qemu/hw/ssi/aspeed_smc.c
<<
>>
Prefs
   1/*
   2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
   3 *
   4 * Copyright (C) 2016 IBM Corp.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "hw/sysbus.h"
  27#include "migration/vmstate.h"
  28#include "qemu/log.h"
  29#include "qemu/module.h"
  30#include "qemu/error-report.h"
  31#include "qapi/error.h"
  32#include "exec/address-spaces.h"
  33#include "qemu/units.h"
  34#include "trace.h"
  35
  36#include "hw/irq.h"
  37#include "hw/qdev-properties.h"
  38#include "hw/ssi/aspeed_smc.h"
  39
  40/* CE Type Setting Register */
  41#define R_CONF            (0x00 / 4)
  42#define   CONF_LEGACY_DISABLE  (1 << 31)
  43#define   CONF_ENABLE_W4       20
  44#define   CONF_ENABLE_W3       19
  45#define   CONF_ENABLE_W2       18
  46#define   CONF_ENABLE_W1       17
  47#define   CONF_ENABLE_W0       16
  48#define   CONF_FLASH_TYPE4     8
  49#define   CONF_FLASH_TYPE3     6
  50#define   CONF_FLASH_TYPE2     4
  51#define   CONF_FLASH_TYPE1     2
  52#define   CONF_FLASH_TYPE0     0
  53#define      CONF_FLASH_TYPE_NOR   0x0
  54#define      CONF_FLASH_TYPE_NAND  0x1
  55#define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
  56
  57/* CE Control Register */
  58#define R_CE_CTRL            (0x04 / 4)
  59#define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
  60#define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
  61#define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
  62#define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
  63#define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
  64
  65/* Interrupt Control and Status Register */
  66#define R_INTR_CTRL       (0x08 / 4)
  67#define   INTR_CTRL_DMA_STATUS            (1 << 11)
  68#define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
  69#define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
  70#define   INTR_CTRL_DMA_EN                (1 << 3)
  71#define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
  72#define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
  73
  74/* Command Control Register */
  75#define R_CE_CMD_CTRL      (0x0C / 4)
  76#define   CTRL_ADDR_BYTE0_DISABLE_SHIFT       4
  77#define   CTRL_DATA_BYTE0_DISABLE_SHIFT       0
  78
  79#define aspeed_smc_addr_byte_enabled(s, i)                               \
  80    (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
  81#define aspeed_smc_data_byte_enabled(s, i)                               \
  82    (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
  83
  84/* CEx Control Register */
  85#define R_CTRL0           (0x10 / 4)
  86#define   CTRL_IO_QPI              (1 << 31)
  87#define   CTRL_IO_QUAD_DATA        (1 << 30)
  88#define   CTRL_IO_DUAL_DATA        (1 << 29)
  89#define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
  90#define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
  91#define   CTRL_CMD_SHIFT           16
  92#define   CTRL_CMD_MASK            0xff
  93#define   CTRL_DUMMY_HIGH_SHIFT    14
  94#define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
  95#define CE_CTRL_CLOCK_FREQ_SHIFT   8
  96#define CE_CTRL_CLOCK_FREQ_MASK    0xf
  97#define CE_CTRL_CLOCK_FREQ(div)                                         \
  98    (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
  99#define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
 100#define   CTRL_CE_STOP_ACTIVE      (1 << 2)
 101#define   CTRL_CMD_MODE_MASK       0x3
 102#define     CTRL_READMODE          0x0
 103#define     CTRL_FREADMODE         0x1
 104#define     CTRL_WRITEMODE         0x2
 105#define     CTRL_USERMODE          0x3
 106#define R_CTRL1           (0x14 / 4)
 107#define R_CTRL2           (0x18 / 4)
 108#define R_CTRL3           (0x1C / 4)
 109#define R_CTRL4           (0x20 / 4)
 110
 111/* CEx Segment Address Register */
 112#define R_SEG_ADDR0       (0x30 / 4)
 113#define   SEG_END_SHIFT        24   /* 8MB units */
 114#define   SEG_END_MASK         0xff
 115#define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
 116#define   SEG_START_MASK       0xff
 117#define R_SEG_ADDR1       (0x34 / 4)
 118#define R_SEG_ADDR2       (0x38 / 4)
 119#define R_SEG_ADDR3       (0x3C / 4)
 120#define R_SEG_ADDR4       (0x40 / 4)
 121
 122/* Misc Control Register #1 */
 123#define R_MISC_CTRL1      (0x50 / 4)
 124
 125/* SPI dummy cycle data */
 126#define R_DUMMY_DATA      (0x54 / 4)
 127
 128/* DMA Control/Status Register */
 129#define R_DMA_CTRL        (0x80 / 4)
 130#define   DMA_CTRL_DELAY_MASK   0xf
 131#define   DMA_CTRL_DELAY_SHIFT  8
 132#define   DMA_CTRL_FREQ_MASK    0xf
 133#define   DMA_CTRL_FREQ_SHIFT   4
 134#define   DMA_CTRL_CALIB        (1 << 3)
 135#define   DMA_CTRL_CKSUM        (1 << 2)
 136#define   DMA_CTRL_WRITE        (1 << 1)
 137#define   DMA_CTRL_ENABLE       (1 << 0)
 138
 139/* DMA Flash Side Address */
 140#define R_DMA_FLASH_ADDR  (0x84 / 4)
 141
 142/* DMA DRAM Side Address */
 143#define R_DMA_DRAM_ADDR   (0x88 / 4)
 144
 145/* DMA Length Register */
 146#define R_DMA_LEN         (0x8C / 4)
 147
 148/* Checksum Calculation Result */
 149#define R_DMA_CHECKSUM    (0x90 / 4)
 150
 151/* Read Timing Compensation Register */
 152#define R_TIMINGS         (0x94 / 4)
 153
 154/* SPI controller registers and bits (AST2400) */
 155#define R_SPI_CONF        (0x00 / 4)
 156#define   SPI_CONF_ENABLE_W0   0
 157#define R_SPI_CTRL0       (0x4 / 4)
 158#define R_SPI_MISC_CTRL   (0x10 / 4)
 159#define R_SPI_TIMINGS     (0x14 / 4)
 160
 161#define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
 162#define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
 163
 164#define ASPEED_SOC_SMC_FLASH_BASE   0x10000000
 165#define ASPEED_SOC_FMC_FLASH_BASE   0x20000000
 166#define ASPEED_SOC_SPI_FLASH_BASE   0x30000000
 167#define ASPEED_SOC_SPI2_FLASH_BASE  0x38000000
 168
 169/*
 170 * DMA DRAM addresses should be 4 bytes aligned and the valid address
 171 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
 172 *          0x80000000 - 0xBFFFFFFF (AST2500)
 173 *
 174 * DMA flash addresses should be 4 bytes aligned and the valid address
 175 * range is 0x20000000 - 0x2FFFFFFF.
 176 *
 177 * DMA length is from 4 bytes to 32MB
 178 *   0: 4 bytes
 179 *   0x7FFFFF: 32M bytes
 180 */
 181#define DMA_DRAM_ADDR(s, val)   ((s)->sdram_base | \
 182                                 ((val) & (s)->ctrl->dma_dram_mask))
 183#define DMA_FLASH_ADDR(s, val)  ((s)->ctrl->flash_window_base | \
 184                                ((val) & (s)->ctrl->dma_flash_mask))
 185#define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
 186
 187/* Flash opcodes. */
 188#define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
 189
 190#define SNOOP_OFF         0xFF
 191#define SNOOP_START       0x0
 192
 193/*
 194 * Default segments mapping addresses and size for each peripheral per
 195 * controller. These can be changed when board is initialized with the
 196 * Segment Address Registers.
 197 */
 198static const AspeedSegments aspeed_segments_legacy[] = {
 199    { 0x10000000, 32 * 1024 * 1024 },
 200};
 201
 202static const AspeedSegments aspeed_segments_fmc[] = {
 203    { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
 204    { 0x24000000, 32 * 1024 * 1024 },
 205    { 0x26000000, 32 * 1024 * 1024 },
 206    { 0x28000000, 32 * 1024 * 1024 },
 207    { 0x2A000000, 32 * 1024 * 1024 }
 208};
 209
 210static const AspeedSegments aspeed_segments_spi[] = {
 211    { 0x30000000, 64 * 1024 * 1024 },
 212};
 213
 214static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
 215    { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
 216    { 0x28000000,  32 * 1024 * 1024 },
 217    { 0x2A000000,  32 * 1024 * 1024 },
 218};
 219
 220static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
 221    { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
 222    { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
 223};
 224
 225static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
 226    { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
 227    { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
 228};
 229static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
 230                                          const AspeedSegments *seg);
 231static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
 232                                      AspeedSegments *seg);
 233
 234/*
 235 * AST2600 definitions
 236 */
 237#define ASPEED26_SOC_FMC_FLASH_BASE   0x20000000
 238#define ASPEED26_SOC_SPI_FLASH_BASE   0x30000000
 239#define ASPEED26_SOC_SPI2_FLASH_BASE  0x50000000
 240
 241static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
 242    { 0x0, 128 * MiB }, /* start address is readonly */
 243    { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
 244    { 0x0, 0 }, /* disabled */
 245};
 246
 247static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
 248    { 0x0, 128 * MiB }, /* start address is readonly */
 249    { 0x0, 0 }, /* disabled */
 250};
 251
 252static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
 253    { 0x0, 128 * MiB }, /* start address is readonly */
 254    { 0x0, 0 }, /* disabled */
 255    { 0x0, 0 }, /* disabled */
 256};
 257
 258static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
 259                                               const AspeedSegments *seg);
 260static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
 261                                           uint32_t reg, AspeedSegments *seg);
 262
 263static const AspeedSMCController controllers[] = {
 264    {
 265        .name              = "aspeed.smc-ast2400",
 266        .r_conf            = R_CONF,
 267        .r_ce_ctrl         = R_CE_CTRL,
 268        .r_ctrl0           = R_CTRL0,
 269        .r_timings         = R_TIMINGS,
 270        .nregs_timings     = 1,
 271        .conf_enable_w0    = CONF_ENABLE_W0,
 272        .max_peripherals   = 1,
 273        .segments          = aspeed_segments_legacy,
 274        .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
 275        .flash_window_size = 0x6000000,
 276        .has_dma           = false,
 277        .nregs             = ASPEED_SMC_R_SMC_MAX,
 278        .segment_to_reg    = aspeed_smc_segment_to_reg,
 279        .reg_to_segment    = aspeed_smc_reg_to_segment,
 280    }, {
 281        .name              = "aspeed.fmc-ast2400",
 282        .r_conf            = R_CONF,
 283        .r_ce_ctrl         = R_CE_CTRL,
 284        .r_ctrl0           = R_CTRL0,
 285        .r_timings         = R_TIMINGS,
 286        .nregs_timings     = 1,
 287        .conf_enable_w0    = CONF_ENABLE_W0,
 288        .max_peripherals   = 5,
 289        .segments          = aspeed_segments_fmc,
 290        .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
 291        .flash_window_size = 0x10000000,
 292        .has_dma           = true,
 293        .dma_flash_mask    = 0x0FFFFFFC,
 294        .dma_dram_mask     = 0x1FFFFFFC,
 295        .nregs             = ASPEED_SMC_R_MAX,
 296        .segment_to_reg    = aspeed_smc_segment_to_reg,
 297        .reg_to_segment    = aspeed_smc_reg_to_segment,
 298    }, {
 299        .name              = "aspeed.spi1-ast2400",
 300        .r_conf            = R_SPI_CONF,
 301        .r_ce_ctrl         = 0xff,
 302        .r_ctrl0           = R_SPI_CTRL0,
 303        .r_timings         = R_SPI_TIMINGS,
 304        .nregs_timings     = 1,
 305        .conf_enable_w0    = SPI_CONF_ENABLE_W0,
 306        .max_peripherals   = 1,
 307        .segments          = aspeed_segments_spi,
 308        .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
 309        .flash_window_size = 0x10000000,
 310        .has_dma           = false,
 311        .nregs             = ASPEED_SMC_R_SPI_MAX,
 312        .segment_to_reg    = aspeed_smc_segment_to_reg,
 313        .reg_to_segment    = aspeed_smc_reg_to_segment,
 314    }, {
 315        .name              = "aspeed.fmc-ast2500",
 316        .r_conf            = R_CONF,
 317        .r_ce_ctrl         = R_CE_CTRL,
 318        .r_ctrl0           = R_CTRL0,
 319        .r_timings         = R_TIMINGS,
 320        .nregs_timings     = 1,
 321        .conf_enable_w0    = CONF_ENABLE_W0,
 322        .max_peripherals   = 3,
 323        .segments          = aspeed_segments_ast2500_fmc,
 324        .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
 325        .flash_window_size = 0x10000000,
 326        .has_dma           = true,
 327        .dma_flash_mask    = 0x0FFFFFFC,
 328        .dma_dram_mask     = 0x3FFFFFFC,
 329        .nregs             = ASPEED_SMC_R_MAX,
 330        .segment_to_reg    = aspeed_smc_segment_to_reg,
 331        .reg_to_segment    = aspeed_smc_reg_to_segment,
 332    }, {
 333        .name              = "aspeed.spi1-ast2500",
 334        .r_conf            = R_CONF,
 335        .r_ce_ctrl         = R_CE_CTRL,
 336        .r_ctrl0           = R_CTRL0,
 337        .r_timings         = R_TIMINGS,
 338        .nregs_timings     = 1,
 339        .conf_enable_w0    = CONF_ENABLE_W0,
 340        .max_peripherals   = 2,
 341        .segments          = aspeed_segments_ast2500_spi1,
 342        .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
 343        .flash_window_size = 0x8000000,
 344        .has_dma           = false,
 345        .nregs             = ASPEED_SMC_R_MAX,
 346        .segment_to_reg    = aspeed_smc_segment_to_reg,
 347        .reg_to_segment    = aspeed_smc_reg_to_segment,
 348    }, {
 349        .name              = "aspeed.spi2-ast2500",
 350        .r_conf            = R_CONF,
 351        .r_ce_ctrl         = R_CE_CTRL,
 352        .r_ctrl0           = R_CTRL0,
 353        .r_timings         = R_TIMINGS,
 354        .nregs_timings     = 1,
 355        .conf_enable_w0    = CONF_ENABLE_W0,
 356        .max_peripherals   = 2,
 357        .segments          = aspeed_segments_ast2500_spi2,
 358        .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
 359        .flash_window_size = 0x8000000,
 360        .has_dma           = false,
 361        .nregs             = ASPEED_SMC_R_MAX,
 362        .segment_to_reg    = aspeed_smc_segment_to_reg,
 363        .reg_to_segment    = aspeed_smc_reg_to_segment,
 364    }, {
 365        .name              = "aspeed.fmc-ast2600",
 366        .r_conf            = R_CONF,
 367        .r_ce_ctrl         = R_CE_CTRL,
 368        .r_ctrl0           = R_CTRL0,
 369        .r_timings         = R_TIMINGS,
 370        .nregs_timings     = 1,
 371        .conf_enable_w0    = CONF_ENABLE_W0,
 372        .max_peripherals   = 3,
 373        .segments          = aspeed_segments_ast2600_fmc,
 374        .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
 375        .flash_window_size = 0x10000000,
 376        .has_dma           = true,
 377        .dma_flash_mask    = 0x0FFFFFFC,
 378        .dma_dram_mask     = 0x3FFFFFFC,
 379        .nregs             = ASPEED_SMC_R_MAX,
 380        .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
 381        .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
 382    }, {
 383        .name              = "aspeed.spi1-ast2600",
 384        .r_conf            = R_CONF,
 385        .r_ce_ctrl         = R_CE_CTRL,
 386        .r_ctrl0           = R_CTRL0,
 387        .r_timings         = R_TIMINGS,
 388        .nregs_timings     = 2,
 389        .conf_enable_w0    = CONF_ENABLE_W0,
 390        .max_peripherals   = 2,
 391        .segments          = aspeed_segments_ast2600_spi1,
 392        .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
 393        .flash_window_size = 0x10000000,
 394        .has_dma           = true,
 395        .dma_flash_mask    = 0x0FFFFFFC,
 396        .dma_dram_mask     = 0x3FFFFFFC,
 397        .nregs             = ASPEED_SMC_R_MAX,
 398        .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
 399        .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
 400    }, {
 401        .name              = "aspeed.spi2-ast2600",
 402        .r_conf            = R_CONF,
 403        .r_ce_ctrl         = R_CE_CTRL,
 404        .r_ctrl0           = R_CTRL0,
 405        .r_timings         = R_TIMINGS,
 406        .nregs_timings     = 3,
 407        .conf_enable_w0    = CONF_ENABLE_W0,
 408        .max_peripherals   = 3,
 409        .segments          = aspeed_segments_ast2600_spi2,
 410        .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
 411        .flash_window_size = 0x10000000,
 412        .has_dma           = true,
 413        .dma_flash_mask    = 0x0FFFFFFC,
 414        .dma_dram_mask     = 0x3FFFFFFC,
 415        .nregs             = ASPEED_SMC_R_MAX,
 416        .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
 417        .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
 418    },
 419};
 420
 421/*
 422 * The Segment Registers of the AST2400 and AST2500 have a 8MB
 423 * unit. The address range of a flash SPI peripheral is encoded with
 424 * absolute addresses which should be part of the overall controller
 425 * window.
 426 */
 427static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
 428                                          const AspeedSegments *seg)
 429{
 430    uint32_t reg = 0;
 431    reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
 432    reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
 433    return reg;
 434}
 435
 436static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
 437                                      uint32_t reg, AspeedSegments *seg)
 438{
 439    seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
 440    seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
 441}
 442
 443/*
 444 * The Segment Registers of the AST2600 have a 1MB unit. The address
 445 * range of a flash SPI peripheral is encoded with offsets in the overall
 446 * controller window. The previous SoC AST2400 and AST2500 used
 447 * absolute addresses. Only bits [27:20] are relevant and the end
 448 * address is an upper bound limit.
 449 */
 450#define AST2600_SEG_ADDR_MASK 0x0ff00000
 451
 452static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
 453                                               const AspeedSegments *seg)
 454{
 455    uint32_t reg = 0;
 456
 457    /* Disabled segments have a nil register */
 458    if (!seg->size) {
 459        return 0;
 460    }
 461
 462    reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
 463    reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
 464    return reg;
 465}
 466
 467static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
 468                                           uint32_t reg, AspeedSegments *seg)
 469{
 470    uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
 471    uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
 472
 473    if (reg) {
 474        seg->addr = s->ctrl->flash_window_base + start_offset;
 475        seg->size = end_offset + MiB - start_offset;
 476    } else {
 477        seg->addr = s->ctrl->flash_window_base;
 478        seg->size = 0;
 479    }
 480}
 481
 482static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
 483                                     const AspeedSegments *new,
 484                                     int cs)
 485{
 486    AspeedSegments seg;
 487    int i;
 488
 489    for (i = 0; i < s->ctrl->max_peripherals; i++) {
 490        if (i == cs) {
 491            continue;
 492        }
 493
 494        s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
 495
 496        if (new->addr + new->size > seg.addr &&
 497            new->addr < seg.addr + seg.size) {
 498            qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
 499                          HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
 500                          "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
 501                          s->ctrl->name, cs, new->addr, new->addr + new->size,
 502                          i, seg.addr, seg.addr + seg.size);
 503            return true;
 504        }
 505    }
 506    return false;
 507}
 508
 509static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
 510                                                uint64_t regval)
 511{
 512    AspeedSMCFlash *fl = &s->flashes[cs];
 513    AspeedSegments seg;
 514
 515    s->ctrl->reg_to_segment(s, regval, &seg);
 516
 517    memory_region_transaction_begin();
 518    memory_region_set_size(&fl->mmio, seg.size);
 519    memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
 520    memory_region_set_enabled(&fl->mmio, !!seg.size);
 521    memory_region_transaction_commit();
 522
 523    s->regs[R_SEG_ADDR0 + cs] = regval;
 524}
 525
 526static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
 527                                         uint64_t new)
 528{
 529    AspeedSegments seg;
 530
 531    s->ctrl->reg_to_segment(s, new, &seg);
 532
 533    trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
 534
 535    /* The start address of CS0 is read-only */
 536    if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
 537        qemu_log_mask(LOG_GUEST_ERROR,
 538                      "%s: Tried to change CS0 start address to 0x%"
 539                      HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
 540        seg.addr = s->ctrl->flash_window_base;
 541        new = s->ctrl->segment_to_reg(s, &seg);
 542    }
 543
 544    /*
 545     * The end address of the AST2500 spi controllers is also
 546     * read-only.
 547     */
 548    if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
 549         s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
 550        cs == s->ctrl->max_peripherals &&
 551        seg.addr + seg.size != s->ctrl->segments[cs].addr +
 552        s->ctrl->segments[cs].size) {
 553        qemu_log_mask(LOG_GUEST_ERROR,
 554                      "%s: Tried to change CS%d end address to 0x%"
 555                      HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
 556        seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
 557            seg.addr;
 558        new = s->ctrl->segment_to_reg(s, &seg);
 559    }
 560
 561    /* Keep the segment in the overall flash window */
 562    if (seg.size &&
 563        (seg.addr + seg.size <= s->ctrl->flash_window_base ||
 564         seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size)) {
 565        qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
 566                      "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
 567                      s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
 568        return;
 569    }
 570
 571    /* Check start address vs. alignment */
 572    if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
 573        qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
 574                      "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
 575                      s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
 576    }
 577
 578    /* And segments should not overlap (in the specs) */
 579    aspeed_smc_flash_overlap(s, &seg, cs);
 580
 581    /* All should be fine now to move the region */
 582    aspeed_smc_flash_set_segment_region(s, cs, new);
 583}
 584
 585static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
 586                                              unsigned size)
 587{
 588    qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
 589                  PRIx64 "\n", __func__, addr, size);
 590    return 0;
 591}
 592
 593static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
 594                                           uint64_t data, unsigned size)
 595{
 596    qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
 597                  PRIx64 "\n", __func__, addr, size, data);
 598}
 599
 600static const MemoryRegionOps aspeed_smc_flash_default_ops = {
 601    .read = aspeed_smc_flash_default_read,
 602    .write = aspeed_smc_flash_default_write,
 603    .endianness = DEVICE_LITTLE_ENDIAN,
 604    .valid = {
 605        .min_access_size = 1,
 606        .max_access_size = 4,
 607    },
 608};
 609
 610static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
 611{
 612    const AspeedSMCState *s = fl->controller;
 613
 614    return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
 615}
 616
 617static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
 618{
 619    const AspeedSMCState *s = fl->controller;
 620
 621    return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
 622}
 623
 624static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
 625{
 626    const AspeedSMCState *s = fl->controller;
 627    int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
 628
 629    /*
 630     * In read mode, the default SPI command is READ (0x3). In other
 631     * modes, the command should necessarily be defined
 632     *
 633     * TODO: add support for READ4 (0x13) on AST2600
 634     */
 635    if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
 636        cmd = SPI_OP_READ;
 637    }
 638
 639    if (!cmd) {
 640        qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
 641                      __func__, aspeed_smc_flash_mode(fl));
 642    }
 643
 644    return cmd;
 645}
 646
 647static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
 648{
 649    const AspeedSMCState *s = fl->controller;
 650
 651    if (s->ctrl->segments == aspeed_segments_spi) {
 652        return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
 653    } else {
 654        return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
 655    }
 656}
 657
 658static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
 659{
 660    AspeedSMCState *s = fl->controller;
 661
 662    trace_aspeed_smc_flash_select(fl->id, unselect ? "un" : "");
 663
 664    qemu_set_irq(s->cs_lines[fl->id], unselect);
 665}
 666
 667static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
 668{
 669    aspeed_smc_flash_do_select(fl, false);
 670}
 671
 672static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
 673{
 674    aspeed_smc_flash_do_select(fl, true);
 675}
 676
 677static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
 678                                              uint32_t addr)
 679{
 680    const AspeedSMCState *s = fl->controller;
 681    AspeedSegments seg;
 682
 683    s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
 684    if ((addr % seg.size) != addr) {
 685        qemu_log_mask(LOG_GUEST_ERROR,
 686                      "%s: invalid address 0x%08x for CS%d segment : "
 687                      "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
 688                      s->ctrl->name, addr, fl->id, seg.addr,
 689                      seg.addr + seg.size);
 690        addr %= seg.size;
 691    }
 692
 693    return addr;
 694}
 695
 696static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
 697{
 698    const AspeedSMCState *s = fl->controller;
 699    uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
 700    uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
 701    uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
 702    uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
 703
 704    if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
 705        dummies /= 2;
 706    }
 707
 708    return dummies;
 709}
 710
 711static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
 712{
 713    const AspeedSMCState *s = fl->controller;
 714    uint8_t cmd = aspeed_smc_flash_cmd(fl);
 715    int i = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
 716
 717    /* Flash access can not exceed CS segment */
 718    addr = aspeed_smc_check_segment_addr(fl, addr);
 719
 720    ssi_transfer(s->spi, cmd);
 721    while (i--) {
 722        if (aspeed_smc_addr_byte_enabled(s, i)) {
 723            ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
 724        }
 725    }
 726
 727    /*
 728     * Use fake transfers to model dummy bytes. The value should
 729     * be configured to some non-zero value in fast read mode and
 730     * zero in read mode. But, as the HW allows inconsistent
 731     * settings, let's check for fast read mode.
 732     */
 733    if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
 734        for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
 735            ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
 736        }
 737    }
 738}
 739
 740static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
 741{
 742    AspeedSMCFlash *fl = opaque;
 743    AspeedSMCState *s = fl->controller;
 744    uint64_t ret = 0;
 745    int i;
 746
 747    switch (aspeed_smc_flash_mode(fl)) {
 748    case CTRL_USERMODE:
 749        for (i = 0; i < size; i++) {
 750            ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
 751        }
 752        break;
 753    case CTRL_READMODE:
 754    case CTRL_FREADMODE:
 755        aspeed_smc_flash_select(fl);
 756        aspeed_smc_flash_setup(fl, addr);
 757
 758        for (i = 0; i < size; i++) {
 759            ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
 760        }
 761
 762        aspeed_smc_flash_unselect(fl);
 763        break;
 764    default:
 765        qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
 766                      __func__, aspeed_smc_flash_mode(fl));
 767    }
 768
 769    trace_aspeed_smc_flash_read(fl->id, addr, size, ret,
 770                                aspeed_smc_flash_mode(fl));
 771    return ret;
 772}
 773
 774/*
 775 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
 776 * common include header.
 777 */
 778typedef enum {
 779    READ = 0x3,         READ_4 = 0x13,
 780    FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
 781    DOR = 0x3b,         DOR_4 = 0x3c,
 782    QOR = 0x6b,         QOR_4 = 0x6c,
 783    DIOR = 0xbb,        DIOR_4 = 0xbc,
 784    QIOR = 0xeb,        QIOR_4 = 0xec,
 785
 786    PP = 0x2,           PP_4 = 0x12,
 787    DPP = 0xa2,
 788    QPP = 0x32,         QPP_4 = 0x34,
 789} FlashCMD;
 790
 791static int aspeed_smc_num_dummies(uint8_t command)
 792{
 793    switch (command) { /* check for dummies */
 794    case READ: /* no dummy bytes/cycles */
 795    case PP:
 796    case DPP:
 797    case QPP:
 798    case READ_4:
 799    case PP_4:
 800    case QPP_4:
 801        return 0;
 802    case FAST_READ:
 803    case DOR:
 804    case QOR:
 805    case FAST_READ_4:
 806    case DOR_4:
 807    case QOR_4:
 808        return 1;
 809    case DIOR:
 810    case DIOR_4:
 811        return 2;
 812    case QIOR:
 813    case QIOR_4:
 814        return 4;
 815    default:
 816        return -1;
 817    }
 818}
 819
 820static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
 821                                unsigned size)
 822{
 823    AspeedSMCState *s = fl->controller;
 824    uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
 825
 826    trace_aspeed_smc_do_snoop(fl->id, s->snoop_index, s->snoop_dummies,
 827                              (uint8_t) data & 0xff);
 828
 829    if (s->snoop_index == SNOOP_OFF) {
 830        return false; /* Do nothing */
 831
 832    } else if (s->snoop_index == SNOOP_START) {
 833        uint8_t cmd = data & 0xff;
 834        int ndummies = aspeed_smc_num_dummies(cmd);
 835
 836        /*
 837         * No dummy cycles are expected with the current command. Turn
 838         * off snooping and let the transfer proceed normally.
 839         */
 840        if (ndummies <= 0) {
 841            s->snoop_index = SNOOP_OFF;
 842            return false;
 843        }
 844
 845        s->snoop_dummies = ndummies * 8;
 846
 847    } else if (s->snoop_index >= addr_width + 1) {
 848
 849        /* The SPI transfer has reached the dummy cycles sequence */
 850        for (; s->snoop_dummies; s->snoop_dummies--) {
 851            ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
 852        }
 853
 854        /* If no more dummy cycles are expected, turn off snooping */
 855        if (!s->snoop_dummies) {
 856            s->snoop_index = SNOOP_OFF;
 857        } else {
 858            s->snoop_index += size;
 859        }
 860
 861        /*
 862         * Dummy cycles have been faked already. Ignore the current
 863         * SPI transfer
 864         */
 865        return true;
 866    }
 867
 868    s->snoop_index += size;
 869    return false;
 870}
 871
 872static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
 873                                   unsigned size)
 874{
 875    AspeedSMCFlash *fl = opaque;
 876    AspeedSMCState *s = fl->controller;
 877    int i;
 878
 879    trace_aspeed_smc_flash_write(fl->id, addr, size, data,
 880                                 aspeed_smc_flash_mode(fl));
 881
 882    if (!aspeed_smc_is_writable(fl)) {
 883        qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
 884                      HWADDR_PRIx "\n", __func__, addr);
 885        return;
 886    }
 887
 888    switch (aspeed_smc_flash_mode(fl)) {
 889    case CTRL_USERMODE:
 890        if (aspeed_smc_do_snoop(fl, data, size)) {
 891            break;
 892        }
 893
 894        for (i = 0; i < size; i++) {
 895            ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
 896        }
 897        break;
 898    case CTRL_WRITEMODE:
 899        aspeed_smc_flash_select(fl);
 900        aspeed_smc_flash_setup(fl, addr);
 901
 902        for (i = 0; i < size; i++) {
 903            ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
 904        }
 905
 906        aspeed_smc_flash_unselect(fl);
 907        break;
 908    default:
 909        qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
 910                      __func__, aspeed_smc_flash_mode(fl));
 911    }
 912}
 913
 914static const MemoryRegionOps aspeed_smc_flash_ops = {
 915    .read = aspeed_smc_flash_read,
 916    .write = aspeed_smc_flash_write,
 917    .endianness = DEVICE_LITTLE_ENDIAN,
 918    .valid = {
 919        .min_access_size = 1,
 920        .max_access_size = 4,
 921    },
 922};
 923
 924static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
 925{
 926    AspeedSMCState *s = fl->controller;
 927    bool unselect;
 928
 929    /* User mode selects the CS, other modes unselect */
 930    unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
 931
 932    /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
 933    if (!(s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE) &&
 934        value & CTRL_CE_STOP_ACTIVE) {
 935        unselect = true;
 936    }
 937
 938    s->regs[s->r_ctrl0 + fl->id] = value;
 939
 940    s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
 941
 942    aspeed_smc_flash_do_select(fl, unselect);
 943}
 944
 945static void aspeed_smc_reset(DeviceState *d)
 946{
 947    AspeedSMCState *s = ASPEED_SMC(d);
 948    int i;
 949
 950    memset(s->regs, 0, sizeof s->regs);
 951
 952    /* Unselect all peripherals */
 953    for (i = 0; i < s->num_cs; ++i) {
 954        s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
 955        qemu_set_irq(s->cs_lines[i], true);
 956    }
 957
 958    /* setup the default segment register values and regions for all */
 959    for (i = 0; i < s->ctrl->max_peripherals; ++i) {
 960        aspeed_smc_flash_set_segment_region(s, i,
 961                    s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]));
 962    }
 963
 964    /* HW strapping flash type for the AST2600 controllers  */
 965    if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
 966        /* flash type is fixed to SPI for all */
 967        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
 968        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
 969        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
 970    }
 971
 972    /* HW strapping flash type for FMC controllers  */
 973    if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
 974        /* flash type is fixed to SPI for CE0 and CE1 */
 975        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
 976        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
 977    }
 978
 979    /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
 980     * configuration of the palmetto-bmc machine */
 981    if (s->ctrl->segments == aspeed_segments_fmc) {
 982        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
 983    }
 984
 985    s->snoop_index = SNOOP_OFF;
 986    s->snoop_dummies = 0;
 987}
 988
 989static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
 990{
 991    AspeedSMCState *s = ASPEED_SMC(opaque);
 992
 993    addr >>= 2;
 994
 995    if (addr == s->r_conf ||
 996        (addr >= s->r_timings &&
 997         addr < s->r_timings + s->ctrl->nregs_timings) ||
 998        addr == s->r_ce_ctrl ||
 999        addr == R_CE_CMD_CTRL ||
1000        addr == R_INTR_CTRL ||
1001        addr == R_DUMMY_DATA ||
1002        (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
1003        (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
1004        (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
1005        (s->ctrl->has_dma && addr == R_DMA_LEN) ||
1006        (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
1007        (addr >= R_SEG_ADDR0 &&
1008         addr < R_SEG_ADDR0 + s->ctrl->max_peripherals) ||
1009        (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_peripherals)) {
1010
1011        trace_aspeed_smc_read(addr, size, s->regs[addr]);
1012
1013        return s->regs[addr];
1014    } else {
1015        qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1016                      __func__, addr);
1017        return -1;
1018    }
1019}
1020
1021static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
1022{
1023    /* HCLK/1 .. HCLK/16 */
1024    const uint8_t hclk_divisors[] = {
1025        15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
1026    };
1027    int i;
1028
1029    for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
1030        if (hclk_mask == hclk_divisors[i]) {
1031            return i + 1;
1032        }
1033    }
1034
1035    qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
1036    return 0;
1037}
1038
1039/*
1040 * When doing calibration, the SPI clock rate in the CE0 Control
1041 * Register and the read delay cycles in the Read Timing Compensation
1042 * Register are set using bit[11:4] of the DMA Control Register.
1043 */
1044static void aspeed_smc_dma_calibration(AspeedSMCState *s)
1045{
1046    uint8_t delay =
1047        (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1048    uint8_t hclk_mask =
1049        (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1050    uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
1051    uint32_t hclk_shift = (hclk_div - 1) << 2;
1052    uint8_t cs;
1053
1054    /*
1055     * The Read Timing Compensation Register values apply to all CS on
1056     * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
1057     */
1058    if (hclk_div && hclk_div < 6) {
1059        s->regs[s->r_timings] &= ~(0xf << hclk_shift);
1060        s->regs[s->r_timings] |= delay << hclk_shift;
1061    }
1062
1063    /*
1064     * TODO: compute the CS from the DMA address and the segment
1065     * registers. This is not really a problem for now because the
1066     * Timing Register values apply to all CS and software uses CS0 to
1067     * do calibration.
1068     */
1069    cs = 0;
1070    s->regs[s->r_ctrl0 + cs] &=
1071        ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1072    s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1073}
1074
1075/*
1076 * Emulate read errors in the DMA Checksum Register for high
1077 * frequencies and optimistic settings of the Read Timing Compensation
1078 * Register. This will help in tuning the SPI timing calibration
1079 * algorithm.
1080 */
1081static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1082{
1083    uint8_t delay =
1084        (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1085    uint8_t hclk_mask =
1086        (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1087
1088    /*
1089     * Typical values of a palmetto-bmc machine.
1090     */
1091    switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1092    case 4 ... 16:
1093        return false;
1094    case 3: /* at least one HCLK cycle delay */
1095        return (delay & 0x7) < 1;
1096    case 2: /* at least two HCLK cycle delay */
1097        return (delay & 0x7) < 2;
1098    case 1: /* (> 100MHz) is above the max freq of the controller */
1099        return true;
1100    default:
1101        g_assert_not_reached();
1102    }
1103}
1104
1105/*
1106 * Accumulate the result of the reads to provide a checksum that will
1107 * be used to validate the read timing settings.
1108 */
1109static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1110{
1111    MemTxResult result;
1112    uint32_t data;
1113
1114    if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1115        qemu_log_mask(LOG_GUEST_ERROR,
1116                      "%s: invalid direction for DMA checksum\n",  __func__);
1117        return;
1118    }
1119
1120    if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1121        aspeed_smc_dma_calibration(s);
1122    }
1123
1124    while (s->regs[R_DMA_LEN]) {
1125        data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1126                                    MEMTXATTRS_UNSPECIFIED, &result);
1127        if (result != MEMTX_OK) {
1128            qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1129                          __func__, s->regs[R_DMA_FLASH_ADDR]);
1130            return;
1131        }
1132        trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
1133
1134        /*
1135         * When the DMA is on-going, the DMA registers are updated
1136         * with the current working addresses and length.
1137         */
1138        s->regs[R_DMA_CHECKSUM] += data;
1139        s->regs[R_DMA_FLASH_ADDR] += 4;
1140        s->regs[R_DMA_LEN] -= 4;
1141    }
1142
1143    if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1144        s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1145    }
1146
1147}
1148
1149static void aspeed_smc_dma_rw(AspeedSMCState *s)
1150{
1151    MemTxResult result;
1152    uint32_t data;
1153
1154    trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
1155                            "write" : "read",
1156                            s->regs[R_DMA_FLASH_ADDR],
1157                            s->regs[R_DMA_DRAM_ADDR],
1158                            s->regs[R_DMA_LEN]);
1159    while (s->regs[R_DMA_LEN]) {
1160        if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1161            data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1162                                        MEMTXATTRS_UNSPECIFIED, &result);
1163            if (result != MEMTX_OK) {
1164                qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1165                              __func__, s->regs[R_DMA_DRAM_ADDR]);
1166                return;
1167            }
1168
1169            address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1170                                 data, MEMTXATTRS_UNSPECIFIED, &result);
1171            if (result != MEMTX_OK) {
1172                qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1173                              __func__, s->regs[R_DMA_FLASH_ADDR]);
1174                return;
1175            }
1176        } else {
1177            data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1178                                        MEMTXATTRS_UNSPECIFIED, &result);
1179            if (result != MEMTX_OK) {
1180                qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1181                              __func__, s->regs[R_DMA_FLASH_ADDR]);
1182                return;
1183            }
1184
1185            address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1186                                 data, MEMTXATTRS_UNSPECIFIED, &result);
1187            if (result != MEMTX_OK) {
1188                qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1189                              __func__, s->regs[R_DMA_DRAM_ADDR]);
1190                return;
1191            }
1192        }
1193
1194        /*
1195         * When the DMA is on-going, the DMA registers are updated
1196         * with the current working addresses and length.
1197         */
1198        s->regs[R_DMA_FLASH_ADDR] += 4;
1199        s->regs[R_DMA_DRAM_ADDR] += 4;
1200        s->regs[R_DMA_LEN] -= 4;
1201        s->regs[R_DMA_CHECKSUM] += data;
1202    }
1203}
1204
1205static void aspeed_smc_dma_stop(AspeedSMCState *s)
1206{
1207    /*
1208     * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1209     * engine is idle
1210     */
1211    s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1212    s->regs[R_DMA_CHECKSUM] = 0;
1213
1214    /*
1215     * Lower the DMA irq in any case. The IRQ control register could
1216     * have been cleared before disabling the DMA.
1217     */
1218    qemu_irq_lower(s->irq);
1219}
1220
1221/*
1222 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1223 * can start even if the result of the previous was not collected.
1224 */
1225static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1226{
1227    return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1228        !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1229}
1230
1231static void aspeed_smc_dma_done(AspeedSMCState *s)
1232{
1233    s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1234    if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1235        qemu_irq_raise(s->irq);
1236    }
1237}
1238
1239static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1240{
1241    if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1242        s->regs[R_DMA_CTRL] = dma_ctrl;
1243
1244        aspeed_smc_dma_stop(s);
1245        return;
1246    }
1247
1248    if (aspeed_smc_dma_in_progress(s)) {
1249        qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n",  __func__);
1250        return;
1251    }
1252
1253    s->regs[R_DMA_CTRL] = dma_ctrl;
1254
1255    if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1256        aspeed_smc_dma_checksum(s);
1257    } else {
1258        aspeed_smc_dma_rw(s);
1259    }
1260
1261    aspeed_smc_dma_done(s);
1262}
1263
1264static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1265                             unsigned int size)
1266{
1267    AspeedSMCState *s = ASPEED_SMC(opaque);
1268    uint32_t value = data;
1269
1270    addr >>= 2;
1271
1272    trace_aspeed_smc_write(addr, size, data);
1273
1274    if (addr == s->r_conf ||
1275        (addr >= s->r_timings &&
1276         addr < s->r_timings + s->ctrl->nregs_timings) ||
1277        addr == s->r_ce_ctrl) {
1278        s->regs[addr] = value;
1279    } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1280        int cs = addr - s->r_ctrl0;
1281        aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1282    } else if (addr >= R_SEG_ADDR0 &&
1283               addr < R_SEG_ADDR0 + s->ctrl->max_peripherals) {
1284        int cs = addr - R_SEG_ADDR0;
1285
1286        if (value != s->regs[R_SEG_ADDR0 + cs]) {
1287            aspeed_smc_flash_set_segment(s, cs, value);
1288        }
1289    } else if (addr == R_CE_CMD_CTRL) {
1290        s->regs[addr] = value & 0xff;
1291    } else if (addr == R_DUMMY_DATA) {
1292        s->regs[addr] = value & 0xff;
1293    } else if (addr == R_INTR_CTRL) {
1294        s->regs[addr] = value;
1295    } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1296        aspeed_smc_dma_ctrl(s, value);
1297    } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1298        s->regs[addr] = DMA_DRAM_ADDR(s, value);
1299    } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1300        s->regs[addr] = DMA_FLASH_ADDR(s, value);
1301    } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1302        s->regs[addr] = DMA_LENGTH(value);
1303    } else {
1304        qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1305                      __func__, addr);
1306        return;
1307    }
1308}
1309
1310static const MemoryRegionOps aspeed_smc_ops = {
1311    .read = aspeed_smc_read,
1312    .write = aspeed_smc_write,
1313    .endianness = DEVICE_LITTLE_ENDIAN,
1314};
1315
1316/*
1317 * Initialize the custom address spaces for DMAs
1318 */
1319static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1320{
1321    char *name;
1322
1323    if (!s->dram_mr) {
1324        error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1325        return;
1326    }
1327
1328    name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1329    address_space_init(&s->flash_as, &s->mmio_flash, name);
1330    g_free(name);
1331
1332    name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1333    address_space_init(&s->dram_as, s->dram_mr, name);
1334    g_free(name);
1335}
1336
1337static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1338{
1339    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1340    AspeedSMCState *s = ASPEED_SMC(dev);
1341    AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1342    int i;
1343    char name[32];
1344    hwaddr offset = 0;
1345
1346    s->ctrl = mc->ctrl;
1347
1348    /* keep a copy under AspeedSMCState to speed up accesses */
1349    s->r_conf = s->ctrl->r_conf;
1350    s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1351    s->r_ctrl0 = s->ctrl->r_ctrl0;
1352    s->r_timings = s->ctrl->r_timings;
1353    s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1354
1355    /* Enforce some real HW limits */
1356    if (s->num_cs > s->ctrl->max_peripherals) {
1357        qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1358                      __func__, s->ctrl->max_peripherals);
1359        s->num_cs = s->ctrl->max_peripherals;
1360    }
1361
1362    /* DMA irq. Keep it first for the initialization in the SoC */
1363    sysbus_init_irq(sbd, &s->irq);
1364
1365    s->spi = ssi_create_bus(dev, "spi");
1366
1367    /* Setup cs_lines for peripherals */
1368    s->cs_lines = g_new0(qemu_irq, s->num_cs);
1369
1370    for (i = 0; i < s->num_cs; ++i) {
1371        sysbus_init_irq(sbd, &s->cs_lines[i]);
1372    }
1373
1374    /* The memory region for the controller registers */
1375    memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1376                          s->ctrl->name, s->ctrl->nregs * 4);
1377    sysbus_init_mmio(sbd, &s->mmio);
1378
1379    /*
1380     * The container memory region representing the address space
1381     * window in which the flash modules are mapped. The size and
1382     * address depends on the SoC model and controller type.
1383     */
1384    snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1385
1386    memory_region_init_io(&s->mmio_flash, OBJECT(s),
1387                          &aspeed_smc_flash_default_ops, s, name,
1388                          s->ctrl->flash_window_size);
1389    sysbus_init_mmio(sbd, &s->mmio_flash);
1390
1391    s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_peripherals);
1392
1393    /*
1394     * Let's create a sub memory region for each possible peripheral. All
1395     * have a configurable memory segment in the overall flash mapping
1396     * window of the controller but, there is not necessarily a flash
1397     * module behind to handle the memory accesses. This depends on
1398     * the board configuration.
1399     */
1400    for (i = 0; i < s->ctrl->max_peripherals; ++i) {
1401        AspeedSMCFlash *fl = &s->flashes[i];
1402
1403        snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1404
1405        fl->id = i;
1406        fl->controller = s;
1407        fl->size = s->ctrl->segments[i].size;
1408        memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1409                              fl, name, fl->size);
1410        memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1411        offset += fl->size;
1412    }
1413
1414    /* DMA support */
1415    if (s->ctrl->has_dma) {
1416        aspeed_smc_dma_setup(s, errp);
1417    }
1418}
1419
1420static const VMStateDescription vmstate_aspeed_smc = {
1421    .name = "aspeed.smc",
1422    .version_id = 2,
1423    .minimum_version_id = 2,
1424    .fields = (VMStateField[]) {
1425        VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1426        VMSTATE_UINT8(snoop_index, AspeedSMCState),
1427        VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1428        VMSTATE_END_OF_LIST()
1429    }
1430};
1431
1432static Property aspeed_smc_properties[] = {
1433    DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1434    DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1435    DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1436    DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1437                     TYPE_MEMORY_REGION, MemoryRegion *),
1438    DEFINE_PROP_END_OF_LIST(),
1439};
1440
1441static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1442{
1443    DeviceClass *dc = DEVICE_CLASS(klass);
1444    AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1445
1446    dc->realize = aspeed_smc_realize;
1447    dc->reset = aspeed_smc_reset;
1448    device_class_set_props(dc, aspeed_smc_properties);
1449    dc->vmsd = &vmstate_aspeed_smc;
1450    mc->ctrl = data;
1451}
1452
1453static const TypeInfo aspeed_smc_info = {
1454    .name           = TYPE_ASPEED_SMC,
1455    .parent         = TYPE_SYS_BUS_DEVICE,
1456    .instance_size  = sizeof(AspeedSMCState),
1457    .class_size     = sizeof(AspeedSMCClass),
1458    .abstract       = true,
1459};
1460
1461static void aspeed_smc_register_types(void)
1462{
1463    int i;
1464
1465    type_register_static(&aspeed_smc_info);
1466    for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1467        TypeInfo ti = {
1468            .name       = controllers[i].name,
1469            .parent     = TYPE_ASPEED_SMC,
1470            .class_init = aspeed_smc_class_init,
1471            .class_data = (void *)&controllers[i],
1472        };
1473        type_register(&ti);
1474    }
1475}
1476
1477type_init(aspeed_smc_register_types)
1478