and
 194     * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
 195     * At this point we're not sure if there are GPUs or not, but
 196     * let's initialize the associativity arrays and allow NVLink
 197     * GPUs to be handled like regular NUMA nodes later on.
 198     */
 199    max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
 200
 201    for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
 202        spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
 203
 204        for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
 205            uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
 206                                 SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
 207            spapr->numa_assoc_array[i][j] = gpu_assoc;
 208        }
 209
 210        spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
 211    }
 212
 213    /*
 214     * Legacy NUMA guests (pseries-5.1 and older, or guests with only
 215     * 1 NUMA node) will not benefit from anything we're going to do
 216     * after this point.
 217     */
 218    if (using_legacy_numa) {
 219        return;
 220    }
 221
 222    if (!spapr_numa_is_symmetrical(machine)) {
 223        error_report("Asymmetrical NUMA topologies aren't supported "
 224                     "in the pSeries machine");
 225        exit(EXIT_FAILURE);
 226    }
 227
 228    spapr_numa_define_associativity_domains(spapr);
 229}
 230
 231void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
 232                                       int offset, int nodeid)
 233{
 234    _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
 235                      spapr->numa_assoc_array[nodeid],
 236                      sizeof(spapr->numa_assoc_array[nodeid]))));
 237}
 238
 239static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
 240                                           PowerPCCPU *cpu)
 241{
 242    uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE);
 243    int index = spapr_get_vcpu_id(cpu);
 244
 245    /*
 246     * VCPUs have an extra 'cpu_id' value in ibm,associativity
 247     * compared to other resources. Increment the size at index
 248     * 0, put cpu_id last, then copy the remaining associativity
 249     * domains.
 250     */
 251    vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1);
 252    vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index);
 253    memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1,
 254           (VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t));
 255
 256    return vcpu_assoc;
 257}
 258
 259int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
 260                            int offset, PowerPCCPU *cpu)
 261{
 262    g_autofree uint32_t *vcpu_assoc = NULL;
 263
 264    vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
 265
 266    /* Advertise NUMA via ibm,associativity */
 267    return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
 268                       VCPU_ASSOC_SIZE * sizeof(uint32_t));
 269}
 270
 271
 272int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
 273                                         int offset)
 274{
 275    MachineState *machine = MACHINE(spapr);
 276    int nb_numa_nodes = machine->numa_state->num_nodes;
 277    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 278    uint32_t *int_buf, *cur_index, buf_len;
 279    int ret, i;
 280
 281    /* ibm,associativity-lookup-arrays */
 282    buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t);
 283    cur_index = int_buf = g_malloc0(buf_len);
 284    int_buf[0] = cpu_to_be32(nr_nodes);
 285     /* Number of entries per associativity list */
 286    int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
 287    cur_index += 2;
 288    for (i = 0; i < nr_nodes; i++) {
 289        /*
 290         * For the lookup-array we use the ibm,associativity array,
 291         * from numa_assoc_array. without the first element (size).
 292         */
 293        uint32_t *associativity = spapr->numa_assoc_array[i];
 294        memcpy(cur_index, ++associativity,
 295               sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS);
 296        cur_index += MAX_DISTANCE_REF_POINTS;
 297    }
 298    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 299                      (cur_index - int_buf) * sizeof(uint32_t));
 300    g_free(int_buf);
 301
 302    return ret;
 303}
 304
 305/*
 306 * Helper that writes ibm,associativity-reference-points and
 307 * max-associativity-domains in the RTAS pointed by @rtas
 308 * in the DT @fdt.
 309 */
 310void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
 311{
 312    MachineState *ms = MACHINE(spapr);
 313    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 314    uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
 315                                   spapr_numa_initial_nvgpu_numa_id(ms);
 316    uint32_t refpoints[] = {
 317        cpu_to_be32(0x4),
 318        cpu_to_be32(0x3),
 319        cpu_to_be32(0x2),
 320        cpu_to_be32(0x1),
 321    };
 322    uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
 323    uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
 324    uint32_t maxdomains[] = {
 325        cpu_to_be32(4),
 326        cpu_to_be32(maxdomain),
 327        cpu_to_be32(maxdomain),
 328        cpu_to_be32(maxdomain),
 329        cpu_to_be32(maxdomain)
 330    };
 331
 332    if (spapr_machine_using_legacy_numa(spapr)) {
 333        uint32_t legacy_refpoints[] = {
 334            cpu_to_be32(0x4),
 335            cpu_to_be32(0x4),
 336            cpu_to_be32(0x2),
 337        };
 338        uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
 339        uint32_t legacy_maxdomains[] = {
 340            cpu_to_be32(4),
 341            cpu_to_be32(legacy_maxdomain),
 342            cpu_to_be32(legacy_maxdomain),
 343            cpu_to_be32(legacy_maxdomain),
 344            cpu_to_be32(spapr->gpu_numa_id),
 345        };
 346
 347        G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
 348        G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
 349
 350        nr_refpoints = 3;
 351
 352        memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
 353        memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
 354
 355        /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
 356        if (smc->pre_5_1_assoc_refpoints) {
 357            nr_refpoints = 2;
 358        }
 359    }
 360
 361    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 362                     refpoints, nr_refpoints * sizeof(refpoints[0])));
 363
 364    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
 365                     maxdomains, sizeof(maxdomains)));
 366}
 367
 368static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
 369                                              SpaprMachineState *spapr,
 370                                              target_ulong opcode,
 371                                              target_ulong *args)
 372{
 373    g_autofree uint32_t *vcpu_assoc = NULL;
 374    target_ulong flags = args[0];
 375    target_ulong procno = args[1];
 376    PowerPCCPU *tcpu;
 377    int idx, assoc_idx;
 378
 379    /* only support procno from H_REGISTER_VPA */
 380    if (flags != 0x1) {
 381        return H_FUNCTION;
 382    }
 383
 384    tcpu = spapr_find_cpu(procno);
 385    if (tcpu == NULL) {
 386        return H_P2;
 387    }
 388
 389    /*
 390     * Given that we want to be flexible with the sizes and indexes,
 391     * we must consider that there is a hard limit of how many
 392     * associativities domain we can fit in R4 up to R9, which would be
 393     * 12 associativity domains for vcpus. Assert and bail if that's
 394     * not the case.
 395     */
 396    G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12);
 397
 398    vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
 399    /* assoc_idx starts at 1 to skip associativity size */
 400    assoc_idx = 1;
 401
 402#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
 403                             ((uint64_t)(b) & 0xffffffff))
 404
 405    for (idx = 0; idx < 6; idx++) {
 406        int32_t a, b;
 407
 408        /*
 409         * vcpu_assoc[] will contain the associativity domains for tcpu,
 410         * including tcpu->node_id and procno, meaning that we don't
 411         * need to use these variables here.
 412         *
 413         * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
 414         * macro. The ternary will fill the remaining registers with -1
 415         * after we went through vcpu_assoc[].
 416         */
 417        a = assoc_idx < VCPU_ASSOC_SIZE ?
 418            be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
 419        b = assoc_idx < VCPU_ASSOC_SIZE ?
 420            be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
 421
 422        args[idx] = ASSOCIATIVITY(a, b);
 423    }
 424#undef ASSOCIATIVITY
 425
 426    return H_SUCCESS;
 427}
 428
 429static void spapr_numa_register_types(void)
 430{
 431    /* Virtual Processor Home Node */
 432    spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
 433                             h_home_node_associativity);
 434}
 435
 436type_init(spapr_numa_register_types)
 437