qemu/include/exec/ram_addr.h
<<
>>
Prefs
   1/*
   2 * Declarations for cpu physical memory functions
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or
  10 * later.  See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * This header is for use by exec.c and memory.c ONLY.  Do not include it.
  16 * The functions declared here will be removed soon.
  17 */
  18
  19#ifndef RAM_ADDR_H
  20#define RAM_ADDR_H
  21
  22#ifndef CONFIG_USER_ONLY
  23#include "cpu.h"
  24#include "sysemu/xen.h"
  25#include "sysemu/tcg.h"
  26#include "exec/ramlist.h"
  27#include "exec/ramblock.h"
  28
  29/**
  30 * clear_bmap_size: calculate clear bitmap size
  31 *
  32 * @pages: number of guest pages
  33 * @shift: guest page number shift
  34 *
  35 * Returns: number of bits for the clear bitmap
  36 */
  37static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
  38{
  39    return DIV_ROUND_UP(pages, 1UL << shift);
  40}
  41
  42/**
  43 * clear_bmap_set: set clear bitmap for the page range
  44 *
  45 * @rb: the ramblock to operate on
  46 * @start: the start page number
  47 * @size: number of pages to set in the bitmap
  48 *
  49 * Returns: None
  50 */
  51static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
  52                                  uint64_t npages)
  53{
  54    uint8_t shift = rb->clear_bmap_shift;
  55
  56    bitmap_set_atomic(rb->clear_bmap, start >> shift,
  57                      clear_bmap_size(npages, shift));
  58}
  59
  60/**
  61 * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set
  62 *
  63 * @rb: the ramblock to operate on
  64 * @page: the page number to check
  65 *
  66 * Returns: true if the bit was set, false otherwise
  67 */
  68static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
  69{
  70    uint8_t shift = rb->clear_bmap_shift;
  71
  72    return bitmap_test_and_clear_atomic(rb->clear_bmap, page >> shift, 1);
  73}
  74
  75static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
  76{
  77    return (b && b->host && offset < b->used_length) ? true : false;
  78}
  79
  80static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
  81{
  82    assert(offset_in_ramblock(block, offset));
  83    return (char *)block->host + offset;
  84}
  85
  86static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
  87                                                            RAMBlock *rb)
  88{
  89    uint64_t host_addr_offset =
  90            (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
  91    return host_addr_offset >> TARGET_PAGE_BITS;
  92}
  93
  94bool ramblock_is_pmem(RAMBlock *rb);
  95
  96long qemu_minrampagesize(void);
  97long qemu_maxrampagesize(void);
  98
  99/**
 100 * qemu_ram_alloc_from_file,
 101 * qemu_ram_alloc_from_fd:  Allocate a ram block from the specified backing
 102 *                          file or device
 103 *
 104 * Parameters:
 105 *  @size: the size in bytes of the ram block
 106 *  @mr: the memory region where the ram block is
 107 *  @ram_flags: specify the properties of the ram block, which can be one
 108 *              or bit-or of following values
 109 *              - RAM_SHARED: mmap the backing file or device with MAP_SHARED
 110 *              - RAM_PMEM: the backend @mem_path or @fd is persistent memory
 111 *              Other bits are ignored.
 112 *  @mem_path or @fd: specify the backing file or device
 113 *  @readonly: true to open @path for reading, false for read/write.
 114 *  @errp: pointer to Error*, to store an error if it happens
 115 *
 116 * Return:
 117 *  On success, return a pointer to the ram block.
 118 *  On failure, return NULL.
 119 */
 120RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
 121                                   uint32_t ram_flags, const char *mem_path,
 122                                   bool readonly, Error **errp);
 123RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
 124                                 uint32_t ram_flags, int fd, off_t offset,
 125                                 bool readonly, Error **errp);
 126
 127RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
 128                                  MemoryRegion *mr, Error **errp);
 129RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, MemoryRegion *mr,
 130                         Error **errp);
 131RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
 132                                    void (*resized)(const char*,
 133                                                    uint64_t length,
 134                                                    void *host),
 135                                    MemoryRegion *mr, Error **errp);
 136void qemu_ram_free(RAMBlock *block);
 137
 138int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
 139
 140void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length);
 141
 142/* Clear whole block of mem */
 143static inline void qemu_ram_block_writeback(RAMBlock *block)
 144{
 145    qemu_ram_msync(block, 0, block->used_length);
 146}
 147
 148#define DIRTY_CLIENTS_ALL     ((1 << DIRTY_MEMORY_NUM) - 1)
 149#define DIRTY_CLIENTS_NOCODE  (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
 150
 151void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end);
 152
 153static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
 154                                                 ram_addr_t length,
 155                                                 unsigned client)
 156{
 157    DirtyMemoryBlocks *blocks;
 158    unsigned long end, page;
 159    unsigned long idx, offset, base;
 160    bool dirty = false;
 161
 162    assert(client < DIRTY_MEMORY_NUM);
 163
 164    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
 165    page = start >> TARGET_PAGE_BITS;
 166
 167    WITH_RCU_READ_LOCK_GUARD() {
 168        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
 169
 170        idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 171        offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 172        base = page - offset;
 173        while (page < end) {
 174            unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
 175            unsigned long num = next - base;
 176            unsigned long found = find_next_bit(blocks->blocks[idx],
 177                                                num, offset);
 178            if (found < num) {
 179                dirty = true;
 180                break;
 181            }
 182
 183            page = next;
 184            idx++;
 185            offset = 0;
 186            base += DIRTY_MEMORY_BLOCK_SIZE;
 187        }
 188    }
 189
 190    return dirty;
 191}
 192
 193static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
 194                                                 ram_addr_t length,
 195                                                 unsigned client)
 196{
 197    DirtyMemoryBlocks *blocks;
 198    unsigned long end, page;
 199    unsigned long idx, offset, base;
 200    bool dirty = true;
 201
 202    assert(client < DIRTY_MEMORY_NUM);
 203
 204    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
 205    page = start >> TARGET_PAGE_BITS;
 206
 207    RCU_READ_LOCK_GUARD();
 208
 209    blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
 210
 211    idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 212    offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 213    base = page - offset;
 214    while (page < end) {
 215        unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
 216        unsigned long num = next - base;
 217        unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
 218        if (found < num) {
 219            dirty = false;
 220            break;
 221        }
 222
 223        page = next;
 224        idx++;
 225        offset = 0;
 226        base += DIRTY_MEMORY_BLOCK_SIZE;
 227    }
 228
 229    return dirty;
 230}
 231
 232static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
 233                                                      unsigned client)
 234{
 235    return cpu_physical_memory_get_dirty(addr, 1, client);
 236}
 237
 238static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
 239{
 240    bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
 241    bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
 242    bool migration =
 243        cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
 244    return !(vga && code && migration);
 245}
 246
 247static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
 248                                                               ram_addr_t length,
 249                                                               uint8_t mask)
 250{
 251    uint8_t ret = 0;
 252
 253    if (mask & (1 << DIRTY_MEMORY_VGA) &&
 254        !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
 255        ret |= (1 << DIRTY_MEMORY_VGA);
 256    }
 257    if (mask & (1 << DIRTY_MEMORY_CODE) &&
 258        !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
 259        ret |= (1 << DIRTY_MEMORY_CODE);
 260    }
 261    if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
 262        !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
 263        ret |= (1 << DIRTY_MEMORY_MIGRATION);
 264    }
 265    return ret;
 266}
 267
 268static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
 269                                                      unsigned client)
 270{
 271    unsigned long page, idx, offset;
 272    DirtyMemoryBlocks *blocks;
 273
 274    assert(client < DIRTY_MEMORY_NUM);
 275
 276    page = addr >> TARGET_PAGE_BITS;
 277    idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 278    offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 279
 280    RCU_READ_LOCK_GUARD();
 281
 282    blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
 283
 284    set_bit_atomic(offset, blocks->blocks[idx]);
 285}
 286
 287static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
 288                                                       ram_addr_t length,
 289                                                       uint8_t mask)
 290{
 291    DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
 292    unsigned long end, page;
 293    unsigned long idx, offset, base;
 294    int i;
 295
 296    if (!mask && !xen_enabled()) {
 297        return;
 298    }
 299
 300    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
 301    page = start >> TARGET_PAGE_BITS;
 302
 303    WITH_RCU_READ_LOCK_GUARD() {
 304        for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
 305            blocks[i] = qatomic_rcu_read(&ram_list.dirty_memory[i]);
 306        }
 307
 308        idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 309        offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 310        base = page - offset;
 311        while (page < end) {
 312            unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
 313
 314            if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
 315                bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
 316                                  offset, next - page);
 317            }
 318            if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
 319                bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
 320                                  offset, next - page);
 321            }
 322            if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
 323                bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
 324                                  offset, next - page);
 325            }
 326
 327            page = next;
 328            idx++;
 329            offset = 0;
 330            base += DIRTY_MEMORY_BLOCK_SIZE;
 331        }
 332    }
 333
 334    xen_hvm_modified_memory(start, length);
 335}
 336
 337#if !defined(_WIN32)
 338static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
 339                                                          ram_addr_t start,
 340                                                          ram_addr_t pages)
 341{
 342    unsigned long i, j;
 343    unsigned long page_number, c;
 344    hwaddr addr;
 345    ram_addr_t ram_addr;
 346    unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
 347    unsigned long hpratio = qemu_real_host_page_size / TARGET_PAGE_SIZE;
 348    unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
 349
 350    /* start address is aligned at the start of a word? */
 351    if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
 352        (hpratio == 1)) {
 353        unsigned long **blocks[DIRTY_MEMORY_NUM];
 354        unsigned long idx;
 355        unsigned long offset;
 356        long k;
 357        long nr = BITS_TO_LONGS(pages);
 358
 359        idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
 360        offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
 361                          DIRTY_MEMORY_BLOCK_SIZE);
 362
 363        WITH_RCU_READ_LOCK_GUARD() {
 364            for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
 365                blocks[i] =
 366                    qatomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
 367            }
 368
 369            for (k = 0; k < nr; k++) {
 370                if (bitmap[k]) {
 371                    unsigned long temp = leul_to_cpu(bitmap[k]);
 372
 373                    qatomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
 374
 375                    if (global_dirty_log) {
 376                        qatomic_or(
 377                                &blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
 378                                temp);
 379                    }
 380
 381                    if (tcg_enabled()) {
 382                        qatomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset],
 383                                   temp);
 384                    }
 385                }
 386
 387                if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
 388                    offset = 0;
 389                    idx++;
 390                }
 391            }
 392        }
 393
 394        xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
 395    } else {
 396        uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
 397
 398        if (!global_dirty_log) {
 399            clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
 400        }
 401
 402        /*
 403         * bitmap-traveling is faster than memory-traveling (for addr...)
 404         * especially when most of the memory is not dirty.
 405         */
 406        for (i = 0; i < len; i++) {
 407            if (bitmap[i] != 0) {
 408                c = leul_to_cpu(bitmap[i]);
 409                do {
 410                    j = ctzl(c);
 411                    c &= ~(1ul << j);
 412                    page_number = (i * HOST_LONG_BITS + j) * hpratio;
 413                    addr = page_number * TARGET_PAGE_SIZE;
 414                    ram_addr = start + addr;
 415                    cpu_physical_memory_set_dirty_range(ram_addr,
 416                                       TARGET_PAGE_SIZE * hpratio, clients);
 417                } while (c != 0);
 418            }
 419        }
 420    }
 421}
 422#endif /* not _WIN32 */
 423
 424bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
 425                                              ram_addr_t length,
 426                                              unsigned client);
 427
 428DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
 429    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
 430
 431bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
 432                                            ram_addr_t start,
 433                                            ram_addr_t length);
 434
 435static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
 436                                                         ram_addr_t length)
 437{
 438    cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
 439    cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
 440    cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
 441}
 442
 443
 444/* Called with RCU critical section */
 445static inline
 446uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
 447                                               ram_addr_t start,
 448                                               ram_addr_t length)
 449{
 450    ram_addr_t addr;
 451    unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
 452    uint64_t num_dirty = 0;
 453    unsigned long *dest = rb->bmap;
 454
 455    /* start address and length is aligned at the start of a word? */
 456    if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
 457         (start + rb->offset) &&
 458        !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
 459        int k;
 460        int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
 461        unsigned long * const *src;
 462        unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
 463        unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
 464                                        DIRTY_MEMORY_BLOCK_SIZE);
 465        unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
 466
 467        src = qatomic_rcu_read(
 468                &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
 469
 470        for (k = page; k < page + nr; k++) {
 471            if (src[idx][offset]) {
 472                unsigned long bits = qatomic_xchg(&src[idx][offset], 0);
 473                unsigned long new_dirty;
 474                new_dirty = ~dest[k];
 475                dest[k] |= bits;
 476                new_dirty &= bits;
 477                num_dirty += ctpopl(new_dirty);
 478            }
 479
 480            if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
 481                offset = 0;
 482                idx++;
 483            }
 484        }
 485
 486        if (rb->clear_bmap) {
 487            /*
 488             * Postpone the dirty bitmap clear to the point before we
 489             * really send the pages, also we will split the clear
 490             * dirty procedure into smaller chunks.
 491             */
 492            clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
 493                           length >> TARGET_PAGE_BITS);
 494        } else {
 495            /* Slow path - still do that in a huge chunk */
 496            memory_region_clear_dirty_bitmap(rb->mr, start, length);
 497        }
 498    } else {
 499        ram_addr_t offset = rb->offset;
 500
 501        for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
 502            if (cpu_physical_memory_test_and_clear_dirty(
 503                        start + addr + offset,
 504                        TARGET_PAGE_SIZE,
 505                        DIRTY_MEMORY_MIGRATION)) {
 506                long k = (start + addr) >> TARGET_PAGE_BITS;
 507                if (!test_and_set_bit(k, dest)) {
 508                    num_dirty++;
 509                }
 510            }
 511        }
 512    }
 513
 514    return num_dirty;
 515}
 516#endif
 517#endif
 518