qemu/hw/riscv/spike.c
<<
>>
Prefs
   1/*
   2 * QEMU RISC-V Spike Board
   3 *
   4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
   5 * Copyright (c) 2017-2018 SiFive, Inc.
   6 *
   7 * This provides a RISC-V Board with the following devices:
   8 *
   9 * 0) HTIF Console and Poweroff
  10 * 1) CLINT (Timer and IPI)
  11 * 2) PLIC (Platform Level Interrupt Controller)
  12 *
  13 * This program is free software; you can redistribute it and/or modify it
  14 * under the terms and conditions of the GNU General Public License,
  15 * version 2 or later, as published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope it will be useful, but WITHOUT
  18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  19 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  20 * more details.
  21 *
  22 * You should have received a copy of the GNU General Public License along with
  23 * this program.  If not, see <http://www.gnu.org/licenses/>.
  24 */
  25
  26#include "qemu/osdep.h"
  27#include "qemu/log.h"
  28#include "qemu/error-report.h"
  29#include "qapi/error.h"
  30#include "hw/boards.h"
  31#include "hw/loader.h"
  32#include "hw/sysbus.h"
  33#include "target/riscv/cpu.h"
  34#include "hw/riscv/riscv_hart.h"
  35#include "hw/riscv/spike.h"
  36#include "hw/riscv/boot.h"
  37#include "hw/riscv/numa.h"
  38#include "hw/char/riscv_htif.h"
  39#include "hw/intc/sifive_clint.h"
  40#include "chardev/char.h"
  41#include "sysemu/arch_init.h"
  42#include "sysemu/device_tree.h"
  43#include "sysemu/sysemu.h"
  44
  45static const MemMapEntry spike_memmap[] = {
  46    [SPIKE_MROM] =     {     0x1000,     0xf000 },
  47    [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
  48    [SPIKE_DRAM] =     { 0x80000000,        0x0 },
  49};
  50
  51static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
  52                       uint64_t mem_size, const char *cmdline, bool is_32_bit)
  53{
  54    void *fdt;
  55    uint64_t addr, size;
  56    unsigned long clint_addr;
  57    int cpu, socket;
  58    MachineState *mc = MACHINE(s);
  59    uint32_t *clint_cells;
  60    uint32_t cpu_phandle, intc_phandle, phandle = 1;
  61    char *name, *mem_name, *clint_name, *clust_name;
  62    char *core_name, *cpu_name, *intc_name;
  63
  64    fdt = s->fdt = create_device_tree(&s->fdt_size);
  65    if (!fdt) {
  66        error_report("create_device_tree() failed");
  67        exit(1);
  68    }
  69
  70    qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
  71    qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
  72    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
  73    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
  74
  75    qemu_fdt_add_subnode(fdt, "/htif");
  76    qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
  77
  78    qemu_fdt_add_subnode(fdt, "/soc");
  79    qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
  80    qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
  81    qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
  82    qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
  83
  84    qemu_fdt_add_subnode(fdt, "/cpus");
  85    qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
  86        SIFIVE_CLINT_TIMEBASE_FREQ);
  87    qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
  88    qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
  89    qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
  90
  91    for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
  92        clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
  93        qemu_fdt_add_subnode(fdt, clust_name);
  94
  95        clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
  96
  97        for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
  98            cpu_phandle = phandle++;
  99
 100            cpu_name = g_strdup_printf("/cpus/cpu@%d",
 101                s->soc[socket].hartid_base + cpu);
 102            qemu_fdt_add_subnode(fdt, cpu_name);
 103            if (is_32_bit) {
 104                qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
 105            } else {
 106                qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
 107            }
 108            name = riscv_isa_string(&s->soc[socket].harts[cpu]);
 109            qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
 110            g_free(name);
 111            qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
 112            qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
 113            qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
 114                s->soc[socket].hartid_base + cpu);
 115            qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
 116            riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
 117            qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
 118
 119            intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
 120            qemu_fdt_add_subnode(fdt, intc_name);
 121            intc_phandle = phandle++;
 122            qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
 123            qemu_fdt_setprop_string(fdt, intc_name, "compatible",
 124                "riscv,cpu-intc");
 125            qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
 126            qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
 127
 128            clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
 129            clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
 130            clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
 131            clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
 132
 133            core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
 134            qemu_fdt_add_subnode(fdt, core_name);
 135            qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
 136
 137            g_free(core_name);
 138            g_free(intc_name);
 139            g_free(cpu_name);
 140        }
 141
 142        addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
 143        size = riscv_socket_mem_size(mc, socket);
 144        mem_name = g_strdup_printf("/memory@%lx", (long)addr);
 145        qemu_fdt_add_subnode(fdt, mem_name);
 146        qemu_fdt_setprop_cells(fdt, mem_name, "reg",
 147            addr >> 32, addr, size >> 32, size);
 148        qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
 149        riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
 150        g_free(mem_name);
 151
 152        clint_addr = memmap[SPIKE_CLINT].base +
 153            (memmap[SPIKE_CLINT].size * socket);
 154        clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
 155        qemu_fdt_add_subnode(fdt, clint_name);
 156        qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0");
 157        qemu_fdt_setprop_cells(fdt, clint_name, "reg",
 158            0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
 159        qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
 160            clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
 161        riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
 162
 163        g_free(clint_name);
 164        g_free(clint_cells);
 165        g_free(clust_name);
 166    }
 167
 168    riscv_socket_fdt_write_distance_matrix(mc, fdt);
 169
 170    if (cmdline) {
 171        qemu_fdt_add_subnode(fdt, "/chosen");
 172        qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 173    }
 174}
 175
 176static void spike_board_init(MachineState *machine)
 177{
 178    const MemMapEntry *memmap = spike_memmap;
 179    SpikeState *s = SPIKE_MACHINE(machine);
 180    MemoryRegion *system_memory = get_system_memory();
 181    MemoryRegion *main_mem = g_new(MemoryRegion, 1);
 182    MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
 183    target_ulong firmware_end_addr, kernel_start_addr;
 184    uint32_t fdt_load_addr;
 185    uint64_t kernel_entry;
 186    char *soc_name;
 187    int i, base_hartid, hart_count;
 188
 189    /* Check socket count limit */
 190    if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
 191        error_report("number of sockets/nodes should be less than %d",
 192            SPIKE_SOCKETS_MAX);
 193        exit(1);
 194    }
 195
 196    /* Initialize sockets */
 197    for (i = 0; i < riscv_socket_count(machine); i++) {
 198        if (!riscv_socket_check_hartids(machine, i)) {
 199            error_report("discontinuous hartids in socket%d", i);
 200            exit(1);
 201        }
 202
 203        base_hartid = riscv_socket_first_hartid(machine, i);
 204        if (base_hartid < 0) {
 205            error_report("can't find hartid base for socket%d", i);
 206            exit(1);
 207        }
 208
 209        hart_count = riscv_socket_hart_count(machine, i);
 210        if (hart_count < 0) {
 211            error_report("can't find hart count for socket%d", i);
 212            exit(1);
 213        }
 214
 215        soc_name = g_strdup_printf("soc%d", i);
 216        object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
 217                                TYPE_RISCV_HART_ARRAY);
 218        g_free(soc_name);
 219        object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
 220                                machine->cpu_type, &error_abort);
 221        object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
 222                                base_hartid, &error_abort);
 223        object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
 224                                hart_count, &error_abort);
 225        sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
 226
 227        /* Core Local Interruptor (timer and IPI) for each socket */
 228        sifive_clint_create(
 229            memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
 230            memmap[SPIKE_CLINT].size, base_hartid, hart_count,
 231            SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
 232            SIFIVE_CLINT_TIMEBASE_FREQ, false);
 233    }
 234
 235    /* register system main memory (actual RAM) */
 236    memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
 237                           machine->ram_size, &error_fatal);
 238    memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
 239        main_mem);
 240
 241    /* create device tree */
 242    create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
 243               riscv_is_32bit(&s->soc[0]));
 244
 245    /* boot rom */
 246    memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
 247                           memmap[SPIKE_MROM].size, &error_fatal);
 248    memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
 249                                mask_rom);
 250
 251    /*
 252     * Not like other RISC-V machines that use plain binary bios images,
 253     * keeping ELF files here was intentional because BIN files don't work
 254     * for the Spike machine as HTIF emulation depends on ELF parsing.
 255     */
 256    if (riscv_is_32bit(&s->soc[0])) {
 257        firmware_end_addr = riscv_find_and_load_firmware(machine,
 258                                    "opensbi-riscv32-generic-fw_dynamic.elf",
 259                                    memmap[SPIKE_DRAM].base,
 260                                    htif_symbol_callback);
 261    } else {
 262        firmware_end_addr = riscv_find_and_load_firmware(machine,
 263                                    "opensbi-riscv64-generic-fw_dynamic.elf",
 264                                    memmap[SPIKE_DRAM].base,
 265                                    htif_symbol_callback);
 266    }
 267
 268    if (machine->kernel_filename) {
 269        kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
 270                                                         firmware_end_addr);
 271
 272        kernel_entry = riscv_load_kernel(machine->kernel_filename,
 273                                         kernel_start_addr,
 274                                         htif_symbol_callback);
 275
 276        if (machine->initrd_filename) {
 277            hwaddr start;
 278            hwaddr end = riscv_load_initrd(machine->initrd_filename,
 279                                           machine->ram_size, kernel_entry,
 280                                           &start);
 281            qemu_fdt_setprop_cell(s->fdt, "/chosen",
 282                                  "linux,initrd-start", start);
 283            qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
 284                                  end);
 285        }
 286    } else {
 287       /*
 288        * If dynamic firmware is used, it doesn't know where is the next mode
 289        * if kernel argument is not set.
 290        */
 291        kernel_entry = 0;
 292    }
 293
 294    /* Compute the fdt load address in dram */
 295    fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
 296                                   machine->ram_size, s->fdt);
 297    /* load the reset vector */
 298    riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
 299                              memmap[SPIKE_MROM].base,
 300                              memmap[SPIKE_MROM].size, kernel_entry,
 301                              fdt_load_addr, s->fdt);
 302
 303    /* initialize HTIF using symbols found in load_kernel */
 304    htif_mm_init(system_memory, mask_rom,
 305                 &s->soc[0].harts[0].env, serial_hd(0));
 306}
 307
 308static void spike_machine_instance_init(Object *obj)
 309{
 310}
 311
 312static void spike_machine_class_init(ObjectClass *oc, void *data)
 313{
 314    MachineClass *mc = MACHINE_CLASS(oc);
 315
 316    mc->desc = "RISC-V Spike board";
 317    mc->init = spike_board_init;
 318    mc->max_cpus = SPIKE_CPUS_MAX;
 319    mc->is_default = true;
 320    mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
 321    mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
 322    mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
 323    mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
 324    mc->numa_mem_supported = true;
 325}
 326
 327static const TypeInfo spike_machine_typeinfo = {
 328    .name       = MACHINE_TYPE_NAME("spike"),
 329    .parent     = TYPE_MACHINE,
 330    .class_init = spike_machine_class_init,
 331    .instance_init = spike_machine_instance_init,
 332    .instance_size = sizeof(SpikeState),
 333};
 334
 335static void spike_machine_init_register_types(void)
 336{
 337    type_register_static(&spike_machine_typeinfo);
 338}
 339
 340type_init(spike_machine_init_register_types)
 341