qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/memop.h"
  23#include "exec/ramlist.h"
  24#include "qemu/bswap.h"
  25#include "qemu/queue.h"
  26#include "qemu/int128.h"
  27#include "qemu/notify.h"
  28#include "qom/object.h"
  29#include "qemu/rcu.h"
  30
  31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  32
  33#define MAX_PHYS_ADDR_SPACE_BITS 62
  34#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  35
  36#define TYPE_MEMORY_REGION "memory-region"
  37DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
  38                         TYPE_MEMORY_REGION)
  39
  40#define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
  41typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
  42DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
  43                     IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
  44
  45#ifdef CONFIG_FUZZ
  46void fuzz_dma_read_cb(size_t addr,
  47                      size_t len,
  48                      MemoryRegion *mr);
  49#else
  50static inline void fuzz_dma_read_cb(size_t addr,
  51                                    size_t len,
  52                                    MemoryRegion *mr)
  53{
  54    /* Do Nothing */
  55}
  56#endif
  57
  58extern bool global_dirty_log;
  59
  60typedef struct MemoryRegionOps MemoryRegionOps;
  61
  62struct ReservedRegion {
  63    hwaddr low;
  64    hwaddr high;
  65    unsigned type;
  66};
  67
  68typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  69
  70/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  71typedef enum {
  72    IOMMU_NONE = 0,
  73    IOMMU_RO   = 1,
  74    IOMMU_WO   = 2,
  75    IOMMU_RW   = 3,
  76} IOMMUAccessFlags;
  77
  78#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
  79
  80struct IOMMUTLBEntry {
  81    AddressSpace    *target_as;
  82    hwaddr           iova;
  83    hwaddr           translated_addr;
  84    hwaddr           addr_mask;  /* 0xfff = 4k translation */
  85    IOMMUAccessFlags perm;
  86};
  87
  88/*
  89 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
  90 * register with one or multiple IOMMU Notifier capability bit(s).
  91 */
  92typedef enum {
  93    IOMMU_NOTIFIER_NONE = 0,
  94    /* Notify cache invalidations */
  95    IOMMU_NOTIFIER_UNMAP = 0x1,
  96    /* Notify entry changes (newly created entries) */
  97    IOMMU_NOTIFIER_MAP = 0x2,
  98    /* Notify changes on device IOTLB entries */
  99    IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
 100} IOMMUNotifierFlag;
 101
 102#define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
 103#define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
 104#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
 105                            IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
 106
 107struct IOMMUNotifier;
 108typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
 109                            IOMMUTLBEntry *data);
 110
 111struct IOMMUNotifier {
 112    IOMMUNotify notify;
 113    IOMMUNotifierFlag notifier_flags;
 114    /* Notify for address space range start <= addr <= end */
 115    hwaddr start;
 116    hwaddr end;
 117    int iommu_idx;
 118    QLIST_ENTRY(IOMMUNotifier) node;
 119};
 120typedef struct IOMMUNotifier IOMMUNotifier;
 121
 122typedef struct IOMMUTLBEvent {
 123    IOMMUNotifierFlag type;
 124    IOMMUTLBEntry entry;
 125} IOMMUTLBEvent;
 126
 127/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 128#define RAM_PREALLOC   (1 << 0)
 129
 130/* RAM is mmap-ed with MAP_SHARED */
 131#define RAM_SHARED     (1 << 1)
 132
 133/* Only a portion of RAM (used_length) is actually used, and migrated.
 134 * This used_length size can change across reboots.
 135 */
 136#define RAM_RESIZEABLE (1 << 2)
 137
 138/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 139 * zero the page and wake waiting processes.
 140 * (Set during postcopy)
 141 */
 142#define RAM_UF_ZEROPAGE (1 << 3)
 143
 144/* RAM can be migrated */
 145#define RAM_MIGRATABLE (1 << 4)
 146
 147/* RAM is a persistent kind memory */
 148#define RAM_PMEM (1 << 5)
 149
 150
 151/*
 152 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
 153 * support 'write-tracking' migration type.
 154 * Implies ram_state->ram_wt_enabled.
 155 */
 156#define RAM_UF_WRITEPROTECT (1 << 6)
 157
 158static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 159                                       IOMMUNotifierFlag flags,
 160                                       hwaddr start, hwaddr end,
 161                                       int iommu_idx)
 162{
 163    n->notify = fn;
 164    n->notifier_flags = flags;
 165    n->start = start;
 166    n->end = end;
 167    n->iommu_idx = iommu_idx;
 168}
 169
 170/*
 171 * Memory region callbacks
 172 */
 173struct MemoryRegionOps {
 174    /* Read from the memory region. @addr is relative to @mr; @size is
 175     * in bytes. */
 176    uint64_t (*read)(void *opaque,
 177                     hwaddr addr,
 178                     unsigned size);
 179    /* Write to the memory region. @addr is relative to @mr; @size is
 180     * in bytes. */
 181    void (*write)(void *opaque,
 182                  hwaddr addr,
 183                  uint64_t data,
 184                  unsigned size);
 185
 186    MemTxResult (*read_with_attrs)(void *opaque,
 187                                   hwaddr addr,
 188                                   uint64_t *data,
 189                                   unsigned size,
 190                                   MemTxAttrs attrs);
 191    MemTxResult (*write_with_attrs)(void *opaque,
 192                                    hwaddr addr,
 193                                    uint64_t data,
 194                                    unsigned size,
 195                                    MemTxAttrs attrs);
 196
 197    enum device_endian endianness;
 198    /* Guest-visible constraints: */
 199    struct {
 200        /* If nonzero, specify bounds on access sizes beyond which a machine
 201         * check is thrown.
 202         */
 203        unsigned min_access_size;
 204        unsigned max_access_size;
 205        /* If true, unaligned accesses are supported.  Otherwise unaligned
 206         * accesses throw machine checks.
 207         */
 208         bool unaligned;
 209        /*
 210         * If present, and returns #false, the transaction is not accepted
 211         * by the device (and results in machine dependent behaviour such
 212         * as a machine check exception).
 213         */
 214        bool (*accepts)(void *opaque, hwaddr addr,
 215                        unsigned size, bool is_write,
 216                        MemTxAttrs attrs);
 217    } valid;
 218    /* Internal implementation constraints: */
 219    struct {
 220        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 221         * will be rounded upwards and a partial result will be returned.
 222         */
 223        unsigned min_access_size;
 224        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 225         * will be done as a series of accesses with smaller sizes.
 226         */
 227        unsigned max_access_size;
 228        /* If true, unaligned accesses are supported.  Otherwise all accesses
 229         * are converted to (possibly multiple) naturally aligned accesses.
 230         */
 231        bool unaligned;
 232    } impl;
 233};
 234
 235typedef struct MemoryRegionClass {
 236    /* private */
 237    ObjectClass parent_class;
 238} MemoryRegionClass;
 239
 240
 241enum IOMMUMemoryRegionAttr {
 242    IOMMU_ATTR_SPAPR_TCE_FD
 243};
 244
 245/*
 246 * IOMMUMemoryRegionClass:
 247 *
 248 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
 249 * and provide an implementation of at least the @translate method here
 250 * to handle requests to the memory region. Other methods are optional.
 251 *
 252 * The IOMMU implementation must use the IOMMU notifier infrastructure
 253 * to report whenever mappings are changed, by calling
 254 * memory_region_notify_iommu() (or, if necessary, by calling
 255 * memory_region_notify_iommu_one() for each registered notifier).
 256 *
 257 * Conceptually an IOMMU provides a mapping from input address
 258 * to an output TLB entry. If the IOMMU is aware of memory transaction
 259 * attributes and the output TLB entry depends on the transaction
 260 * attributes, we represent this using IOMMU indexes. Each index
 261 * selects a particular translation table that the IOMMU has:
 262 *
 263 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
 264 *
 265 *   @translate takes an input address and an IOMMU index
 266 *
 267 * and the mapping returned can only depend on the input address and the
 268 * IOMMU index.
 269 *
 270 * Most IOMMUs don't care about the transaction attributes and support
 271 * only a single IOMMU index. A more complex IOMMU might have one index
 272 * for secure transactions and one for non-secure transactions.
 273 */
 274struct IOMMUMemoryRegionClass {
 275    /* private: */
 276    MemoryRegionClass parent_class;
 277
 278    /* public: */
 279    /**
 280     * @translate:
 281     *
 282     * Return a TLB entry that contains a given address.
 283     *
 284     * The IOMMUAccessFlags indicated via @flag are optional and may
 285     * be specified as IOMMU_NONE to indicate that the caller needs
 286     * the full translation information for both reads and writes. If
 287     * the access flags are specified then the IOMMU implementation
 288     * may use this as an optimization, to stop doing a page table
 289     * walk as soon as it knows that the requested permissions are not
 290     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
 291     * full page table walk and report the permissions in the returned
 292     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
 293     * return different mappings for reads and writes.)
 294     *
 295     * The returned information remains valid while the caller is
 296     * holding the big QEMU lock or is inside an RCU critical section;
 297     * if the caller wishes to cache the mapping beyond that it must
 298     * register an IOMMU notifier so it can invalidate its cached
 299     * information when the IOMMU mapping changes.
 300     *
 301     * @iommu: the IOMMUMemoryRegion
 302     *
 303     * @hwaddr: address to be translated within the memory region
 304     *
 305     * @flag: requested access permission
 306     *
 307     * @iommu_idx: IOMMU index for the translation
 308     */
 309    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 310                               IOMMUAccessFlags flag, int iommu_idx);
 311    /**
 312     * @get_min_page_size:
 313     *
 314     * Returns minimum supported page size in bytes.
 315     *
 316     * If this method is not provided then the minimum is assumed to
 317     * be TARGET_PAGE_SIZE.
 318     *
 319     * @iommu: the IOMMUMemoryRegion
 320     */
 321    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 322    /**
 323     * @notify_flag_changed:
 324     *
 325     * Called when IOMMU Notifier flag changes (ie when the set of
 326     * events which IOMMU users are requesting notification for changes).
 327     * Optional method -- need not be provided if the IOMMU does not
 328     * need to know exactly which events must be notified.
 329     *
 330     * @iommu: the IOMMUMemoryRegion
 331     *
 332     * @old_flags: events which previously needed to be notified
 333     *
 334     * @new_flags: events which now need to be notified
 335     *
 336     * Returns 0 on success, or a negative errno; in particular
 337     * returns -EINVAL if the new flag bitmap is not supported by the
 338     * IOMMU memory region. In case of failure, the error object
 339     * must be created
 340     */
 341    int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 342                               IOMMUNotifierFlag old_flags,
 343                               IOMMUNotifierFlag new_flags,
 344                               Error **errp);
 345    /**
 346     * @replay:
 347     *
 348     * Called to handle memory_region_iommu_replay().
 349     *
 350     * The default implementation of memory_region_iommu_replay() is to
 351     * call the IOMMU translate method for every page in the address space
 352     * with flag == IOMMU_NONE and then call the notifier if translate
 353     * returns a valid mapping. If this method is implemented then it
 354     * overrides the default behaviour, and must provide the full semantics
 355     * of memory_region_iommu_replay(), by calling @notifier for every
 356     * translation present in the IOMMU.
 357     *
 358     * Optional method -- an IOMMU only needs to provide this method
 359     * if the default is inefficient or produces undesirable side effects.
 360     *
 361     * Note: this is not related to record-and-replay functionality.
 362     */
 363    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 364
 365    /**
 366     * @get_attr:
 367     *
 368     * Get IOMMU misc attributes. This is an optional method that
 369     * can be used to allow users of the IOMMU to get implementation-specific
 370     * information. The IOMMU implements this method to handle calls
 371     * by IOMMU users to memory_region_iommu_get_attr() by filling in
 372     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
 373     * the IOMMU supports. If the method is unimplemented then
 374     * memory_region_iommu_get_attr() will always return -EINVAL.
 375     *
 376     * @iommu: the IOMMUMemoryRegion
 377     *
 378     * @attr: attribute being queried
 379     *
 380     * @data: memory to fill in with the attribute data
 381     *
 382     * Returns 0 on success, or a negative errno; in particular
 383     * returns -EINVAL for unrecognized or unimplemented attribute types.
 384     */
 385    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
 386                    void *data);
 387
 388    /**
 389     * @attrs_to_index:
 390     *
 391     * Return the IOMMU index to use for a given set of transaction attributes.
 392     *
 393     * Optional method: if an IOMMU only supports a single IOMMU index then
 394     * the default implementation of memory_region_iommu_attrs_to_index()
 395     * will return 0.
 396     *
 397     * The indexes supported by an IOMMU must be contiguous, starting at 0.
 398     *
 399     * @iommu: the IOMMUMemoryRegion
 400     * @attrs: memory transaction attributes
 401     */
 402    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
 403
 404    /**
 405     * @num_indexes:
 406     *
 407     * Return the number of IOMMU indexes this IOMMU supports.
 408     *
 409     * Optional method: if this method is not provided, then
 410     * memory_region_iommu_num_indexes() will return 1, indicating that
 411     * only a single IOMMU index is supported.
 412     *
 413     * @iommu: the IOMMUMemoryRegion
 414     */
 415    int (*num_indexes)(IOMMUMemoryRegion *iommu);
 416
 417    /**
 418     * @iommu_set_page_size_mask:
 419     *
 420     * Restrict the page size mask that can be supported with a given IOMMU
 421     * memory region. Used for example to propagate host physical IOMMU page
 422     * size mask limitations to the virtual IOMMU.
 423     *
 424     * Optional method: if this method is not provided, then the default global
 425     * page mask is used.
 426     *
 427     * @iommu: the IOMMUMemoryRegion
 428     *
 429     * @page_size_mask: a bitmask of supported page sizes. At least one bit,
 430     * representing the smallest page size, must be set. Additional set bits
 431     * represent supported block sizes. For example a host physical IOMMU that
 432     * uses page tables with a page size of 4kB, and supports 2MB and 4GB
 433     * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
 434     * block sizes is specified with mask 0xfffffffffffff000.
 435     *
 436     * Returns 0 on success, or a negative error. In case of failure, the error
 437     * object must be created.
 438     */
 439     int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
 440                                     uint64_t page_size_mask,
 441                                     Error **errp);
 442};
 443
 444typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 445typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 446
 447/** MemoryRegion:
 448 *
 449 * A struct representing a memory region.
 450 */
 451struct MemoryRegion {
 452    Object parent_obj;
 453
 454    /* private: */
 455
 456    /* The following fields should fit in a cache line */
 457    bool romd_mode;
 458    bool ram;
 459    bool subpage;
 460    bool readonly; /* For RAM regions */
 461    bool nonvolatile;
 462    bool rom_device;
 463    bool flush_coalesced_mmio;
 464    uint8_t dirty_log_mask;
 465    bool is_iommu;
 466    RAMBlock *ram_block;
 467    Object *owner;
 468
 469    const MemoryRegionOps *ops;
 470    void *opaque;
 471    MemoryRegion *container;
 472    Int128 size;
 473    hwaddr addr;
 474    void (*destructor)(MemoryRegion *mr);
 475    uint64_t align;
 476    bool terminates;
 477    bool ram_device;
 478    bool enabled;
 479    bool warning_printed; /* For reservations */
 480    uint8_t vga_logging_count;
 481    MemoryRegion *alias;
 482    hwaddr alias_offset;
 483    int32_t priority;
 484    QTAILQ_HEAD(, MemoryRegion) subregions;
 485    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 486    QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
 487    const char *name;
 488    unsigned ioeventfd_nb;
 489    MemoryRegionIoeventfd *ioeventfds;
 490};
 491
 492struct IOMMUMemoryRegion {
 493    MemoryRegion parent_obj;
 494
 495    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 496    IOMMUNotifierFlag iommu_notify_flags;
 497};
 498
 499#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 500    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 501
 502/**
 503 * struct MemoryListener: callbacks structure for updates to the physical memory map
 504 *
 505 * Allows a component to adjust to changes in the guest-visible memory map.
 506 * Use with memory_listener_register() and memory_listener_unregister().
 507 */
 508struct MemoryListener {
 509    /**
 510     * @begin:
 511     *
 512     * Called at the beginning of an address space update transaction.
 513     * Followed by calls to #MemoryListener.region_add(),
 514     * #MemoryListener.region_del(), #MemoryListener.region_nop(),
 515     * #MemoryListener.log_start() and #MemoryListener.log_stop() in
 516     * increasing address order.
 517     *
 518     * @listener: The #MemoryListener.
 519     */
 520    void (*begin)(MemoryListener *listener);
 521
 522    /**
 523     * @commit:
 524     *
 525     * Called at the end of an address space update transaction,
 526     * after the last call to #MemoryListener.region_add(),
 527     * #MemoryListener.region_del() or #MemoryListener.region_nop(),
 528     * #MemoryListener.log_start() and #MemoryListener.log_stop().
 529     *
 530     * @listener: The #MemoryListener.
 531     */
 532    void (*commit)(MemoryListener *listener);
 533
 534    /**
 535     * @region_add:
 536     *
 537     * Called during an address space update transaction,
 538     * for a section of the address space that is new in this address space
 539     * space since the last transaction.
 540     *
 541     * @listener: The #MemoryListener.
 542     * @section: The new #MemoryRegionSection.
 543     */
 544    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 545
 546    /**
 547     * @region_del:
 548     *
 549     * Called during an address space update transaction,
 550     * for a section of the address space that has disappeared in the address
 551     * space since the last transaction.
 552     *
 553     * @listener: The #MemoryListener.
 554     * @section: The old #MemoryRegionSection.
 555     */
 556    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 557
 558    /**
 559     * @region_nop:
 560     *
 561     * Called during an address space update transaction,
 562     * for a section of the address space that is in the same place in the address
 563     * space as in the last transaction.
 564     *
 565     * @listener: The #MemoryListener.
 566     * @section: The #MemoryRegionSection.
 567     */
 568    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 569
 570    /**
 571     * @log_start:
 572     *
 573     * Called during an address space update transaction, after
 574     * one of #MemoryListener.region_add(),#MemoryListener.region_del() or
 575     * #MemoryListener.region_nop(), if dirty memory logging clients have
 576     * become active since the last transaction.
 577     *
 578     * @listener: The #MemoryListener.
 579     * @section: The #MemoryRegionSection.
 580     * @old: A bitmap of dirty memory logging clients that were active in
 581     * the previous transaction.
 582     * @new: A bitmap of dirty memory logging clients that are active in
 583     * the current transaction.
 584     */
 585    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 586                      int old, int new);
 587
 588    /**
 589     * @log_stop:
 590     *
 591     * Called during an address space update transaction, after
 592     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 593     * #MemoryListener.region_nop() and possibly after
 594     * #MemoryListener.log_start(), if dirty memory logging clients have
 595     * become inactive since the last transaction.
 596     *
 597     * @listener: The #MemoryListener.
 598     * @section: The #MemoryRegionSection.
 599     * @old: A bitmap of dirty memory logging clients that were active in
 600     * the previous transaction.
 601     * @new: A bitmap of dirty memory logging clients that are active in
 602     * the current transaction.
 603     */
 604    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 605                     int old, int new);
 606
 607    /**
 608     * @log_sync:
 609     *
 610     * Called by memory_region_snapshot_and_clear_dirty() and
 611     * memory_global_dirty_log_sync(), before accessing QEMU's "official"
 612     * copy of the dirty memory bitmap for a #MemoryRegionSection.
 613     *
 614     * @listener: The #MemoryListener.
 615     * @section: The #MemoryRegionSection.
 616     */
 617    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 618
 619    /**
 620     * @log_clear:
 621     *
 622     * Called before reading the dirty memory bitmap for a
 623     * #MemoryRegionSection.
 624     *
 625     * @listener: The #MemoryListener.
 626     * @section: The #MemoryRegionSection.
 627     */
 628    void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
 629
 630    /**
 631     * @log_global_start:
 632     *
 633     * Called by memory_global_dirty_log_start(), which
 634     * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
 635     * the address space.  #MemoryListener.log_global_start() is also
 636     * called when a #MemoryListener is added, if global dirty logging is
 637     * active at that time.
 638     *
 639     * @listener: The #MemoryListener.
 640     */
 641    void (*log_global_start)(MemoryListener *listener);
 642
 643    /**
 644     * @log_global_stop:
 645     *
 646     * Called by memory_global_dirty_log_stop(), which
 647     * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
 648     * the address space.
 649     *
 650     * @listener: The #MemoryListener.
 651     */
 652    void (*log_global_stop)(MemoryListener *listener);
 653
 654    /**
 655     * @log_global_after_sync:
 656     *
 657     * Called after reading the dirty memory bitmap
 658     * for any #MemoryRegionSection.
 659     *
 660     * @listener: The #MemoryListener.
 661     */
 662    void (*log_global_after_sync)(MemoryListener *listener);
 663
 664    /**
 665     * @eventfd_add:
 666     *
 667     * Called during an address space update transaction,
 668     * for a section of the address space that has had a new ioeventfd
 669     * registration since the last transaction.
 670     *
 671     * @listener: The #MemoryListener.
 672     * @section: The new #MemoryRegionSection.
 673     * @match_data: The @match_data parameter for the new ioeventfd.
 674     * @data: The @data parameter for the new ioeventfd.
 675     * @e: The #EventNotifier parameter for the new ioeventfd.
 676     */
 677    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 678                        bool match_data, uint64_t data, EventNotifier *e);
 679
 680    /**
 681     * @eventfd_del:
 682     *
 683     * Called during an address space update transaction,
 684     * for a section of the address space that has dropped an ioeventfd
 685     * registration since the last transaction.
 686     *
 687     * @listener: The #MemoryListener.
 688     * @section: The new #MemoryRegionSection.
 689     * @match_data: The @match_data parameter for the dropped ioeventfd.
 690     * @data: The @data parameter for the dropped ioeventfd.
 691     * @e: The #EventNotifier parameter for the dropped ioeventfd.
 692     */
 693    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 694                        bool match_data, uint64_t data, EventNotifier *e);
 695
 696    /**
 697     * @coalesced_io_add:
 698     *
 699     * Called during an address space update transaction,
 700     * for a section of the address space that has had a new coalesced
 701     * MMIO range registration since the last transaction.
 702     *
 703     * @listener: The #MemoryListener.
 704     * @section: The new #MemoryRegionSection.
 705     * @addr: The starting address for the coalesced MMIO range.
 706     * @len: The length of the coalesced MMIO range.
 707     */
 708    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
 709                               hwaddr addr, hwaddr len);
 710
 711    /**
 712     * @coalesced_io_del:
 713     *
 714     * Called during an address space update transaction,
 715     * for a section of the address space that has dropped a coalesced
 716     * MMIO range since the last transaction.
 717     *
 718     * @listener: The #MemoryListener.
 719     * @section: The new #MemoryRegionSection.
 720     * @addr: The starting address for the coalesced MMIO range.
 721     * @len: The length of the coalesced MMIO range.
 722     */
 723    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
 724                               hwaddr addr, hwaddr len);
 725    /**
 726     * @priority:
 727     *
 728     * Govern the order in which memory listeners are invoked. Lower priorities
 729     * are invoked earlier for "add" or "start" callbacks, and later for "delete"
 730     * or "stop" callbacks.
 731     */
 732    unsigned priority;
 733
 734    /* private: */
 735    AddressSpace *address_space;
 736    QTAILQ_ENTRY(MemoryListener) link;
 737    QTAILQ_ENTRY(MemoryListener) link_as;
 738};
 739
 740/**
 741 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 742 */
 743struct AddressSpace {
 744    /* private: */
 745    struct rcu_head rcu;
 746    char *name;
 747    MemoryRegion *root;
 748
 749    /* Accessed via RCU.  */
 750    struct FlatView *current_map;
 751
 752    int ioeventfd_nb;
 753    struct MemoryRegionIoeventfd *ioeventfds;
 754    QTAILQ_HEAD(, MemoryListener) listeners;
 755    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 756};
 757
 758typedef struct AddressSpaceDispatch AddressSpaceDispatch;
 759typedef struct FlatRange FlatRange;
 760
 761/* Flattened global view of current active memory hierarchy.  Kept in sorted
 762 * order.
 763 */
 764struct FlatView {
 765    struct rcu_head rcu;
 766    unsigned ref;
 767    FlatRange *ranges;
 768    unsigned nr;
 769    unsigned nr_allocated;
 770    struct AddressSpaceDispatch *dispatch;
 771    MemoryRegion *root;
 772};
 773
 774static inline FlatView *address_space_to_flatview(AddressSpace *as)
 775{
 776    return qatomic_rcu_read(&as->current_map);
 777}
 778
 779/**
 780 * typedef flatview_cb: callback for flatview_for_each_range()
 781 *
 782 * @start: start address of the range within the FlatView
 783 * @len: length of the range in bytes
 784 * @mr: MemoryRegion covering this range
 785 * @offset_in_region: offset of the first byte of the range within @mr
 786 * @opaque: data pointer passed to flatview_for_each_range()
 787 *
 788 * Returns: true to stop the iteration, false to keep going.
 789 */
 790typedef bool (*flatview_cb)(Int128 start,
 791                            Int128 len,
 792                            const MemoryRegion *mr,
 793                            hwaddr offset_in_region,
 794                            void *opaque);
 795
 796/**
 797 * flatview_for_each_range: Iterate through a FlatView
 798 * @fv: the FlatView to iterate through
 799 * @cb: function to call for each range
 800 * @opaque: opaque data pointer to pass to @cb
 801 *
 802 * A FlatView is made up of a list of non-overlapping ranges, each of
 803 * which is a slice of a MemoryRegion. This function iterates through
 804 * each range in @fv, calling @cb. The callback function can terminate
 805 * iteration early by returning 'true'.
 806 */
 807void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
 808
 809/**
 810 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
 811 *
 812 * @mr: the region, or %NULL if empty
 813 * @fv: the flat view of the address space the region is mapped in
 814 * @offset_within_region: the beginning of the section, relative to @mr's start
 815 * @size: the size of the section; will not exceed @mr's boundaries
 816 * @offset_within_address_space: the address of the first byte of the section
 817 *     relative to the region's address space
 818 * @readonly: writes to this section are ignored
 819 * @nonvolatile: this section is non-volatile
 820 */
 821struct MemoryRegionSection {
 822    Int128 size;
 823    MemoryRegion *mr;
 824    FlatView *fv;
 825    hwaddr offset_within_region;
 826    hwaddr offset_within_address_space;
 827    bool readonly;
 828    bool nonvolatile;
 829};
 830
 831static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
 832                                          MemoryRegionSection *b)
 833{
 834    return a->mr == b->mr &&
 835           a->fv == b->fv &&
 836           a->offset_within_region == b->offset_within_region &&
 837           a->offset_within_address_space == b->offset_within_address_space &&
 838           int128_eq(a->size, b->size) &&
 839           a->readonly == b->readonly &&
 840           a->nonvolatile == b->nonvolatile;
 841}
 842
 843/**
 844 * memory_region_init: Initialize a memory region
 845 *
 846 * The region typically acts as a container for other memory regions.  Use
 847 * memory_region_add_subregion() to add subregions.
 848 *
 849 * @mr: the #MemoryRegion to be initialized
 850 * @owner: the object that tracks the region's reference count
 851 * @name: used for debugging; not visible to the user or ABI
 852 * @size: size of the region; any subregions beyond this size will be clipped
 853 */
 854void memory_region_init(MemoryRegion *mr,
 855                        Object *owner,
 856                        const char *name,
 857                        uint64_t size);
 858
 859/**
 860 * memory_region_ref: Add 1 to a memory region's reference count
 861 *
 862 * Whenever memory regions are accessed outside the BQL, they need to be
 863 * preserved against hot-unplug.  MemoryRegions actually do not have their
 864 * own reference count; they piggyback on a QOM object, their "owner".
 865 * This function adds a reference to the owner.
 866 *
 867 * All MemoryRegions must have an owner if they can disappear, even if the
 868 * device they belong to operates exclusively under the BQL.  This is because
 869 * the region could be returned at any time by memory_region_find, and this
 870 * is usually under guest control.
 871 *
 872 * @mr: the #MemoryRegion
 873 */
 874void memory_region_ref(MemoryRegion *mr);
 875
 876/**
 877 * memory_region_unref: Remove 1 to a memory region's reference count
 878 *
 879 * Whenever memory regions are accessed outside the BQL, they need to be
 880 * preserved against hot-unplug.  MemoryRegions actually do not have their
 881 * own reference count; they piggyback on a QOM object, their "owner".
 882 * This function removes a reference to the owner and possibly destroys it.
 883 *
 884 * @mr: the #MemoryRegion
 885 */
 886void memory_region_unref(MemoryRegion *mr);
 887
 888/**
 889 * memory_region_init_io: Initialize an I/O memory region.
 890 *
 891 * Accesses into the region will cause the callbacks in @ops to be called.
 892 * if @size is nonzero, subregions will be clipped to @size.
 893 *
 894 * @mr: the #MemoryRegion to be initialized.
 895 * @owner: the object that tracks the region's reference count
 896 * @ops: a structure containing read and write callbacks to be used when
 897 *       I/O is performed on the region.
 898 * @opaque: passed to the read and write callbacks of the @ops structure.
 899 * @name: used for debugging; not visible to the user or ABI
 900 * @size: size of the region.
 901 */
 902void memory_region_init_io(MemoryRegion *mr,
 903                           Object *owner,
 904                           const MemoryRegionOps *ops,
 905                           void *opaque,
 906                           const char *name,
 907                           uint64_t size);
 908
 909/**
 910 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
 911 *                                    into the region will modify memory
 912 *                                    directly.
 913 *
 914 * @mr: the #MemoryRegion to be initialized.
 915 * @owner: the object that tracks the region's reference count
 916 * @name: Region name, becomes part of RAMBlock name used in migration stream
 917 *        must be unique within any device
 918 * @size: size of the region.
 919 * @errp: pointer to Error*, to store an error if it happens.
 920 *
 921 * Note that this function does not do anything to cause the data in the
 922 * RAM memory region to be migrated; that is the responsibility of the caller.
 923 */
 924void memory_region_init_ram_nomigrate(MemoryRegion *mr,
 925                                      Object *owner,
 926                                      const char *name,
 927                                      uint64_t size,
 928                                      Error **errp);
 929
 930/**
 931 * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
 932 *                                           Accesses into the region will
 933 *                                           modify memory directly.
 934 *
 935 * @mr: the #MemoryRegion to be initialized.
 936 * @owner: the object that tracks the region's reference count
 937 * @name: Region name, becomes part of RAMBlock name used in migration stream
 938 *        must be unique within any device
 939 * @size: size of the region.
 940 * @share: allow remapping RAM to different addresses
 941 * @errp: pointer to Error*, to store an error if it happens.
 942 *
 943 * Note that this function is similar to memory_region_init_ram_nomigrate.
 944 * The only difference is part of the RAM region can be remapped.
 945 */
 946void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
 947                                             Object *owner,
 948                                             const char *name,
 949                                             uint64_t size,
 950                                             bool share,
 951                                             Error **errp);
 952
 953/**
 954 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 955 *                                     RAM.  Accesses into the region will
 956 *                                     modify memory directly.  Only an initial
 957 *                                     portion of this RAM is actually used.
 958 *                                     The used size can change across reboots.
 959 *
 960 * @mr: the #MemoryRegion to be initialized.
 961 * @owner: the object that tracks the region's reference count
 962 * @name: Region name, becomes part of RAMBlock name used in migration stream
 963 *        must be unique within any device
 964 * @size: used size of the region.
 965 * @max_size: max size of the region.
 966 * @resized: callback to notify owner about used size change.
 967 * @errp: pointer to Error*, to store an error if it happens.
 968 *
 969 * Note that this function does not do anything to cause the data in the
 970 * RAM memory region to be migrated; that is the responsibility of the caller.
 971 */
 972void memory_region_init_resizeable_ram(MemoryRegion *mr,
 973                                       Object *owner,
 974                                       const char *name,
 975                                       uint64_t size,
 976                                       uint64_t max_size,
 977                                       void (*resized)(const char*,
 978                                                       uint64_t length,
 979                                                       void *host),
 980                                       Error **errp);
 981#ifdef CONFIG_POSIX
 982
 983/**
 984 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 985 *                                    mmap-ed backend.
 986 *
 987 * @mr: the #MemoryRegion to be initialized.
 988 * @owner: the object that tracks the region's reference count
 989 * @name: Region name, becomes part of RAMBlock name used in migration stream
 990 *        must be unique within any device
 991 * @size: size of the region.
 992 * @align: alignment of the region base address; if 0, the default alignment
 993 *         (getpagesize()) will be used.
 994 * @ram_flags: Memory region features:
 995 *             - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
 996 *             - RAM_PMEM: the memory is persistent memory
 997 *             Other bits are ignored now.
 998 * @path: the path in which to allocate the RAM.
 999 * @readonly: true to open @path for reading, false for read/write.
1000 * @errp: pointer to Error*, to store an error if it happens.
1001 *
1002 * Note that this function does not do anything to cause the data in the
1003 * RAM memory region to be migrated; that is the responsibility of the caller.
1004 */
1005void memory_region_init_ram_from_file(MemoryRegion *mr,
1006                                      Object *owner,
1007                                      const char *name,
1008                                      uint64_t size,
1009                                      uint64_t align,
1010                                      uint32_t ram_flags,
1011                                      const char *path,
1012                                      bool readonly,
1013                                      Error **errp);
1014
1015/**
1016 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1017 *                                  mmap-ed backend.
1018 *
1019 * @mr: the #MemoryRegion to be initialized.
1020 * @owner: the object that tracks the region's reference count
1021 * @name: the name of the region.
1022 * @size: size of the region.
1023 * @share: %true if memory must be mmaped with the MAP_SHARED flag
1024 * @fd: the fd to mmap.
1025 * @offset: offset within the file referenced by fd
1026 * @errp: pointer to Error*, to store an error if it happens.
1027 *
1028 * Note that this function does not do anything to cause the data in the
1029 * RAM memory region to be migrated; that is the responsibility of the caller.
1030 */
1031void memory_region_init_ram_from_fd(MemoryRegion *mr,
1032                                    Object *owner,
1033                                    const char *name,
1034                                    uint64_t size,
1035                                    bool share,
1036                                    int fd,
1037                                    ram_addr_t offset,
1038                                    Error **errp);
1039#endif
1040
1041/**
1042 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1043 *                              user-provided pointer.  Accesses into the
1044 *                              region will modify memory directly.
1045 *
1046 * @mr: the #MemoryRegion to be initialized.
1047 * @owner: the object that tracks the region's reference count
1048 * @name: Region name, becomes part of RAMBlock name used in migration stream
1049 *        must be unique within any device
1050 * @size: size of the region.
1051 * @ptr: memory to be mapped; must contain at least @size bytes.
1052 *
1053 * Note that this function does not do anything to cause the data in the
1054 * RAM memory region to be migrated; that is the responsibility of the caller.
1055 */
1056void memory_region_init_ram_ptr(MemoryRegion *mr,
1057                                Object *owner,
1058                                const char *name,
1059                                uint64_t size,
1060                                void *ptr);
1061
1062/**
1063 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1064 *                                     a user-provided pointer.
1065 *
1066 * A RAM device represents a mapping to a physical device, such as to a PCI
1067 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1068 * into the VM address space and access to the region will modify memory
1069 * directly.  However, the memory region should not be included in a memory
1070 * dump (device may not be enabled/mapped at the time of the dump), and
1071 * operations incompatible with manipulating MMIO should be avoided.  Replaces
1072 * skip_dump flag.
1073 *
1074 * @mr: the #MemoryRegion to be initialized.
1075 * @owner: the object that tracks the region's reference count
1076 * @name: the name of the region.
1077 * @size: size of the region.
1078 * @ptr: memory to be mapped; must contain at least @size bytes.
1079 *
1080 * Note that this function does not do anything to cause the data in the
1081 * RAM memory region to be migrated; that is the responsibility of the caller.
1082 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1083 */
1084void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1085                                       Object *owner,
1086                                       const char *name,
1087                                       uint64_t size,
1088                                       void *ptr);
1089
1090/**
1091 * memory_region_init_alias: Initialize a memory region that aliases all or a
1092 *                           part of another memory region.
1093 *
1094 * @mr: the #MemoryRegion to be initialized.
1095 * @owner: the object that tracks the region's reference count
1096 * @name: used for debugging; not visible to the user or ABI
1097 * @orig: the region to be referenced; @mr will be equivalent to
1098 *        @orig between @offset and @offset + @size - 1.
1099 * @offset: start of the section in @orig to be referenced.
1100 * @size: size of the region.
1101 */
1102void memory_region_init_alias(MemoryRegion *mr,
1103                              Object *owner,
1104                              const char *name,
1105                              MemoryRegion *orig,
1106                              hwaddr offset,
1107                              uint64_t size);
1108
1109/**
1110 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1111 *
1112 * This has the same effect as calling memory_region_init_ram_nomigrate()
1113 * and then marking the resulting region read-only with
1114 * memory_region_set_readonly().
1115 *
1116 * Note that this function does not do anything to cause the data in the
1117 * RAM side of the memory region to be migrated; that is the responsibility
1118 * of the caller.
1119 *
1120 * @mr: the #MemoryRegion to be initialized.
1121 * @owner: the object that tracks the region's reference count
1122 * @name: Region name, becomes part of RAMBlock name used in migration stream
1123 *        must be unique within any device
1124 * @size: size of the region.
1125 * @errp: pointer to Error*, to store an error if it happens.
1126 */
1127void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1128                                      Object *owner,
1129                                      const char *name,
1130                                      uint64_t size,
1131                                      Error **errp);
1132
1133/**
1134 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1135 *                                 Writes are handled via callbacks.
1136 *
1137 * Note that this function does not do anything to cause the data in the
1138 * RAM side of the memory region to be migrated; that is the responsibility
1139 * of the caller.
1140 *
1141 * @mr: the #MemoryRegion to be initialized.
1142 * @owner: the object that tracks the region's reference count
1143 * @ops: callbacks for write access handling (must not be NULL).
1144 * @opaque: passed to the read and write callbacks of the @ops structure.
1145 * @name: Region name, becomes part of RAMBlock name used in migration stream
1146 *        must be unique within any device
1147 * @size: size of the region.
1148 * @errp: pointer to Error*, to store an error if it happens.
1149 */
1150void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1151                                             Object *owner,
1152                                             const MemoryRegionOps *ops,
1153                                             void *opaque,
1154                                             const char *name,
1155                                             uint64_t size,
1156                                             Error **errp);
1157
1158/**
1159 * memory_region_init_iommu: Initialize a memory region of a custom type
1160 * that translates addresses
1161 *
1162 * An IOMMU region translates addresses and forwards accesses to a target
1163 * memory region.
1164 *
1165 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1166 * @_iommu_mr should be a pointer to enough memory for an instance of
1167 * that subclass, @instance_size is the size of that subclass, and
1168 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1169 * instance of the subclass, and its methods will then be called to handle
1170 * accesses to the memory region. See the documentation of
1171 * #IOMMUMemoryRegionClass for further details.
1172 *
1173 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1174 * @instance_size: the IOMMUMemoryRegion subclass instance size
1175 * @mrtypename: the type name of the #IOMMUMemoryRegion
1176 * @owner: the object that tracks the region's reference count
1177 * @name: used for debugging; not visible to the user or ABI
1178 * @size: size of the region.
1179 */
1180void memory_region_init_iommu(void *_iommu_mr,
1181                              size_t instance_size,
1182                              const char *mrtypename,
1183                              Object *owner,
1184                              const char *name,
1185                              uint64_t size);
1186
1187/**
1188 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1189 *                          region will modify memory directly.
1190 *
1191 * @mr: the #MemoryRegion to be initialized
1192 * @owner: the object that tracks the region's reference count (must be
1193 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1194 * @name: name of the memory region
1195 * @size: size of the region in bytes
1196 * @errp: pointer to Error*, to store an error if it happens.
1197 *
1198 * This function allocates RAM for a board model or device, and
1199 * arranges for it to be migrated (by calling vmstate_register_ram()
1200 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1201 * @owner is NULL).
1202 *
1203 * TODO: Currently we restrict @owner to being either NULL (for
1204 * global RAM regions with no owner) or devices, so that we can
1205 * give the RAM block a unique name for migration purposes.
1206 * We should lift this restriction and allow arbitrary Objects.
1207 * If you pass a non-NULL non-device @owner then we will assert.
1208 */
1209void memory_region_init_ram(MemoryRegion *mr,
1210                            Object *owner,
1211                            const char *name,
1212                            uint64_t size,
1213                            Error **errp);
1214
1215/**
1216 * memory_region_init_rom: Initialize a ROM memory region.
1217 *
1218 * This has the same effect as calling memory_region_init_ram()
1219 * and then marking the resulting region read-only with
1220 * memory_region_set_readonly(). This includes arranging for the
1221 * contents to be migrated.
1222 *
1223 * TODO: Currently we restrict @owner to being either NULL (for
1224 * global RAM regions with no owner) or devices, so that we can
1225 * give the RAM block a unique name for migration purposes.
1226 * We should lift this restriction and allow arbitrary Objects.
1227 * If you pass a non-NULL non-device @owner then we will assert.
1228 *
1229 * @mr: the #MemoryRegion to be initialized.
1230 * @owner: the object that tracks the region's reference count
1231 * @name: Region name, becomes part of RAMBlock name used in migration stream
1232 *        must be unique within any device
1233 * @size: size of the region.
1234 * @errp: pointer to Error*, to store an error if it happens.
1235 */
1236void memory_region_init_rom(MemoryRegion *mr,
1237                            Object *owner,
1238                            const char *name,
1239                            uint64_t size,
1240                            Error **errp);
1241
1242/**
1243 * memory_region_init_rom_device:  Initialize a ROM memory region.
1244 *                                 Writes are handled via callbacks.
1245 *
1246 * This function initializes a memory region backed by RAM for reads
1247 * and callbacks for writes, and arranges for the RAM backing to
1248 * be migrated (by calling vmstate_register_ram()
1249 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1250 * @owner is NULL).
1251 *
1252 * TODO: Currently we restrict @owner to being either NULL (for
1253 * global RAM regions with no owner) or devices, so that we can
1254 * give the RAM block a unique name for migration purposes.
1255 * We should lift this restriction and allow arbitrary Objects.
1256 * If you pass a non-NULL non-device @owner then we will assert.
1257 *
1258 * @mr: the #MemoryRegion to be initialized.
1259 * @owner: the object that tracks the region's reference count
1260 * @ops: callbacks for write access handling (must not be NULL).
1261 * @opaque: passed to the read and write callbacks of the @ops structure.
1262 * @name: Region name, becomes part of RAMBlock name used in migration stream
1263 *        must be unique within any device
1264 * @size: size of the region.
1265 * @errp: pointer to Error*, to store an error if it happens.
1266 */
1267void memory_region_init_rom_device(MemoryRegion *mr,
1268                                   Object *owner,
1269                                   const MemoryRegionOps *ops,
1270                                   void *opaque,
1271                                   const char *name,
1272                                   uint64_t size,
1273                                   Error **errp);
1274
1275
1276/**
1277 * memory_region_owner: get a memory region's owner.
1278 *
1279 * @mr: the memory region being queried.
1280 */
1281Object *memory_region_owner(MemoryRegion *mr);
1282
1283/**
1284 * memory_region_size: get a memory region's size.
1285 *
1286 * @mr: the memory region being queried.
1287 */
1288uint64_t memory_region_size(MemoryRegion *mr);
1289
1290/**
1291 * memory_region_is_ram: check whether a memory region is random access
1292 *
1293 * Returns %true if a memory region is random access.
1294 *
1295 * @mr: the memory region being queried
1296 */
1297static inline bool memory_region_is_ram(MemoryRegion *mr)
1298{
1299    return mr->ram;
1300}
1301
1302/**
1303 * memory_region_is_ram_device: check whether a memory region is a ram device
1304 *
1305 * Returns %true if a memory region is a device backed ram region
1306 *
1307 * @mr: the memory region being queried
1308 */
1309bool memory_region_is_ram_device(MemoryRegion *mr);
1310
1311/**
1312 * memory_region_is_romd: check whether a memory region is in ROMD mode
1313 *
1314 * Returns %true if a memory region is a ROM device and currently set to allow
1315 * direct reads.
1316 *
1317 * @mr: the memory region being queried
1318 */
1319static inline bool memory_region_is_romd(MemoryRegion *mr)
1320{
1321    return mr->rom_device && mr->romd_mode;
1322}
1323
1324/**
1325 * memory_region_get_iommu: check whether a memory region is an iommu
1326 *
1327 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1328 * otherwise NULL.
1329 *
1330 * @mr: the memory region being queried
1331 */
1332static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1333{
1334    if (mr->alias) {
1335        return memory_region_get_iommu(mr->alias);
1336    }
1337    if (mr->is_iommu) {
1338        return (IOMMUMemoryRegion *) mr;
1339    }
1340    return NULL;
1341}
1342
1343/**
1344 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1345 *   if an iommu or NULL if not
1346 *
1347 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1348 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1349 *
1350 * @iommu_mr: the memory region being queried
1351 */
1352static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1353        IOMMUMemoryRegion *iommu_mr)
1354{
1355    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1356}
1357
1358#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1359
1360/**
1361 * memory_region_iommu_get_min_page_size: get minimum supported page size
1362 * for an iommu
1363 *
1364 * Returns minimum supported page size for an iommu.
1365 *
1366 * @iommu_mr: the memory region being queried
1367 */
1368uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1369
1370/**
1371 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1372 *
1373 * Note: for any IOMMU implementation, an in-place mapping change
1374 * should be notified with an UNMAP followed by a MAP.
1375 *
1376 * @iommu_mr: the memory region that was changed
1377 * @iommu_idx: the IOMMU index for the translation table which has changed
1378 * @event: TLB event with the new entry in the IOMMU translation table.
1379 *         The entry replaces all old entries for the same virtual I/O address
1380 *         range.
1381 */
1382void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1383                                int iommu_idx,
1384                                IOMMUTLBEvent event);
1385
1386/**
1387 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1388 *                           entry to a single notifier
1389 *
1390 * This works just like memory_region_notify_iommu(), but it only
1391 * notifies a specific notifier, not all of them.
1392 *
1393 * @notifier: the notifier to be notified
1394 * @event: TLB event with the new entry in the IOMMU translation table.
1395 *         The entry replaces all old entries for the same virtual I/O address
1396 *         range.
1397 */
1398void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1399                                    IOMMUTLBEvent *event);
1400
1401/**
1402 * memory_region_register_iommu_notifier: register a notifier for changes to
1403 * IOMMU translation entries.
1404 *
1405 * Returns 0 on success, or a negative errno otherwise. In particular,
1406 * -EINVAL indicates that at least one of the attributes of the notifier
1407 * is not supported (flag/range) by the IOMMU memory region. In case of error
1408 * the error object must be created.
1409 *
1410 * @mr: the memory region to observe
1411 * @n: the IOMMUNotifier to be added; the notify callback receives a
1412 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1413 *     ceases to be valid on exit from the notifier.
1414 * @errp: pointer to Error*, to store an error if it happens.
1415 */
1416int memory_region_register_iommu_notifier(MemoryRegion *mr,
1417                                          IOMMUNotifier *n, Error **errp);
1418
1419/**
1420 * memory_region_iommu_replay: replay existing IOMMU translations to
1421 * a notifier with the minimum page granularity returned by
1422 * mr->iommu_ops->get_page_size().
1423 *
1424 * Note: this is not related to record-and-replay functionality.
1425 *
1426 * @iommu_mr: the memory region to observe
1427 * @n: the notifier to which to replay iommu mappings
1428 */
1429void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1430
1431/**
1432 * memory_region_unregister_iommu_notifier: unregister a notifier for
1433 * changes to IOMMU translation entries.
1434 *
1435 * @mr: the memory region which was observed and for which notity_stopped()
1436 *      needs to be called
1437 * @n: the notifier to be removed.
1438 */
1439void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1440                                             IOMMUNotifier *n);
1441
1442/**
1443 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1444 * defined on the IOMMU.
1445 *
1446 * Returns 0 on success, or a negative errno otherwise. In particular,
1447 * -EINVAL indicates that the IOMMU does not support the requested
1448 * attribute.
1449 *
1450 * @iommu_mr: the memory region
1451 * @attr: the requested attribute
1452 * @data: a pointer to the requested attribute data
1453 */
1454int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1455                                 enum IOMMUMemoryRegionAttr attr,
1456                                 void *data);
1457
1458/**
1459 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1460 * use for translations with the given memory transaction attributes.
1461 *
1462 * @iommu_mr: the memory region
1463 * @attrs: the memory transaction attributes
1464 */
1465int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1466                                       MemTxAttrs attrs);
1467
1468/**
1469 * memory_region_iommu_num_indexes: return the total number of IOMMU
1470 * indexes that this IOMMU supports.
1471 *
1472 * @iommu_mr: the memory region
1473 */
1474int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1475
1476/**
1477 * memory_region_iommu_set_page_size_mask: set the supported page
1478 * sizes for a given IOMMU memory region
1479 *
1480 * @iommu_mr: IOMMU memory region
1481 * @page_size_mask: supported page size mask
1482 * @errp: pointer to Error*, to store an error if it happens.
1483 */
1484int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1485                                           uint64_t page_size_mask,
1486                                           Error **errp);
1487
1488/**
1489 * memory_region_name: get a memory region's name
1490 *
1491 * Returns the string that was used to initialize the memory region.
1492 *
1493 * @mr: the memory region being queried
1494 */
1495const char *memory_region_name(const MemoryRegion *mr);
1496
1497/**
1498 * memory_region_is_logging: return whether a memory region is logging writes
1499 *
1500 * Returns %true if the memory region is logging writes for the given client
1501 *
1502 * @mr: the memory region being queried
1503 * @client: the client being queried
1504 */
1505bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1506
1507/**
1508 * memory_region_get_dirty_log_mask: return the clients for which a
1509 * memory region is logging writes.
1510 *
1511 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1512 * are the bit indices.
1513 *
1514 * @mr: the memory region being queried
1515 */
1516uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1517
1518/**
1519 * memory_region_is_rom: check whether a memory region is ROM
1520 *
1521 * Returns %true if a memory region is read-only memory.
1522 *
1523 * @mr: the memory region being queried
1524 */
1525static inline bool memory_region_is_rom(MemoryRegion *mr)
1526{
1527    return mr->ram && mr->readonly;
1528}
1529
1530/**
1531 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1532 *
1533 * Returns %true is a memory region is non-volatile memory.
1534 *
1535 * @mr: the memory region being queried
1536 */
1537static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1538{
1539    return mr->nonvolatile;
1540}
1541
1542/**
1543 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1544 *
1545 * Returns a file descriptor backing a file-based RAM memory region,
1546 * or -1 if the region is not a file-based RAM memory region.
1547 *
1548 * @mr: the RAM or alias memory region being queried.
1549 */
1550int memory_region_get_fd(MemoryRegion *mr);
1551
1552/**
1553 * memory_region_from_host: Convert a pointer into a RAM memory region
1554 * and an offset within it.
1555 *
1556 * Given a host pointer inside a RAM memory region (created with
1557 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1558 * the MemoryRegion and the offset within it.
1559 *
1560 * Use with care; by the time this function returns, the returned pointer is
1561 * not protected by RCU anymore.  If the caller is not within an RCU critical
1562 * section and does not hold the iothread lock, it must have other means of
1563 * protecting the pointer, such as a reference to the region that includes
1564 * the incoming ram_addr_t.
1565 *
1566 * @ptr: the host pointer to be converted
1567 * @offset: the offset within memory region
1568 */
1569MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1570
1571/**
1572 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1573 *
1574 * Returns a host pointer to a RAM memory region (created with
1575 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1576 *
1577 * Use with care; by the time this function returns, the returned pointer is
1578 * not protected by RCU anymore.  If the caller is not within an RCU critical
1579 * section and does not hold the iothread lock, it must have other means of
1580 * protecting the pointer, such as a reference to the region that includes
1581 * the incoming ram_addr_t.
1582 *
1583 * @mr: the memory region being queried.
1584 */
1585void *memory_region_get_ram_ptr(MemoryRegion *mr);
1586
1587/* memory_region_ram_resize: Resize a RAM region.
1588 *
1589 * Only legal before guest might have detected the memory size: e.g. on
1590 * incoming migration, or right after reset.
1591 *
1592 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1593 * @newsize: the new size the region
1594 * @errp: pointer to Error*, to store an error if it happens.
1595 */
1596void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1597                              Error **errp);
1598
1599/**
1600 * memory_region_msync: Synchronize selected address range of
1601 * a memory mapped region
1602 *
1603 * @mr: the memory region to be msync
1604 * @addr: the initial address of the range to be sync
1605 * @size: the size of the range to be sync
1606 */
1607void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1608
1609/**
1610 * memory_region_writeback: Trigger cache writeback for
1611 * selected address range
1612 *
1613 * @mr: the memory region to be updated
1614 * @addr: the initial address of the range to be written back
1615 * @size: the size of the range to be written back
1616 */
1617void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1618
1619/**
1620 * memory_region_set_log: Turn dirty logging on or off for a region.
1621 *
1622 * Turns dirty logging on or off for a specified client (display, migration).
1623 * Only meaningful for RAM regions.
1624 *
1625 * @mr: the memory region being updated.
1626 * @log: whether dirty logging is to be enabled or disabled.
1627 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1628 */
1629void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1630
1631/**
1632 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1633 *
1634 * Marks a range of bytes as dirty, after it has been dirtied outside
1635 * guest code.
1636 *
1637 * @mr: the memory region being dirtied.
1638 * @addr: the address (relative to the start of the region) being dirtied.
1639 * @size: size of the range being dirtied.
1640 */
1641void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1642                             hwaddr size);
1643
1644/**
1645 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1646 *
1647 * This function is called when the caller wants to clear the remote
1648 * dirty bitmap of a memory range within the memory region.  This can
1649 * be used by e.g. KVM to manually clear dirty log when
1650 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1651 * kernel.
1652 *
1653 * @mr:     the memory region to clear the dirty log upon
1654 * @start:  start address offset within the memory region
1655 * @len:    length of the memory region to clear dirty bitmap
1656 */
1657void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1658                                      hwaddr len);
1659
1660/**
1661 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1662 *                                         bitmap and clear it.
1663 *
1664 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1665 * returns the snapshot.  The snapshot can then be used to query dirty
1666 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1667 * querying the same page multiple times, which is especially useful for
1668 * display updates where the scanlines often are not page aligned.
1669 *
1670 * The dirty bitmap region which gets copyed into the snapshot (and
1671 * cleared afterwards) can be larger than requested.  The boundaries
1672 * are rounded up/down so complete bitmap longs (covering 64 pages on
1673 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1674 * isn't a problem for display updates as the extra pages are outside
1675 * the visible area, and in case the visible area changes a full
1676 * display redraw is due anyway.  Should other use cases for this
1677 * function emerge we might have to revisit this implementation
1678 * detail.
1679 *
1680 * Use g_free to release DirtyBitmapSnapshot.
1681 *
1682 * @mr: the memory region being queried.
1683 * @addr: the address (relative to the start of the region) being queried.
1684 * @size: the size of the range being queried.
1685 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1686 */
1687DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1688                                                            hwaddr addr,
1689                                                            hwaddr size,
1690                                                            unsigned client);
1691
1692/**
1693 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1694 *                                   in the specified dirty bitmap snapshot.
1695 *
1696 * @mr: the memory region being queried.
1697 * @snap: the dirty bitmap snapshot
1698 * @addr: the address (relative to the start of the region) being queried.
1699 * @size: the size of the range being queried.
1700 */
1701bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1702                                      DirtyBitmapSnapshot *snap,
1703                                      hwaddr addr, hwaddr size);
1704
1705/**
1706 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1707 *                            client.
1708 *
1709 * Marks a range of pages as no longer dirty.
1710 *
1711 * @mr: the region being updated.
1712 * @addr: the start of the subrange being cleaned.
1713 * @size: the size of the subrange being cleaned.
1714 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1715 *          %DIRTY_MEMORY_VGA.
1716 */
1717void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1718                               hwaddr size, unsigned client);
1719
1720/**
1721 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1722 *                                 TBs (for self-modifying code).
1723 *
1724 * The MemoryRegionOps->write() callback of a ROM device must use this function
1725 * to mark byte ranges that have been modified internally, such as by directly
1726 * accessing the memory returned by memory_region_get_ram_ptr().
1727 *
1728 * This function marks the range dirty and invalidates TBs so that TCG can
1729 * detect self-modifying code.
1730 *
1731 * @mr: the region being flushed.
1732 * @addr: the start, relative to the start of the region, of the range being
1733 *        flushed.
1734 * @size: the size, in bytes, of the range being flushed.
1735 */
1736void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1737
1738/**
1739 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1740 *
1741 * Allows a memory region to be marked as read-only (turning it into a ROM).
1742 * only useful on RAM regions.
1743 *
1744 * @mr: the region being updated.
1745 * @readonly: whether rhe region is to be ROM or RAM.
1746 */
1747void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1748
1749/**
1750 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1751 *
1752 * Allows a memory region to be marked as non-volatile.
1753 * only useful on RAM regions.
1754 *
1755 * @mr: the region being updated.
1756 * @nonvolatile: whether rhe region is to be non-volatile.
1757 */
1758void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1759
1760/**
1761 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1762 *
1763 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1764 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1765 * device is mapped to guest memory and satisfies read access directly.
1766 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1767 * Writes are always handled by the #MemoryRegion.write function.
1768 *
1769 * @mr: the memory region to be updated
1770 * @romd_mode: %true to put the region into ROMD mode
1771 */
1772void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1773
1774/**
1775 * memory_region_set_coalescing: Enable memory coalescing for the region.
1776 *
1777 * Enabled writes to a region to be queued for later processing. MMIO ->write
1778 * callbacks may be delayed until a non-coalesced MMIO is issued.
1779 * Only useful for IO regions.  Roughly similar to write-combining hardware.
1780 *
1781 * @mr: the memory region to be write coalesced
1782 */
1783void memory_region_set_coalescing(MemoryRegion *mr);
1784
1785/**
1786 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1787 *                               a region.
1788 *
1789 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1790 * Multiple calls can be issued coalesced disjoint ranges.
1791 *
1792 * @mr: the memory region to be updated.
1793 * @offset: the start of the range within the region to be coalesced.
1794 * @size: the size of the subrange to be coalesced.
1795 */
1796void memory_region_add_coalescing(MemoryRegion *mr,
1797                                  hwaddr offset,
1798                                  uint64_t size);
1799
1800/**
1801 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1802 *
1803 * Disables any coalescing caused by memory_region_set_coalescing() or
1804 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1805 * hardware.
1806 *
1807 * @mr: the memory region to be updated.
1808 */
1809void memory_region_clear_coalescing(MemoryRegion *mr);
1810
1811/**
1812 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1813 *                                    accesses.
1814 *
1815 * Ensure that pending coalesced MMIO request are flushed before the memory
1816 * region is accessed. This property is automatically enabled for all regions
1817 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1818 *
1819 * @mr: the memory region to be updated.
1820 */
1821void memory_region_set_flush_coalesced(MemoryRegion *mr);
1822
1823/**
1824 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1825 *                                      accesses.
1826 *
1827 * Clear the automatic coalesced MMIO flushing enabled via
1828 * memory_region_set_flush_coalesced. Note that this service has no effect on
1829 * memory regions that have MMIO coalescing enabled for themselves. For them,
1830 * automatic flushing will stop once coalescing is disabled.
1831 *
1832 * @mr: the memory region to be updated.
1833 */
1834void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1835
1836/**
1837 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1838 *                            is written to a location.
1839 *
1840 * Marks a word in an IO region (initialized with memory_region_init_io())
1841 * as a trigger for an eventfd event.  The I/O callback will not be called.
1842 * The caller must be prepared to handle failure (that is, take the required
1843 * action if the callback _is_ called).
1844 *
1845 * @mr: the memory region being updated.
1846 * @addr: the address within @mr that is to be monitored
1847 * @size: the size of the access to trigger the eventfd
1848 * @match_data: whether to match against @data, instead of just @addr
1849 * @data: the data to match against the guest write
1850 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1851 **/
1852void memory_region_add_eventfd(MemoryRegion *mr,
1853                               hwaddr addr,
1854                               unsigned size,
1855                               bool match_data,
1856                               uint64_t data,
1857                               EventNotifier *e);
1858
1859/**
1860 * memory_region_del_eventfd: Cancel an eventfd.
1861 *
1862 * Cancels an eventfd trigger requested by a previous
1863 * memory_region_add_eventfd() call.
1864 *
1865 * @mr: the memory region being updated.
1866 * @addr: the address within @mr that is to be monitored
1867 * @size: the size of the access to trigger the eventfd
1868 * @match_data: whether to match against @data, instead of just @addr
1869 * @data: the data to match against the guest write
1870 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1871 */
1872void memory_region_del_eventfd(MemoryRegion *mr,
1873                               hwaddr addr,
1874                               unsigned size,
1875                               bool match_data,
1876                               uint64_t data,
1877                               EventNotifier *e);
1878
1879/**
1880 * memory_region_add_subregion: Add a subregion to a container.
1881 *
1882 * Adds a subregion at @offset.  The subregion may not overlap with other
1883 * subregions (except for those explicitly marked as overlapping).  A region
1884 * may only be added once as a subregion (unless removed with
1885 * memory_region_del_subregion()); use memory_region_init_alias() if you
1886 * want a region to be a subregion in multiple locations.
1887 *
1888 * @mr: the region to contain the new subregion; must be a container
1889 *      initialized with memory_region_init().
1890 * @offset: the offset relative to @mr where @subregion is added.
1891 * @subregion: the subregion to be added.
1892 */
1893void memory_region_add_subregion(MemoryRegion *mr,
1894                                 hwaddr offset,
1895                                 MemoryRegion *subregion);
1896/**
1897 * memory_region_add_subregion_overlap: Add a subregion to a container
1898 *                                      with overlap.
1899 *
1900 * Adds a subregion at @offset.  The subregion may overlap with other
1901 * subregions.  Conflicts are resolved by having a higher @priority hide a
1902 * lower @priority. Subregions without priority are taken as @priority 0.
1903 * A region may only be added once as a subregion (unless removed with
1904 * memory_region_del_subregion()); use memory_region_init_alias() if you
1905 * want a region to be a subregion in multiple locations.
1906 *
1907 * @mr: the region to contain the new subregion; must be a container
1908 *      initialized with memory_region_init().
1909 * @offset: the offset relative to @mr where @subregion is added.
1910 * @subregion: the subregion to be added.
1911 * @priority: used for resolving overlaps; highest priority wins.
1912 */
1913void memory_region_add_subregion_overlap(MemoryRegion *mr,
1914                                         hwaddr offset,
1915                                         MemoryRegion *subregion,
1916                                         int priority);
1917
1918/**
1919 * memory_region_get_ram_addr: Get the ram address associated with a memory
1920 *                             region
1921 *
1922 * @mr: the region to be queried
1923 */
1924ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1925
1926uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1927/**
1928 * memory_region_del_subregion: Remove a subregion.
1929 *
1930 * Removes a subregion from its container.
1931 *
1932 * @mr: the container to be updated.
1933 * @subregion: the region being removed; must be a current subregion of @mr.
1934 */
1935void memory_region_del_subregion(MemoryRegion *mr,
1936                                 MemoryRegion *subregion);
1937
1938/*
1939 * memory_region_set_enabled: dynamically enable or disable a region
1940 *
1941 * Enables or disables a memory region.  A disabled memory region
1942 * ignores all accesses to itself and its subregions.  It does not
1943 * obscure sibling subregions with lower priority - it simply behaves as
1944 * if it was removed from the hierarchy.
1945 *
1946 * Regions default to being enabled.
1947 *
1948 * @mr: the region to be updated
1949 * @enabled: whether to enable or disable the region
1950 */
1951void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1952
1953/*
1954 * memory_region_set_address: dynamically update the address of a region
1955 *
1956 * Dynamically updates the address of a region, relative to its container.
1957 * May be used on regions are currently part of a memory hierarchy.
1958 *
1959 * @mr: the region to be updated
1960 * @addr: new address, relative to container region
1961 */
1962void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1963
1964/*
1965 * memory_region_set_size: dynamically update the size of a region.
1966 *
1967 * Dynamically updates the size of a region.
1968 *
1969 * @mr: the region to be updated
1970 * @size: used size of the region.
1971 */
1972void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1973
1974/*
1975 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1976 *
1977 * Dynamically updates the offset into the target region that an alias points
1978 * to, as if the fourth argument to memory_region_init_alias() has changed.
1979 *
1980 * @mr: the #MemoryRegion to be updated; should be an alias.
1981 * @offset: the new offset into the target memory region
1982 */
1983void memory_region_set_alias_offset(MemoryRegion *mr,
1984                                    hwaddr offset);
1985
1986/**
1987 * memory_region_present: checks if an address relative to a @container
1988 * translates into #MemoryRegion within @container
1989 *
1990 * Answer whether a #MemoryRegion within @container covers the address
1991 * @addr.
1992 *
1993 * @container: a #MemoryRegion within which @addr is a relative address
1994 * @addr: the area within @container to be searched
1995 */
1996bool memory_region_present(MemoryRegion *container, hwaddr addr);
1997
1998/**
1999 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2000 * into any address space.
2001 *
2002 * @mr: a #MemoryRegion which should be checked if it's mapped
2003 */
2004bool memory_region_is_mapped(MemoryRegion *mr);
2005
2006/**
2007 * memory_region_find: translate an address/size relative to a
2008 * MemoryRegion into a #MemoryRegionSection.
2009 *
2010 * Locates the first #MemoryRegion within @mr that overlaps the range
2011 * given by @addr and @size.
2012 *
2013 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2014 * It will have the following characteristics:
2015 * - @size = 0 iff no overlap was found
2016 * - @mr is non-%NULL iff an overlap was found
2017 *
2018 * Remember that in the return value the @offset_within_region is
2019 * relative to the returned region (in the .@mr field), not to the
2020 * @mr argument.
2021 *
2022 * Similarly, the .@offset_within_address_space is relative to the
2023 * address space that contains both regions, the passed and the
2024 * returned one.  However, in the special case where the @mr argument
2025 * has no container (and thus is the root of the address space), the
2026 * following will hold:
2027 * - @offset_within_address_space >= @addr
2028 * - @offset_within_address_space + .@size <= @addr + @size
2029 *
2030 * @mr: a MemoryRegion within which @addr is a relative address
2031 * @addr: start of the area within @as to be searched
2032 * @size: size of the area to be searched
2033 */
2034MemoryRegionSection memory_region_find(MemoryRegion *mr,
2035                                       hwaddr addr, uint64_t size);
2036
2037/**
2038 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2039 *
2040 * Synchronizes the dirty page log for all address spaces.
2041 */
2042void memory_global_dirty_log_sync(void);
2043
2044/**
2045 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2046 *
2047 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2048 * This function must be called after the dirty log bitmap is cleared, and
2049 * before dirty guest memory pages are read.  If you are using
2050 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2051 * care of doing this.
2052 */
2053void memory_global_after_dirty_log_sync(void);
2054
2055/**
2056 * memory_region_transaction_begin: Start a transaction.
2057 *
2058 * During a transaction, changes will be accumulated and made visible
2059 * only when the transaction ends (is committed).
2060 */
2061void memory_region_transaction_begin(void);
2062
2063/**
2064 * memory_region_transaction_commit: Commit a transaction and make changes
2065 *                                   visible to the guest.
2066 */
2067void memory_region_transaction_commit(void);
2068
2069/**
2070 * memory_listener_register: register callbacks to be called when memory
2071 *                           sections are mapped or unmapped into an address
2072 *                           space
2073 *
2074 * @listener: an object containing the callbacks to be called
2075 * @filter: if non-%NULL, only regions in this address space will be observed
2076 */
2077void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2078
2079/**
2080 * memory_listener_unregister: undo the effect of memory_listener_register()
2081 *
2082 * @listener: an object containing the callbacks to be removed
2083 */
2084void memory_listener_unregister(MemoryListener *listener);
2085
2086/**
2087 * memory_global_dirty_log_start: begin dirty logging for all regions
2088 */
2089void memory_global_dirty_log_start(void);
2090
2091/**
2092 * memory_global_dirty_log_stop: end dirty logging for all regions
2093 */
2094void memory_global_dirty_log_stop(void);
2095
2096void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2097
2098/**
2099 * memory_region_dispatch_read: perform a read directly to the specified
2100 * MemoryRegion.
2101 *
2102 * @mr: #MemoryRegion to access
2103 * @addr: address within that region
2104 * @pval: pointer to uint64_t which the data is written to
2105 * @op: size, sign, and endianness of the memory operation
2106 * @attrs: memory transaction attributes to use for the access
2107 */
2108MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2109                                        hwaddr addr,
2110                                        uint64_t *pval,
2111                                        MemOp op,
2112                                        MemTxAttrs attrs);
2113/**
2114 * memory_region_dispatch_write: perform a write directly to the specified
2115 * MemoryRegion.
2116 *
2117 * @mr: #MemoryRegion to access
2118 * @addr: address within that region
2119 * @data: data to write
2120 * @op: size, sign, and endianness of the memory operation
2121 * @attrs: memory transaction attributes to use for the access
2122 */
2123MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2124                                         hwaddr addr,
2125                                         uint64_t data,
2126                                         MemOp op,
2127                                         MemTxAttrs attrs);
2128
2129/**
2130 * address_space_init: initializes an address space
2131 *
2132 * @as: an uninitialized #AddressSpace
2133 * @root: a #MemoryRegion that routes addresses for the address space
2134 * @name: an address space name.  The name is only used for debugging
2135 *        output.
2136 */
2137void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2138
2139/**
2140 * address_space_destroy: destroy an address space
2141 *
2142 * Releases all resources associated with an address space.  After an address space
2143 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2144 * as well.
2145 *
2146 * @as: address space to be destroyed
2147 */
2148void address_space_destroy(AddressSpace *as);
2149
2150/**
2151 * address_space_remove_listeners: unregister all listeners of an address space
2152 *
2153 * Removes all callbacks previously registered with memory_listener_register()
2154 * for @as.
2155 *
2156 * @as: an initialized #AddressSpace
2157 */
2158void address_space_remove_listeners(AddressSpace *as);
2159
2160/**
2161 * address_space_rw: read from or write to an address space.
2162 *
2163 * Return a MemTxResult indicating whether the operation succeeded
2164 * or failed (eg unassigned memory, device rejected the transaction,
2165 * IOMMU fault).
2166 *
2167 * @as: #AddressSpace to be accessed
2168 * @addr: address within that address space
2169 * @attrs: memory transaction attributes
2170 * @buf: buffer with the data transferred
2171 * @len: the number of bytes to read or write
2172 * @is_write: indicates the transfer direction
2173 */
2174MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2175                             MemTxAttrs attrs, void *buf,
2176                             hwaddr len, bool is_write);
2177
2178/**
2179 * address_space_write: write to address space.
2180 *
2181 * Return a MemTxResult indicating whether the operation succeeded
2182 * or failed (eg unassigned memory, device rejected the transaction,
2183 * IOMMU fault).
2184 *
2185 * @as: #AddressSpace to be accessed
2186 * @addr: address within that address space
2187 * @attrs: memory transaction attributes
2188 * @buf: buffer with the data transferred
2189 * @len: the number of bytes to write
2190 */
2191MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2192                                MemTxAttrs attrs,
2193                                const void *buf, hwaddr len);
2194
2195/**
2196 * address_space_write_rom: write to address space, including ROM.
2197 *
2198 * This function writes to the specified address space, but will
2199 * write data to both ROM and RAM. This is used for non-guest
2200 * writes like writes from the gdb debug stub or initial loading
2201 * of ROM contents.
2202 *
2203 * Note that portions of the write which attempt to write data to
2204 * a device will be silently ignored -- only real RAM and ROM will
2205 * be written to.
2206 *
2207 * Return a MemTxResult indicating whether the operation succeeded
2208 * or failed (eg unassigned memory, device rejected the transaction,
2209 * IOMMU fault).
2210 *
2211 * @as: #AddressSpace to be accessed
2212 * @addr: address within that address space
2213 * @attrs: memory transaction attributes
2214 * @buf: buffer with the data transferred
2215 * @len: the number of bytes to write
2216 */
2217MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2218                                    MemTxAttrs attrs,
2219                                    const void *buf, hwaddr len);
2220
2221/* address_space_ld*: load from an address space
2222 * address_space_st*: store to an address space
2223 *
2224 * These functions perform a load or store of the byte, word,
2225 * longword or quad to the specified address within the AddressSpace.
2226 * The _le suffixed functions treat the data as little endian;
2227 * _be indicates big endian; no suffix indicates "same endianness
2228 * as guest CPU".
2229 *
2230 * The "guest CPU endianness" accessors are deprecated for use outside
2231 * target-* code; devices should be CPU-agnostic and use either the LE
2232 * or the BE accessors.
2233 *
2234 * @as #AddressSpace to be accessed
2235 * @addr: address within that address space
2236 * @val: data value, for stores
2237 * @attrs: memory transaction attributes
2238 * @result: location to write the success/failure of the transaction;
2239 *   if NULL, this information is discarded
2240 */
2241
2242#define SUFFIX
2243#define ARG1         as
2244#define ARG1_DECL    AddressSpace *as
2245#include "exec/memory_ldst.h.inc"
2246
2247#define SUFFIX
2248#define ARG1         as
2249#define ARG1_DECL    AddressSpace *as
2250#include "exec/memory_ldst_phys.h.inc"
2251
2252struct MemoryRegionCache {
2253    void *ptr;
2254    hwaddr xlat;
2255    hwaddr len;
2256    FlatView *fv;
2257    MemoryRegionSection mrs;
2258    bool is_write;
2259};
2260
2261#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2262
2263
2264/* address_space_ld*_cached: load from a cached #MemoryRegion
2265 * address_space_st*_cached: store into a cached #MemoryRegion
2266 *
2267 * These functions perform a load or store of the byte, word,
2268 * longword or quad to the specified address.  The address is
2269 * a physical address in the AddressSpace, but it must lie within
2270 * a #MemoryRegion that was mapped with address_space_cache_init.
2271 *
2272 * The _le suffixed functions treat the data as little endian;
2273 * _be indicates big endian; no suffix indicates "same endianness
2274 * as guest CPU".
2275 *
2276 * The "guest CPU endianness" accessors are deprecated for use outside
2277 * target-* code; devices should be CPU-agnostic and use either the LE
2278 * or the BE accessors.
2279 *
2280 * @cache: previously initialized #MemoryRegionCache to be accessed
2281 * @addr: address within the address space
2282 * @val: data value, for stores
2283 * @attrs: memory transaction attributes
2284 * @result: location to write the success/failure of the transaction;
2285 *   if NULL, this information is discarded
2286 */
2287
2288#define SUFFIX       _cached_slow
2289#define ARG1         cache
2290#define ARG1_DECL    MemoryRegionCache *cache
2291#include "exec/memory_ldst.h.inc"
2292
2293/* Inline fast path for direct RAM access.  */
2294static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2295    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2296{
2297    assert(addr < cache->len);
2298    if (likely(cache->ptr)) {
2299        return ldub_p(cache->ptr + addr);
2300    } else {
2301        return address_space_ldub_cached_slow(cache, addr, attrs, result);
2302    }
2303}
2304
2305static inline void address_space_stb_cached(MemoryRegionCache *cache,
2306    hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
2307{
2308    assert(addr < cache->len);
2309    if (likely(cache->ptr)) {
2310        stb_p(cache->ptr + addr, val);
2311    } else {
2312        address_space_stb_cached_slow(cache, addr, val, attrs, result);
2313    }
2314}
2315
2316#define ENDIANNESS   _le
2317#include "exec/memory_ldst_cached.h.inc"
2318
2319#define ENDIANNESS   _be
2320#include "exec/memory_ldst_cached.h.inc"
2321
2322#define SUFFIX       _cached
2323#define ARG1         cache
2324#define ARG1_DECL    MemoryRegionCache *cache
2325#include "exec/memory_ldst_phys.h.inc"
2326
2327/* address_space_cache_init: prepare for repeated access to a physical
2328 * memory region
2329 *
2330 * @cache: #MemoryRegionCache to be filled
2331 * @as: #AddressSpace to be accessed
2332 * @addr: address within that address space
2333 * @len: length of buffer
2334 * @is_write: indicates the transfer direction
2335 *
2336 * Will only work with RAM, and may map a subset of the requested range by
2337 * returning a value that is less than @len.  On failure, return a negative
2338 * errno value.
2339 *
2340 * Because it only works with RAM, this function can be used for
2341 * read-modify-write operations.  In this case, is_write should be %true.
2342 *
2343 * Note that addresses passed to the address_space_*_cached functions
2344 * are relative to @addr.
2345 */
2346int64_t address_space_cache_init(MemoryRegionCache *cache,
2347                                 AddressSpace *as,
2348                                 hwaddr addr,
2349                                 hwaddr len,
2350                                 bool is_write);
2351
2352/**
2353 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2354 *
2355 * @cache: The #MemoryRegionCache to operate on.
2356 * @addr: The first physical address that was written, relative to the
2357 * address that was passed to @address_space_cache_init.
2358 * @access_len: The number of bytes that were written starting at @addr.
2359 */
2360void address_space_cache_invalidate(MemoryRegionCache *cache,
2361                                    hwaddr addr,
2362                                    hwaddr access_len);
2363
2364/**
2365 * address_space_cache_destroy: free a #MemoryRegionCache
2366 *
2367 * @cache: The #MemoryRegionCache whose memory should be released.
2368 */
2369void address_space_cache_destroy(MemoryRegionCache *cache);
2370
2371/* address_space_get_iotlb_entry: translate an address into an IOTLB
2372 * entry. Should be called from an RCU critical section.
2373 */
2374IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2375                                            bool is_write, MemTxAttrs attrs);
2376
2377/* address_space_translate: translate an address range into an address space
2378 * into a MemoryRegion and an address range into that section.  Should be
2379 * called from an RCU critical section, to avoid that the last reference
2380 * to the returned region disappears after address_space_translate returns.
2381 *
2382 * @fv: #FlatView to be accessed
2383 * @addr: address within that address space
2384 * @xlat: pointer to address within the returned memory region section's
2385 * #MemoryRegion.
2386 * @len: pointer to length
2387 * @is_write: indicates the transfer direction
2388 * @attrs: memory attributes
2389 */
2390MemoryRegion *flatview_translate(FlatView *fv,
2391                                 hwaddr addr, hwaddr *xlat,
2392                                 hwaddr *len, bool is_write,
2393                                 MemTxAttrs attrs);
2394
2395static inline MemoryRegion *address_space_translate(AddressSpace *as,
2396                                                    hwaddr addr, hwaddr *xlat,
2397                                                    hwaddr *len, bool is_write,
2398                                                    MemTxAttrs attrs)
2399{
2400    return flatview_translate(address_space_to_flatview(as),
2401                              addr, xlat, len, is_write, attrs);
2402}
2403
2404/* address_space_access_valid: check for validity of accessing an address
2405 * space range
2406 *
2407 * Check whether memory is assigned to the given address space range, and
2408 * access is permitted by any IOMMU regions that are active for the address
2409 * space.
2410 *
2411 * For now, addr and len should be aligned to a page size.  This limitation
2412 * will be lifted in the future.
2413 *
2414 * @as: #AddressSpace to be accessed
2415 * @addr: address within that address space
2416 * @len: length of the area to be checked
2417 * @is_write: indicates the transfer direction
2418 * @attrs: memory attributes
2419 */
2420bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2421                                bool is_write, MemTxAttrs attrs);
2422
2423/* address_space_map: map a physical memory region into a host virtual address
2424 *
2425 * May map a subset of the requested range, given by and returned in @plen.
2426 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2427 * the mapping are exhausted.
2428 * Use only for reads OR writes - not for read-modify-write operations.
2429 * Use cpu_register_map_client() to know when retrying the map operation is
2430 * likely to succeed.
2431 *
2432 * @as: #AddressSpace to be accessed
2433 * @addr: address within that address space
2434 * @plen: pointer to length of buffer; updated on return
2435 * @is_write: indicates the transfer direction
2436 * @attrs: memory attributes
2437 */
2438void *address_space_map(AddressSpace *as, hwaddr addr,
2439                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
2440
2441/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2442 *
2443 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2444 * the amount of memory that was actually read or written by the caller.
2445 *
2446 * @as: #AddressSpace used
2447 * @buffer: host pointer as returned by address_space_map()
2448 * @len: buffer length as returned by address_space_map()
2449 * @access_len: amount of data actually transferred
2450 * @is_write: indicates the transfer direction
2451 */
2452void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2453                         bool is_write, hwaddr access_len);
2454
2455
2456/* Internal functions, part of the implementation of address_space_read.  */
2457MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2458                                    MemTxAttrs attrs, void *buf, hwaddr len);
2459MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2460                                   MemTxAttrs attrs, void *buf,
2461                                   hwaddr len, hwaddr addr1, hwaddr l,
2462                                   MemoryRegion *mr);
2463void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2464
2465/* Internal functions, part of the implementation of address_space_read_cached
2466 * and address_space_write_cached.  */
2467MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2468                                           hwaddr addr, void *buf, hwaddr len);
2469MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2470                                            hwaddr addr, const void *buf,
2471                                            hwaddr len);
2472
2473static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2474{
2475    if (is_write) {
2476        return memory_region_is_ram(mr) && !mr->readonly &&
2477               !mr->rom_device && !memory_region_is_ram_device(mr);
2478    } else {
2479        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2480               memory_region_is_romd(mr);
2481    }
2482}
2483
2484/**
2485 * address_space_read: read from an address space.
2486 *
2487 * Return a MemTxResult indicating whether the operation succeeded
2488 * or failed (eg unassigned memory, device rejected the transaction,
2489 * IOMMU fault).  Called within RCU critical section.
2490 *
2491 * @as: #AddressSpace to be accessed
2492 * @addr: address within that address space
2493 * @attrs: memory transaction attributes
2494 * @buf: buffer with the data transferred
2495 * @len: length of the data transferred
2496 */
2497static inline __attribute__((__always_inline__))
2498MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2499                               MemTxAttrs attrs, void *buf,
2500                               hwaddr len)
2501{
2502    MemTxResult result = MEMTX_OK;
2503    hwaddr l, addr1;
2504    void *ptr;
2505    MemoryRegion *mr;
2506    FlatView *fv;
2507
2508    if (__builtin_constant_p(len)) {
2509        if (len) {
2510            RCU_READ_LOCK_GUARD();
2511            fv = address_space_to_flatview(as);
2512            l = len;
2513            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2514            if (len == l && memory_access_is_direct(mr, false)) {
2515                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2516                memcpy(buf, ptr, len);
2517            } else {
2518                result = flatview_read_continue(fv, addr, attrs, buf, len,
2519                                                addr1, l, mr);
2520            }
2521        }
2522    } else {
2523        result = address_space_read_full(as, addr, attrs, buf, len);
2524    }
2525    return result;
2526}
2527
2528/**
2529 * address_space_read_cached: read from a cached RAM region
2530 *
2531 * @cache: Cached region to be addressed
2532 * @addr: address relative to the base of the RAM region
2533 * @buf: buffer with the data transferred
2534 * @len: length of the data transferred
2535 */
2536static inline MemTxResult
2537address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2538                          void *buf, hwaddr len)
2539{
2540    assert(addr < cache->len && len <= cache->len - addr);
2541    fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2542    if (likely(cache->ptr)) {
2543        memcpy(buf, cache->ptr + addr, len);
2544        return MEMTX_OK;
2545    } else {
2546        return address_space_read_cached_slow(cache, addr, buf, len);
2547    }
2548}
2549
2550/**
2551 * address_space_write_cached: write to a cached RAM region
2552 *
2553 * @cache: Cached region to be addressed
2554 * @addr: address relative to the base of the RAM region
2555 * @buf: buffer with the data transferred
2556 * @len: length of the data transferred
2557 */
2558static inline MemTxResult
2559address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2560                           const void *buf, hwaddr len)
2561{
2562    assert(addr < cache->len && len <= cache->len - addr);
2563    if (likely(cache->ptr)) {
2564        memcpy(cache->ptr + addr, buf, len);
2565        return MEMTX_OK;
2566    } else {
2567        return address_space_write_cached_slow(cache, addr, buf, len);
2568    }
2569}
2570
2571#ifdef NEED_CPU_H
2572/* enum device_endian to MemOp.  */
2573static inline MemOp devend_memop(enum device_endian end)
2574{
2575    QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2576                      DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2577
2578#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2579    /* Swap if non-host endianness or native (target) endianness */
2580    return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2581#else
2582    const int non_host_endianness =
2583        DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2584
2585    /* In this case, native (target) endianness needs no swap.  */
2586    return (end == non_host_endianness) ? MO_BSWAP : 0;
2587#endif
2588}
2589#endif
2590
2591/*
2592 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2593 * to manage the actual amount of memory consumed by the VM (then, the memory
2594 * provided by RAM blocks might be bigger than the desired memory consumption).
2595 * This *must* be set if:
2596 * - Discarding parts of a RAM blocks does not result in the change being
2597 *   reflected in the VM and the pages getting freed.
2598 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2599 *   discards blindly.
2600 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2601 *   encrypted VMs).
2602 * Technologies that only temporarily pin the current working set of a
2603 * driver are fine, because we don't expect such pages to be discarded
2604 * (esp. based on guest action like balloon inflation).
2605 *
2606 * This is *not* to be used to protect from concurrent discards (esp.,
2607 * postcopy).
2608 *
2609 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2610 * discards to work reliably is active.
2611 */
2612int ram_block_discard_disable(bool state);
2613
2614/*
2615 * Inhibit technologies that disable discarding of pages in RAM blocks.
2616 *
2617 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2618 * broken.
2619 */
2620int ram_block_discard_require(bool state);
2621
2622/*
2623 * Test if discarding of memory in ram blocks is disabled.
2624 */
2625bool ram_block_discard_is_disabled(void);
2626
2627/*
2628 * Test if discarding of memory in ram blocks is required to work reliably.
2629 */
2630bool ram_block_discard_is_required(void);
2631
2632#endif
2633
2634#endif
2635