qemu/hw/timer/sse-counter.c
<<
>>
Prefs
   1/*
   2 * Arm SSE Subsystem System Counter
   3 *
   4 * Copyright (c) 2020 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 or
   9 * (at your option) any later version.
  10 */
  11
  12/*
  13 * This is a model of the "System counter" which is documented in
  14 * the Arm SSE-123 Example Subsystem Technical Reference Manual:
  15 * https://developer.arm.com/documentation/101370/latest/
  16 *
  17 * The system counter is a non-stop 64-bit up-counter. It provides
  18 * this count value to other devices like the SSE system timer,
  19 * which are driven by this system timestamp rather than directly
  20 * from a clock. Internally to the counter the count is actually
  21 * 88-bit precision (64.24 fixed point), with a programmable scale factor.
  22 *
  23 * The hardware has the optional feature that it supports dynamic
  24 * clock switching, where two clock inputs are connected, and which
  25 * one is used is selected via a CLKSEL input signal. Since the
  26 * users of this device in QEMU don't use this feature, we only model
  27 * the HWCLKSW=0 configuration.
  28 */
  29#include "qemu/osdep.h"
  30#include "qemu/log.h"
  31#include "qemu/timer.h"
  32#include "qapi/error.h"
  33#include "trace.h"
  34#include "hw/timer/sse-counter.h"
  35#include "hw/sysbus.h"
  36#include "hw/irq.h"
  37#include "hw/registerfields.h"
  38#include "hw/clock.h"
  39#include "hw/qdev-clock.h"
  40#include "migration/vmstate.h"
  41
  42/* Registers in the control frame */
  43REG32(CNTCR, 0x0)
  44    FIELD(CNTCR, EN, 0, 1)
  45    FIELD(CNTCR, HDBG, 1, 1)
  46    FIELD(CNTCR, SCEN, 2, 1)
  47    FIELD(CNTCR, INTRMASK, 3, 1)
  48    FIELD(CNTCR, PSLVERRDIS, 4, 1)
  49    FIELD(CNTCR, INTRCLR, 5, 1)
  50/*
  51 * Although CNTCR defines interrupt-related bits, the counter doesn't
  52 * appear to actually have an interrupt output. So INTRCLR is
  53 * effectively a RAZ/WI bit, as are the reserved bits [31:6].
  54 */
  55#define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
  56                          R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
  57                          R_CNTCR_PSLVERRDIS_MASK)
  58REG32(CNTSR, 0x4)
  59REG32(CNTCV_LO, 0x8)
  60REG32(CNTCV_HI, 0xc)
  61REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
  62REG32(CNTID, 0x1c)
  63    FIELD(CNTID, CNTSC, 0, 4)
  64    FIELD(CNTID, CNTCS, 16, 1)
  65    FIELD(CNTID, CNTSELCLK, 17, 2)
  66    FIELD(CNTID, CNTSCR_OVR, 19, 1)
  67REG32(CNTSCR0, 0xd0)
  68REG32(CNTSCR1, 0xd4)
  69
  70/* Registers in the status frame */
  71REG32(STATUS_CNTCV_LO, 0x0)
  72REG32(STATUS_CNTCV_HI, 0x4)
  73
  74/* Standard ID registers, present in both frames */
  75REG32(PID4, 0xFD0)
  76REG32(PID5, 0xFD4)
  77REG32(PID6, 0xFD8)
  78REG32(PID7, 0xFDC)
  79REG32(PID0, 0xFE0)
  80REG32(PID1, 0xFE4)
  81REG32(PID2, 0xFE8)
  82REG32(PID3, 0xFEC)
  83REG32(CID0, 0xFF0)
  84REG32(CID1, 0xFF4)
  85REG32(CID2, 0xFF8)
  86REG32(CID3, 0xFFC)
  87
  88/* PID/CID values */
  89static const int control_id[] = {
  90    0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
  91    0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
  92    0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
  93};
  94
  95static const int status_id[] = {
  96    0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
  97    0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
  98    0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
  99};
 100
 101static void sse_counter_notify_users(SSECounter *s)
 102{
 103    /*
 104     * Notify users of the count timestamp that they may
 105     * need to recalculate.
 106     */
 107    notifier_list_notify(&s->notifier_list, NULL);
 108}
 109
 110static bool sse_counter_enabled(SSECounter *s)
 111{
 112    return (s->cntcr & R_CNTCR_EN_MASK) != 0;
 113}
 114
 115uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
 116{
 117    if (!sse_counter_enabled(s)) {
 118        return UINT64_MAX;
 119    }
 120
 121    tick -= s->ticks_then;
 122
 123    if (s->cntcr & R_CNTCR_SCEN_MASK) {
 124        /* Adjust the tick count to account for the scale factor */
 125        tick = muldiv64(tick, 0x01000000, s->cntscr0);
 126    }
 127
 128    return s->ns_then + clock_ticks_to_ns(s->clk, tick);
 129}
 130
 131void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
 132{
 133    /*
 134     * For the moment we assume that both we and the devices
 135     * which consume us last for the life of the simulation,
 136     * and so there is no mechanism for removing a notifier.
 137     */
 138    notifier_list_add(&s->notifier_list, notifier);
 139}
 140
 141uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
 142{
 143    /* Return the CNTCV value for a particular timestamp (clock ns value). */
 144    uint64_t ticks;
 145
 146    if (!sse_counter_enabled(s)) {
 147        /* Counter is disabled and does not increment */
 148        return s->ticks_then;
 149    }
 150
 151    ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
 152    if (s->cntcr & R_CNTCR_SCEN_MASK) {
 153        /*
 154         * Scaling is enabled. The CNTSCR value is the amount added to
 155         * the underlying 88-bit counter for every tick of the
 156         * underlying clock; CNTCV is the top 64 bits of that full
 157         * 88-bit value. Multiplying the tick count by CNTSCR tells us
 158         * how much the full 88-bit counter has moved on; we then
 159         * divide that by 0x01000000 to find out how much the 64-bit
 160         * visible portion has advanced. muldiv64() gives us the
 161         * necessary at-least-88-bit precision for the intermediate
 162         * result.
 163         */
 164        ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
 165    }
 166    return s->ticks_then + ticks;
 167}
 168
 169static uint64_t sse_cntcv(SSECounter *s)
 170{
 171    /* Return the CNTCV value for the current time */
 172    return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 173}
 174
 175static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
 176{
 177    /*
 178     * Write one 32-bit half of the counter value; startbit is the
 179     * bit position of this half in the 64-bit word, either 0 or 32.
 180     */
 181    uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 182    uint64_t cntcv = sse_counter_for_timestamp(s, now);
 183
 184    cntcv = deposit64(cntcv, startbit, 32, value);
 185    s->ticks_then = cntcv;
 186    s->ns_then = now;
 187    sse_counter_notify_users(s);
 188}
 189
 190static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
 191                                         unsigned size)
 192{
 193    SSECounter *s = SSE_COUNTER(opaque);
 194    uint64_t r;
 195
 196    switch (offset) {
 197    case A_CNTCR:
 198        r = s->cntcr;
 199        break;
 200    case A_CNTSR:
 201        /*
 202         * The only bit here is DBGH, indicating that the counter has been
 203         * halted via the Halt-on-Debug signal. We don't implement halting
 204         * debug, so the whole register always reads as zero.
 205         */
 206        r = 0;
 207        break;
 208    case A_CNTCV_LO:
 209        r = extract64(sse_cntcv(s), 0, 32);
 210        break;
 211    case A_CNTCV_HI:
 212        r = extract64(sse_cntcv(s), 32, 32);
 213        break;
 214    case A_CNTID:
 215        /*
 216         * For our implementation:
 217         *  - CNTSCR can only be written when CNTCR.EN == 0
 218         *  - HWCLKSW=0, so selected clock is always CLK0
 219         *  - counter scaling is implemented
 220         */
 221        r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
 222        break;
 223    case A_CNTSCR:
 224    case A_CNTSCR0:
 225        r = s->cntscr0;
 226        break;
 227    case A_CNTSCR1:
 228        /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
 229        r = 0;
 230        break;
 231    case A_PID4 ... A_CID3:
 232        r = control_id[(offset - A_PID4) / 4];
 233        break;
 234    default:
 235        qemu_log_mask(LOG_GUEST_ERROR,
 236                      "SSE System Counter control frame read: bad offset 0x%x",
 237                      (unsigned)offset);
 238        r = 0;
 239        break;
 240    }
 241
 242    trace_sse_counter_control_read(offset, r, size);
 243    return r;
 244}
 245
 246static void sse_counter_control_write(void *opaque, hwaddr offset,
 247                                      uint64_t value, unsigned size)
 248{
 249    SSECounter *s = SSE_COUNTER(opaque);
 250
 251    trace_sse_counter_control_write(offset, value, size);
 252
 253    switch (offset) {
 254    case A_CNTCR:
 255        /*
 256         * Although CNTCR defines interrupt-related bits, the counter doesn't
 257         * appear to actually have an interrupt output. So INTRCLR is
 258         * effectively a RAZ/WI bit, as are the reserved bits [31:6].
 259         * The documentation does not explicitly say so, but we assume
 260         * that changing the scale factor while the counter is enabled
 261         * by toggling CNTCR.SCEN has the same behaviour (making the counter
 262         * value UNKNOWN) as changing it by writing to CNTSCR, and so we
 263         * don't need to try to recalculate for that case.
 264         */
 265        value &= CNTCR_VALID_MASK;
 266        if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
 267            /*
 268             * Whether the counter is being enabled or disabled, the
 269             * required action is the same: sync the (ns_then, ticks_then)
 270             * tuple.
 271             */
 272            uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 273            s->ticks_then = sse_counter_for_timestamp(s, now);
 274            s->ns_then = now;
 275            sse_counter_notify_users(s);
 276        }
 277        s->cntcr = value;
 278        break;
 279    case A_CNTCV_LO:
 280        sse_write_cntcv(s, value, 0);
 281        break;
 282    case A_CNTCV_HI:
 283        sse_write_cntcv(s, value, 32);
 284        break;
 285    case A_CNTSCR:
 286    case A_CNTSCR0:
 287        /*
 288         * If the scale registers are changed when the counter is enabled,
 289         * the count value becomes UNKNOWN. So we don't try to recalculate
 290         * anything here but only do it on a write to CNTCR.EN.
 291         */
 292        s->cntscr0 = value;
 293        break;
 294    case A_CNTSCR1:
 295        /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
 296        break;
 297    case A_CNTSR:
 298    case A_CNTID:
 299    case A_PID4 ... A_CID3:
 300        qemu_log_mask(LOG_GUEST_ERROR,
 301                      "SSE System Counter control frame: write to RO offset 0x%x\n",
 302                      (unsigned)offset);
 303        break;
 304    default:
 305        qemu_log_mask(LOG_GUEST_ERROR,
 306                      "SSE System Counter control frame: write to bad offset 0x%x\n",
 307                      (unsigned)offset);
 308        break;
 309    }
 310}
 311
 312static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
 313                                        unsigned size)
 314{
 315    SSECounter *s = SSE_COUNTER(opaque);
 316    uint64_t r;
 317
 318    switch (offset) {
 319    case A_STATUS_CNTCV_LO:
 320        r = extract64(sse_cntcv(s), 0, 32);
 321        break;
 322    case A_STATUS_CNTCV_HI:
 323        r = extract64(sse_cntcv(s), 32, 32);
 324        break;
 325    case A_PID4 ... A_CID3:
 326        r = status_id[(offset - A_PID4) / 4];
 327        break;
 328    default:
 329        qemu_log_mask(LOG_GUEST_ERROR,
 330                      "SSE System Counter status frame read: bad offset 0x%x",
 331                      (unsigned)offset);
 332        r = 0;
 333        break;
 334    }
 335
 336    trace_sse_counter_status_read(offset, r, size);
 337    return r;
 338}
 339
 340static void sse_counter_status_write(void *opaque, hwaddr offset,
 341                                     uint64_t value, unsigned size)
 342{
 343    trace_sse_counter_status_write(offset, value, size);
 344
 345    switch (offset) {
 346    case A_STATUS_CNTCV_LO:
 347    case A_STATUS_CNTCV_HI:
 348    case A_PID4 ... A_CID3:
 349        qemu_log_mask(LOG_GUEST_ERROR,
 350                      "SSE System Counter status frame: write to RO offset 0x%x\n",
 351                      (unsigned)offset);
 352        break;
 353    default:
 354        qemu_log_mask(LOG_GUEST_ERROR,
 355                      "SSE System Counter status frame: write to bad offset 0x%x\n",
 356                      (unsigned)offset);
 357        break;
 358    }
 359}
 360
 361static const MemoryRegionOps sse_counter_control_ops = {
 362    .read = sse_counter_control_read,
 363    .write = sse_counter_control_write,
 364    .endianness = DEVICE_LITTLE_ENDIAN,
 365    .valid.min_access_size = 4,
 366    .valid.max_access_size = 4,
 367};
 368
 369static const MemoryRegionOps sse_counter_status_ops = {
 370    .read = sse_counter_status_read,
 371    .write = sse_counter_status_write,
 372    .endianness = DEVICE_LITTLE_ENDIAN,
 373    .valid.min_access_size = 4,
 374    .valid.max_access_size = 4,
 375};
 376
 377static void sse_counter_reset(DeviceState *dev)
 378{
 379    SSECounter *s = SSE_COUNTER(dev);
 380
 381    trace_sse_counter_reset();
 382
 383    s->cntcr = 0;
 384    s->cntscr0 = 0x01000000;
 385    s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 386    s->ticks_then = 0;
 387}
 388
 389static void sse_clk_callback(void *opaque, ClockEvent event)
 390{
 391    SSECounter *s = SSE_COUNTER(opaque);
 392    uint64_t now;
 393
 394    switch (event) {
 395    case ClockPreUpdate:
 396        /*
 397         * Before the clock period updates, set (ticks_then, ns_then)
 398         * to the current time and tick count (as calculated with
 399         * the old clock period).
 400         */
 401        if (sse_counter_enabled(s)) {
 402            now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 403            s->ticks_then = sse_counter_for_timestamp(s, now);
 404            s->ns_then = now;
 405        }
 406        break;
 407    case ClockUpdate:
 408        sse_counter_notify_users(s);
 409        break;
 410    default:
 411        break;
 412    }
 413}
 414
 415static void sse_counter_init(Object *obj)
 416{
 417    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 418    SSECounter *s = SSE_COUNTER(obj);
 419
 420    notifier_list_init(&s->notifier_list);
 421
 422    s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
 423                                ClockPreUpdate | ClockUpdate);
 424    memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
 425                          s, "sse-counter-control", 0x1000);
 426    memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
 427                          s, "sse-counter-status", 0x1000);
 428    sysbus_init_mmio(sbd, &s->control_mr);
 429    sysbus_init_mmio(sbd, &s->status_mr);
 430}
 431
 432static void sse_counter_realize(DeviceState *dev, Error **errp)
 433{
 434    SSECounter *s = SSE_COUNTER(dev);
 435
 436    if (!clock_has_source(s->clk)) {
 437        error_setg(errp, "SSE system counter: CLK must be connected");
 438        return;
 439    }
 440}
 441
 442static const VMStateDescription sse_counter_vmstate = {
 443    .name = "sse-counter",
 444    .version_id = 1,
 445    .minimum_version_id = 1,
 446    .fields = (VMStateField[]) {
 447        VMSTATE_CLOCK(clk, SSECounter),
 448        VMSTATE_END_OF_LIST()
 449    }
 450};
 451
 452static void sse_counter_class_init(ObjectClass *klass, void *data)
 453{
 454    DeviceClass *dc = DEVICE_CLASS(klass);
 455
 456    dc->realize = sse_counter_realize;
 457    dc->vmsd = &sse_counter_vmstate;
 458    dc->reset = sse_counter_reset;
 459}
 460
 461static const TypeInfo sse_counter_info = {
 462    .name = TYPE_SSE_COUNTER,
 463    .parent = TYPE_SYS_BUS_DEVICE,
 464    .instance_size = sizeof(SSECounter),
 465    .instance_init = sse_counter_init,
 466    .class_init = sse_counter_class_init,
 467};
 468
 469static void sse_counter_register_types(void)
 470{
 471    type_register_static(&sse_counter_info);
 472}
 473
 474type_init(sse_counter_register_types);
 475