qemu/hw/riscv/boot.c
<<
>>
Prefs
   1/*
   2 * QEMU RISC-V Boot Helper
   3 *
   4 * Copyright (c) 2017 SiFive, Inc.
   5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2 or later, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu-common.h"
  22#include "qemu/datadir.h"
  23#include "qemu/units.h"
  24#include "qemu/error-report.h"
  25#include "exec/cpu-defs.h"
  26#include "hw/boards.h"
  27#include "hw/loader.h"
  28#include "hw/riscv/boot.h"
  29#include "hw/riscv/boot_opensbi.h"
  30#include "elf.h"
  31#include "sysemu/device_tree.h"
  32#include "sysemu/qtest.h"
  33
  34#include <libfdt.h>
  35
  36bool riscv_is_32bit(RISCVHartArrayState *harts)
  37{
  38    return riscv_cpu_is_32bit(&harts->harts[0].env);
  39}
  40
  41target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
  42                                          target_ulong firmware_end_addr) {
  43    if (riscv_is_32bit(harts)) {
  44        return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
  45    } else {
  46        return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
  47    }
  48}
  49
  50target_ulong riscv_find_and_load_firmware(MachineState *machine,
  51                                          const char *default_machine_firmware,
  52                                          hwaddr firmware_load_addr,
  53                                          symbol_fn_t sym_cb)
  54{
  55    char *firmware_filename = NULL;
  56    target_ulong firmware_end_addr = firmware_load_addr;
  57
  58    if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
  59        /*
  60         * The user didn't specify -bios, or has specified "-bios default".
  61         * That means we are going to load the OpenSBI binary included in
  62         * the QEMU source.
  63         */
  64        firmware_filename = riscv_find_firmware(default_machine_firmware);
  65    } else if (strcmp(machine->firmware, "none")) {
  66        firmware_filename = riscv_find_firmware(machine->firmware);
  67    }
  68
  69    if (firmware_filename) {
  70        /* If not "none" load the firmware */
  71        firmware_end_addr = riscv_load_firmware(firmware_filename,
  72                                                firmware_load_addr, sym_cb);
  73        g_free(firmware_filename);
  74    }
  75
  76    return firmware_end_addr;
  77}
  78
  79char *riscv_find_firmware(const char *firmware_filename)
  80{
  81    char *filename;
  82
  83    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
  84    if (filename == NULL) {
  85        if (!qtest_enabled()) {
  86            /*
  87             * We only ship plain binary bios images in the QEMU source.
  88             * With Spike machine that uses ELF images as the default bios,
  89             * running QEMU test will complain hence let's suppress the error
  90             * report for QEMU testing.
  91             */
  92            error_report("Unable to load the RISC-V firmware \"%s\"",
  93                         firmware_filename);
  94            exit(1);
  95        }
  96    }
  97
  98    return filename;
  99}
 100
 101target_ulong riscv_load_firmware(const char *firmware_filename,
 102                                 hwaddr firmware_load_addr,
 103                                 symbol_fn_t sym_cb)
 104{
 105    uint64_t firmware_entry, firmware_size, firmware_end;
 106
 107    if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
 108                         &firmware_entry, NULL, &firmware_end, NULL,
 109                         0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
 110        return firmware_end;
 111    }
 112
 113    firmware_size = load_image_targphys_as(firmware_filename,
 114                                           firmware_load_addr,
 115                                           current_machine->ram_size, NULL);
 116
 117    if (firmware_size > 0) {
 118        return firmware_load_addr + firmware_size;
 119    }
 120
 121    error_report("could not load firmware '%s'", firmware_filename);
 122    exit(1);
 123}
 124
 125target_ulong riscv_load_kernel(const char *kernel_filename,
 126                               target_ulong kernel_start_addr,
 127                               symbol_fn_t sym_cb)
 128{
 129    uint64_t kernel_entry;
 130
 131    if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
 132                         &kernel_entry, NULL, NULL, NULL, 0,
 133                         EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
 134        return kernel_entry;
 135    }
 136
 137    if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
 138                       NULL, NULL, NULL) > 0) {
 139        return kernel_entry;
 140    }
 141
 142    if (load_image_targphys_as(kernel_filename, kernel_start_addr,
 143                               current_machine->ram_size, NULL) > 0) {
 144        return kernel_start_addr;
 145    }
 146
 147    error_report("could not load kernel '%s'", kernel_filename);
 148    exit(1);
 149}
 150
 151hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
 152                         uint64_t kernel_entry, hwaddr *start)
 153{
 154    int size;
 155
 156    /*
 157     * We want to put the initrd far enough into RAM that when the
 158     * kernel is uncompressed it will not clobber the initrd. However
 159     * on boards without much RAM we must ensure that we still leave
 160     * enough room for a decent sized initrd, and on boards with large
 161     * amounts of RAM we must avoid the initrd being so far up in RAM
 162     * that it is outside lowmem and inaccessible to the kernel.
 163     * So for boards with less  than 256MB of RAM we put the initrd
 164     * halfway into RAM, and for boards with 256MB of RAM or more we put
 165     * the initrd at 128MB.
 166     */
 167    *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
 168
 169    size = load_ramdisk(filename, *start, mem_size - *start);
 170    if (size == -1) {
 171        size = load_image_targphys(filename, *start, mem_size - *start);
 172        if (size == -1) {
 173            error_report("could not load ramdisk '%s'", filename);
 174            exit(1);
 175        }
 176    }
 177
 178    return *start + size;
 179}
 180
 181uint32_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
 182{
 183    uint32_t temp, fdt_addr;
 184    hwaddr dram_end = dram_base + mem_size;
 185    int fdtsize = fdt_totalsize(fdt);
 186
 187    if (fdtsize <= 0) {
 188        error_report("invalid device-tree");
 189        exit(1);
 190    }
 191
 192    /*
 193     * We should put fdt as far as possible to avoid kernel/initrd overwriting
 194     * its content. But it should be addressable by 32 bit system as well.
 195     * Thus, put it at an 16MB aligned address that less than fdt size from the
 196     * end of dram or 3GB whichever is lesser.
 197     */
 198    temp = MIN(dram_end, 3072 * MiB);
 199    fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 16 * MiB);
 200
 201    fdt_pack(fdt);
 202    /* copy in the device tree */
 203    qemu_fdt_dumpdtb(fdt, fdtsize);
 204
 205    rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
 206                          &address_space_memory);
 207
 208    return fdt_addr;
 209}
 210
 211void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
 212                                  hwaddr rom_size, uint32_t reset_vec_size,
 213                                  uint64_t kernel_entry)
 214{
 215    struct fw_dynamic_info dinfo;
 216    size_t dinfo_len;
 217
 218    if (sizeof(dinfo.magic) == 4) {
 219        dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
 220        dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
 221        dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
 222        dinfo.next_addr = cpu_to_le32(kernel_entry);
 223    } else {
 224        dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
 225        dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
 226        dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
 227        dinfo.next_addr = cpu_to_le64(kernel_entry);
 228    }
 229    dinfo.options = 0;
 230    dinfo.boot_hart = 0;
 231    dinfo_len = sizeof(dinfo);
 232
 233    /**
 234     * copy the dynamic firmware info. This information is specific to
 235     * OpenSBI but doesn't break any other firmware as long as they don't
 236     * expect any certain value in "a2" register.
 237     */
 238    if (dinfo_len > (rom_size - reset_vec_size)) {
 239        error_report("not enough space to store dynamic firmware info");
 240        exit(1);
 241    }
 242
 243    rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
 244                           rom_base + reset_vec_size,
 245                           &address_space_memory);
 246}
 247
 248void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
 249                               hwaddr start_addr,
 250                               hwaddr rom_base, hwaddr rom_size,
 251                               uint64_t kernel_entry,
 252                               uint32_t fdt_load_addr, void *fdt)
 253{
 254    int i;
 255    uint32_t start_addr_hi32 = 0x00000000;
 256
 257    if (!riscv_is_32bit(harts)) {
 258        start_addr_hi32 = start_addr >> 32;
 259    }
 260    /* reset vector */
 261    uint32_t reset_vec[10] = {
 262        0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(fw_dyn) */
 263        0x02828613,                  /*     addi   a2, t0, %pcrel_lo(1b) */
 264        0xf1402573,                  /*     csrr   a0, mhartid  */
 265        0,
 266        0,
 267        0x00028067,                  /*     jr     t0 */
 268        start_addr,                  /* start: .dword */
 269        start_addr_hi32,
 270        fdt_load_addr,               /* fdt_laddr: .dword */
 271        0x00000000,
 272                                     /* fw_dyn: */
 273    };
 274    if (riscv_is_32bit(harts)) {
 275        reset_vec[3] = 0x0202a583;   /*     lw     a1, 32(t0) */
 276        reset_vec[4] = 0x0182a283;   /*     lw     t0, 24(t0) */
 277    } else {
 278        reset_vec[3] = 0x0202b583;   /*     ld     a1, 32(t0) */
 279        reset_vec[4] = 0x0182b283;   /*     ld     t0, 24(t0) */
 280    }
 281
 282    /* copy in the reset vector in little_endian byte order */
 283    for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
 284        reset_vec[i] = cpu_to_le32(reset_vec[i]);
 285    }
 286    rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
 287                          rom_base, &address_space_memory);
 288    riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
 289                                 kernel_entry);
 290
 291    return;
 292}
 293