qemu/plugins/api.c
<<
>>
Prefs
   1/*
   2 * QEMU Plugin API
   3 *
   4 * This provides the API that is available to the plugins to interact
   5 * with QEMU. We have to be careful not to expose internal details of
   6 * how QEMU works so we abstract out things like translation and
   7 * instructions to anonymous data types:
   8 *
   9 *  qemu_plugin_tb
  10 *  qemu_plugin_insn
  11 *
  12 * Which can then be passed back into the API to do additional things.
  13 * As such all the public functions in here are exported in
  14 * qemu-plugin.h.
  15 *
  16 * The general life-cycle of a plugin is:
  17 *
  18 *  - plugin is loaded, public qemu_plugin_install called
  19 *    - the install func registers callbacks for events
  20 *    - usually an atexit_cb is registered to dump info at the end
  21 *  - when a registered event occurs the plugin is called
  22 *     - some events pass additional info
  23 *     - during translation the plugin can decide to instrument any
  24 *       instruction
  25 *  - when QEMU exits all the registered atexit callbacks are called
  26 *
  27 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
  28 * Copyright (C) 2019, Linaro
  29 *
  30 * License: GNU GPL, version 2 or later.
  31 *   See the COPYING file in the top-level directory.
  32 *
  33 * SPDX-License-Identifier: GPL-2.0-or-later
  34 *
  35 */
  36
  37#include "qemu/osdep.h"
  38#include "qemu/plugin.h"
  39#include "cpu.h"
  40#include "sysemu/sysemu.h"
  41#include "tcg/tcg.h"
  42#include "exec/exec-all.h"
  43#include "exec/ram_addr.h"
  44#include "disas/disas.h"
  45#include "plugin.h"
  46#ifndef CONFIG_USER_ONLY
  47#include "qemu/plugin-memory.h"
  48#include "hw/boards.h"
  49#endif
  50#include "trace/mem.h"
  51
  52/* Uninstall and Reset handlers */
  53
  54void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
  55{
  56    plugin_reset_uninstall(id, cb, false);
  57}
  58
  59void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
  60{
  61    plugin_reset_uninstall(id, cb, true);
  62}
  63
  64/*
  65 * Plugin Register Functions
  66 *
  67 * This allows the plugin to register callbacks for various events
  68 * during the translation.
  69 */
  70
  71void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
  72                                       qemu_plugin_vcpu_simple_cb_t cb)
  73{
  74    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
  75}
  76
  77void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
  78                                       qemu_plugin_vcpu_simple_cb_t cb)
  79{
  80    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
  81}
  82
  83void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
  84                                          qemu_plugin_vcpu_udata_cb_t cb,
  85                                          enum qemu_plugin_cb_flags flags,
  86                                          void *udata)
  87{
  88    if (!tb->mem_only) {
  89        plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
  90                                      cb, flags, udata);
  91    }
  92}
  93
  94void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
  95                                              enum qemu_plugin_op op,
  96                                              void *ptr, uint64_t imm)
  97{
  98    if (!tb->mem_only) {
  99        plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
 100    }
 101}
 102
 103void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
 104                                            qemu_plugin_vcpu_udata_cb_t cb,
 105                                            enum qemu_plugin_cb_flags flags,
 106                                            void *udata)
 107{
 108    if (!insn->mem_only) {
 109        plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
 110                                      cb, flags, udata);
 111    }
 112}
 113
 114void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
 115                                                enum qemu_plugin_op op,
 116                                                void *ptr, uint64_t imm)
 117{
 118    if (!insn->mem_only) {
 119        plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
 120                                  0, op, ptr, imm);
 121    }
 122}
 123
 124
 125/*
 126 * We always plant memory instrumentation because they don't finalise until
 127 * after the operation has complete.
 128 */
 129void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
 130                                      qemu_plugin_vcpu_mem_cb_t cb,
 131                                      enum qemu_plugin_cb_flags flags,
 132                                      enum qemu_plugin_mem_rw rw,
 133                                      void *udata)
 134{
 135    plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
 136                                    cb, flags, rw, udata);
 137}
 138
 139void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
 140                                          enum qemu_plugin_mem_rw rw,
 141                                          enum qemu_plugin_op op, void *ptr,
 142                                          uint64_t imm)
 143{
 144    plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
 145                              rw, op, ptr, imm);
 146}
 147
 148void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
 149                                           qemu_plugin_vcpu_tb_trans_cb_t cb)
 150{
 151    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
 152}
 153
 154void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
 155                                          qemu_plugin_vcpu_syscall_cb_t cb)
 156{
 157    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
 158}
 159
 160void
 161qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
 162                                         qemu_plugin_vcpu_syscall_ret_cb_t cb)
 163{
 164    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
 165}
 166
 167/*
 168 * Plugin Queries
 169 *
 170 * These are queries that the plugin can make to gauge information
 171 * from our opaque data types. We do not want to leak internal details
 172 * here just information useful to the plugin.
 173 */
 174
 175/*
 176 * Translation block information:
 177 *
 178 * A plugin can query the virtual address of the start of the block
 179 * and the number of instructions in it. It can also get access to
 180 * each translated instruction.
 181 */
 182
 183size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
 184{
 185    return tb->n;
 186}
 187
 188uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
 189{
 190    return tb->vaddr;
 191}
 192
 193struct qemu_plugin_insn *
 194qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
 195{
 196    struct qemu_plugin_insn *insn;
 197    if (unlikely(idx >= tb->n)) {
 198        return NULL;
 199    }
 200    insn = g_ptr_array_index(tb->insns, idx);
 201    insn->mem_only = tb->mem_only;
 202    return insn;
 203}
 204
 205/*
 206 * Instruction information
 207 *
 208 * These queries allow the plugin to retrieve information about each
 209 * instruction being translated.
 210 */
 211
 212const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
 213{
 214    return insn->data->data;
 215}
 216
 217size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
 218{
 219    return insn->data->len;
 220}
 221
 222uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
 223{
 224    return insn->vaddr;
 225}
 226
 227void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
 228{
 229    return insn->haddr;
 230}
 231
 232char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
 233{
 234    CPUState *cpu = current_cpu;
 235    return plugin_disas(cpu, insn->vaddr, insn->data->len);
 236}
 237
 238/*
 239 * The memory queries allow the plugin to query information about a
 240 * memory access.
 241 */
 242
 243unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
 244{
 245    return info & TRACE_MEM_SZ_SHIFT_MASK;
 246}
 247
 248bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
 249{
 250    return !!(info & TRACE_MEM_SE);
 251}
 252
 253bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
 254{
 255    return !!(info & TRACE_MEM_BE);
 256}
 257
 258bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
 259{
 260    return !!(info & TRACE_MEM_ST);
 261}
 262
 263/*
 264 * Virtual Memory queries
 265 */
 266
 267#ifdef CONFIG_SOFTMMU
 268static __thread struct qemu_plugin_hwaddr hwaddr_info;
 269#endif
 270
 271struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
 272                                                  uint64_t vaddr)
 273{
 274#ifdef CONFIG_SOFTMMU
 275    CPUState *cpu = current_cpu;
 276    unsigned int mmu_idx = info >> TRACE_MEM_MMU_SHIFT;
 277    hwaddr_info.is_store = info & TRACE_MEM_ST;
 278
 279    if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
 280                           info & TRACE_MEM_ST, &hwaddr_info)) {
 281        error_report("invalid use of qemu_plugin_get_hwaddr");
 282        return NULL;
 283    }
 284
 285    return &hwaddr_info;
 286#else
 287    return NULL;
 288#endif
 289}
 290
 291bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
 292{
 293#ifdef CONFIG_SOFTMMU
 294    return haddr->is_io;
 295#else
 296    return false;
 297#endif
 298}
 299
 300uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
 301{
 302#ifdef CONFIG_SOFTMMU
 303    if (haddr) {
 304        if (!haddr->is_io) {
 305            RAMBlock *block;
 306            ram_addr_t offset;
 307            void *hostaddr = (void *) haddr->v.ram.hostaddr;
 308
 309            block = qemu_ram_block_from_host(hostaddr, false, &offset);
 310            if (!block) {
 311                error_report("Bad ram pointer %"PRIx64"", haddr->v.ram.hostaddr);
 312                abort();
 313            }
 314
 315            return block->offset + offset + block->mr->addr;
 316        } else {
 317            MemoryRegionSection *mrs = haddr->v.io.section;
 318            return haddr->v.io.offset + mrs->mr->addr;
 319        }
 320    }
 321#endif
 322    return 0;
 323}
 324
 325const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
 326{
 327#ifdef CONFIG_SOFTMMU
 328    if (h && h->is_io) {
 329        MemoryRegionSection *mrs = h->v.io.section;
 330        if (!mrs->mr->name) {
 331            unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
 332            g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
 333            return g_intern_string(temp);
 334        } else {
 335            return g_intern_string(mrs->mr->name);
 336        }
 337    } else {
 338        return g_intern_static_string("RAM");
 339    }
 340#else
 341    return g_intern_static_string("Invalid");
 342#endif
 343}
 344
 345/*
 346 * Queries to the number and potential maximum number of vCPUs there
 347 * will be. This helps the plugin dimension per-vcpu arrays.
 348 */
 349
 350#ifndef CONFIG_USER_ONLY
 351static MachineState * get_ms(void)
 352{
 353    return MACHINE(qdev_get_machine());
 354}
 355#endif
 356
 357int qemu_plugin_n_vcpus(void)
 358{
 359#ifdef CONFIG_USER_ONLY
 360    return -1;
 361#else
 362    return get_ms()->smp.cpus;
 363#endif
 364}
 365
 366int qemu_plugin_n_max_vcpus(void)
 367{
 368#ifdef CONFIG_USER_ONLY
 369    return -1;
 370#else
 371    return get_ms()->smp.max_cpus;
 372#endif
 373}
 374
 375/*
 376 * Plugin output
 377 */
 378void qemu_plugin_outs(const char *string)
 379{
 380    qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
 381}
 382