qemu/hw/rtc/mc146818rtc.c
<<
>>
Prefs
   1/*
   2 * QEMU MC146818 RTC emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu-common.h"
  27#include "qemu/cutils.h"
  28#include "qemu/module.h"
  29#include "qemu/bcd.h"
  30#include "hw/acpi/aml-build.h"
  31#include "hw/irq.h"
  32#include "hw/qdev-properties.h"
  33#include "hw/qdev-properties-system.h"
  34#include "qemu/timer.h"
  35#include "sysemu/sysemu.h"
  36#include "sysemu/replay.h"
  37#include "sysemu/reset.h"
  38#include "sysemu/runstate.h"
  39#include "hw/rtc/mc146818rtc.h"
  40#include "hw/rtc/mc146818rtc_regs.h"
  41#include "migration/vmstate.h"
  42#include "qapi/error.h"
  43#include "qapi/qapi-events-misc-target.h"
  44#include "qapi/visitor.h"
  45#include "exec/address-spaces.h"
  46#include "hw/rtc/mc146818rtc_regs.h"
  47
  48#ifdef TARGET_I386
  49#include "qapi/qapi-commands-misc-target.h"
  50#include "hw/i386/apic.h"
  51#endif
  52
  53//#define DEBUG_CMOS
  54//#define DEBUG_COALESCED
  55
  56#ifdef DEBUG_CMOS
  57# define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
  58#else
  59# define CMOS_DPRINTF(format, ...)      do { } while (0)
  60#endif
  61
  62#ifdef DEBUG_COALESCED
  63# define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
  64#else
  65# define DPRINTF_C(format, ...)      do { } while (0)
  66#endif
  67
  68#define SEC_PER_MIN     60
  69#define MIN_PER_HOUR    60
  70#define SEC_PER_HOUR    3600
  71#define HOUR_PER_DAY    24
  72#define SEC_PER_DAY     86400
  73
  74#define RTC_REINJECT_ON_ACK_COUNT 20
  75#define RTC_CLOCK_RATE            32768
  76#define UIP_HOLD_LENGTH           (8 * NANOSECONDS_PER_SECOND / 32768)
  77
  78static void rtc_set_time(RTCState *s);
  79static void rtc_update_time(RTCState *s);
  80static void rtc_set_cmos(RTCState *s, const struct tm *tm);
  81static inline int rtc_from_bcd(RTCState *s, int a);
  82static uint64_t get_next_alarm(RTCState *s);
  83
  84static inline bool rtc_running(RTCState *s)
  85{
  86    return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
  87            (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
  88}
  89
  90static uint64_t get_guest_rtc_ns(RTCState *s)
  91{
  92    uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
  93
  94    return s->base_rtc * NANOSECONDS_PER_SECOND +
  95        guest_clock - s->last_update + s->offset;
  96}
  97
  98static void rtc_coalesced_timer_update(RTCState *s)
  99{
 100    if (s->irq_coalesced == 0) {
 101        timer_del(s->coalesced_timer);
 102    } else {
 103        /* divide each RTC interval to 2 - 8 smaller intervals */
 104        int c = MIN(s->irq_coalesced, 7) + 1;
 105        int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
 106            periodic_clock_to_ns(s->period / c);
 107        timer_mod(s->coalesced_timer, next_clock);
 108    }
 109}
 110
 111static QLIST_HEAD(, RTCState) rtc_devices =
 112    QLIST_HEAD_INITIALIZER(rtc_devices);
 113
 114#ifdef TARGET_I386
 115void qmp_rtc_reset_reinjection(Error **errp)
 116{
 117    RTCState *s;
 118
 119    QLIST_FOREACH(s, &rtc_devices, link) {
 120        s->irq_coalesced = 0;
 121    }
 122}
 123
 124static bool rtc_policy_slew_deliver_irq(RTCState *s)
 125{
 126    apic_reset_irq_delivered();
 127    qemu_irq_raise(s->irq);
 128    return apic_get_irq_delivered();
 129}
 130
 131static void rtc_coalesced_timer(void *opaque)
 132{
 133    RTCState *s = opaque;
 134
 135    if (s->irq_coalesced != 0) {
 136        s->cmos_data[RTC_REG_C] |= 0xc0;
 137        DPRINTF_C("cmos: injecting from timer\n");
 138        if (rtc_policy_slew_deliver_irq(s)) {
 139            s->irq_coalesced--;
 140            DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 141                      s->irq_coalesced);
 142        }
 143    }
 144
 145    rtc_coalesced_timer_update(s);
 146}
 147#else
 148static bool rtc_policy_slew_deliver_irq(RTCState *s)
 149{
 150    assert(0);
 151    return false;
 152}
 153#endif
 154
 155static uint32_t rtc_periodic_clock_ticks(RTCState *s)
 156{
 157    int period_code;
 158
 159    if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
 160        return 0;
 161     }
 162
 163    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
 164
 165    return periodic_period_to_clock(period_code);
 166}
 167
 168/*
 169 * handle periodic timer. @old_period indicates the periodic timer update
 170 * is just due to period adjustment.
 171 */
 172static void
 173periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change)
 174{
 175    uint32_t period;
 176    int64_t cur_clock, next_irq_clock, lost_clock = 0;
 177
 178    period = rtc_periodic_clock_ticks(s);
 179    s->period = period;
 180
 181    if (!period) {
 182        s->irq_coalesced = 0;
 183        timer_del(s->periodic_timer);
 184        return;
 185    }
 186
 187    /* compute 32 khz clock */
 188    cur_clock =
 189        muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
 190
 191    /*
 192     * if the periodic timer's update is due to period re-configuration,
 193     * we should count the clock since last interrupt.
 194     */
 195    if (old_period && period_change) {
 196        int64_t last_periodic_clock, next_periodic_clock;
 197
 198        next_periodic_clock = muldiv64(s->next_periodic_time,
 199                                RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
 200        last_periodic_clock = next_periodic_clock - old_period;
 201        lost_clock = cur_clock - last_periodic_clock;
 202        assert(lost_clock >= 0);
 203    }
 204
 205    /*
 206     * s->irq_coalesced can change for two reasons:
 207     *
 208     * a) if one or more periodic timer interrupts have been lost,
 209     *    lost_clock will be more that a period.
 210     *
 211     * b) when the period may be reconfigured, we expect the OS to
 212     *    treat delayed tick as the new period.  So, when switching
 213     *    from a shorter to a longer period, scale down the missing,
 214     *    because the OS will treat past delayed ticks as longer
 215     *    (leftovers are put back into lost_clock).  When switching
 216     *    to a shorter period, scale up the missing ticks since the
 217     *    OS handler will treat past delayed ticks as shorter.
 218     */
 219    if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 220        uint32_t old_irq_coalesced = s->irq_coalesced;
 221
 222        lost_clock += old_irq_coalesced * old_period;
 223        s->irq_coalesced = lost_clock / s->period;
 224        lost_clock %= s->period;
 225        if (old_irq_coalesced != s->irq_coalesced ||
 226            old_period != s->period) {
 227            DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
 228                      "period scaled from %d to %d\n", old_irq_coalesced,
 229                      s->irq_coalesced, old_period, s->period);
 230            rtc_coalesced_timer_update(s);
 231        }
 232    } else {
 233        /*
 234         * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
 235         * is not used, we should make the time progress anyway.
 236         */
 237        lost_clock = MIN(lost_clock, period);
 238    }
 239
 240    assert(lost_clock >= 0 && lost_clock <= period);
 241
 242    next_irq_clock = cur_clock + period - lost_clock;
 243    s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
 244    timer_mod(s->periodic_timer, s->next_periodic_time);
 245}
 246
 247static void rtc_periodic_timer(void *opaque)
 248{
 249    RTCState *s = opaque;
 250
 251    periodic_timer_update(s, s->next_periodic_time, s->period, false);
 252    s->cmos_data[RTC_REG_C] |= REG_C_PF;
 253    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
 254        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 255        if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 256            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
 257                s->irq_reinject_on_ack_count = 0;
 258            if (!rtc_policy_slew_deliver_irq(s)) {
 259                s->irq_coalesced++;
 260                rtc_coalesced_timer_update(s);
 261                DPRINTF_C("cmos: coalesced irqs increased to %d\n",
 262                          s->irq_coalesced);
 263            }
 264        } else
 265            qemu_irq_raise(s->irq);
 266    }
 267}
 268
 269/* handle update-ended timer */
 270static void check_update_timer(RTCState *s)
 271{
 272    uint64_t next_update_time;
 273    uint64_t guest_nsec;
 274    int next_alarm_sec;
 275
 276    /* From the data sheet: "Holding the dividers in reset prevents
 277     * interrupts from operating, while setting the SET bit allows"
 278     * them to occur.
 279     */
 280    if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
 281        assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
 282        timer_del(s->update_timer);
 283        return;
 284    }
 285
 286    guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
 287    next_update_time = qemu_clock_get_ns(rtc_clock)
 288        + NANOSECONDS_PER_SECOND - guest_nsec;
 289
 290    /* Compute time of next alarm.  One second is already accounted
 291     * for in next_update_time.
 292     */
 293    next_alarm_sec = get_next_alarm(s);
 294    s->next_alarm_time = next_update_time +
 295                         (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
 296
 297    /* If update_in_progress latched the UIP bit, we must keep the timer
 298     * programmed to the next second, so that UIP is cleared.  Otherwise,
 299     * if UF is already set, we might be able to optimize.
 300     */
 301    if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
 302        (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
 303        /* If AF cannot change (i.e. either it is set already, or
 304         * SET=1 and then the time is not updated), nothing to do.
 305         */
 306        if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
 307            (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
 308            timer_del(s->update_timer);
 309            return;
 310        }
 311
 312        /* UF is set, but AF is clear.  Program the timer to target
 313         * the alarm time.  */
 314        next_update_time = s->next_alarm_time;
 315    }
 316    if (next_update_time != timer_expire_time_ns(s->update_timer)) {
 317        timer_mod(s->update_timer, next_update_time);
 318    }
 319}
 320
 321static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
 322{
 323    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 324        hour %= 12;
 325        if (s->cmos_data[RTC_HOURS] & 0x80) {
 326            hour += 12;
 327        }
 328    }
 329    return hour;
 330}
 331
 332static uint64_t get_next_alarm(RTCState *s)
 333{
 334    int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
 335    int32_t hour, min, sec;
 336
 337    rtc_update_time(s);
 338
 339    alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
 340    alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
 341    alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
 342    alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
 343
 344    cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 345    cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 346    cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
 347    cur_hour = convert_hour(s, cur_hour);
 348
 349    if (alarm_hour == -1) {
 350        alarm_hour = cur_hour;
 351        if (alarm_min == -1) {
 352            alarm_min = cur_min;
 353            if (alarm_sec == -1) {
 354                alarm_sec = cur_sec + 1;
 355            } else if (cur_sec > alarm_sec) {
 356                alarm_min++;
 357            }
 358        } else if (cur_min == alarm_min) {
 359            if (alarm_sec == -1) {
 360                alarm_sec = cur_sec + 1;
 361            } else {
 362                if (cur_sec > alarm_sec) {
 363                    alarm_hour++;
 364                }
 365            }
 366            if (alarm_sec == SEC_PER_MIN) {
 367                /* wrap to next hour, minutes is not in don't care mode */
 368                alarm_sec = 0;
 369                alarm_hour++;
 370            }
 371        } else if (cur_min > alarm_min) {
 372            alarm_hour++;
 373        }
 374    } else if (cur_hour == alarm_hour) {
 375        if (alarm_min == -1) {
 376            alarm_min = cur_min;
 377            if (alarm_sec == -1) {
 378                alarm_sec = cur_sec + 1;
 379            } else if (cur_sec > alarm_sec) {
 380                alarm_min++;
 381            }
 382
 383            if (alarm_sec == SEC_PER_MIN) {
 384                alarm_sec = 0;
 385                alarm_min++;
 386            }
 387            /* wrap to next day, hour is not in don't care mode */
 388            alarm_min %= MIN_PER_HOUR;
 389        } else if (cur_min == alarm_min) {
 390            if (alarm_sec == -1) {
 391                alarm_sec = cur_sec + 1;
 392            }
 393            /* wrap to next day, hours+minutes not in don't care mode */
 394            alarm_sec %= SEC_PER_MIN;
 395        }
 396    }
 397
 398    /* values that are still don't care fire at the next min/sec */
 399    if (alarm_min == -1) {
 400        alarm_min = 0;
 401    }
 402    if (alarm_sec == -1) {
 403        alarm_sec = 0;
 404    }
 405
 406    /* keep values in range */
 407    if (alarm_sec == SEC_PER_MIN) {
 408        alarm_sec = 0;
 409        alarm_min++;
 410    }
 411    if (alarm_min == MIN_PER_HOUR) {
 412        alarm_min = 0;
 413        alarm_hour++;
 414    }
 415    alarm_hour %= HOUR_PER_DAY;
 416
 417    hour = alarm_hour - cur_hour;
 418    min = hour * MIN_PER_HOUR + alarm_min - cur_min;
 419    sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
 420    return sec <= 0 ? sec + SEC_PER_DAY : sec;
 421}
 422
 423static void rtc_update_timer(void *opaque)
 424{
 425    RTCState *s = opaque;
 426    int32_t irqs = REG_C_UF;
 427    int32_t new_irqs;
 428
 429    assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
 430
 431    /* UIP might have been latched, update time and clear it.  */
 432    rtc_update_time(s);
 433    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 434
 435    if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
 436        irqs |= REG_C_AF;
 437        if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
 438            qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
 439        }
 440    }
 441
 442    new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
 443    s->cmos_data[RTC_REG_C] |= irqs;
 444    if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
 445        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 446        qemu_irq_raise(s->irq);
 447    }
 448    check_update_timer(s);
 449}
 450
 451static void cmos_ioport_write(void *opaque, hwaddr addr,
 452                              uint64_t data, unsigned size)
 453{
 454    RTCState *s = opaque;
 455    uint32_t old_period;
 456    bool update_periodic_timer;
 457
 458    if ((addr & 1) == 0) {
 459        s->cmos_index = data & 0x7f;
 460    } else {
 461        CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
 462                     s->cmos_index, data);
 463        switch(s->cmos_index) {
 464        case RTC_SECONDS_ALARM:
 465        case RTC_MINUTES_ALARM:
 466        case RTC_HOURS_ALARM:
 467            s->cmos_data[s->cmos_index] = data;
 468            check_update_timer(s);
 469            break;
 470        case RTC_IBM_PS2_CENTURY_BYTE:
 471            s->cmos_index = RTC_CENTURY;
 472            /* fall through */
 473        case RTC_CENTURY:
 474        case RTC_SECONDS:
 475        case RTC_MINUTES:
 476        case RTC_HOURS:
 477        case RTC_DAY_OF_WEEK:
 478        case RTC_DAY_OF_MONTH:
 479        case RTC_MONTH:
 480        case RTC_YEAR:
 481            s->cmos_data[s->cmos_index] = data;
 482            /* if in set mode, do not update the time */
 483            if (rtc_running(s)) {
 484                rtc_set_time(s);
 485                check_update_timer(s);
 486            }
 487            break;
 488        case RTC_REG_A:
 489            update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
 490            old_period = rtc_periodic_clock_ticks(s);
 491
 492            if ((data & 0x60) == 0x60) {
 493                if (rtc_running(s)) {
 494                    rtc_update_time(s);
 495                }
 496                /* What happens to UIP when divider reset is enabled is
 497                 * unclear from the datasheet.  Shouldn't matter much
 498                 * though.
 499                 */
 500                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 501            } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
 502                    (data & 0x70)  <= 0x20) {
 503                /* when the divider reset is removed, the first update cycle
 504                 * begins one-half second later*/
 505                if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 506                    s->offset = 500000000;
 507                    rtc_set_time(s);
 508                }
 509                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 510            }
 511            /* UIP bit is read only */
 512            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
 513                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
 514
 515            if (update_periodic_timer) {
 516                periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
 517                                      old_period, true);
 518            }
 519
 520            check_update_timer(s);
 521            break;
 522        case RTC_REG_B:
 523            update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
 524                                       & REG_B_PIE;
 525            old_period = rtc_periodic_clock_ticks(s);
 526
 527            if (data & REG_B_SET) {
 528                /* update cmos to when the rtc was stopping */
 529                if (rtc_running(s)) {
 530                    rtc_update_time(s);
 531                }
 532                /* set mode: reset UIP mode */
 533                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 534                data &= ~REG_B_UIE;
 535            } else {
 536                /* if disabling set mode, update the time */
 537                if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
 538                    (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
 539                    s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
 540                    rtc_set_time(s);
 541                }
 542            }
 543            /* if an interrupt flag is already set when the interrupt
 544             * becomes enabled, raise an interrupt immediately.  */
 545            if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
 546                s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 547                qemu_irq_raise(s->irq);
 548            } else {
 549                s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
 550                qemu_irq_lower(s->irq);
 551            }
 552            s->cmos_data[RTC_REG_B] = data;
 553
 554            if (update_periodic_timer) {
 555                periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
 556                                      old_period, true);
 557            }
 558
 559            check_update_timer(s);
 560            break;
 561        case RTC_REG_C:
 562        case RTC_REG_D:
 563            /* cannot write to them */
 564            break;
 565        default:
 566            s->cmos_data[s->cmos_index] = data;
 567            break;
 568        }
 569    }
 570}
 571
 572static inline int rtc_to_bcd(RTCState *s, int a)
 573{
 574    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 575        return a;
 576    } else {
 577        return ((a / 10) << 4) | (a % 10);
 578    }
 579}
 580
 581static inline int rtc_from_bcd(RTCState *s, int a)
 582{
 583    if ((a & 0xc0) == 0xc0) {
 584        return -1;
 585    }
 586    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 587        return a;
 588    } else {
 589        return ((a >> 4) * 10) + (a & 0x0f);
 590    }
 591}
 592
 593static void rtc_get_time(RTCState *s, struct tm *tm)
 594{
 595    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 596    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 597    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
 598    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 599        tm->tm_hour %= 12;
 600        if (s->cmos_data[RTC_HOURS] & 0x80) {
 601            tm->tm_hour += 12;
 602        }
 603    }
 604    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
 605    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
 606    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
 607    tm->tm_year =
 608        rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
 609        rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
 610}
 611
 612static void rtc_set_time(RTCState *s)
 613{
 614    struct tm tm;
 615
 616    rtc_get_time(s, &tm);
 617    s->base_rtc = mktimegm(&tm);
 618    s->last_update = qemu_clock_get_ns(rtc_clock);
 619
 620    qapi_event_send_rtc_change(qemu_timedate_diff(&tm));
 621}
 622
 623static void rtc_set_cmos(RTCState *s, const struct tm *tm)
 624{
 625    int year;
 626
 627    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
 628    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
 629    if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
 630        /* 24 hour format */
 631        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
 632    } else {
 633        /* 12 hour format */
 634        int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
 635        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
 636        if (tm->tm_hour >= 12)
 637            s->cmos_data[RTC_HOURS] |= 0x80;
 638    }
 639    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
 640    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
 641    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
 642    year = tm->tm_year + 1900 - s->base_year;
 643    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
 644    s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
 645}
 646
 647static void rtc_update_time(RTCState *s)
 648{
 649    struct tm ret;
 650    time_t guest_sec;
 651    int64_t guest_nsec;
 652
 653    guest_nsec = get_guest_rtc_ns(s);
 654    guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
 655    gmtime_r(&guest_sec, &ret);
 656
 657    /* Is SET flag of Register B disabled? */
 658    if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
 659        rtc_set_cmos(s, &ret);
 660    }
 661}
 662
 663static int update_in_progress(RTCState *s)
 664{
 665    int64_t guest_nsec;
 666
 667    if (!rtc_running(s)) {
 668        return 0;
 669    }
 670    if (timer_pending(s->update_timer)) {
 671        int64_t next_update_time = timer_expire_time_ns(s->update_timer);
 672        /* Latch UIP until the timer expires.  */
 673        if (qemu_clock_get_ns(rtc_clock) >=
 674            (next_update_time - UIP_HOLD_LENGTH)) {
 675            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
 676            return 1;
 677        }
 678    }
 679
 680    guest_nsec = get_guest_rtc_ns(s);
 681    /* UIP bit will be set at last 244us of every second. */
 682    if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
 683        (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
 684        return 1;
 685    }
 686    return 0;
 687}
 688
 689static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
 690                                 unsigned size)
 691{
 692    RTCState *s = opaque;
 693    int ret;
 694    if ((addr & 1) == 0) {
 695        return 0xff;
 696    } else {
 697        switch(s->cmos_index) {
 698        case RTC_IBM_PS2_CENTURY_BYTE:
 699            s->cmos_index = RTC_CENTURY;
 700            /* fall through */
 701        case RTC_CENTURY:
 702        case RTC_SECONDS:
 703        case RTC_MINUTES:
 704        case RTC_HOURS:
 705        case RTC_DAY_OF_WEEK:
 706        case RTC_DAY_OF_MONTH:
 707        case RTC_MONTH:
 708        case RTC_YEAR:
 709            /* if not in set mode, calibrate cmos before
 710             * reading*/
 711            if (rtc_running(s)) {
 712                rtc_update_time(s);
 713            }
 714            ret = s->cmos_data[s->cmos_index];
 715            break;
 716        case RTC_REG_A:
 717            ret = s->cmos_data[s->cmos_index];
 718            if (update_in_progress(s)) {
 719                ret |= REG_A_UIP;
 720            }
 721            break;
 722        case RTC_REG_C:
 723            ret = s->cmos_data[s->cmos_index];
 724            qemu_irq_lower(s->irq);
 725            s->cmos_data[RTC_REG_C] = 0x00;
 726            if (ret & (REG_C_UF | REG_C_AF)) {
 727                check_update_timer(s);
 728            }
 729
 730            if(s->irq_coalesced &&
 731                    (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
 732                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
 733                s->irq_reinject_on_ack_count++;
 734                s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
 735                DPRINTF_C("cmos: injecting on ack\n");
 736                if (rtc_policy_slew_deliver_irq(s)) {
 737                    s->irq_coalesced--;
 738                    DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 739                              s->irq_coalesced);
 740                }
 741            }
 742            break;
 743        default:
 744            ret = s->cmos_data[s->cmos_index];
 745            break;
 746        }
 747        CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
 748                     s->cmos_index, ret);
 749        return ret;
 750    }
 751}
 752
 753void rtc_set_memory(ISADevice *dev, int addr, int val)
 754{
 755    RTCState *s = MC146818_RTC(dev);
 756    if (addr >= 0 && addr <= 127)
 757        s->cmos_data[addr] = val;
 758}
 759
 760int rtc_get_memory(ISADevice *dev, int addr)
 761{
 762    RTCState *s = MC146818_RTC(dev);
 763    assert(addr >= 0 && addr <= 127);
 764    return s->cmos_data[addr];
 765}
 766
 767static void rtc_set_date_from_host(ISADevice *dev)
 768{
 769    RTCState *s = MC146818_RTC(dev);
 770    struct tm tm;
 771
 772    qemu_get_timedate(&tm, 0);
 773
 774    s->base_rtc = mktimegm(&tm);
 775    s->last_update = qemu_clock_get_ns(rtc_clock);
 776    s->offset = 0;
 777
 778    /* set the CMOS date */
 779    rtc_set_cmos(s, &tm);
 780}
 781
 782static int rtc_pre_save(void *opaque)
 783{
 784    RTCState *s = opaque;
 785
 786    rtc_update_time(s);
 787
 788    return 0;
 789}
 790
 791static int rtc_post_load(void *opaque, int version_id)
 792{
 793    RTCState *s = opaque;
 794
 795    if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
 796        rtc_set_time(s);
 797        s->offset = 0;
 798        check_update_timer(s);
 799    }
 800    s->period = rtc_periodic_clock_ticks(s);
 801
 802    /* The periodic timer is deterministic in record/replay mode,
 803     * so there is no need to update it after loading the vmstate.
 804     * Reading RTC here would misalign record and replay.
 805     */
 806    if (replay_mode == REPLAY_MODE_NONE) {
 807        uint64_t now = qemu_clock_get_ns(rtc_clock);
 808        if (now < s->next_periodic_time ||
 809            now > (s->next_periodic_time + get_max_clock_jump())) {
 810            periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false);
 811        }
 812    }
 813
 814    if (version_id >= 2) {
 815        if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 816            rtc_coalesced_timer_update(s);
 817        }
 818    }
 819    return 0;
 820}
 821
 822static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
 823{
 824    RTCState *s = (RTCState *)opaque;
 825    return s->irq_reinject_on_ack_count != 0;
 826}
 827
 828static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
 829    .name = "mc146818rtc/irq_reinject_on_ack_count",
 830    .version_id = 1,
 831    .minimum_version_id = 1,
 832    .needed = rtc_irq_reinject_on_ack_count_needed,
 833    .fields = (VMStateField[]) {
 834        VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
 835        VMSTATE_END_OF_LIST()
 836    }
 837};
 838
 839static const VMStateDescription vmstate_rtc = {
 840    .name = "mc146818rtc",
 841    .version_id = 3,
 842    .minimum_version_id = 1,
 843    .pre_save = rtc_pre_save,
 844    .post_load = rtc_post_load,
 845    .fields = (VMStateField[]) {
 846        VMSTATE_BUFFER(cmos_data, RTCState),
 847        VMSTATE_UINT8(cmos_index, RTCState),
 848        VMSTATE_UNUSED(7*4),
 849        VMSTATE_TIMER_PTR(periodic_timer, RTCState),
 850        VMSTATE_INT64(next_periodic_time, RTCState),
 851        VMSTATE_UNUSED(3*8),
 852        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
 853        VMSTATE_UINT32_V(period, RTCState, 2),
 854        VMSTATE_UINT64_V(base_rtc, RTCState, 3),
 855        VMSTATE_UINT64_V(last_update, RTCState, 3),
 856        VMSTATE_INT64_V(offset, RTCState, 3),
 857        VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
 858        VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
 859        VMSTATE_END_OF_LIST()
 860    },
 861    .subsections = (const VMStateDescription*[]) {
 862        &vmstate_rtc_irq_reinject_on_ack_count,
 863        NULL
 864    }
 865};
 866
 867/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
 868   BIOS will read it and start S3 resume at POST Entry */
 869static void rtc_notify_suspend(Notifier *notifier, void *data)
 870{
 871    RTCState *s = container_of(notifier, RTCState, suspend_notifier);
 872    rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
 873}
 874
 875static void rtc_reset(void *opaque)
 876{
 877    RTCState *s = opaque;
 878
 879    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
 880    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
 881    check_update_timer(s);
 882
 883    qemu_irq_lower(s->irq);
 884
 885    if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 886        s->irq_coalesced = 0;
 887        s->irq_reinject_on_ack_count = 0;
 888    }
 889}
 890
 891static const MemoryRegionOps cmos_ops = {
 892    .read = cmos_ioport_read,
 893    .write = cmos_ioport_write,
 894    .impl = {
 895        .min_access_size = 1,
 896        .max_access_size = 1,
 897    },
 898    .endianness = DEVICE_LITTLE_ENDIAN,
 899};
 900
 901static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
 902{
 903    RTCState *s = MC146818_RTC(obj);
 904
 905    rtc_update_time(s);
 906    rtc_get_time(s, current_tm);
 907}
 908
 909static void rtc_realizefn(DeviceState *dev, Error **errp)
 910{
 911    ISADevice *isadev = ISA_DEVICE(dev);
 912    RTCState *s = MC146818_RTC(dev);
 913
 914    s->cmos_data[RTC_REG_A] = 0x26;
 915    s->cmos_data[RTC_REG_B] = 0x02;
 916    s->cmos_data[RTC_REG_C] = 0x00;
 917    s->cmos_data[RTC_REG_D] = 0x80;
 918
 919    /* This is for historical reasons.  The default base year qdev property
 920     * was set to 2000 for most machine types before the century byte was
 921     * implemented.
 922     *
 923     * This if statement means that the century byte will be always 0
 924     * (at least until 2079...) for base_year = 1980, but will be set
 925     * correctly for base_year = 2000.
 926     */
 927    if (s->base_year == 2000) {
 928        s->base_year = 0;
 929    }
 930
 931    rtc_set_date_from_host(isadev);
 932
 933    switch (s->lost_tick_policy) {
 934#ifdef TARGET_I386
 935    case LOST_TICK_POLICY_SLEW:
 936        s->coalesced_timer =
 937            timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
 938        break;
 939#endif
 940    case LOST_TICK_POLICY_DISCARD:
 941        break;
 942    default:
 943        error_setg(errp, "Invalid lost tick policy.");
 944        return;
 945    }
 946
 947    s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
 948    s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
 949    check_update_timer(s);
 950
 951    s->suspend_notifier.notify = rtc_notify_suspend;
 952    qemu_register_suspend_notifier(&s->suspend_notifier);
 953
 954    memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
 955    isa_register_ioport(isadev, &s->io, RTC_ISA_BASE);
 956
 957    /* register rtc 0x70 port for coalesced_pio */
 958    memory_region_set_flush_coalesced(&s->io);
 959    memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
 960                          s, "rtc-index", 1);
 961    memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
 962    memory_region_add_coalescing(&s->coalesced_io, 0, 1);
 963
 964    qdev_set_legacy_instance_id(dev, RTC_ISA_BASE, 3);
 965    qemu_register_reset(rtc_reset, s);
 966
 967    object_property_add_tm(OBJECT(s), "date", rtc_get_date);
 968
 969    qdev_init_gpio_out(dev, &s->irq, 1);
 970    QLIST_INSERT_HEAD(&rtc_devices, s, link);
 971}
 972
 973ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
 974{
 975    DeviceState *dev;
 976    ISADevice *isadev;
 977
 978    isadev = isa_new(TYPE_MC146818_RTC);
 979    dev = DEVICE(isadev);
 980    qdev_prop_set_int32(dev, "base_year", base_year);
 981    isa_realize_and_unref(isadev, bus, &error_fatal);
 982    if (intercept_irq) {
 983        qdev_connect_gpio_out(dev, 0, intercept_irq);
 984    } else {
 985        isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
 986    }
 987
 988    object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev),
 989                              "date");
 990
 991    return isadev;
 992}
 993
 994static Property mc146818rtc_properties[] = {
 995    DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
 996    DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
 997                               lost_tick_policy, LOST_TICK_POLICY_DISCARD),
 998    DEFINE_PROP_END_OF_LIST(),
 999};
1000
1001static void rtc_resetdev(DeviceState *d)
1002{
1003    RTCState *s = MC146818_RTC(d);
1004
1005    /* Reason: VM do suspend self will set 0xfe
1006     * Reset any values other than 0xfe(Guest suspend case) */
1007    if (s->cmos_data[0x0f] != 0xfe) {
1008        s->cmos_data[0x0f] = 0x00;
1009    }
1010}
1011
1012static void rtc_build_aml(ISADevice *isadev, Aml *scope)
1013{
1014    Aml *dev;
1015    Aml *crs;
1016
1017    /*
1018     * Reserving 8 io ports here, following what physical hardware
1019     * does, even though qemu only responds to the first two ports.
1020     */
1021    crs = aml_resource_template();
1022    aml_append(crs, aml_io(AML_DECODE16, RTC_ISA_BASE, RTC_ISA_BASE,
1023                           0x01, 0x08));
1024    aml_append(crs, aml_irq_no_flags(RTC_ISA_IRQ));
1025
1026    dev = aml_device("RTC");
1027    aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1028    aml_append(dev, aml_name_decl("_CRS", crs));
1029
1030    aml_append(scope, dev);
1031}
1032
1033static void rtc_class_initfn(ObjectClass *klass, void *data)
1034{
1035    DeviceClass *dc = DEVICE_CLASS(klass);
1036    ISADeviceClass *isa = ISA_DEVICE_CLASS(klass);
1037
1038    dc->realize = rtc_realizefn;
1039    dc->reset = rtc_resetdev;
1040    dc->vmsd = &vmstate_rtc;
1041    isa->build_aml = rtc_build_aml;
1042    device_class_set_props(dc, mc146818rtc_properties);
1043}
1044
1045static const TypeInfo mc146818rtc_info = {
1046    .name          = TYPE_MC146818_RTC,
1047    .parent        = TYPE_ISA_DEVICE,
1048    .instance_size = sizeof(RTCState),
1049    .class_init    = rtc_class_initfn,
1050};
1051
1052static void mc146818rtc_register_types(void)
1053{
1054    type_register_static(&mc146818rtc_info);
1055}
1056
1057type_init(mc146818rtc_register_types)
1058