qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu-common.h"
  24#include "target/arm/idau.h"
  25#include "qemu/module.h"
  26#include "qapi/error.h"
  27#include "qapi/visitor.h"
  28#include "cpu.h"
  29#ifdef CONFIG_TCG
  30#include "hw/core/tcg-cpu-ops.h"
  31#endif /* CONFIG_TCG */
  32#include "internals.h"
  33#include "exec/exec-all.h"
  34#include "hw/qdev-properties.h"
  35#if !defined(CONFIG_USER_ONLY)
  36#include "hw/loader.h"
  37#include "hw/boards.h"
  38#endif
  39#include "sysemu/sysemu.h"
  40#include "sysemu/tcg.h"
  41#include "sysemu/hw_accel.h"
  42#include "kvm_arm.h"
  43#include "disas/capstone.h"
  44#include "fpu/softfloat.h"
  45
  46static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  47{
  48    ARMCPU *cpu = ARM_CPU(cs);
  49    CPUARMState *env = &cpu->env;
  50
  51    if (is_a64(env)) {
  52        env->pc = value;
  53        env->thumb = 0;
  54    } else {
  55        env->regs[15] = value & ~1;
  56        env->thumb = value & 1;
  57    }
  58}
  59
  60#ifdef CONFIG_TCG
  61void arm_cpu_synchronize_from_tb(CPUState *cs,
  62                                 const TranslationBlock *tb)
  63{
  64    ARMCPU *cpu = ARM_CPU(cs);
  65    CPUARMState *env = &cpu->env;
  66
  67    /*
  68     * It's OK to look at env for the current mode here, because it's
  69     * never possible for an AArch64 TB to chain to an AArch32 TB.
  70     */
  71    if (is_a64(env)) {
  72        env->pc = tb->pc;
  73    } else {
  74        env->regs[15] = tb->pc;
  75    }
  76}
  77#endif /* CONFIG_TCG */
  78
  79static bool arm_cpu_has_work(CPUState *cs)
  80{
  81    ARMCPU *cpu = ARM_CPU(cs);
  82
  83    return (cpu->power_state != PSCI_OFF)
  84        && cs->interrupt_request &
  85        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  86         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  87         | CPU_INTERRUPT_EXITTB);
  88}
  89
  90void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  91                                 void *opaque)
  92{
  93    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  94
  95    entry->hook = hook;
  96    entry->opaque = opaque;
  97
  98    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
  99}
 100
 101void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 102                                 void *opaque)
 103{
 104    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 105
 106    entry->hook = hook;
 107    entry->opaque = opaque;
 108
 109    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 110}
 111
 112static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 113{
 114    /* Reset a single ARMCPRegInfo register */
 115    ARMCPRegInfo *ri = value;
 116    ARMCPU *cpu = opaque;
 117
 118    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
 119        return;
 120    }
 121
 122    if (ri->resetfn) {
 123        ri->resetfn(&cpu->env, ri);
 124        return;
 125    }
 126
 127    /* A zero offset is never possible as it would be regs[0]
 128     * so we use it to indicate that reset is being handled elsewhere.
 129     * This is basically only used for fields in non-core coprocessors
 130     * (like the pxa2xx ones).
 131     */
 132    if (!ri->fieldoffset) {
 133        return;
 134    }
 135
 136    if (cpreg_field_is_64bit(ri)) {
 137        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 138    } else {
 139        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 140    }
 141}
 142
 143static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 144{
 145    /* Purely an assertion check: we've already done reset once,
 146     * so now check that running the reset for the cpreg doesn't
 147     * change its value. This traps bugs where two different cpregs
 148     * both try to reset the same state field but to different values.
 149     */
 150    ARMCPRegInfo *ri = value;
 151    ARMCPU *cpu = opaque;
 152    uint64_t oldvalue, newvalue;
 153
 154    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 155        return;
 156    }
 157
 158    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 159    cp_reg_reset(key, value, opaque);
 160    newvalue = read_raw_cp_reg(&cpu->env, ri);
 161    assert(oldvalue == newvalue);
 162}
 163
 164static void arm_cpu_reset(DeviceState *dev)
 165{
 166    CPUState *s = CPU(dev);
 167    ARMCPU *cpu = ARM_CPU(s);
 168    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 169    CPUARMState *env = &cpu->env;
 170
 171    acc->parent_reset(dev);
 172
 173    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 174
 175    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 176    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 177
 178    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 179    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 180    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 181    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 182
 183    cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
 184
 185    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 186        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 187    }
 188
 189    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 190        /* 64 bit CPUs always start in 64 bit mode */
 191        env->aarch64 = 1;
 192#if defined(CONFIG_USER_ONLY)
 193        env->pstate = PSTATE_MODE_EL0t;
 194        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 195        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 196        /* Enable all PAC keys.  */
 197        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 198                                  SCTLR_EnDA | SCTLR_EnDB);
 199        /* and to the FP/Neon instructions */
 200        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 201        /* and to the SVE instructions */
 202        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 203        /* with reasonable vector length */
 204        if (cpu_isar_feature(aa64_sve, cpu)) {
 205            env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
 206        }
 207        /*
 208         * Enable TBI0 but not TBI1.
 209         * Note that this must match useronly_clean_ptr.
 210         */
 211        env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
 212
 213        /* Enable MTE */
 214        if (cpu_isar_feature(aa64_mte, cpu)) {
 215            /* Enable tag access, but leave TCF0 as No Effect (0). */
 216            env->cp15.sctlr_el[1] |= SCTLR_ATA0;
 217            /*
 218             * Exclude all tags, so that tag 0 is always used.
 219             * This corresponds to Linux current->thread.gcr_incl = 0.
 220             *
 221             * Set RRND, so that helper_irg() will generate a seed later.
 222             * Here in cpu_reset(), the crypto subsystem has not yet been
 223             * initialized.
 224             */
 225            env->cp15.gcr_el1 = 0x1ffff;
 226        }
 227#else
 228        /* Reset into the highest available EL */
 229        if (arm_feature(env, ARM_FEATURE_EL3)) {
 230            env->pstate = PSTATE_MODE_EL3h;
 231        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 232            env->pstate = PSTATE_MODE_EL2h;
 233        } else {
 234            env->pstate = PSTATE_MODE_EL1h;
 235        }
 236        env->pc = cpu->rvbar;
 237#endif
 238    } else {
 239#if defined(CONFIG_USER_ONLY)
 240        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 241        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 242#endif
 243    }
 244
 245#if defined(CONFIG_USER_ONLY)
 246    env->uncached_cpsr = ARM_CPU_MODE_USR;
 247    /* For user mode we must enable access to coprocessors */
 248    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 249    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 250        env->cp15.c15_cpar = 3;
 251    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 252        env->cp15.c15_cpar = 1;
 253    }
 254#else
 255
 256    /*
 257     * If the highest available EL is EL2, AArch32 will start in Hyp
 258     * mode; otherwise it starts in SVC. Note that if we start in
 259     * AArch64 then these values in the uncached_cpsr will be ignored.
 260     */
 261    if (arm_feature(env, ARM_FEATURE_EL2) &&
 262        !arm_feature(env, ARM_FEATURE_EL3)) {
 263        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 264    } else {
 265        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 266    }
 267    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 268
 269    if (arm_feature(env, ARM_FEATURE_M)) {
 270        uint32_t initial_msp; /* Loaded from 0x0 */
 271        uint32_t initial_pc; /* Loaded from 0x4 */
 272        uint8_t *rom;
 273        uint32_t vecbase;
 274
 275        if (cpu_isar_feature(aa32_lob, cpu)) {
 276            /*
 277             * LTPSIZE is constant 4 if MVE not implemented, and resets
 278             * to an UNKNOWN value if MVE is implemented. We choose to
 279             * always reset to 4.
 280             */
 281            env->v7m.ltpsize = 4;
 282            /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
 283            env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
 284            env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
 285        }
 286
 287        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 288            env->v7m.secure = true;
 289        } else {
 290            /* This bit resets to 0 if security is supported, but 1 if
 291             * it is not. The bit is not present in v7M, but we set it
 292             * here so we can avoid having to make checks on it conditional
 293             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 294             */
 295            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 296            /*
 297             * Set NSACR to indicate "NS access permitted to everything";
 298             * this avoids having to have all the tests of it being
 299             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 300             * v8.1M the guest-visible value of NSACR in a CPU without the
 301             * Security Extension is 0xcff.
 302             */
 303            env->v7m.nsacr = 0xcff;
 304        }
 305
 306        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 307         * that it resets to 1, so QEMU always does that rather than making
 308         * it dependent on CPU model. In v8M it is RES1.
 309         */
 310        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 311        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 312        if (arm_feature(env, ARM_FEATURE_V8)) {
 313            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 314            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 315            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 316        }
 317        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 318            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 319            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 320        }
 321
 322        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 323            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 324            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 325                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 326        }
 327        /* Unlike A/R profile, M profile defines the reset LR value */
 328        env->regs[14] = 0xffffffff;
 329
 330        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 331
 332        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 333        vecbase = env->v7m.vecbase[env->v7m.secure];
 334        rom = rom_ptr_for_as(s->as, vecbase, 8);
 335        if (rom) {
 336            /* Address zero is covered by ROM which hasn't yet been
 337             * copied into physical memory.
 338             */
 339            initial_msp = ldl_p(rom);
 340            initial_pc = ldl_p(rom + 4);
 341        } else {
 342            /* Address zero not covered by a ROM blob, or the ROM blob
 343             * is in non-modifiable memory and this is a second reset after
 344             * it got copied into memory. In the latter case, rom_ptr
 345             * will return a NULL pointer and we should use ldl_phys instead.
 346             */
 347            initial_msp = ldl_phys(s->as, vecbase);
 348            initial_pc = ldl_phys(s->as, vecbase + 4);
 349        }
 350
 351        env->regs[13] = initial_msp & 0xFFFFFFFC;
 352        env->regs[15] = initial_pc & ~1;
 353        env->thumb = initial_pc & 1;
 354    }
 355
 356    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 357     * executing as AArch32 then check if highvecs are enabled and
 358     * adjust the PC accordingly.
 359     */
 360    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 361        env->regs[15] = 0xFFFF0000;
 362    }
 363
 364    /* M profile requires that reset clears the exclusive monitor;
 365     * A profile does not, but clearing it makes more sense than having it
 366     * set with an exclusive access on address zero.
 367     */
 368    arm_clear_exclusive(env);
 369
 370    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 371#endif
 372
 373    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 374        if (cpu->pmsav7_dregion > 0) {
 375            if (arm_feature(env, ARM_FEATURE_V8)) {
 376                memset(env->pmsav8.rbar[M_REG_NS], 0,
 377                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 378                       * cpu->pmsav7_dregion);
 379                memset(env->pmsav8.rlar[M_REG_NS], 0,
 380                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 381                       * cpu->pmsav7_dregion);
 382                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 383                    memset(env->pmsav8.rbar[M_REG_S], 0,
 384                           sizeof(*env->pmsav8.rbar[M_REG_S])
 385                           * cpu->pmsav7_dregion);
 386                    memset(env->pmsav8.rlar[M_REG_S], 0,
 387                           sizeof(*env->pmsav8.rlar[M_REG_S])
 388                           * cpu->pmsav7_dregion);
 389                }
 390            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 391                memset(env->pmsav7.drbar, 0,
 392                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 393                memset(env->pmsav7.drsr, 0,
 394                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 395                memset(env->pmsav7.dracr, 0,
 396                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 397            }
 398        }
 399        env->pmsav7.rnr[M_REG_NS] = 0;
 400        env->pmsav7.rnr[M_REG_S] = 0;
 401        env->pmsav8.mair0[M_REG_NS] = 0;
 402        env->pmsav8.mair0[M_REG_S] = 0;
 403        env->pmsav8.mair1[M_REG_NS] = 0;
 404        env->pmsav8.mair1[M_REG_S] = 0;
 405    }
 406
 407    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 408        if (cpu->sau_sregion > 0) {
 409            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 410            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 411        }
 412        env->sau.rnr = 0;
 413        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 414         * the Cortex-M33 does.
 415         */
 416        env->sau.ctrl = 0;
 417    }
 418
 419    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 420    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 421    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 422    set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
 423    set_float_detect_tininess(float_tininess_before_rounding,
 424                              &env->vfp.fp_status);
 425    set_float_detect_tininess(float_tininess_before_rounding,
 426                              &env->vfp.standard_fp_status);
 427    set_float_detect_tininess(float_tininess_before_rounding,
 428                              &env->vfp.fp_status_f16);
 429    set_float_detect_tininess(float_tininess_before_rounding,
 430                              &env->vfp.standard_fp_status_f16);
 431#ifndef CONFIG_USER_ONLY
 432    if (kvm_enabled()) {
 433        kvm_arm_reset_vcpu(cpu);
 434    }
 435#endif
 436
 437    hw_breakpoint_update_all(cpu);
 438    hw_watchpoint_update_all(cpu);
 439    arm_rebuild_hflags(env);
 440}
 441
 442static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 443                                     unsigned int target_el,
 444                                     unsigned int cur_el, bool secure,
 445                                     uint64_t hcr_el2)
 446{
 447    CPUARMState *env = cs->env_ptr;
 448    bool pstate_unmasked;
 449    bool unmasked = false;
 450
 451    /*
 452     * Don't take exceptions if they target a lower EL.
 453     * This check should catch any exceptions that would not be taken
 454     * but left pending.
 455     */
 456    if (cur_el > target_el) {
 457        return false;
 458    }
 459
 460    switch (excp_idx) {
 461    case EXCP_FIQ:
 462        pstate_unmasked = !(env->daif & PSTATE_F);
 463        break;
 464
 465    case EXCP_IRQ:
 466        pstate_unmasked = !(env->daif & PSTATE_I);
 467        break;
 468
 469    case EXCP_VFIQ:
 470        if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 471            /* VFIQs are only taken when hypervized.  */
 472            return false;
 473        }
 474        return !(env->daif & PSTATE_F);
 475    case EXCP_VIRQ:
 476        if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 477            /* VIRQs are only taken when hypervized.  */
 478            return false;
 479        }
 480        return !(env->daif & PSTATE_I);
 481    default:
 482        g_assert_not_reached();
 483    }
 484
 485    /*
 486     * Use the target EL, current execution state and SCR/HCR settings to
 487     * determine whether the corresponding CPSR bit is used to mask the
 488     * interrupt.
 489     */
 490    if ((target_el > cur_el) && (target_el != 1)) {
 491        /* Exceptions targeting a higher EL may not be maskable */
 492        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 493            /*
 494             * 64-bit masking rules are simple: exceptions to EL3
 495             * can't be masked, and exceptions to EL2 can only be
 496             * masked from Secure state. The HCR and SCR settings
 497             * don't affect the masking logic, only the interrupt routing.
 498             */
 499            if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
 500                unmasked = true;
 501            }
 502        } else {
 503            /*
 504             * The old 32-bit-only environment has a more complicated
 505             * masking setup. HCR and SCR bits not only affect interrupt
 506             * routing but also change the behaviour of masking.
 507             */
 508            bool hcr, scr;
 509
 510            switch (excp_idx) {
 511            case EXCP_FIQ:
 512                /*
 513                 * If FIQs are routed to EL3 or EL2 then there are cases where
 514                 * we override the CPSR.F in determining if the exception is
 515                 * masked or not. If neither of these are set then we fall back
 516                 * to the CPSR.F setting otherwise we further assess the state
 517                 * below.
 518                 */
 519                hcr = hcr_el2 & HCR_FMO;
 520                scr = (env->cp15.scr_el3 & SCR_FIQ);
 521
 522                /*
 523                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
 524                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
 525                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 526                 * when non-secure but only when FIQs are only routed to EL3.
 527                 */
 528                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 529                break;
 530            case EXCP_IRQ:
 531                /*
 532                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
 533                 * we may override the CPSR.I masking when in non-secure state.
 534                 * The SCR.IRQ setting has already been taken into consideration
 535                 * when setting the target EL, so it does not have a further
 536                 * affect here.
 537                 */
 538                hcr = hcr_el2 & HCR_IMO;
 539                scr = false;
 540                break;
 541            default:
 542                g_assert_not_reached();
 543            }
 544
 545            if ((scr || hcr) && !secure) {
 546                unmasked = true;
 547            }
 548        }
 549    }
 550
 551    /*
 552     * The PSTATE bits only mask the interrupt if we have not overriden the
 553     * ability above.
 554     */
 555    return unmasked || pstate_unmasked;
 556}
 557
 558bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 559{
 560    CPUClass *cc = CPU_GET_CLASS(cs);
 561    CPUARMState *env = cs->env_ptr;
 562    uint32_t cur_el = arm_current_el(env);
 563    bool secure = arm_is_secure(env);
 564    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 565    uint32_t target_el;
 566    uint32_t excp_idx;
 567
 568    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 569
 570    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 571        excp_idx = EXCP_FIQ;
 572        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 573        if (arm_excp_unmasked(cs, excp_idx, target_el,
 574                              cur_el, secure, hcr_el2)) {
 575            goto found;
 576        }
 577    }
 578    if (interrupt_request & CPU_INTERRUPT_HARD) {
 579        excp_idx = EXCP_IRQ;
 580        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 581        if (arm_excp_unmasked(cs, excp_idx, target_el,
 582                              cur_el, secure, hcr_el2)) {
 583            goto found;
 584        }
 585    }
 586    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 587        excp_idx = EXCP_VIRQ;
 588        target_el = 1;
 589        if (arm_excp_unmasked(cs, excp_idx, target_el,
 590                              cur_el, secure, hcr_el2)) {
 591            goto found;
 592        }
 593    }
 594    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 595        excp_idx = EXCP_VFIQ;
 596        target_el = 1;
 597        if (arm_excp_unmasked(cs, excp_idx, target_el,
 598                              cur_el, secure, hcr_el2)) {
 599            goto found;
 600        }
 601    }
 602    return false;
 603
 604 found:
 605    cs->exception_index = excp_idx;
 606    env->exception.target_el = target_el;
 607    cc->tcg_ops->do_interrupt(cs);
 608    return true;
 609}
 610
 611void arm_cpu_update_virq(ARMCPU *cpu)
 612{
 613    /*
 614     * Update the interrupt level for VIRQ, which is the logical OR of
 615     * the HCR_EL2.VI bit and the input line level from the GIC.
 616     */
 617    CPUARMState *env = &cpu->env;
 618    CPUState *cs = CPU(cpu);
 619
 620    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 621        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 622
 623    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 624        if (new_state) {
 625            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 626        } else {
 627            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 628        }
 629    }
 630}
 631
 632void arm_cpu_update_vfiq(ARMCPU *cpu)
 633{
 634    /*
 635     * Update the interrupt level for VFIQ, which is the logical OR of
 636     * the HCR_EL2.VF bit and the input line level from the GIC.
 637     */
 638    CPUARMState *env = &cpu->env;
 639    CPUState *cs = CPU(cpu);
 640
 641    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 642        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 643
 644    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 645        if (new_state) {
 646            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 647        } else {
 648            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 649        }
 650    }
 651}
 652
 653#ifndef CONFIG_USER_ONLY
 654static void arm_cpu_set_irq(void *opaque, int irq, int level)
 655{
 656    ARMCPU *cpu = opaque;
 657    CPUARMState *env = &cpu->env;
 658    CPUState *cs = CPU(cpu);
 659    static const int mask[] = {
 660        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 661        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 662        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 663        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 664    };
 665
 666    if (level) {
 667        env->irq_line_state |= mask[irq];
 668    } else {
 669        env->irq_line_state &= ~mask[irq];
 670    }
 671
 672    switch (irq) {
 673    case ARM_CPU_VIRQ:
 674        assert(arm_feature(env, ARM_FEATURE_EL2));
 675        arm_cpu_update_virq(cpu);
 676        break;
 677    case ARM_CPU_VFIQ:
 678        assert(arm_feature(env, ARM_FEATURE_EL2));
 679        arm_cpu_update_vfiq(cpu);
 680        break;
 681    case ARM_CPU_IRQ:
 682    case ARM_CPU_FIQ:
 683        if (level) {
 684            cpu_interrupt(cs, mask[irq]);
 685        } else {
 686            cpu_reset_interrupt(cs, mask[irq]);
 687        }
 688        break;
 689    default:
 690        g_assert_not_reached();
 691    }
 692}
 693
 694static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 695{
 696#ifdef CONFIG_KVM
 697    ARMCPU *cpu = opaque;
 698    CPUARMState *env = &cpu->env;
 699    CPUState *cs = CPU(cpu);
 700    uint32_t linestate_bit;
 701    int irq_id;
 702
 703    switch (irq) {
 704    case ARM_CPU_IRQ:
 705        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 706        linestate_bit = CPU_INTERRUPT_HARD;
 707        break;
 708    case ARM_CPU_FIQ:
 709        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 710        linestate_bit = CPU_INTERRUPT_FIQ;
 711        break;
 712    default:
 713        g_assert_not_reached();
 714    }
 715
 716    if (level) {
 717        env->irq_line_state |= linestate_bit;
 718    } else {
 719        env->irq_line_state &= ~linestate_bit;
 720    }
 721    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 722#endif
 723}
 724
 725static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 726{
 727    ARMCPU *cpu = ARM_CPU(cs);
 728    CPUARMState *env = &cpu->env;
 729
 730    cpu_synchronize_state(cs);
 731    return arm_cpu_data_is_big_endian(env);
 732}
 733
 734#endif
 735
 736static int
 737print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 738{
 739  return print_insn_arm(pc | 1, info);
 740}
 741
 742static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 743{
 744    ARMCPU *ac = ARM_CPU(cpu);
 745    CPUARMState *env = &ac->env;
 746    bool sctlr_b;
 747
 748    if (is_a64(env)) {
 749        /* We might not be compiled with the A64 disassembler
 750         * because it needs a C++ compiler. Leave print_insn
 751         * unset in this case to use the caller default behaviour.
 752         */
 753#if defined(CONFIG_ARM_A64_DIS)
 754        info->print_insn = print_insn_arm_a64;
 755#endif
 756        info->cap_arch = CS_ARCH_ARM64;
 757        info->cap_insn_unit = 4;
 758        info->cap_insn_split = 4;
 759    } else {
 760        int cap_mode;
 761        if (env->thumb) {
 762            info->print_insn = print_insn_thumb1;
 763            info->cap_insn_unit = 2;
 764            info->cap_insn_split = 4;
 765            cap_mode = CS_MODE_THUMB;
 766        } else {
 767            info->print_insn = print_insn_arm;
 768            info->cap_insn_unit = 4;
 769            info->cap_insn_split = 4;
 770            cap_mode = CS_MODE_ARM;
 771        }
 772        if (arm_feature(env, ARM_FEATURE_V8)) {
 773            cap_mode |= CS_MODE_V8;
 774        }
 775        if (arm_feature(env, ARM_FEATURE_M)) {
 776            cap_mode |= CS_MODE_MCLASS;
 777        }
 778        info->cap_arch = CS_ARCH_ARM;
 779        info->cap_mode = cap_mode;
 780    }
 781
 782    sctlr_b = arm_sctlr_b(env);
 783    if (bswap_code(sctlr_b)) {
 784#ifdef TARGET_WORDS_BIGENDIAN
 785        info->endian = BFD_ENDIAN_LITTLE;
 786#else
 787        info->endian = BFD_ENDIAN_BIG;
 788#endif
 789    }
 790    info->flags &= ~INSN_ARM_BE32;
 791#ifndef CONFIG_USER_ONLY
 792    if (sctlr_b) {
 793        info->flags |= INSN_ARM_BE32;
 794    }
 795#endif
 796}
 797
 798#ifdef TARGET_AARCH64
 799
 800static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 801{
 802    ARMCPU *cpu = ARM_CPU(cs);
 803    CPUARMState *env = &cpu->env;
 804    uint32_t psr = pstate_read(env);
 805    int i;
 806    int el = arm_current_el(env);
 807    const char *ns_status;
 808
 809    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 810    for (i = 0; i < 32; i++) {
 811        if (i == 31) {
 812            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 813        } else {
 814            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 815                         (i + 2) % 3 ? " " : "\n");
 816        }
 817    }
 818
 819    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 820        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 821    } else {
 822        ns_status = "";
 823    }
 824    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 825                 psr,
 826                 psr & PSTATE_N ? 'N' : '-',
 827                 psr & PSTATE_Z ? 'Z' : '-',
 828                 psr & PSTATE_C ? 'C' : '-',
 829                 psr & PSTATE_V ? 'V' : '-',
 830                 ns_status,
 831                 el,
 832                 psr & PSTATE_SP ? 'h' : 't');
 833
 834    if (cpu_isar_feature(aa64_bti, cpu)) {
 835        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 836    }
 837    if (!(flags & CPU_DUMP_FPU)) {
 838        qemu_fprintf(f, "\n");
 839        return;
 840    }
 841    if (fp_exception_el(env, el) != 0) {
 842        qemu_fprintf(f, "    FPU disabled\n");
 843        return;
 844    }
 845    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 846                 vfp_get_fpcr(env), vfp_get_fpsr(env));
 847
 848    if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
 849        int j, zcr_len = sve_zcr_len_for_el(env, el);
 850
 851        for (i = 0; i <= FFR_PRED_NUM; i++) {
 852            bool eol;
 853            if (i == FFR_PRED_NUM) {
 854                qemu_fprintf(f, "FFR=");
 855                /* It's last, so end the line.  */
 856                eol = true;
 857            } else {
 858                qemu_fprintf(f, "P%02d=", i);
 859                switch (zcr_len) {
 860                case 0:
 861                    eol = i % 8 == 7;
 862                    break;
 863                case 1:
 864                    eol = i % 6 == 5;
 865                    break;
 866                case 2:
 867                case 3:
 868                    eol = i % 3 == 2;
 869                    break;
 870                default:
 871                    /* More than one quadword per predicate.  */
 872                    eol = true;
 873                    break;
 874                }
 875            }
 876            for (j = zcr_len / 4; j >= 0; j--) {
 877                int digits;
 878                if (j * 4 + 4 <= zcr_len + 1) {
 879                    digits = 16;
 880                } else {
 881                    digits = (zcr_len % 4 + 1) * 4;
 882                }
 883                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
 884                             env->vfp.pregs[i].p[j],
 885                             j ? ":" : eol ? "\n" : " ");
 886            }
 887        }
 888
 889        for (i = 0; i < 32; i++) {
 890            if (zcr_len == 0) {
 891                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 892                             i, env->vfp.zregs[i].d[1],
 893                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
 894            } else if (zcr_len == 1) {
 895                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
 896                             ":%016" PRIx64 ":%016" PRIx64 "\n",
 897                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
 898                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
 899            } else {
 900                for (j = zcr_len; j >= 0; j--) {
 901                    bool odd = (zcr_len - j) % 2 != 0;
 902                    if (j == zcr_len) {
 903                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
 904                    } else if (!odd) {
 905                        if (j > 0) {
 906                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
 907                        } else {
 908                            qemu_fprintf(f, "     [%x]=", j);
 909                        }
 910                    }
 911                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
 912                                 env->vfp.zregs[i].d[j * 2 + 1],
 913                                 env->vfp.zregs[i].d[j * 2],
 914                                 odd || j == 0 ? "\n" : ":");
 915                }
 916            }
 917        }
 918    } else {
 919        for (i = 0; i < 32; i++) {
 920            uint64_t *q = aa64_vfp_qreg(env, i);
 921            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 922                         i, q[1], q[0], (i & 1 ? "\n" : " "));
 923        }
 924    }
 925}
 926
 927#else
 928
 929static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 930{
 931    g_assert_not_reached();
 932}
 933
 934#endif
 935
 936static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 937{
 938    ARMCPU *cpu = ARM_CPU(cs);
 939    CPUARMState *env = &cpu->env;
 940    int i;
 941
 942    if (is_a64(env)) {
 943        aarch64_cpu_dump_state(cs, f, flags);
 944        return;
 945    }
 946
 947    for (i = 0; i < 16; i++) {
 948        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
 949        if ((i % 4) == 3) {
 950            qemu_fprintf(f, "\n");
 951        } else {
 952            qemu_fprintf(f, " ");
 953        }
 954    }
 955
 956    if (arm_feature(env, ARM_FEATURE_M)) {
 957        uint32_t xpsr = xpsr_read(env);
 958        const char *mode;
 959        const char *ns_status = "";
 960
 961        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 962            ns_status = env->v7m.secure ? "S " : "NS ";
 963        }
 964
 965        if (xpsr & XPSR_EXCP) {
 966            mode = "handler";
 967        } else {
 968            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
 969                mode = "unpriv-thread";
 970            } else {
 971                mode = "priv-thread";
 972            }
 973        }
 974
 975        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
 976                     xpsr,
 977                     xpsr & XPSR_N ? 'N' : '-',
 978                     xpsr & XPSR_Z ? 'Z' : '-',
 979                     xpsr & XPSR_C ? 'C' : '-',
 980                     xpsr & XPSR_V ? 'V' : '-',
 981                     xpsr & XPSR_T ? 'T' : 'A',
 982                     ns_status,
 983                     mode);
 984    } else {
 985        uint32_t psr = cpsr_read(env);
 986        const char *ns_status = "";
 987
 988        if (arm_feature(env, ARM_FEATURE_EL3) &&
 989            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
 990            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 991        }
 992
 993        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
 994                     psr,
 995                     psr & CPSR_N ? 'N' : '-',
 996                     psr & CPSR_Z ? 'Z' : '-',
 997                     psr & CPSR_C ? 'C' : '-',
 998                     psr & CPSR_V ? 'V' : '-',
 999                     psr & CPSR_T ? 'T' : 'A',
1000                     ns_status,
1001                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1002    }
1003
1004    if (flags & CPU_DUMP_FPU) {
1005        int numvfpregs = 0;
1006        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1007            numvfpregs = 32;
1008        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1009            numvfpregs = 16;
1010        }
1011        for (i = 0; i < numvfpregs; i++) {
1012            uint64_t v = *aa32_vfp_dreg(env, i);
1013            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1014                         i * 2, (uint32_t)v,
1015                         i * 2 + 1, (uint32_t)(v >> 32),
1016                         i, v);
1017        }
1018        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1019    }
1020}
1021
1022uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1023{
1024    uint32_t Aff1 = idx / clustersz;
1025    uint32_t Aff0 = idx % clustersz;
1026    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1027}
1028
1029static void cpreg_hashtable_data_destroy(gpointer data)
1030{
1031    /*
1032     * Destroy function for cpu->cp_regs hashtable data entries.
1033     * We must free the name string because it was g_strdup()ed in
1034     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1035     * from r->name because we know we definitely allocated it.
1036     */
1037    ARMCPRegInfo *r = data;
1038
1039    g_free((void *)r->name);
1040    g_free(r);
1041}
1042
1043static void arm_cpu_initfn(Object *obj)
1044{
1045    ARMCPU *cpu = ARM_CPU(obj);
1046
1047    cpu_set_cpustate_pointers(cpu);
1048    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1049                                         g_free, cpreg_hashtable_data_destroy);
1050
1051    QLIST_INIT(&cpu->pre_el_change_hooks);
1052    QLIST_INIT(&cpu->el_change_hooks);
1053
1054#ifndef CONFIG_USER_ONLY
1055    /* Our inbound IRQ and FIQ lines */
1056    if (kvm_enabled()) {
1057        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1058         * the same interface as non-KVM CPUs.
1059         */
1060        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1061    } else {
1062        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1063    }
1064
1065    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1066                       ARRAY_SIZE(cpu->gt_timer_outputs));
1067
1068    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1069                             "gicv3-maintenance-interrupt", 1);
1070    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1071                             "pmu-interrupt", 1);
1072#endif
1073
1074    /* DTB consumers generally don't in fact care what the 'compatible'
1075     * string is, so always provide some string and trust that a hypothetical
1076     * picky DTB consumer will also provide a helpful error message.
1077     */
1078    cpu->dtb_compatible = "qemu,unknown";
1079    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1080    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1081
1082    if (tcg_enabled()) {
1083        cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1084    }
1085}
1086
1087static Property arm_cpu_gt_cntfrq_property =
1088            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1089                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1090
1091static Property arm_cpu_reset_cbar_property =
1092            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1093
1094static Property arm_cpu_reset_hivecs_property =
1095            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1096
1097static Property arm_cpu_rvbar_property =
1098            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1099
1100#ifndef CONFIG_USER_ONLY
1101static Property arm_cpu_has_el2_property =
1102            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1103
1104static Property arm_cpu_has_el3_property =
1105            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1106#endif
1107
1108static Property arm_cpu_cfgend_property =
1109            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1110
1111static Property arm_cpu_has_vfp_property =
1112            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1113
1114static Property arm_cpu_has_neon_property =
1115            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1116
1117static Property arm_cpu_has_dsp_property =
1118            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1119
1120static Property arm_cpu_has_mpu_property =
1121            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1122
1123/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1124 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1125 * the right value for that particular CPU type, and we don't want
1126 * to override that with an incorrect constant value.
1127 */
1128static Property arm_cpu_pmsav7_dregion_property =
1129            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1130                                           pmsav7_dregion,
1131                                           qdev_prop_uint32, uint32_t);
1132
1133static bool arm_get_pmu(Object *obj, Error **errp)
1134{
1135    ARMCPU *cpu = ARM_CPU(obj);
1136
1137    return cpu->has_pmu;
1138}
1139
1140static void arm_set_pmu(Object *obj, bool value, Error **errp)
1141{
1142    ARMCPU *cpu = ARM_CPU(obj);
1143
1144    if (value) {
1145        if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1146            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1147            return;
1148        }
1149        set_feature(&cpu->env, ARM_FEATURE_PMU);
1150    } else {
1151        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1152    }
1153    cpu->has_pmu = value;
1154}
1155
1156unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1157{
1158    /*
1159     * The exact approach to calculating guest ticks is:
1160     *
1161     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1162     *              NANOSECONDS_PER_SECOND);
1163     *
1164     * We don't do that. Rather we intentionally use integer division
1165     * truncation below and in the caller for the conversion of host monotonic
1166     * time to guest ticks to provide the exact inverse for the semantics of
1167     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1168     * it loses precision when representing frequencies where
1169     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1170     * provide an exact inverse leads to scheduling timers with negative
1171     * periods, which in turn leads to sticky behaviour in the guest.
1172     *
1173     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1174     * cannot become zero.
1175     */
1176    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1177      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1178}
1179
1180void arm_cpu_post_init(Object *obj)
1181{
1182    ARMCPU *cpu = ARM_CPU(obj);
1183
1184    /* M profile implies PMSA. We have to do this here rather than
1185     * in realize with the other feature-implication checks because
1186     * we look at the PMSA bit to see if we should add some properties.
1187     */
1188    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1189        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1190    }
1191
1192    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1193        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1194        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1195    }
1196
1197    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1198        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1199    }
1200
1201    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1202        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1203    }
1204
1205#ifndef CONFIG_USER_ONLY
1206    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1207        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1208         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1209         */
1210        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1211
1212        object_property_add_link(obj, "secure-memory",
1213                                 TYPE_MEMORY_REGION,
1214                                 (Object **)&cpu->secure_memory,
1215                                 qdev_prop_allow_set_link_before_realize,
1216                                 OBJ_PROP_LINK_STRONG);
1217    }
1218
1219    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1220        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1221    }
1222#endif
1223
1224    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1225        cpu->has_pmu = true;
1226        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1227    }
1228
1229    /*
1230     * Allow user to turn off VFP and Neon support, but only for TCG --
1231     * KVM does not currently allow us to lie to the guest about its
1232     * ID/feature registers, so the guest always sees what the host has.
1233     */
1234    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1235        ? cpu_isar_feature(aa64_fp_simd, cpu)
1236        : cpu_isar_feature(aa32_vfp, cpu)) {
1237        cpu->has_vfp = true;
1238        if (!kvm_enabled()) {
1239            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1240        }
1241    }
1242
1243    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1244        cpu->has_neon = true;
1245        if (!kvm_enabled()) {
1246            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1247        }
1248    }
1249
1250    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1251        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1252        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1253    }
1254
1255    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1256        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1257        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1258            qdev_property_add_static(DEVICE(obj),
1259                                     &arm_cpu_pmsav7_dregion_property);
1260        }
1261    }
1262
1263    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1264        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1265                                 qdev_prop_allow_set_link_before_realize,
1266                                 OBJ_PROP_LINK_STRONG);
1267        /*
1268         * M profile: initial value of the Secure VTOR. We can't just use
1269         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1270         * the property to be set after realize.
1271         */
1272        object_property_add_uint32_ptr(obj, "init-svtor",
1273                                       &cpu->init_svtor,
1274                                       OBJ_PROP_FLAG_READWRITE);
1275    }
1276
1277    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1278
1279    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1280        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1281    }
1282
1283    if (kvm_enabled()) {
1284        kvm_arm_add_vcpu_properties(obj);
1285    }
1286
1287#ifndef CONFIG_USER_ONLY
1288    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1289        cpu_isar_feature(aa64_mte, cpu)) {
1290        object_property_add_link(obj, "tag-memory",
1291                                 TYPE_MEMORY_REGION,
1292                                 (Object **)&cpu->tag_memory,
1293                                 qdev_prop_allow_set_link_before_realize,
1294                                 OBJ_PROP_LINK_STRONG);
1295
1296        if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1297            object_property_add_link(obj, "secure-tag-memory",
1298                                     TYPE_MEMORY_REGION,
1299                                     (Object **)&cpu->secure_tag_memory,
1300                                     qdev_prop_allow_set_link_before_realize,
1301                                     OBJ_PROP_LINK_STRONG);
1302        }
1303    }
1304#endif
1305}
1306
1307static void arm_cpu_finalizefn(Object *obj)
1308{
1309    ARMCPU *cpu = ARM_CPU(obj);
1310    ARMELChangeHook *hook, *next;
1311
1312    g_hash_table_destroy(cpu->cp_regs);
1313
1314    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1315        QLIST_REMOVE(hook, node);
1316        g_free(hook);
1317    }
1318    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1319        QLIST_REMOVE(hook, node);
1320        g_free(hook);
1321    }
1322#ifndef CONFIG_USER_ONLY
1323    if (cpu->pmu_timer) {
1324        timer_free(cpu->pmu_timer);
1325    }
1326#endif
1327}
1328
1329void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1330{
1331    Error *local_err = NULL;
1332
1333    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1334        arm_cpu_sve_finalize(cpu, &local_err);
1335        if (local_err != NULL) {
1336            error_propagate(errp, local_err);
1337            return;
1338        }
1339
1340        /*
1341         * KVM does not support modifications to this feature.
1342         * We have not registered the cpu properties when KVM
1343         * is in use, so the user will not be able to set them.
1344         */
1345        if (!kvm_enabled()) {
1346            arm_cpu_pauth_finalize(cpu, &local_err);
1347            if (local_err != NULL) {
1348                error_propagate(errp, local_err);
1349                return;
1350            }
1351        }
1352    }
1353
1354    if (kvm_enabled()) {
1355        kvm_arm_steal_time_finalize(cpu, &local_err);
1356        if (local_err != NULL) {
1357            error_propagate(errp, local_err);
1358            return;
1359        }
1360    }
1361}
1362
1363static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1364{
1365    CPUState *cs = CPU(dev);
1366    ARMCPU *cpu = ARM_CPU(dev);
1367    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1368    CPUARMState *env = &cpu->env;
1369    int pagebits;
1370    Error *local_err = NULL;
1371    bool no_aa32 = false;
1372
1373    /* If we needed to query the host kernel for the CPU features
1374     * then it's possible that might have failed in the initfn, but
1375     * this is the first point where we can report it.
1376     */
1377    if (cpu->host_cpu_probe_failed) {
1378        if (!kvm_enabled()) {
1379            error_setg(errp, "The 'host' CPU type can only be used with KVM");
1380        } else {
1381            error_setg(errp, "Failed to retrieve host CPU features");
1382        }
1383        return;
1384    }
1385
1386#ifndef CONFIG_USER_ONLY
1387    /* The NVIC and M-profile CPU are two halves of a single piece of
1388     * hardware; trying to use one without the other is a command line
1389     * error and will result in segfaults if not caught here.
1390     */
1391    if (arm_feature(env, ARM_FEATURE_M)) {
1392        if (!env->nvic) {
1393            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1394            return;
1395        }
1396    } else {
1397        if (env->nvic) {
1398            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1399            return;
1400        }
1401    }
1402
1403    {
1404        uint64_t scale;
1405
1406        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1407            if (!cpu->gt_cntfrq_hz) {
1408                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1409                           cpu->gt_cntfrq_hz);
1410                return;
1411            }
1412            scale = gt_cntfrq_period_ns(cpu);
1413        } else {
1414            scale = GTIMER_SCALE;
1415        }
1416
1417        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1418                                               arm_gt_ptimer_cb, cpu);
1419        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1420                                               arm_gt_vtimer_cb, cpu);
1421        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1422                                              arm_gt_htimer_cb, cpu);
1423        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1424                                              arm_gt_stimer_cb, cpu);
1425        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1426                                                  arm_gt_hvtimer_cb, cpu);
1427    }
1428#endif
1429
1430    cpu_exec_realizefn(cs, &local_err);
1431    if (local_err != NULL) {
1432        error_propagate(errp, local_err);
1433        return;
1434    }
1435
1436    arm_cpu_finalize_features(cpu, &local_err);
1437    if (local_err != NULL) {
1438        error_propagate(errp, local_err);
1439        return;
1440    }
1441
1442    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1443        cpu->has_vfp != cpu->has_neon) {
1444        /*
1445         * This is an architectural requirement for AArch64; AArch32 is
1446         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1447         */
1448        error_setg(errp,
1449                   "AArch64 CPUs must have both VFP and Neon or neither");
1450        return;
1451    }
1452
1453    if (!cpu->has_vfp) {
1454        uint64_t t;
1455        uint32_t u;
1456
1457        t = cpu->isar.id_aa64isar1;
1458        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1459        cpu->isar.id_aa64isar1 = t;
1460
1461        t = cpu->isar.id_aa64pfr0;
1462        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1463        cpu->isar.id_aa64pfr0 = t;
1464
1465        u = cpu->isar.id_isar6;
1466        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1467        cpu->isar.id_isar6 = u;
1468
1469        u = cpu->isar.mvfr0;
1470        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1471        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1472        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1473        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1474        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1475        if (!arm_feature(env, ARM_FEATURE_M)) {
1476            u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1477            u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1478        }
1479        cpu->isar.mvfr0 = u;
1480
1481        u = cpu->isar.mvfr1;
1482        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1483        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1484        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1485        if (arm_feature(env, ARM_FEATURE_M)) {
1486            u = FIELD_DP32(u, MVFR1, FP16, 0);
1487        }
1488        cpu->isar.mvfr1 = u;
1489
1490        u = cpu->isar.mvfr2;
1491        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1492        cpu->isar.mvfr2 = u;
1493    }
1494
1495    if (!cpu->has_neon) {
1496        uint64_t t;
1497        uint32_t u;
1498
1499        unset_feature(env, ARM_FEATURE_NEON);
1500
1501        t = cpu->isar.id_aa64isar0;
1502        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1503        cpu->isar.id_aa64isar0 = t;
1504
1505        t = cpu->isar.id_aa64isar1;
1506        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1507        cpu->isar.id_aa64isar1 = t;
1508
1509        t = cpu->isar.id_aa64pfr0;
1510        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1511        cpu->isar.id_aa64pfr0 = t;
1512
1513        u = cpu->isar.id_isar5;
1514        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1515        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1516        cpu->isar.id_isar5 = u;
1517
1518        u = cpu->isar.id_isar6;
1519        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1520        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1521        cpu->isar.id_isar6 = u;
1522
1523        if (!arm_feature(env, ARM_FEATURE_M)) {
1524            u = cpu->isar.mvfr1;
1525            u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1526            u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1527            u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1528            u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1529            cpu->isar.mvfr1 = u;
1530
1531            u = cpu->isar.mvfr2;
1532            u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1533            cpu->isar.mvfr2 = u;
1534        }
1535    }
1536
1537    if (!cpu->has_neon && !cpu->has_vfp) {
1538        uint64_t t;
1539        uint32_t u;
1540
1541        t = cpu->isar.id_aa64isar0;
1542        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1543        cpu->isar.id_aa64isar0 = t;
1544
1545        t = cpu->isar.id_aa64isar1;
1546        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1547        cpu->isar.id_aa64isar1 = t;
1548
1549        u = cpu->isar.mvfr0;
1550        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1551        cpu->isar.mvfr0 = u;
1552
1553        /* Despite the name, this field covers both VFP and Neon */
1554        u = cpu->isar.mvfr1;
1555        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1556        cpu->isar.mvfr1 = u;
1557    }
1558
1559    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1560        uint32_t u;
1561
1562        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1563
1564        u = cpu->isar.id_isar1;
1565        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1566        cpu->isar.id_isar1 = u;
1567
1568        u = cpu->isar.id_isar2;
1569        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1570        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1571        cpu->isar.id_isar2 = u;
1572
1573        u = cpu->isar.id_isar3;
1574        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1575        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1576        cpu->isar.id_isar3 = u;
1577    }
1578
1579    /* Some features automatically imply others: */
1580    if (arm_feature(env, ARM_FEATURE_V8)) {
1581        if (arm_feature(env, ARM_FEATURE_M)) {
1582            set_feature(env, ARM_FEATURE_V7);
1583        } else {
1584            set_feature(env, ARM_FEATURE_V7VE);
1585        }
1586    }
1587
1588    /*
1589     * There exist AArch64 cpus without AArch32 support.  When KVM
1590     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1591     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1592     * As a general principle, we also do not make ID register
1593     * consistency checks anywhere unless using TCG, because only
1594     * for TCG would a consistency-check failure be a QEMU bug.
1595     */
1596    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1597        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1598    }
1599
1600    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1601        /* v7 Virtualization Extensions. In real hardware this implies
1602         * EL2 and also the presence of the Security Extensions.
1603         * For QEMU, for backwards-compatibility we implement some
1604         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1605         * include the various other features that V7VE implies.
1606         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1607         * Security Extensions is ARM_FEATURE_EL3.
1608         */
1609        assert(!tcg_enabled() || no_aa32 ||
1610               cpu_isar_feature(aa32_arm_div, cpu));
1611        set_feature(env, ARM_FEATURE_LPAE);
1612        set_feature(env, ARM_FEATURE_V7);
1613    }
1614    if (arm_feature(env, ARM_FEATURE_V7)) {
1615        set_feature(env, ARM_FEATURE_VAPA);
1616        set_feature(env, ARM_FEATURE_THUMB2);
1617        set_feature(env, ARM_FEATURE_MPIDR);
1618        if (!arm_feature(env, ARM_FEATURE_M)) {
1619            set_feature(env, ARM_FEATURE_V6K);
1620        } else {
1621            set_feature(env, ARM_FEATURE_V6);
1622        }
1623
1624        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1625         * non-EL3 configs. This is needed by some legacy boards.
1626         */
1627        set_feature(env, ARM_FEATURE_VBAR);
1628    }
1629    if (arm_feature(env, ARM_FEATURE_V6K)) {
1630        set_feature(env, ARM_FEATURE_V6);
1631        set_feature(env, ARM_FEATURE_MVFR);
1632    }
1633    if (arm_feature(env, ARM_FEATURE_V6)) {
1634        set_feature(env, ARM_FEATURE_V5);
1635        if (!arm_feature(env, ARM_FEATURE_M)) {
1636            assert(!tcg_enabled() || no_aa32 ||
1637                   cpu_isar_feature(aa32_jazelle, cpu));
1638            set_feature(env, ARM_FEATURE_AUXCR);
1639        }
1640    }
1641    if (arm_feature(env, ARM_FEATURE_V5)) {
1642        set_feature(env, ARM_FEATURE_V4T);
1643    }
1644    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1645        set_feature(env, ARM_FEATURE_V7MP);
1646    }
1647    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1648        set_feature(env, ARM_FEATURE_CBAR);
1649    }
1650    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1651        !arm_feature(env, ARM_FEATURE_M)) {
1652        set_feature(env, ARM_FEATURE_THUMB_DSP);
1653    }
1654
1655    /*
1656     * We rely on no XScale CPU having VFP so we can use the same bits in the
1657     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1658     */
1659    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1660           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1661           !arm_feature(env, ARM_FEATURE_XSCALE));
1662
1663    if (arm_feature(env, ARM_FEATURE_V7) &&
1664        !arm_feature(env, ARM_FEATURE_M) &&
1665        !arm_feature(env, ARM_FEATURE_PMSA)) {
1666        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1667         * can use 4K pages.
1668         */
1669        pagebits = 12;
1670    } else {
1671        /* For CPUs which might have tiny 1K pages, or which have an
1672         * MPU and might have small region sizes, stick with 1K pages.
1673         */
1674        pagebits = 10;
1675    }
1676    if (!set_preferred_target_page_bits(pagebits)) {
1677        /* This can only ever happen for hotplugging a CPU, or if
1678         * the board code incorrectly creates a CPU which it has
1679         * promised via minimum_page_size that it will not.
1680         */
1681        error_setg(errp, "This CPU requires a smaller page size than the "
1682                   "system is using");
1683        return;
1684    }
1685
1686    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1687     * We don't support setting cluster ID ([16..23]) (known as Aff2
1688     * in later ARM ARM versions), or any of the higher affinity level fields,
1689     * so these bits always RAZ.
1690     */
1691    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1692        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1693                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1694    }
1695
1696    if (cpu->reset_hivecs) {
1697            cpu->reset_sctlr |= (1 << 13);
1698    }
1699
1700    if (cpu->cfgend) {
1701        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1702            cpu->reset_sctlr |= SCTLR_EE;
1703        } else {
1704            cpu->reset_sctlr |= SCTLR_B;
1705        }
1706    }
1707
1708    if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1709        /* If the has_el3 CPU property is disabled then we need to disable the
1710         * feature.
1711         */
1712        unset_feature(env, ARM_FEATURE_EL3);
1713
1714        /* Disable the security extension feature bits in the processor feature
1715         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1716         */
1717        cpu->isar.id_pfr1 &= ~0xf0;
1718        cpu->isar.id_aa64pfr0 &= ~0xf000;
1719    }
1720
1721    if (!cpu->has_el2) {
1722        unset_feature(env, ARM_FEATURE_EL2);
1723    }
1724
1725    if (!cpu->has_pmu) {
1726        unset_feature(env, ARM_FEATURE_PMU);
1727    }
1728    if (arm_feature(env, ARM_FEATURE_PMU)) {
1729        pmu_init(cpu);
1730
1731        if (!kvm_enabled()) {
1732            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1733            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1734        }
1735
1736#ifndef CONFIG_USER_ONLY
1737        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1738                cpu);
1739#endif
1740    } else {
1741        cpu->isar.id_aa64dfr0 =
1742            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1743        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1744        cpu->pmceid0 = 0;
1745        cpu->pmceid1 = 0;
1746    }
1747
1748    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1749        /* Disable the hypervisor feature bits in the processor feature
1750         * registers if we don't have EL2. These are id_pfr1[15:12] and
1751         * id_aa64pfr0_el1[11:8].
1752         */
1753        cpu->isar.id_aa64pfr0 &= ~0xf00;
1754        cpu->isar.id_pfr1 &= ~0xf000;
1755    }
1756
1757#ifndef CONFIG_USER_ONLY
1758    if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1759        /*
1760         * Disable the MTE feature bits if we do not have tag-memory
1761         * provided by the machine.
1762         */
1763        cpu->isar.id_aa64pfr1 =
1764            FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1765    }
1766#endif
1767
1768    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1769     * to false or by setting pmsav7-dregion to 0.
1770     */
1771    if (!cpu->has_mpu) {
1772        cpu->pmsav7_dregion = 0;
1773    }
1774    if (cpu->pmsav7_dregion == 0) {
1775        cpu->has_mpu = false;
1776    }
1777
1778    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1779        arm_feature(env, ARM_FEATURE_V7)) {
1780        uint32_t nr = cpu->pmsav7_dregion;
1781
1782        if (nr > 0xff) {
1783            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1784            return;
1785        }
1786
1787        if (nr) {
1788            if (arm_feature(env, ARM_FEATURE_V8)) {
1789                /* PMSAv8 */
1790                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1791                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1792                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1793                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1794                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1795                }
1796            } else {
1797                env->pmsav7.drbar = g_new0(uint32_t, nr);
1798                env->pmsav7.drsr = g_new0(uint32_t, nr);
1799                env->pmsav7.dracr = g_new0(uint32_t, nr);
1800            }
1801        }
1802    }
1803
1804    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1805        uint32_t nr = cpu->sau_sregion;
1806
1807        if (nr > 0xff) {
1808            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1809            return;
1810        }
1811
1812        if (nr) {
1813            env->sau.rbar = g_new0(uint32_t, nr);
1814            env->sau.rlar = g_new0(uint32_t, nr);
1815        }
1816    }
1817
1818    if (arm_feature(env, ARM_FEATURE_EL3)) {
1819        set_feature(env, ARM_FEATURE_VBAR);
1820    }
1821
1822    register_cp_regs_for_features(cpu);
1823    arm_cpu_register_gdb_regs_for_features(cpu);
1824
1825    init_cpreg_list(cpu);
1826
1827#ifndef CONFIG_USER_ONLY
1828    MachineState *ms = MACHINE(qdev_get_machine());
1829    unsigned int smp_cpus = ms->smp.cpus;
1830    bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1831
1832    /*
1833     * We must set cs->num_ases to the final value before
1834     * the first call to cpu_address_space_init.
1835     */
1836    if (cpu->tag_memory != NULL) {
1837        cs->num_ases = 3 + has_secure;
1838    } else {
1839        cs->num_ases = 1 + has_secure;
1840    }
1841
1842    if (has_secure) {
1843        if (!cpu->secure_memory) {
1844            cpu->secure_memory = cs->memory;
1845        }
1846        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1847                               cpu->secure_memory);
1848    }
1849
1850    if (cpu->tag_memory != NULL) {
1851        cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1852                               cpu->tag_memory);
1853        if (has_secure) {
1854            cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1855                                   cpu->secure_tag_memory);
1856        }
1857    }
1858
1859    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1860
1861    /* No core_count specified, default to smp_cpus. */
1862    if (cpu->core_count == -1) {
1863        cpu->core_count = smp_cpus;
1864    }
1865#endif
1866
1867    if (tcg_enabled()) {
1868        int dcz_blocklen = 4 << cpu->dcz_blocksize;
1869
1870        /*
1871         * We only support DCZ blocklen that fits on one page.
1872         *
1873         * Architectually this is always true.  However TARGET_PAGE_SIZE
1874         * is variable and, for compatibility with -machine virt-2.7,
1875         * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1876         * But even then, while the largest architectural DCZ blocklen
1877         * is 2KiB, no cpu actually uses such a large blocklen.
1878         */
1879        assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1880
1881        /*
1882         * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1883         * both nibbles of each byte storing tag data may be written at once.
1884         * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1885         */
1886        if (cpu_isar_feature(aa64_mte, cpu)) {
1887            assert(dcz_blocklen >= 2 * TAG_GRANULE);
1888        }
1889    }
1890
1891    qemu_init_vcpu(cs);
1892    cpu_reset(cs);
1893
1894    acc->parent_realize(dev, errp);
1895}
1896
1897static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1898{
1899    ObjectClass *oc;
1900    char *typename;
1901    char **cpuname;
1902    const char *cpunamestr;
1903
1904    cpuname = g_strsplit(cpu_model, ",", 1);
1905    cpunamestr = cpuname[0];
1906#ifdef CONFIG_USER_ONLY
1907    /* For backwards compatibility usermode emulation allows "-cpu any",
1908     * which has the same semantics as "-cpu max".
1909     */
1910    if (!strcmp(cpunamestr, "any")) {
1911        cpunamestr = "max";
1912    }
1913#endif
1914    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1915    oc = object_class_by_name(typename);
1916    g_strfreev(cpuname);
1917    g_free(typename);
1918    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1919        object_class_is_abstract(oc)) {
1920        return NULL;
1921    }
1922    return oc;
1923}
1924
1925static Property arm_cpu_properties[] = {
1926    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1927    DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1928    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1929                        mp_affinity, ARM64_AFFINITY_INVALID),
1930    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1931    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1932    DEFINE_PROP_END_OF_LIST()
1933};
1934
1935static gchar *arm_gdb_arch_name(CPUState *cs)
1936{
1937    ARMCPU *cpu = ARM_CPU(cs);
1938    CPUARMState *env = &cpu->env;
1939
1940    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1941        return g_strdup("iwmmxt");
1942    }
1943    return g_strdup("arm");
1944}
1945
1946#ifdef CONFIG_TCG
1947static struct TCGCPUOps arm_tcg_ops = {
1948    .initialize = arm_translate_init,
1949    .synchronize_from_tb = arm_cpu_synchronize_from_tb,
1950    .cpu_exec_interrupt = arm_cpu_exec_interrupt,
1951    .tlb_fill = arm_cpu_tlb_fill,
1952    .debug_excp_handler = arm_debug_excp_handler,
1953
1954#if !defined(CONFIG_USER_ONLY)
1955    .do_interrupt = arm_cpu_do_interrupt,
1956    .do_transaction_failed = arm_cpu_do_transaction_failed,
1957    .do_unaligned_access = arm_cpu_do_unaligned_access,
1958    .adjust_watchpoint_address = arm_adjust_watchpoint_address,
1959    .debug_check_watchpoint = arm_debug_check_watchpoint,
1960#endif /* !CONFIG_USER_ONLY */
1961};
1962#endif /* CONFIG_TCG */
1963
1964static void arm_cpu_class_init(ObjectClass *oc, void *data)
1965{
1966    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1967    CPUClass *cc = CPU_CLASS(acc);
1968    DeviceClass *dc = DEVICE_CLASS(oc);
1969
1970    device_class_set_parent_realize(dc, arm_cpu_realizefn,
1971                                    &acc->parent_realize);
1972
1973    device_class_set_props(dc, arm_cpu_properties);
1974    device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
1975
1976    cc->class_by_name = arm_cpu_class_by_name;
1977    cc->has_work = arm_cpu_has_work;
1978    cc->dump_state = arm_cpu_dump_state;
1979    cc->set_pc = arm_cpu_set_pc;
1980    cc->gdb_read_register = arm_cpu_gdb_read_register;
1981    cc->gdb_write_register = arm_cpu_gdb_write_register;
1982#ifndef CONFIG_USER_ONLY
1983    cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1984    cc->asidx_from_attrs = arm_asidx_from_attrs;
1985    cc->vmsd = &vmstate_arm_cpu;
1986    cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1987    cc->write_elf64_note = arm_cpu_write_elf64_note;
1988    cc->write_elf32_note = arm_cpu_write_elf32_note;
1989#endif
1990    cc->gdb_num_core_regs = 26;
1991    cc->gdb_core_xml_file = "arm-core.xml";
1992    cc->gdb_arch_name = arm_gdb_arch_name;
1993    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
1994    cc->gdb_stop_before_watchpoint = true;
1995    cc->disas_set_info = arm_disas_set_info;
1996
1997#ifdef CONFIG_TCG
1998    cc->tcg_ops = &arm_tcg_ops;
1999#endif /* CONFIG_TCG */
2000}
2001
2002#ifdef CONFIG_KVM
2003static void arm_host_initfn(Object *obj)
2004{
2005    ARMCPU *cpu = ARM_CPU(obj);
2006
2007    kvm_arm_set_cpu_features_from_host(cpu);
2008    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2009        aarch64_add_sve_properties(obj);
2010    }
2011    arm_cpu_post_init(obj);
2012}
2013
2014static const TypeInfo host_arm_cpu_type_info = {
2015    .name = TYPE_ARM_HOST_CPU,
2016    .parent = TYPE_AARCH64_CPU,
2017    .instance_init = arm_host_initfn,
2018};
2019
2020#endif
2021
2022static void arm_cpu_instance_init(Object *obj)
2023{
2024    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2025
2026    acc->info->initfn(obj);
2027    arm_cpu_post_init(obj);
2028}
2029
2030static void cpu_register_class_init(ObjectClass *oc, void *data)
2031{
2032    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2033
2034    acc->info = data;
2035}
2036
2037void arm_cpu_register(const ARMCPUInfo *info)
2038{
2039    TypeInfo type_info = {
2040        .parent = TYPE_ARM_CPU,
2041        .instance_size = sizeof(ARMCPU),
2042        .instance_align = __alignof__(ARMCPU),
2043        .instance_init = arm_cpu_instance_init,
2044        .class_size = sizeof(ARMCPUClass),
2045        .class_init = info->class_init ?: cpu_register_class_init,
2046        .class_data = (void *)info,
2047    };
2048
2049    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2050    type_register(&type_info);
2051    g_free((void *)type_info.name);
2052}
2053
2054static const TypeInfo arm_cpu_type_info = {
2055    .name = TYPE_ARM_CPU,
2056    .parent = TYPE_CPU,
2057    .instance_size = sizeof(ARMCPU),
2058    .instance_align = __alignof__(ARMCPU),
2059    .instance_init = arm_cpu_initfn,
2060    .instance_finalize = arm_cpu_finalizefn,
2061    .abstract = true,
2062    .class_size = sizeof(ARMCPUClass),
2063    .class_init = arm_cpu_class_init,
2064};
2065
2066static void arm_cpu_register_types(void)
2067{
2068    type_register_static(&arm_cpu_type_info);
2069
2070#ifdef CONFIG_KVM
2071    type_register_static(&host_arm_cpu_type_info);
2072#endif
2073}
2074
2075type_init(arm_cpu_register_types)
2076