qemu/linux-user/sparc/signal.c
<<
>>
Prefs
   1/*
   2 *  Emulation of Linux signals
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 *  This program is free software; you can redistribute it and/or modify
   7 *  it under the terms of the GNU General Public License as published by
   8 *  the Free Software Foundation; either version 2 of the License, or
   9 *  (at your option) any later version.
  10 *
  11 *  This program is distributed in the hope that it will be useful,
  12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 *  GNU General Public License for more details.
  15 *
  16 *  You should have received a copy of the GNU General Public License
  17 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "qemu.h"
  21#include "signal-common.h"
  22#include "linux-user/trace.h"
  23
  24#define __SUNOS_MAXWIN   31
  25
  26/* This is what SunOS does, so shall I. */
  27struct target_sigcontext {
  28    abi_ulong sigc_onstack;      /* state to restore */
  29
  30    abi_ulong sigc_mask;         /* sigmask to restore */
  31    abi_ulong sigc_sp;           /* stack pointer */
  32    abi_ulong sigc_pc;           /* program counter */
  33    abi_ulong sigc_npc;          /* next program counter */
  34    abi_ulong sigc_psr;          /* for condition codes etc */
  35    abi_ulong sigc_g1;           /* User uses these two registers */
  36    abi_ulong sigc_o0;           /* within the trampoline code. */
  37
  38    /* Now comes information regarding the users window set
  39         * at the time of the signal.
  40         */
  41    abi_ulong sigc_oswins;       /* outstanding windows */
  42
  43    /* stack ptrs for each regwin buf */
  44    char *sigc_spbuf[__SUNOS_MAXWIN];
  45
  46    /* Windows to restore after signal */
  47    struct {
  48        abi_ulong locals[8];
  49        abi_ulong ins[8];
  50    } sigc_wbuf[__SUNOS_MAXWIN];
  51};
  52/* A Sparc stack frame */
  53struct sparc_stackf {
  54    abi_ulong locals[8];
  55    abi_ulong ins[8];
  56    /* It's simpler to treat fp and callers_pc as elements of ins[]
  57         * since we never need to access them ourselves.
  58         */
  59    char *structptr;
  60    abi_ulong xargs[6];
  61    abi_ulong xxargs[1];
  62};
  63
  64typedef struct {
  65    struct {
  66        abi_ulong psr;
  67        abi_ulong pc;
  68        abi_ulong npc;
  69        abi_ulong y;
  70        abi_ulong u_regs[16]; /* globals and ins */
  71    }               si_regs;
  72    int             si_mask;
  73} __siginfo_t;
  74
  75typedef struct {
  76    abi_ulong  si_float_regs[32];
  77    unsigned   long si_fsr;
  78    unsigned   long si_fpqdepth;
  79    struct {
  80        unsigned long *insn_addr;
  81        unsigned long insn;
  82    } si_fpqueue [16];
  83} qemu_siginfo_fpu_t;
  84
  85
  86struct target_signal_frame {
  87    struct sparc_stackf ss;
  88    __siginfo_t         info;
  89    abi_ulong           fpu_save;
  90    uint32_t            insns[2] QEMU_ALIGNED(8);
  91    abi_ulong           extramask[TARGET_NSIG_WORDS - 1];
  92    abi_ulong           extra_size; /* Should be 0 */
  93    qemu_siginfo_fpu_t fpu_state;
  94};
  95struct target_rt_signal_frame {
  96    struct sparc_stackf ss;
  97    siginfo_t           info;
  98    abi_ulong           regs[20];
  99    sigset_t            mask;
 100    abi_ulong           fpu_save;
 101    uint32_t            insns[2];
 102    stack_t             stack;
 103    unsigned int        extra_size; /* Should be 0 */
 104    qemu_siginfo_fpu_t  fpu_state;
 105};
 106
 107static inline abi_ulong get_sigframe(struct target_sigaction *sa, 
 108                                     CPUSPARCState *env,
 109                                     unsigned long framesize)
 110{
 111    abi_ulong sp = get_sp_from_cpustate(env);
 112
 113    /*
 114     * If we are on the alternate signal stack and would overflow it, don't.
 115     * Return an always-bogus address instead so we will die with SIGSEGV.
 116         */
 117    if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
 118            return -1;
 119    }
 120
 121    /* This is the X/Open sanctioned signal stack switching.  */
 122    sp = target_sigsp(sp, sa) - framesize;
 123
 124    /* Always align the stack frame.  This handles two cases.  First,
 125     * sigaltstack need not be mindful of platform specific stack
 126     * alignment.  Second, if we took this signal because the stack
 127     * is not aligned properly, we'd like to take the signal cleanly
 128     * and report that.
 129     */
 130    sp &= ~15UL;
 131
 132    return sp;
 133}
 134
 135static int
 136setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask)
 137{
 138    int err = 0, i;
 139
 140    __put_user(env->psr, &si->si_regs.psr);
 141    __put_user(env->pc, &si->si_regs.pc);
 142    __put_user(env->npc, &si->si_regs.npc);
 143    __put_user(env->y, &si->si_regs.y);
 144    for (i=0; i < 8; i++) {
 145        __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
 146    }
 147    for (i=0; i < 8; i++) {
 148        __put_user(env->regwptr[WREG_O0 + i], &si->si_regs.u_regs[i + 8]);
 149    }
 150    __put_user(mask, &si->si_mask);
 151    return err;
 152}
 153
 154#define NF_ALIGNEDSZ  (((sizeof(struct target_signal_frame) + 7) & (~7)))
 155
 156void setup_frame(int sig, struct target_sigaction *ka,
 157                 target_sigset_t *set, CPUSPARCState *env)
 158{
 159    abi_ulong sf_addr;
 160    struct target_signal_frame *sf;
 161    int sigframe_size, err, i;
 162
 163    /* 1. Make sure everything is clean */
 164    //synchronize_user_stack();
 165
 166    sigframe_size = NF_ALIGNEDSZ;
 167    sf_addr = get_sigframe(ka, env, sigframe_size);
 168    trace_user_setup_frame(env, sf_addr);
 169
 170    sf = lock_user(VERIFY_WRITE, sf_addr,
 171                   sizeof(struct target_signal_frame), 0);
 172    if (!sf) {
 173        goto sigsegv;
 174    }
 175#if 0
 176    if (invalid_frame_pointer(sf, sigframe_size))
 177        goto sigill_and_return;
 178#endif
 179    /* 2. Save the current process state */
 180    err = setup___siginfo(&sf->info, env, set->sig[0]);
 181    __put_user(0, &sf->extra_size);
 182
 183    //save_fpu_state(regs, &sf->fpu_state);
 184    //__put_user(&sf->fpu_state, &sf->fpu_save);
 185
 186    __put_user(set->sig[0], &sf->info.si_mask);
 187    for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
 188        __put_user(set->sig[i + 1], &sf->extramask[i]);
 189    }
 190
 191    for (i = 0; i < 8; i++) {
 192        __put_user(env->regwptr[i + WREG_L0], &sf->ss.locals[i]);
 193    }
 194    for (i = 0; i < 8; i++) {
 195        __put_user(env->regwptr[i + WREG_I0], &sf->ss.ins[i]);
 196    }
 197    if (err)
 198        goto sigsegv;
 199
 200    /* 3. signal handler back-trampoline and parameters */
 201    env->regwptr[WREG_SP] = sf_addr;
 202    env->regwptr[WREG_O0] = sig;
 203    env->regwptr[WREG_O1] = sf_addr +
 204            offsetof(struct target_signal_frame, info);
 205    env->regwptr[WREG_O2] = sf_addr +
 206            offsetof(struct target_signal_frame, info);
 207
 208    /* 4. signal handler */
 209    env->pc = ka->_sa_handler;
 210    env->npc = (env->pc + 4);
 211    /* 5. return to kernel instructions */
 212    if (ka->ka_restorer) {
 213        env->regwptr[WREG_O7] = ka->ka_restorer;
 214    } else {
 215        uint32_t val32;
 216
 217        env->regwptr[WREG_O7] = sf_addr +
 218                offsetof(struct target_signal_frame, insns) - 2 * 4;
 219
 220        /* mov __NR_sigreturn, %g1 */
 221        val32 = 0x821020d8;
 222        __put_user(val32, &sf->insns[0]);
 223
 224        /* t 0x10 */
 225        val32 = 0x91d02010;
 226        __put_user(val32, &sf->insns[1]);
 227    }
 228    unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
 229    return;
 230#if 0
 231sigill_and_return:
 232    force_sig(TARGET_SIGILL);
 233#endif
 234sigsegv:
 235    unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
 236    force_sigsegv(sig);
 237}
 238
 239void setup_rt_frame(int sig, struct target_sigaction *ka,
 240                    target_siginfo_t *info,
 241                    target_sigset_t *set, CPUSPARCState *env)
 242{
 243    qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
 244}
 245
 246long do_sigreturn(CPUSPARCState *env)
 247{
 248    abi_ulong sf_addr;
 249    struct target_signal_frame *sf;
 250    abi_ulong up_psr, pc, npc;
 251    target_sigset_t set;
 252    sigset_t host_set;
 253    int i;
 254
 255    sf_addr = env->regwptr[WREG_SP];
 256    trace_user_do_sigreturn(env, sf_addr);
 257    if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
 258        goto segv_and_exit;
 259    }
 260
 261    /* 1. Make sure we are not getting garbage from the user */
 262
 263    if (sf_addr & 3)
 264        goto segv_and_exit;
 265
 266    __get_user(pc,  &sf->info.si_regs.pc);
 267    __get_user(npc, &sf->info.si_regs.npc);
 268
 269    if ((pc | npc) & 3) {
 270        goto segv_and_exit;
 271    }
 272
 273    /* 2. Restore the state */
 274    __get_user(up_psr, &sf->info.si_regs.psr);
 275
 276    /* User can only change condition codes and FPU enabling in %psr. */
 277    env->psr = (up_psr & (PSR_ICC /* | PSR_EF */))
 278            | (env->psr & ~(PSR_ICC /* | PSR_EF */));
 279
 280    env->pc = pc;
 281    env->npc = npc;
 282    __get_user(env->y, &sf->info.si_regs.y);
 283    for (i=0; i < 8; i++) {
 284        __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
 285    }
 286    for (i=0; i < 8; i++) {
 287        __get_user(env->regwptr[i + WREG_O0], &sf->info.si_regs.u_regs[i + 8]);
 288    }
 289
 290    /* FIXME: implement FPU save/restore:
 291     * __get_user(fpu_save, &sf->fpu_save);
 292     * if (fpu_save) {
 293     *     if (restore_fpu_state(env, fpu_save)) {
 294     *         goto segv_and_exit;
 295     *     }
 296     * }
 297     */
 298
 299    /* This is pretty much atomic, no amount locking would prevent
 300         * the races which exist anyways.
 301         */
 302    __get_user(set.sig[0], &sf->info.si_mask);
 303    for(i = 1; i < TARGET_NSIG_WORDS; i++) {
 304        __get_user(set.sig[i], &sf->extramask[i - 1]);
 305    }
 306
 307    target_to_host_sigset_internal(&host_set, &set);
 308    set_sigmask(&host_set);
 309
 310    unlock_user_struct(sf, sf_addr, 0);
 311    return -TARGET_QEMU_ESIGRETURN;
 312
 313segv_and_exit:
 314    unlock_user_struct(sf, sf_addr, 0);
 315    force_sig(TARGET_SIGSEGV);
 316    return -TARGET_QEMU_ESIGRETURN;
 317}
 318
 319long do_rt_sigreturn(CPUSPARCState *env)
 320{
 321    trace_user_do_rt_sigreturn(env, 0);
 322    qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
 323    return -TARGET_ENOSYS;
 324}
 325
 326#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
 327#define SPARC_MC_TSTATE 0
 328#define SPARC_MC_PC 1
 329#define SPARC_MC_NPC 2
 330#define SPARC_MC_Y 3
 331#define SPARC_MC_G1 4
 332#define SPARC_MC_G2 5
 333#define SPARC_MC_G3 6
 334#define SPARC_MC_G4 7
 335#define SPARC_MC_G5 8
 336#define SPARC_MC_G6 9
 337#define SPARC_MC_G7 10
 338#define SPARC_MC_O0 11
 339#define SPARC_MC_O1 12
 340#define SPARC_MC_O2 13
 341#define SPARC_MC_O3 14
 342#define SPARC_MC_O4 15
 343#define SPARC_MC_O5 16
 344#define SPARC_MC_O6 17
 345#define SPARC_MC_O7 18
 346#define SPARC_MC_NGREG 19
 347
 348typedef abi_ulong target_mc_greg_t;
 349typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
 350
 351struct target_mc_fq {
 352    abi_ulong mcfq_addr;
 353    uint32_t mcfq_insn;
 354};
 355
 356/*
 357 * Note the manual 16-alignment; the kernel gets this because it
 358 * includes a "long double qregs[16]" in the mcpu_fregs union,
 359 * which we can't do.
 360 */
 361struct target_mc_fpu {
 362    union {
 363        uint32_t sregs[32];
 364        uint64_t dregs[32];
 365        //uint128_t qregs[16];
 366    } mcfpu_fregs;
 367    abi_ulong mcfpu_fsr;
 368    abi_ulong mcfpu_fprs;
 369    abi_ulong mcfpu_gsr;
 370    abi_ulong mcfpu_fq;
 371    unsigned char mcfpu_qcnt;
 372    unsigned char mcfpu_qentsz;
 373    unsigned char mcfpu_enab;
 374} __attribute__((aligned(16)));
 375typedef struct target_mc_fpu target_mc_fpu_t;
 376
 377typedef struct {
 378    target_mc_gregset_t mc_gregs;
 379    target_mc_greg_t mc_fp;
 380    target_mc_greg_t mc_i7;
 381    target_mc_fpu_t mc_fpregs;
 382} target_mcontext_t;
 383
 384struct target_ucontext {
 385    abi_ulong tuc_link;
 386    abi_ulong tuc_flags;
 387    target_sigset_t tuc_sigmask;
 388    target_mcontext_t tuc_mcontext;
 389};
 390
 391/* A V9 register window */
 392struct target_reg_window {
 393    abi_ulong locals[8];
 394    abi_ulong ins[8];
 395};
 396
 397#define TARGET_STACK_BIAS 2047
 398
 399/* {set, get}context() needed for 64-bit SparcLinux userland. */
 400void sparc64_set_context(CPUSPARCState *env)
 401{
 402    abi_ulong ucp_addr;
 403    struct target_ucontext *ucp;
 404    target_mc_gregset_t *grp;
 405    target_mc_fpu_t *fpup;
 406    abi_ulong pc, npc, tstate;
 407    unsigned int i;
 408    unsigned char fenab;
 409
 410    ucp_addr = env->regwptr[WREG_O0];
 411    if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
 412        goto do_sigsegv;
 413    }
 414    grp  = &ucp->tuc_mcontext.mc_gregs;
 415    __get_user(pc, &((*grp)[SPARC_MC_PC]));
 416    __get_user(npc, &((*grp)[SPARC_MC_NPC]));
 417    if ((pc | npc) & 3) {
 418        goto do_sigsegv;
 419    }
 420    if (env->regwptr[WREG_O1]) {
 421        target_sigset_t target_set;
 422        sigset_t set;
 423
 424        if (TARGET_NSIG_WORDS == 1) {
 425            __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
 426        } else {
 427            abi_ulong *src, *dst;
 428            src = ucp->tuc_sigmask.sig;
 429            dst = target_set.sig;
 430            for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
 431                __get_user(*dst, src);
 432            }
 433        }
 434        target_to_host_sigset_internal(&set, &target_set);
 435        set_sigmask(&set);
 436    }
 437    env->pc = pc;
 438    env->npc = npc;
 439    __get_user(env->y, &((*grp)[SPARC_MC_Y]));
 440    __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
 441    /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
 442    env->asi = (tstate >> 24) & 0xff;
 443    cpu_put_ccr(env, (tstate >> 32) & 0xff);
 444    __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
 445    __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
 446    __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
 447    __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
 448    __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
 449    __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
 450    /* Skip g7 as that's the thread register in userspace */
 451
 452    /*
 453     * Note that unlike the kernel, we didn't need to mess with the
 454     * guest register window state to save it into a pt_regs to run
 455     * the kernel. So for us the guest's O regs are still in WREG_O*
 456     * (unlike the kernel which has put them in UREG_I* in a pt_regs)
 457     * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
 458     * need to be written back to userspace memory.
 459     */
 460    __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
 461    __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
 462    __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
 463    __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
 464    __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
 465    __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
 466    __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
 467    __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
 468
 469    __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
 470    __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
 471
 472    fpup = &ucp->tuc_mcontext.mc_fpregs;
 473
 474    __get_user(fenab, &(fpup->mcfpu_enab));
 475    if (fenab) {
 476        abi_ulong fprs;
 477
 478        /*
 479         * We use the FPRS from the guest only in deciding whether
 480         * to restore the upper, lower, or both banks of the FPU regs.
 481         * The kernel here writes the FPU register data into the
 482         * process's current_thread_info state and unconditionally
 483         * clears FPRS and TSTATE_PEF: this disables the FPU so that the
 484         * next FPU-disabled trap will copy the data out of
 485         * current_thread_info and into the real FPU registers.
 486         * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
 487         * so we always load the data directly into the FPU registers
 488         * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
 489         * Note that because we (and the kernel) always write zeroes for
 490         * the fenab and fprs in sparc64_get_context() none of this code
 491         * will execute unless the guest manually constructed or changed
 492         * the context structure.
 493         */
 494        __get_user(fprs, &(fpup->mcfpu_fprs));
 495        if (fprs & FPRS_DL) {
 496            for (i = 0; i < 16; i++) {
 497                __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
 498            }
 499        }
 500        if (fprs & FPRS_DU) {
 501            for (i = 16; i < 32; i++) {
 502                __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
 503            }
 504        }
 505        __get_user(env->fsr, &(fpup->mcfpu_fsr));
 506        __get_user(env->gsr, &(fpup->mcfpu_gsr));
 507    }
 508    unlock_user_struct(ucp, ucp_addr, 0);
 509    return;
 510do_sigsegv:
 511    unlock_user_struct(ucp, ucp_addr, 0);
 512    force_sig(TARGET_SIGSEGV);
 513}
 514
 515void sparc64_get_context(CPUSPARCState *env)
 516{
 517    abi_ulong ucp_addr;
 518    struct target_ucontext *ucp;
 519    target_mc_gregset_t *grp;
 520    target_mcontext_t *mcp;
 521    int err;
 522    unsigned int i;
 523    target_sigset_t target_set;
 524    sigset_t set;
 525
 526    ucp_addr = env->regwptr[WREG_O0];
 527    if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
 528        goto do_sigsegv;
 529    }
 530
 531    memset(ucp, 0, sizeof(*ucp));
 532
 533    mcp = &ucp->tuc_mcontext;
 534    grp = &mcp->mc_gregs;
 535
 536    /* Skip over the trap instruction, first. */
 537    env->pc = env->npc;
 538    env->npc += 4;
 539
 540    /* If we're only reading the signal mask then do_sigprocmask()
 541     * is guaranteed not to fail, which is important because we don't
 542     * have any way to signal a failure or restart this operation since
 543     * this is not a normal syscall.
 544     */
 545    err = do_sigprocmask(0, NULL, &set);
 546    assert(err == 0);
 547    host_to_target_sigset_internal(&target_set, &set);
 548    if (TARGET_NSIG_WORDS == 1) {
 549        __put_user(target_set.sig[0],
 550                   (abi_ulong *)&ucp->tuc_sigmask);
 551    } else {
 552        abi_ulong *src, *dst;
 553        src = target_set.sig;
 554        dst = ucp->tuc_sigmask.sig;
 555        for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
 556            __put_user(*src, dst);
 557        }
 558    }
 559
 560    __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
 561    __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
 562    __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
 563    __put_user(env->y, &((*grp)[SPARC_MC_Y]));
 564    __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
 565    __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
 566    __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
 567    __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
 568    __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
 569    __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
 570    __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
 571
 572    /*
 573     * Note that unlike the kernel, we didn't need to mess with the
 574     * guest register window state to save it into a pt_regs to run
 575     * the kernel. So for us the guest's O regs are still in WREG_O*
 576     * (unlike the kernel which has put them in UREG_I* in a pt_regs)
 577     * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
 578     * need to be fished out of userspace memory.
 579     */
 580    __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
 581    __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
 582    __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
 583    __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
 584    __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
 585    __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
 586    __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
 587    __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
 588
 589    __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
 590    __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
 591
 592    /*
 593     * We don't write out the FPU state. This matches the kernel's
 594     * implementation (which has the code for doing this but
 595     * hidden behind an "if (fenab)" where fenab is always 0).
 596     */
 597
 598    unlock_user_struct(ucp, ucp_addr, 1);
 599    return;
 600do_sigsegv:
 601    unlock_user_struct(ucp, ucp_addr, 1);
 602    force_sig(TARGET_SIGSEGV);
 603}
 604#endif
 605