qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "hw/registerfields.h"
  25#include "cpu-qom.h"
  26#include "exec/cpu-defs.h"
  27#include "qapi/qapi-types-common.h"
  28
  29/* ARM processors have a weak memory model */
  30#define TCG_GUEST_DEFAULT_MO      (0)
  31
  32#ifdef TARGET_AARCH64
  33#define KVM_HAVE_MCE_INJECTION 1
  34#endif
  35
  36#define EXCP_UDEF            1   /* undefined instruction */
  37#define EXCP_SWI             2   /* software interrupt */
  38#define EXCP_PREFETCH_ABORT  3
  39#define EXCP_DATA_ABORT      4
  40#define EXCP_IRQ             5
  41#define EXCP_FIQ             6
  42#define EXCP_BKPT            7
  43#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  44#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  45#define EXCP_HVC            11   /* HyperVisor Call */
  46#define EXCP_HYP_TRAP       12
  47#define EXCP_SMC            13   /* Secure Monitor Call */
  48#define EXCP_VIRQ           14
  49#define EXCP_VFIQ           15
  50#define EXCP_SEMIHOST       16   /* semihosting call */
  51#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  52#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  53#define EXCP_STKOF          19   /* v8M STKOF UsageFault */
  54#define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
  55#define EXCP_LSERR          21   /* v8M LSERR SecureFault */
  56#define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
  57/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  58
  59#define ARMV7M_EXCP_RESET   1
  60#define ARMV7M_EXCP_NMI     2
  61#define ARMV7M_EXCP_HARD    3
  62#define ARMV7M_EXCP_MEM     4
  63#define ARMV7M_EXCP_BUS     5
  64#define ARMV7M_EXCP_USAGE   6
  65#define ARMV7M_EXCP_SECURE  7
  66#define ARMV7M_EXCP_SVC     11
  67#define ARMV7M_EXCP_DEBUG   12
  68#define ARMV7M_EXCP_PENDSV  14
  69#define ARMV7M_EXCP_SYSTICK 15
  70
  71/* For M profile, some registers are banked secure vs non-secure;
  72 * these are represented as a 2-element array where the first element
  73 * is the non-secure copy and the second is the secure copy.
  74 * When the CPU does not have implement the security extension then
  75 * only the first element is used.
  76 * This means that the copy for the current security state can be
  77 * accessed via env->registerfield[env->v7m.secure] (whether the security
  78 * extension is implemented or not).
  79 */
  80enum {
  81    M_REG_NS = 0,
  82    M_REG_S = 1,
  83    M_REG_NUM_BANKS = 2,
  84};
  85
  86/* ARM-specific interrupt pending bits.  */
  87#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  88#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  89#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  90
  91/* The usual mapping for an AArch64 system register to its AArch32
  92 * counterpart is for the 32 bit world to have access to the lower
  93 * half only (with writes leaving the upper half untouched). It's
  94 * therefore useful to be able to pass TCG the offset of the least
  95 * significant half of a uint64_t struct member.
  96 */
  97#ifdef HOST_WORDS_BIGENDIAN
  98#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  99#define offsetofhigh32(S, M) offsetof(S, M)
 100#else
 101#define offsetoflow32(S, M) offsetof(S, M)
 102#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 103#endif
 104
 105/* Meanings of the ARMCPU object's four inbound GPIO lines */
 106#define ARM_CPU_IRQ 0
 107#define ARM_CPU_FIQ 1
 108#define ARM_CPU_VIRQ 2
 109#define ARM_CPU_VFIQ 3
 110
 111/* ARM-specific extra insn start words:
 112 * 1: Conditional execution bits
 113 * 2: Partial exception syndrome for data aborts
 114 */
 115#define TARGET_INSN_START_EXTRA_WORDS 2
 116
 117/* The 2nd extra word holding syndrome info for data aborts does not use
 118 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 119 * help the sleb128 encoder do a better job.
 120 * When restoring the CPU state, we shift it back up.
 121 */
 122#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 123#define ARM_INSN_START_WORD2_SHIFT 14
 124
 125/* We currently assume float and double are IEEE single and double
 126   precision respectively.
 127   Doing runtime conversions is tricky because VFP registers may contain
 128   integer values (eg. as the result of a FTOSI instruction).
 129   s<2n> maps to the least significant half of d<n>
 130   s<2n+1> maps to the most significant half of d<n>
 131 */
 132
 133/**
 134 * DynamicGDBXMLInfo:
 135 * @desc: Contains the XML descriptions.
 136 * @num: Number of the registers in this XML seen by GDB.
 137 * @data: A union with data specific to the set of registers
 138 *    @cpregs_keys: Array that contains the corresponding Key of
 139 *                  a given cpreg with the same order of the cpreg
 140 *                  in the XML description.
 141 */
 142typedef struct DynamicGDBXMLInfo {
 143    char *desc;
 144    int num;
 145    union {
 146        struct {
 147            uint32_t *keys;
 148        } cpregs;
 149    } data;
 150} DynamicGDBXMLInfo;
 151
 152/* CPU state for each instance of a generic timer (in cp15 c14) */
 153typedef struct ARMGenericTimer {
 154    uint64_t cval; /* Timer CompareValue register */
 155    uint64_t ctl; /* Timer Control register */
 156} ARMGenericTimer;
 157
 158#define GTIMER_PHYS     0
 159#define GTIMER_VIRT     1
 160#define GTIMER_HYP      2
 161#define GTIMER_SEC      3
 162#define GTIMER_HYPVIRT  4
 163#define NUM_GTIMERS     5
 164
 165typedef struct {
 166    uint64_t raw_tcr;
 167    uint32_t mask;
 168    uint32_t base_mask;
 169} TCR;
 170
 171#define VTCR_NSW (1u << 29)
 172#define VTCR_NSA (1u << 30)
 173#define VSTCR_SW VTCR_NSW
 174#define VSTCR_SA VTCR_NSA
 175
 176/* Define a maximum sized vector register.
 177 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 178 * For 64-bit, this is a 2048-bit SVE register.
 179 *
 180 * Note that the mapping between S, D, and Q views of the register bank
 181 * differs between AArch64 and AArch32.
 182 * In AArch32:
 183 *  Qn = regs[n].d[1]:regs[n].d[0]
 184 *  Dn = regs[n / 2].d[n & 1]
 185 *  Sn = regs[n / 4].d[n % 4 / 2],
 186 *       bits 31..0 for even n, and bits 63..32 for odd n
 187 *       (and regs[16] to regs[31] are inaccessible)
 188 * In AArch64:
 189 *  Zn = regs[n].d[*]
 190 *  Qn = regs[n].d[1]:regs[n].d[0]
 191 *  Dn = regs[n].d[0]
 192 *  Sn = regs[n].d[0] bits 31..0
 193 *  Hn = regs[n].d[0] bits 15..0
 194 *
 195 * This corresponds to the architecturally defined mapping between
 196 * the two execution states, and means we do not need to explicitly
 197 * map these registers when changing states.
 198 *
 199 * Align the data for use with TCG host vector operations.
 200 */
 201
 202#ifdef TARGET_AARCH64
 203# define ARM_MAX_VQ    16
 204void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
 205void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
 206#else
 207# define ARM_MAX_VQ    1
 208static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
 209static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
 210#endif
 211
 212typedef struct ARMVectorReg {
 213    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 214} ARMVectorReg;
 215
 216#ifdef TARGET_AARCH64
 217/* In AArch32 mode, predicate registers do not exist at all.  */
 218typedef struct ARMPredicateReg {
 219    uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
 220} ARMPredicateReg;
 221
 222/* In AArch32 mode, PAC keys do not exist at all.  */
 223typedef struct ARMPACKey {
 224    uint64_t lo, hi;
 225} ARMPACKey;
 226#endif
 227
 228
 229typedef struct CPUARMState {
 230    /* Regs for current mode.  */
 231    uint32_t regs[16];
 232
 233    /* 32/64 switch only happens when taking and returning from
 234     * exceptions so the overlap semantics are taken care of then
 235     * instead of having a complicated union.
 236     */
 237    /* Regs for A64 mode.  */
 238    uint64_t xregs[32];
 239    uint64_t pc;
 240    /* PSTATE isn't an architectural register for ARMv8. However, it is
 241     * convenient for us to assemble the underlying state into a 32 bit format
 242     * identical to the architectural format used for the SPSR. (This is also
 243     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 244     * 'pstate' register are.) Of the PSTATE bits:
 245     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 246     *    semantics as for AArch32, as described in the comments on each field)
 247     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 248     *  DAIF (exception masks) are kept in env->daif
 249     *  BTYPE is kept in env->btype
 250     *  all other bits are stored in their correct places in env->pstate
 251     */
 252    uint32_t pstate;
 253    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 254
 255    /* Cached TBFLAGS state.  See below for which bits are included.  */
 256    uint32_t hflags;
 257
 258    /* Frequently accessed CPSR bits are stored separately for efficiency.
 259       This contains all the other bits.  Use cpsr_{read,write} to access
 260       the whole CPSR.  */
 261    uint32_t uncached_cpsr;
 262    uint32_t spsr;
 263
 264    /* Banked registers.  */
 265    uint64_t banked_spsr[8];
 266    uint32_t banked_r13[8];
 267    uint32_t banked_r14[8];
 268
 269    /* These hold r8-r12.  */
 270    uint32_t usr_regs[5];
 271    uint32_t fiq_regs[5];
 272
 273    /* cpsr flag cache for faster execution */
 274    uint32_t CF; /* 0 or 1 */
 275    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 276    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 277    uint32_t ZF; /* Z set if zero.  */
 278    uint32_t QF; /* 0 or 1 */
 279    uint32_t GE; /* cpsr[19:16] */
 280    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 281    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 282    uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
 283    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 284
 285    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 286    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 287
 288    /* System control coprocessor (cp15) */
 289    struct {
 290        uint32_t c0_cpuid;
 291        union { /* Cache size selection */
 292            struct {
 293                uint64_t _unused_csselr0;
 294                uint64_t csselr_ns;
 295                uint64_t _unused_csselr1;
 296                uint64_t csselr_s;
 297            };
 298            uint64_t csselr_el[4];
 299        };
 300        union { /* System control register. */
 301            struct {
 302                uint64_t _unused_sctlr;
 303                uint64_t sctlr_ns;
 304                uint64_t hsctlr;
 305                uint64_t sctlr_s;
 306            };
 307            uint64_t sctlr_el[4];
 308        };
 309        uint64_t cpacr_el1; /* Architectural feature access control register */
 310        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 311        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 312        uint64_t sder; /* Secure debug enable register. */
 313        uint32_t nsacr; /* Non-secure access control register. */
 314        union { /* MMU translation table base 0. */
 315            struct {
 316                uint64_t _unused_ttbr0_0;
 317                uint64_t ttbr0_ns;
 318                uint64_t _unused_ttbr0_1;
 319                uint64_t ttbr0_s;
 320            };
 321            uint64_t ttbr0_el[4];
 322        };
 323        union { /* MMU translation table base 1. */
 324            struct {
 325                uint64_t _unused_ttbr1_0;
 326                uint64_t ttbr1_ns;
 327                uint64_t _unused_ttbr1_1;
 328                uint64_t ttbr1_s;
 329            };
 330            uint64_t ttbr1_el[4];
 331        };
 332        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 333        uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
 334        /* MMU translation table base control. */
 335        TCR tcr_el[4];
 336        TCR vtcr_el2; /* Virtualization Translation Control.  */
 337        TCR vstcr_el2; /* Secure Virtualization Translation Control. */
 338        uint32_t c2_data; /* MPU data cacheable bits.  */
 339        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 340        union { /* MMU domain access control register
 341                 * MPU write buffer control.
 342                 */
 343            struct {
 344                uint64_t dacr_ns;
 345                uint64_t dacr_s;
 346            };
 347            struct {
 348                uint64_t dacr32_el2;
 349            };
 350        };
 351        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 352        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 353        uint64_t hcr_el2; /* Hypervisor configuration register */
 354        uint64_t scr_el3; /* Secure configuration register.  */
 355        union { /* Fault status registers.  */
 356            struct {
 357                uint64_t ifsr_ns;
 358                uint64_t ifsr_s;
 359            };
 360            struct {
 361                uint64_t ifsr32_el2;
 362            };
 363        };
 364        union {
 365            struct {
 366                uint64_t _unused_dfsr;
 367                uint64_t dfsr_ns;
 368                uint64_t hsr;
 369                uint64_t dfsr_s;
 370            };
 371            uint64_t esr_el[4];
 372        };
 373        uint32_t c6_region[8]; /* MPU base/size registers.  */
 374        union { /* Fault address registers. */
 375            struct {
 376                uint64_t _unused_far0;
 377#ifdef HOST_WORDS_BIGENDIAN
 378                uint32_t ifar_ns;
 379                uint32_t dfar_ns;
 380                uint32_t ifar_s;
 381                uint32_t dfar_s;
 382#else
 383                uint32_t dfar_ns;
 384                uint32_t ifar_ns;
 385                uint32_t dfar_s;
 386                uint32_t ifar_s;
 387#endif
 388                uint64_t _unused_far3;
 389            };
 390            uint64_t far_el[4];
 391        };
 392        uint64_t hpfar_el2;
 393        uint64_t hstr_el2;
 394        union { /* Translation result. */
 395            struct {
 396                uint64_t _unused_par_0;
 397                uint64_t par_ns;
 398                uint64_t _unused_par_1;
 399                uint64_t par_s;
 400            };
 401            uint64_t par_el[4];
 402        };
 403
 404        uint32_t c9_insn; /* Cache lockdown registers.  */
 405        uint32_t c9_data;
 406        uint64_t c9_pmcr; /* performance monitor control register */
 407        uint64_t c9_pmcnten; /* perf monitor counter enables */
 408        uint64_t c9_pmovsr; /* perf monitor overflow status */
 409        uint64_t c9_pmuserenr; /* perf monitor user enable */
 410        uint64_t c9_pmselr; /* perf monitor counter selection register */
 411        uint64_t c9_pminten; /* perf monitor interrupt enables */
 412        union { /* Memory attribute redirection */
 413            struct {
 414#ifdef HOST_WORDS_BIGENDIAN
 415                uint64_t _unused_mair_0;
 416                uint32_t mair1_ns;
 417                uint32_t mair0_ns;
 418                uint64_t _unused_mair_1;
 419                uint32_t mair1_s;
 420                uint32_t mair0_s;
 421#else
 422                uint64_t _unused_mair_0;
 423                uint32_t mair0_ns;
 424                uint32_t mair1_ns;
 425                uint64_t _unused_mair_1;
 426                uint32_t mair0_s;
 427                uint32_t mair1_s;
 428#endif
 429            };
 430            uint64_t mair_el[4];
 431        };
 432        union { /* vector base address register */
 433            struct {
 434                uint64_t _unused_vbar;
 435                uint64_t vbar_ns;
 436                uint64_t hvbar;
 437                uint64_t vbar_s;
 438            };
 439            uint64_t vbar_el[4];
 440        };
 441        uint32_t mvbar; /* (monitor) vector base address register */
 442        struct { /* FCSE PID. */
 443            uint32_t fcseidr_ns;
 444            uint32_t fcseidr_s;
 445        };
 446        union { /* Context ID. */
 447            struct {
 448                uint64_t _unused_contextidr_0;
 449                uint64_t contextidr_ns;
 450                uint64_t _unused_contextidr_1;
 451                uint64_t contextidr_s;
 452            };
 453            uint64_t contextidr_el[4];
 454        };
 455        union { /* User RW Thread register. */
 456            struct {
 457                uint64_t tpidrurw_ns;
 458                uint64_t tpidrprw_ns;
 459                uint64_t htpidr;
 460                uint64_t _tpidr_el3;
 461            };
 462            uint64_t tpidr_el[4];
 463        };
 464        /* The secure banks of these registers don't map anywhere */
 465        uint64_t tpidrurw_s;
 466        uint64_t tpidrprw_s;
 467        uint64_t tpidruro_s;
 468
 469        union { /* User RO Thread register. */
 470            uint64_t tpidruro_ns;
 471            uint64_t tpidrro_el[1];
 472        };
 473        uint64_t c14_cntfrq; /* Counter Frequency register */
 474        uint64_t c14_cntkctl; /* Timer Control register */
 475        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 476        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 477        ARMGenericTimer c14_timer[NUM_GTIMERS];
 478        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 479        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 480        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 481        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 482        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 483        uint32_t c15_config_base_address; /* SCU base address.  */
 484        uint32_t c15_diagnostic; /* diagnostic register */
 485        uint32_t c15_power_diagnostic;
 486        uint32_t c15_power_control; /* power control */
 487        uint64_t dbgbvr[16]; /* breakpoint value registers */
 488        uint64_t dbgbcr[16]; /* breakpoint control registers */
 489        uint64_t dbgwvr[16]; /* watchpoint value registers */
 490        uint64_t dbgwcr[16]; /* watchpoint control registers */
 491        uint64_t mdscr_el1;
 492        uint64_t oslsr_el1; /* OS Lock Status */
 493        uint64_t mdcr_el2;
 494        uint64_t mdcr_el3;
 495        /* Stores the architectural value of the counter *the last time it was
 496         * updated* by pmccntr_op_start. Accesses should always be surrounded
 497         * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
 498         * architecturally-correct value is being read/set.
 499         */
 500        uint64_t c15_ccnt;
 501        /* Stores the delta between the architectural value and the underlying
 502         * cycle count during normal operation. It is used to update c15_ccnt
 503         * to be the correct architectural value before accesses. During
 504         * accesses, c15_ccnt_delta contains the underlying count being used
 505         * for the access, after which it reverts to the delta value in
 506         * pmccntr_op_finish.
 507         */
 508        uint64_t c15_ccnt_delta;
 509        uint64_t c14_pmevcntr[31];
 510        uint64_t c14_pmevcntr_delta[31];
 511        uint64_t c14_pmevtyper[31];
 512        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 513        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 514        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 515        uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
 516        uint64_t gcr_el1;
 517        uint64_t rgsr_el1;
 518    } cp15;
 519
 520    struct {
 521        /* M profile has up to 4 stack pointers:
 522         * a Main Stack Pointer and a Process Stack Pointer for each
 523         * of the Secure and Non-Secure states. (If the CPU doesn't support
 524         * the security extension then it has only two SPs.)
 525         * In QEMU we always store the currently active SP in regs[13],
 526         * and the non-active SP for the current security state in
 527         * v7m.other_sp. The stack pointers for the inactive security state
 528         * are stored in other_ss_msp and other_ss_psp.
 529         * switch_v7m_security_state() is responsible for rearranging them
 530         * when we change security state.
 531         */
 532        uint32_t other_sp;
 533        uint32_t other_ss_msp;
 534        uint32_t other_ss_psp;
 535        uint32_t vecbase[M_REG_NUM_BANKS];
 536        uint32_t basepri[M_REG_NUM_BANKS];
 537        uint32_t control[M_REG_NUM_BANKS];
 538        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 539        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 540        uint32_t hfsr; /* HardFault Status */
 541        uint32_t dfsr; /* Debug Fault Status Register */
 542        uint32_t sfsr; /* Secure Fault Status Register */
 543        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 544        uint32_t bfar; /* BusFault Address */
 545        uint32_t sfar; /* Secure Fault Address Register */
 546        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 547        int exception;
 548        uint32_t primask[M_REG_NUM_BANKS];
 549        uint32_t faultmask[M_REG_NUM_BANKS];
 550        uint32_t aircr; /* only holds r/w state if security extn implemented */
 551        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 552        uint32_t csselr[M_REG_NUM_BANKS];
 553        uint32_t scr[M_REG_NUM_BANKS];
 554        uint32_t msplim[M_REG_NUM_BANKS];
 555        uint32_t psplim[M_REG_NUM_BANKS];
 556        uint32_t fpcar[M_REG_NUM_BANKS];
 557        uint32_t fpccr[M_REG_NUM_BANKS];
 558        uint32_t fpdscr[M_REG_NUM_BANKS];
 559        uint32_t cpacr[M_REG_NUM_BANKS];
 560        uint32_t nsacr;
 561        int ltpsize;
 562    } v7m;
 563
 564    /* Information associated with an exception about to be taken:
 565     * code which raises an exception must set cs->exception_index and
 566     * the relevant parts of this structure; the cpu_do_interrupt function
 567     * will then set the guest-visible registers as part of the exception
 568     * entry process.
 569     */
 570    struct {
 571        uint32_t syndrome; /* AArch64 format syndrome register */
 572        uint32_t fsr; /* AArch32 format fault status register info */
 573        uint64_t vaddress; /* virtual addr associated with exception, if any */
 574        uint32_t target_el; /* EL the exception should be targeted for */
 575        /* If we implement EL2 we will also need to store information
 576         * about the intermediate physical address for stage 2 faults.
 577         */
 578    } exception;
 579
 580    /* Information associated with an SError */
 581    struct {
 582        uint8_t pending;
 583        uint8_t has_esr;
 584        uint64_t esr;
 585    } serror;
 586
 587    uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
 588
 589    /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
 590    uint32_t irq_line_state;
 591
 592    /* Thumb-2 EE state.  */
 593    uint32_t teecr;
 594    uint32_t teehbr;
 595
 596    /* VFP coprocessor state.  */
 597    struct {
 598        ARMVectorReg zregs[32];
 599
 600#ifdef TARGET_AARCH64
 601        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 602#define FFR_PRED_NUM 16
 603        ARMPredicateReg pregs[17];
 604        /* Scratch space for aa64 sve predicate temporary.  */
 605        ARMPredicateReg preg_tmp;
 606#endif
 607
 608        /* We store these fpcsr fields separately for convenience.  */
 609        uint32_t qc[4] QEMU_ALIGNED(16);
 610        int vec_len;
 611        int vec_stride;
 612
 613        uint32_t xregs[16];
 614
 615        /* Scratch space for aa32 neon expansion.  */
 616        uint32_t scratch[8];
 617
 618        /* There are a number of distinct float control structures:
 619         *
 620         *  fp_status: is the "normal" fp status.
 621         *  fp_status_fp16: used for half-precision calculations
 622         *  standard_fp_status : the ARM "Standard FPSCR Value"
 623         *  standard_fp_status_fp16 : used for half-precision
 624         *       calculations with the ARM "Standard FPSCR Value"
 625         *
 626         * Half-precision operations are governed by a separate
 627         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 628         * status structure to control this.
 629         *
 630         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 631         * round-to-nearest and is used by any operations (generally
 632         * Neon) which the architecture defines as controlled by the
 633         * standard FPSCR value rather than the FPSCR.
 634         *
 635         * The "standard FPSCR but for fp16 ops" is needed because
 636         * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
 637         * using a fixed value for it.
 638         *
 639         * To avoid having to transfer exception bits around, we simply
 640         * say that the FPSCR cumulative exception flags are the logical
 641         * OR of the flags in the four fp statuses. This relies on the
 642         * only thing which needs to read the exception flags being
 643         * an explicit FPSCR read.
 644         */
 645        float_status fp_status;
 646        float_status fp_status_f16;
 647        float_status standard_fp_status;
 648        float_status standard_fp_status_f16;
 649
 650        /* ZCR_EL[1-3] */
 651        uint64_t zcr_el[4];
 652    } vfp;
 653    uint64_t exclusive_addr;
 654    uint64_t exclusive_val;
 655    uint64_t exclusive_high;
 656
 657    /* iwMMXt coprocessor state.  */
 658    struct {
 659        uint64_t regs[16];
 660        uint64_t val;
 661
 662        uint32_t cregs[16];
 663    } iwmmxt;
 664
 665#ifdef TARGET_AARCH64
 666    struct {
 667        ARMPACKey apia;
 668        ARMPACKey apib;
 669        ARMPACKey apda;
 670        ARMPACKey apdb;
 671        ARMPACKey apga;
 672    } keys;
 673#endif
 674
 675#if defined(CONFIG_USER_ONLY)
 676    /* For usermode syscall translation.  */
 677    int eabi;
 678#endif
 679
 680    struct CPUBreakpoint *cpu_breakpoint[16];
 681    struct CPUWatchpoint *cpu_watchpoint[16];
 682
 683    /* Fields up to this point are cleared by a CPU reset */
 684    struct {} end_reset_fields;
 685
 686    /* Fields after this point are preserved across CPU reset. */
 687
 688    /* Internal CPU feature flags.  */
 689    uint64_t features;
 690
 691    /* PMSAv7 MPU */
 692    struct {
 693        uint32_t *drbar;
 694        uint32_t *drsr;
 695        uint32_t *dracr;
 696        uint32_t rnr[M_REG_NUM_BANKS];
 697    } pmsav7;
 698
 699    /* PMSAv8 MPU */
 700    struct {
 701        /* The PMSAv8 implementation also shares some PMSAv7 config
 702         * and state:
 703         *  pmsav7.rnr (region number register)
 704         *  pmsav7_dregion (number of configured regions)
 705         */
 706        uint32_t *rbar[M_REG_NUM_BANKS];
 707        uint32_t *rlar[M_REG_NUM_BANKS];
 708        uint32_t mair0[M_REG_NUM_BANKS];
 709        uint32_t mair1[M_REG_NUM_BANKS];
 710    } pmsav8;
 711
 712    /* v8M SAU */
 713    struct {
 714        uint32_t *rbar;
 715        uint32_t *rlar;
 716        uint32_t rnr;
 717        uint32_t ctrl;
 718    } sau;
 719
 720    void *nvic;
 721    const struct arm_boot_info *boot_info;
 722    /* Store GICv3CPUState to access from this struct */
 723    void *gicv3state;
 724
 725#ifdef TARGET_TAGGED_ADDRESSES
 726    /* Linux syscall tagged address support */
 727    bool tagged_addr_enable;
 728#endif
 729} CPUARMState;
 730
 731static inline void set_feature(CPUARMState *env, int feature)
 732{
 733    env->features |= 1ULL << feature;
 734}
 735
 736static inline void unset_feature(CPUARMState *env, int feature)
 737{
 738    env->features &= ~(1ULL << feature);
 739}
 740
 741/**
 742 * ARMELChangeHookFn:
 743 * type of a function which can be registered via arm_register_el_change_hook()
 744 * to get callbacks when the CPU changes its exception level or mode.
 745 */
 746typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 747typedef struct ARMELChangeHook ARMELChangeHook;
 748struct ARMELChangeHook {
 749    ARMELChangeHookFn *hook;
 750    void *opaque;
 751    QLIST_ENTRY(ARMELChangeHook) node;
 752};
 753
 754/* These values map onto the return values for
 755 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 756typedef enum ARMPSCIState {
 757    PSCI_ON = 0,
 758    PSCI_OFF = 1,
 759    PSCI_ON_PENDING = 2
 760} ARMPSCIState;
 761
 762typedef struct ARMISARegisters ARMISARegisters;
 763
 764/**
 765 * ARMCPU:
 766 * @env: #CPUARMState
 767 *
 768 * An ARM CPU core.
 769 */
 770struct ARMCPU {
 771    /*< private >*/
 772    CPUState parent_obj;
 773    /*< public >*/
 774
 775    CPUNegativeOffsetState neg;
 776    CPUARMState env;
 777
 778    /* Coprocessor information */
 779    GHashTable *cp_regs;
 780    /* For marshalling (mostly coprocessor) register state between the
 781     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 782     * we use these arrays.
 783     */
 784    /* List of register indexes managed via these arrays; (full KVM style
 785     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 786     */
 787    uint64_t *cpreg_indexes;
 788    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 789    uint64_t *cpreg_values;
 790    /* Length of the indexes, values, reset_values arrays */
 791    int32_t cpreg_array_len;
 792    /* These are used only for migration: incoming data arrives in
 793     * these fields and is sanity checked in post_load before copying
 794     * to the working data structures above.
 795     */
 796    uint64_t *cpreg_vmstate_indexes;
 797    uint64_t *cpreg_vmstate_values;
 798    int32_t cpreg_vmstate_array_len;
 799
 800    DynamicGDBXMLInfo dyn_sysreg_xml;
 801    DynamicGDBXMLInfo dyn_svereg_xml;
 802
 803    /* Timers used by the generic (architected) timer */
 804    QEMUTimer *gt_timer[NUM_GTIMERS];
 805    /*
 806     * Timer used by the PMU. Its state is restored after migration by
 807     * pmu_op_finish() - it does not need other handling during migration
 808     */
 809    QEMUTimer *pmu_timer;
 810    /* GPIO outputs for generic timer */
 811    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 812    /* GPIO output for GICv3 maintenance interrupt signal */
 813    qemu_irq gicv3_maintenance_interrupt;
 814    /* GPIO output for the PMU interrupt */
 815    qemu_irq pmu_interrupt;
 816
 817    /* MemoryRegion to use for secure physical accesses */
 818    MemoryRegion *secure_memory;
 819
 820    /* MemoryRegion to use for allocation tag accesses */
 821    MemoryRegion *tag_memory;
 822    MemoryRegion *secure_tag_memory;
 823
 824    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 825    Object *idau;
 826
 827    /* 'compatible' string for this CPU for Linux device trees */
 828    const char *dtb_compatible;
 829
 830    /* PSCI version for this CPU
 831     * Bits[31:16] = Major Version
 832     * Bits[15:0] = Minor Version
 833     */
 834    uint32_t psci_version;
 835
 836    /* Current power state, access guarded by BQL */
 837    ARMPSCIState power_state;
 838
 839    /* CPU has virtualization extension */
 840    bool has_el2;
 841    /* CPU has security extension */
 842    bool has_el3;
 843    /* CPU has PMU (Performance Monitor Unit) */
 844    bool has_pmu;
 845    /* CPU has VFP */
 846    bool has_vfp;
 847    /* CPU has Neon */
 848    bool has_neon;
 849    /* CPU has M-profile DSP extension */
 850    bool has_dsp;
 851
 852    /* CPU has memory protection unit */
 853    bool has_mpu;
 854    /* PMSAv7 MPU number of supported regions */
 855    uint32_t pmsav7_dregion;
 856    /* v8M SAU number of supported regions */
 857    uint32_t sau_sregion;
 858
 859    /* PSCI conduit used to invoke PSCI methods
 860     * 0 - disabled, 1 - smc, 2 - hvc
 861     */
 862    uint32_t psci_conduit;
 863
 864    /* For v8M, initial value of the Secure VTOR */
 865    uint32_t init_svtor;
 866
 867    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 868     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 869     */
 870    uint32_t kvm_target;
 871
 872    /* KVM init features for this CPU */
 873    uint32_t kvm_init_features[7];
 874
 875    /* KVM CPU state */
 876
 877    /* KVM virtual time adjustment */
 878    bool kvm_adjvtime;
 879    bool kvm_vtime_dirty;
 880    uint64_t kvm_vtime;
 881
 882    /* KVM steal time */
 883    OnOffAuto kvm_steal_time;
 884
 885    /* Uniprocessor system with MP extensions */
 886    bool mp_is_up;
 887
 888    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 889     * and the probe failed (so we need to report the error in realize)
 890     */
 891    bool host_cpu_probe_failed;
 892
 893    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 894     * register.
 895     */
 896    int32_t core_count;
 897
 898    /* The instance init functions for implementation-specific subclasses
 899     * set these fields to specify the implementation-dependent values of
 900     * various constant registers and reset values of non-constant
 901     * registers.
 902     * Some of these might become QOM properties eventually.
 903     * Field names match the official register names as defined in the
 904     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 905     * is used for reset values of non-constant registers; no reset_
 906     * prefix means a constant register.
 907     * Some of these registers are split out into a substructure that
 908     * is shared with the translators to control the ISA.
 909     *
 910     * Note that if you add an ID register to the ARMISARegisters struct
 911     * you need to also update the 32-bit and 64-bit versions of the
 912     * kvm_arm_get_host_cpu_features() function to correctly populate the
 913     * field by reading the value from the KVM vCPU.
 914     */
 915    struct ARMISARegisters {
 916        uint32_t id_isar0;
 917        uint32_t id_isar1;
 918        uint32_t id_isar2;
 919        uint32_t id_isar3;
 920        uint32_t id_isar4;
 921        uint32_t id_isar5;
 922        uint32_t id_isar6;
 923        uint32_t id_mmfr0;
 924        uint32_t id_mmfr1;
 925        uint32_t id_mmfr2;
 926        uint32_t id_mmfr3;
 927        uint32_t id_mmfr4;
 928        uint32_t id_pfr0;
 929        uint32_t id_pfr1;
 930        uint32_t id_pfr2;
 931        uint32_t mvfr0;
 932        uint32_t mvfr1;
 933        uint32_t mvfr2;
 934        uint32_t id_dfr0;
 935        uint32_t dbgdidr;
 936        uint64_t id_aa64isar0;
 937        uint64_t id_aa64isar1;
 938        uint64_t id_aa64pfr0;
 939        uint64_t id_aa64pfr1;
 940        uint64_t id_aa64mmfr0;
 941        uint64_t id_aa64mmfr1;
 942        uint64_t id_aa64mmfr2;
 943        uint64_t id_aa64dfr0;
 944        uint64_t id_aa64dfr1;
 945    } isar;
 946    uint64_t midr;
 947    uint32_t revidr;
 948    uint32_t reset_fpsid;
 949    uint64_t ctr;
 950    uint32_t reset_sctlr;
 951    uint64_t pmceid0;
 952    uint64_t pmceid1;
 953    uint32_t id_afr0;
 954    uint64_t id_aa64afr0;
 955    uint64_t id_aa64afr1;
 956    uint64_t clidr;
 957    uint64_t mp_affinity; /* MP ID without feature bits */
 958    /* The elements of this array are the CCSIDR values for each cache,
 959     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 960     */
 961    uint64_t ccsidr[16];
 962    uint64_t reset_cbar;
 963    uint32_t reset_auxcr;
 964    bool reset_hivecs;
 965
 966    /*
 967     * Intermediate values used during property parsing.
 968     * Once finalized, the values should be read from ID_AA64ISAR1.
 969     */
 970    bool prop_pauth;
 971    bool prop_pauth_impdef;
 972
 973    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 974    uint32_t dcz_blocksize;
 975    uint64_t rvbar;
 976
 977    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 978    int gic_num_lrs; /* number of list registers */
 979    int gic_vpribits; /* number of virtual priority bits */
 980    int gic_vprebits; /* number of virtual preemption bits */
 981
 982    /* Whether the cfgend input is high (i.e. this CPU should reset into
 983     * big-endian mode).  This setting isn't used directly: instead it modifies
 984     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 985     * architecture version.
 986     */
 987    bool cfgend;
 988
 989    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
 990    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
 991
 992    int32_t node_id; /* NUMA node this CPU belongs to */
 993
 994    /* Used to synchronize KVM and QEMU in-kernel device levels */
 995    uint8_t device_irq_level;
 996
 997    /* Used to set the maximum vector length the cpu will support.  */
 998    uint32_t sve_max_vq;
 999
1000    /*
1001     * In sve_vq_map each set bit is a supported vector length of
1002     * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1003     * length in quadwords.
1004     *
1005     * While processing properties during initialization, corresponding
1006     * sve_vq_init bits are set for bits in sve_vq_map that have been
1007     * set by properties.
1008     */
1009    DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1010    DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1011
1012    /* Generic timer counter frequency, in Hz */
1013    uint64_t gt_cntfrq_hz;
1014};
1015
1016unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1017
1018void arm_cpu_post_init(Object *obj);
1019
1020uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1021
1022#ifndef CONFIG_USER_ONLY
1023extern const VMStateDescription vmstate_arm_cpu;
1024#endif
1025
1026void arm_cpu_do_interrupt(CPUState *cpu);
1027void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1028bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1029
1030hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1031                                         MemTxAttrs *attrs);
1032
1033int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1034int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1035
1036/*
1037 * Helpers to dynamically generates XML descriptions of the sysregs
1038 * and SVE registers. Returns the number of registers in each set.
1039 */
1040int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1041int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1042
1043/* Returns the dynamically generated XML for the gdb stub.
1044 * Returns a pointer to the XML contents for the specified XML file or NULL
1045 * if the XML name doesn't match the predefined one.
1046 */
1047const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1048
1049int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1050                             int cpuid, void *opaque);
1051int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1052                             int cpuid, void *opaque);
1053
1054#ifdef TARGET_AARCH64
1055int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1056int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1057void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1058void aarch64_sve_change_el(CPUARMState *env, int old_el,
1059                           int new_el, bool el0_a64);
1060void aarch64_add_sve_properties(Object *obj);
1061
1062/*
1063 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1064 * The byte at offset i from the start of the in-memory representation contains
1065 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1066 * lowest offsets are stored in the lowest memory addresses, then that nearly
1067 * matches QEMU's representation, which is to use an array of host-endian
1068 * uint64_t's, where the lower offsets are at the lower indices. To complete
1069 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1070 */
1071static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1072{
1073#ifdef HOST_WORDS_BIGENDIAN
1074    int i;
1075
1076    for (i = 0; i < nr; ++i) {
1077        dst[i] = bswap64(src[i]);
1078    }
1079
1080    return dst;
1081#else
1082    return src;
1083#endif
1084}
1085
1086#else
1087static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1088static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1089                                         int n, bool a)
1090{ }
1091static inline void aarch64_add_sve_properties(Object *obj) { }
1092#endif
1093
1094void aarch64_sync_32_to_64(CPUARMState *env);
1095void aarch64_sync_64_to_32(CPUARMState *env);
1096
1097int fp_exception_el(CPUARMState *env, int cur_el);
1098int sve_exception_el(CPUARMState *env, int cur_el);
1099uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1100
1101static inline bool is_a64(CPUARMState *env)
1102{
1103    return env->aarch64;
1104}
1105
1106/* you can call this signal handler from your SIGBUS and SIGSEGV
1107   signal handlers to inform the virtual CPU of exceptions. non zero
1108   is returned if the signal was handled by the virtual CPU.  */
1109int cpu_arm_signal_handler(int host_signum, void *pinfo,
1110                           void *puc);
1111
1112/**
1113 * pmu_op_start/finish
1114 * @env: CPUARMState
1115 *
1116 * Convert all PMU counters between their delta form (the typical mode when
1117 * they are enabled) and the guest-visible values. These two calls must
1118 * surround any action which might affect the counters.
1119 */
1120void pmu_op_start(CPUARMState *env);
1121void pmu_op_finish(CPUARMState *env);
1122
1123/*
1124 * Called when a PMU counter is due to overflow
1125 */
1126void arm_pmu_timer_cb(void *opaque);
1127
1128/**
1129 * Functions to register as EL change hooks for PMU mode filtering
1130 */
1131void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1132void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1133
1134/*
1135 * pmu_init
1136 * @cpu: ARMCPU
1137 *
1138 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1139 * for the current configuration
1140 */
1141void pmu_init(ARMCPU *cpu);
1142
1143/* SCTLR bit meanings. Several bits have been reused in newer
1144 * versions of the architecture; in that case we define constants
1145 * for both old and new bit meanings. Code which tests against those
1146 * bits should probably check or otherwise arrange that the CPU
1147 * is the architectural version it expects.
1148 */
1149#define SCTLR_M       (1U << 0)
1150#define SCTLR_A       (1U << 1)
1151#define SCTLR_C       (1U << 2)
1152#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1153#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1154#define SCTLR_SA      (1U << 3) /* AArch64 only */
1155#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1156#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1157#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1158#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1159#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1160#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1161#define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1162#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1163#define SCTLR_ITD     (1U << 7) /* v8 onward */
1164#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1165#define SCTLR_SED     (1U << 8) /* v8 onward */
1166#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1167#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1168#define SCTLR_F       (1U << 10) /* up to v6 */
1169#define SCTLR_SW      (1U << 10) /* v7 */
1170#define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1171#define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1172#define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1173#define SCTLR_I       (1U << 12)
1174#define SCTLR_V       (1U << 13) /* AArch32 only */
1175#define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1176#define SCTLR_RR      (1U << 14) /* up to v7 */
1177#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1178#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1179#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1180#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1181#define SCTLR_nTWI    (1U << 16) /* v8 onward */
1182#define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1183#define SCTLR_BR      (1U << 17) /* PMSA only */
1184#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1185#define SCTLR_nTWE    (1U << 18) /* v8 onward */
1186#define SCTLR_WXN     (1U << 19)
1187#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1188#define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1189#define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1190#define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1191#define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1192#define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1193#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1194#define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1195#define SCTLR_VE      (1U << 24) /* up to v7 */
1196#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1197#define SCTLR_EE      (1U << 25)
1198#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1199#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1200#define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1201#define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1202#define SCTLR_TRE     (1U << 28) /* AArch32 only */
1203#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1204#define SCTLR_AFE     (1U << 29) /* AArch32 only */
1205#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1206#define SCTLR_TE      (1U << 30) /* AArch32 only */
1207#define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1208#define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1209#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1210#define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1211#define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1212#define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1213#define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1214#define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1215#define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1216#define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1217#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1218
1219#define CPTR_TCPAC    (1U << 31)
1220#define CPTR_TTA      (1U << 20)
1221#define CPTR_TFP      (1U << 10)
1222#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1223#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1224
1225#define MDCR_EPMAD    (1U << 21)
1226#define MDCR_EDAD     (1U << 20)
1227#define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1228#define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1229#define MDCR_SDD      (1U << 16)
1230#define MDCR_SPD      (3U << 14)
1231#define MDCR_TDRA     (1U << 11)
1232#define MDCR_TDOSA    (1U << 10)
1233#define MDCR_TDA      (1U << 9)
1234#define MDCR_TDE      (1U << 8)
1235#define MDCR_HPME     (1U << 7)
1236#define MDCR_TPM      (1U << 6)
1237#define MDCR_TPMCR    (1U << 5)
1238#define MDCR_HPMN     (0x1fU)
1239
1240/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1241#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1242
1243#define CPSR_M (0x1fU)
1244#define CPSR_T (1U << 5)
1245#define CPSR_F (1U << 6)
1246#define CPSR_I (1U << 7)
1247#define CPSR_A (1U << 8)
1248#define CPSR_E (1U << 9)
1249#define CPSR_IT_2_7 (0xfc00U)
1250#define CPSR_GE (0xfU << 16)
1251#define CPSR_IL (1U << 20)
1252#define CPSR_DIT (1U << 21)
1253#define CPSR_PAN (1U << 22)
1254#define CPSR_SSBS (1U << 23)
1255#define CPSR_J (1U << 24)
1256#define CPSR_IT_0_1 (3U << 25)
1257#define CPSR_Q (1U << 27)
1258#define CPSR_V (1U << 28)
1259#define CPSR_C (1U << 29)
1260#define CPSR_Z (1U << 30)
1261#define CPSR_N (1U << 31)
1262#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1263#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1264
1265#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1266#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1267    | CPSR_NZCV)
1268/* Bits writable in user mode.  */
1269#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1270/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1271#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1272
1273/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1274#define XPSR_EXCP 0x1ffU
1275#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1276#define XPSR_IT_2_7 CPSR_IT_2_7
1277#define XPSR_GE CPSR_GE
1278#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1279#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1280#define XPSR_IT_0_1 CPSR_IT_0_1
1281#define XPSR_Q CPSR_Q
1282#define XPSR_V CPSR_V
1283#define XPSR_C CPSR_C
1284#define XPSR_Z CPSR_Z
1285#define XPSR_N CPSR_N
1286#define XPSR_NZCV CPSR_NZCV
1287#define XPSR_IT CPSR_IT
1288
1289#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1290#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1291#define TTBCR_PD0    (1U << 4)
1292#define TTBCR_PD1    (1U << 5)
1293#define TTBCR_EPD0   (1U << 7)
1294#define TTBCR_IRGN0  (3U << 8)
1295#define TTBCR_ORGN0  (3U << 10)
1296#define TTBCR_SH0    (3U << 12)
1297#define TTBCR_T1SZ   (3U << 16)
1298#define TTBCR_A1     (1U << 22)
1299#define TTBCR_EPD1   (1U << 23)
1300#define TTBCR_IRGN1  (3U << 24)
1301#define TTBCR_ORGN1  (3U << 26)
1302#define TTBCR_SH1    (1U << 28)
1303#define TTBCR_EAE    (1U << 31)
1304
1305/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1306 * Only these are valid when in AArch64 mode; in
1307 * AArch32 mode SPSRs are basically CPSR-format.
1308 */
1309#define PSTATE_SP (1U)
1310#define PSTATE_M (0xFU)
1311#define PSTATE_nRW (1U << 4)
1312#define PSTATE_F (1U << 6)
1313#define PSTATE_I (1U << 7)
1314#define PSTATE_A (1U << 8)
1315#define PSTATE_D (1U << 9)
1316#define PSTATE_BTYPE (3U << 10)
1317#define PSTATE_SSBS (1U << 12)
1318#define PSTATE_IL (1U << 20)
1319#define PSTATE_SS (1U << 21)
1320#define PSTATE_PAN (1U << 22)
1321#define PSTATE_UAO (1U << 23)
1322#define PSTATE_DIT (1U << 24)
1323#define PSTATE_TCO (1U << 25)
1324#define PSTATE_V (1U << 28)
1325#define PSTATE_C (1U << 29)
1326#define PSTATE_Z (1U << 30)
1327#define PSTATE_N (1U << 31)
1328#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1329#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1330#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1331/* Mode values for AArch64 */
1332#define PSTATE_MODE_EL3h 13
1333#define PSTATE_MODE_EL3t 12
1334#define PSTATE_MODE_EL2h 9
1335#define PSTATE_MODE_EL2t 8
1336#define PSTATE_MODE_EL1h 5
1337#define PSTATE_MODE_EL1t 4
1338#define PSTATE_MODE_EL0t 0
1339
1340/* Write a new value to v7m.exception, thus transitioning into or out
1341 * of Handler mode; this may result in a change of active stack pointer.
1342 */
1343void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1344
1345/* Map EL and handler into a PSTATE_MODE.  */
1346static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1347{
1348    return (el << 2) | handler;
1349}
1350
1351/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1352 * interprocessing, so we don't attempt to sync with the cpsr state used by
1353 * the 32 bit decoder.
1354 */
1355static inline uint32_t pstate_read(CPUARMState *env)
1356{
1357    int ZF;
1358
1359    ZF = (env->ZF == 0);
1360    return (env->NF & 0x80000000) | (ZF << 30)
1361        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1362        | env->pstate | env->daif | (env->btype << 10);
1363}
1364
1365static inline void pstate_write(CPUARMState *env, uint32_t val)
1366{
1367    env->ZF = (~val) & PSTATE_Z;
1368    env->NF = val;
1369    env->CF = (val >> 29) & 1;
1370    env->VF = (val << 3) & 0x80000000;
1371    env->daif = val & PSTATE_DAIF;
1372    env->btype = (val >> 10) & 3;
1373    env->pstate = val & ~CACHED_PSTATE_BITS;
1374}
1375
1376/* Return the current CPSR value.  */
1377uint32_t cpsr_read(CPUARMState *env);
1378
1379typedef enum CPSRWriteType {
1380    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1381    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1382    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1383    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1384} CPSRWriteType;
1385
1386/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1387void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1388                CPSRWriteType write_type);
1389
1390/* Return the current xPSR value.  */
1391static inline uint32_t xpsr_read(CPUARMState *env)
1392{
1393    int ZF;
1394    ZF = (env->ZF == 0);
1395    return (env->NF & 0x80000000) | (ZF << 30)
1396        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1397        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1398        | ((env->condexec_bits & 0xfc) << 8)
1399        | (env->GE << 16)
1400        | env->v7m.exception;
1401}
1402
1403/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1404static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1405{
1406    if (mask & XPSR_NZCV) {
1407        env->ZF = (~val) & XPSR_Z;
1408        env->NF = val;
1409        env->CF = (val >> 29) & 1;
1410        env->VF = (val << 3) & 0x80000000;
1411    }
1412    if (mask & XPSR_Q) {
1413        env->QF = ((val & XPSR_Q) != 0);
1414    }
1415    if (mask & XPSR_GE) {
1416        env->GE = (val & XPSR_GE) >> 16;
1417    }
1418#ifndef CONFIG_USER_ONLY
1419    if (mask & XPSR_T) {
1420        env->thumb = ((val & XPSR_T) != 0);
1421    }
1422    if (mask & XPSR_IT_0_1) {
1423        env->condexec_bits &= ~3;
1424        env->condexec_bits |= (val >> 25) & 3;
1425    }
1426    if (mask & XPSR_IT_2_7) {
1427        env->condexec_bits &= 3;
1428        env->condexec_bits |= (val >> 8) & 0xfc;
1429    }
1430    if (mask & XPSR_EXCP) {
1431        /* Note that this only happens on exception exit */
1432        write_v7m_exception(env, val & XPSR_EXCP);
1433    }
1434#endif
1435}
1436
1437#define HCR_VM        (1ULL << 0)
1438#define HCR_SWIO      (1ULL << 1)
1439#define HCR_PTW       (1ULL << 2)
1440#define HCR_FMO       (1ULL << 3)
1441#define HCR_IMO       (1ULL << 4)
1442#define HCR_AMO       (1ULL << 5)
1443#define HCR_VF        (1ULL << 6)
1444#define HCR_VI        (1ULL << 7)
1445#define HCR_VSE       (1ULL << 8)
1446#define HCR_FB        (1ULL << 9)
1447#define HCR_BSU_MASK  (3ULL << 10)
1448#define HCR_DC        (1ULL << 12)
1449#define HCR_TWI       (1ULL << 13)
1450#define HCR_TWE       (1ULL << 14)
1451#define HCR_TID0      (1ULL << 15)
1452#define HCR_TID1      (1ULL << 16)
1453#define HCR_TID2      (1ULL << 17)
1454#define HCR_TID3      (1ULL << 18)
1455#define HCR_TSC       (1ULL << 19)
1456#define HCR_TIDCP     (1ULL << 20)
1457#define HCR_TACR      (1ULL << 21)
1458#define HCR_TSW       (1ULL << 22)
1459#define HCR_TPCP      (1ULL << 23)
1460#define HCR_TPU       (1ULL << 24)
1461#define HCR_TTLB      (1ULL << 25)
1462#define HCR_TVM       (1ULL << 26)
1463#define HCR_TGE       (1ULL << 27)
1464#define HCR_TDZ       (1ULL << 28)
1465#define HCR_HCD       (1ULL << 29)
1466#define HCR_TRVM      (1ULL << 30)
1467#define HCR_RW        (1ULL << 31)
1468#define HCR_CD        (1ULL << 32)
1469#define HCR_ID        (1ULL << 33)
1470#define HCR_E2H       (1ULL << 34)
1471#define HCR_TLOR      (1ULL << 35)
1472#define HCR_TERR      (1ULL << 36)
1473#define HCR_TEA       (1ULL << 37)
1474#define HCR_MIOCNCE   (1ULL << 38)
1475/* RES0 bit 39 */
1476#define HCR_APK       (1ULL << 40)
1477#define HCR_API       (1ULL << 41)
1478#define HCR_NV        (1ULL << 42)
1479#define HCR_NV1       (1ULL << 43)
1480#define HCR_AT        (1ULL << 44)
1481#define HCR_NV2       (1ULL << 45)
1482#define HCR_FWB       (1ULL << 46)
1483#define HCR_FIEN      (1ULL << 47)
1484/* RES0 bit 48 */
1485#define HCR_TID4      (1ULL << 49)
1486#define HCR_TICAB     (1ULL << 50)
1487#define HCR_AMVOFFEN  (1ULL << 51)
1488#define HCR_TOCU      (1ULL << 52)
1489#define HCR_ENSCXT    (1ULL << 53)
1490#define HCR_TTLBIS    (1ULL << 54)
1491#define HCR_TTLBOS    (1ULL << 55)
1492#define HCR_ATA       (1ULL << 56)
1493#define HCR_DCT       (1ULL << 57)
1494#define HCR_TID5      (1ULL << 58)
1495#define HCR_TWEDEN    (1ULL << 59)
1496#define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1497
1498#define HPFAR_NS      (1ULL << 63)
1499
1500#define SCR_NS                (1U << 0)
1501#define SCR_IRQ               (1U << 1)
1502#define SCR_FIQ               (1U << 2)
1503#define SCR_EA                (1U << 3)
1504#define SCR_FW                (1U << 4)
1505#define SCR_AW                (1U << 5)
1506#define SCR_NET               (1U << 6)
1507#define SCR_SMD               (1U << 7)
1508#define SCR_HCE               (1U << 8)
1509#define SCR_SIF               (1U << 9)
1510#define SCR_RW                (1U << 10)
1511#define SCR_ST                (1U << 11)
1512#define SCR_TWI               (1U << 12)
1513#define SCR_TWE               (1U << 13)
1514#define SCR_TLOR              (1U << 14)
1515#define SCR_TERR              (1U << 15)
1516#define SCR_APK               (1U << 16)
1517#define SCR_API               (1U << 17)
1518#define SCR_EEL2              (1U << 18)
1519#define SCR_EASE              (1U << 19)
1520#define SCR_NMEA              (1U << 20)
1521#define SCR_FIEN              (1U << 21)
1522#define SCR_ENSCXT            (1U << 25)
1523#define SCR_ATA               (1U << 26)
1524
1525/* Return the current FPSCR value.  */
1526uint32_t vfp_get_fpscr(CPUARMState *env);
1527void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1528
1529/* FPCR, Floating Point Control Register
1530 * FPSR, Floating Poiht Status Register
1531 *
1532 * For A64 the FPSCR is split into two logically distinct registers,
1533 * FPCR and FPSR. However since they still use non-overlapping bits
1534 * we store the underlying state in fpscr and just mask on read/write.
1535 */
1536#define FPSR_MASK 0xf800009f
1537#define FPCR_MASK 0x07ff9f00
1538
1539#define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1540#define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1541#define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1542#define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1543#define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1544#define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1545#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1546#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1547#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1548#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1549#define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1550#define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1551#define FPCR_V      (1 << 28)   /* FP overflow flag */
1552#define FPCR_C      (1 << 29)   /* FP carry flag */
1553#define FPCR_Z      (1 << 30)   /* FP zero flag */
1554#define FPCR_N      (1 << 31)   /* FP negative flag */
1555
1556#define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1557#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1558
1559#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1560#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1561
1562static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1563{
1564    return vfp_get_fpscr(env) & FPSR_MASK;
1565}
1566
1567static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1568{
1569    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1570    vfp_set_fpscr(env, new_fpscr);
1571}
1572
1573static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1574{
1575    return vfp_get_fpscr(env) & FPCR_MASK;
1576}
1577
1578static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1579{
1580    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1581    vfp_set_fpscr(env, new_fpscr);
1582}
1583
1584enum arm_cpu_mode {
1585  ARM_CPU_MODE_USR = 0x10,
1586  ARM_CPU_MODE_FIQ = 0x11,
1587  ARM_CPU_MODE_IRQ = 0x12,
1588  ARM_CPU_MODE_SVC = 0x13,
1589  ARM_CPU_MODE_MON = 0x16,
1590  ARM_CPU_MODE_ABT = 0x17,
1591  ARM_CPU_MODE_HYP = 0x1a,
1592  ARM_CPU_MODE_UND = 0x1b,
1593  ARM_CPU_MODE_SYS = 0x1f
1594};
1595
1596/* VFP system registers.  */
1597#define ARM_VFP_FPSID   0
1598#define ARM_VFP_FPSCR   1
1599#define ARM_VFP_MVFR2   5
1600#define ARM_VFP_MVFR1   6
1601#define ARM_VFP_MVFR0   7
1602#define ARM_VFP_FPEXC   8
1603#define ARM_VFP_FPINST  9
1604#define ARM_VFP_FPINST2 10
1605/* These ones are M-profile only */
1606#define ARM_VFP_FPSCR_NZCVQC 2
1607#define ARM_VFP_VPR 12
1608#define ARM_VFP_P0 13
1609#define ARM_VFP_FPCXT_NS 14
1610#define ARM_VFP_FPCXT_S 15
1611
1612/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1613#define QEMU_VFP_FPSCR_NZCV 0xffff
1614
1615/* iwMMXt coprocessor control registers.  */
1616#define ARM_IWMMXT_wCID  0
1617#define ARM_IWMMXT_wCon  1
1618#define ARM_IWMMXT_wCSSF 2
1619#define ARM_IWMMXT_wCASF 3
1620#define ARM_IWMMXT_wCGR0 8
1621#define ARM_IWMMXT_wCGR1 9
1622#define ARM_IWMMXT_wCGR2 10
1623#define ARM_IWMMXT_wCGR3 11
1624
1625/* V7M CCR bits */
1626FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1627FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1628FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1629FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1630FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1631FIELD(V7M_CCR, STKALIGN, 9, 1)
1632FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1633FIELD(V7M_CCR, DC, 16, 1)
1634FIELD(V7M_CCR, IC, 17, 1)
1635FIELD(V7M_CCR, BP, 18, 1)
1636FIELD(V7M_CCR, LOB, 19, 1)
1637FIELD(V7M_CCR, TRD, 20, 1)
1638
1639/* V7M SCR bits */
1640FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1641FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1642FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1643FIELD(V7M_SCR, SEVONPEND, 4, 1)
1644
1645/* V7M AIRCR bits */
1646FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1647FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1648FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1649FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1650FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1651FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1652FIELD(V7M_AIRCR, PRIS, 14, 1)
1653FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1654FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1655
1656/* V7M CFSR bits for MMFSR */
1657FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1658FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1659FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1660FIELD(V7M_CFSR, MSTKERR, 4, 1)
1661FIELD(V7M_CFSR, MLSPERR, 5, 1)
1662FIELD(V7M_CFSR, MMARVALID, 7, 1)
1663
1664/* V7M CFSR bits for BFSR */
1665FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1666FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1667FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1668FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1669FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1670FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1671FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1672
1673/* V7M CFSR bits for UFSR */
1674FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1675FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1676FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1677FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1678FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1679FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1680FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1681
1682/* V7M CFSR bit masks covering all of the subregister bits */
1683FIELD(V7M_CFSR, MMFSR, 0, 8)
1684FIELD(V7M_CFSR, BFSR, 8, 8)
1685FIELD(V7M_CFSR, UFSR, 16, 16)
1686
1687/* V7M HFSR bits */
1688FIELD(V7M_HFSR, VECTTBL, 1, 1)
1689FIELD(V7M_HFSR, FORCED, 30, 1)
1690FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1691
1692/* V7M DFSR bits */
1693FIELD(V7M_DFSR, HALTED, 0, 1)
1694FIELD(V7M_DFSR, BKPT, 1, 1)
1695FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1696FIELD(V7M_DFSR, VCATCH, 3, 1)
1697FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1698
1699/* V7M SFSR bits */
1700FIELD(V7M_SFSR, INVEP, 0, 1)
1701FIELD(V7M_SFSR, INVIS, 1, 1)
1702FIELD(V7M_SFSR, INVER, 2, 1)
1703FIELD(V7M_SFSR, AUVIOL, 3, 1)
1704FIELD(V7M_SFSR, INVTRAN, 4, 1)
1705FIELD(V7M_SFSR, LSPERR, 5, 1)
1706FIELD(V7M_SFSR, SFARVALID, 6, 1)
1707FIELD(V7M_SFSR, LSERR, 7, 1)
1708
1709/* v7M MPU_CTRL bits */
1710FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1711FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1712FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1713
1714/* v7M CLIDR bits */
1715FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1716FIELD(V7M_CLIDR, LOUIS, 21, 3)
1717FIELD(V7M_CLIDR, LOC, 24, 3)
1718FIELD(V7M_CLIDR, LOUU, 27, 3)
1719FIELD(V7M_CLIDR, ICB, 30, 2)
1720
1721FIELD(V7M_CSSELR, IND, 0, 1)
1722FIELD(V7M_CSSELR, LEVEL, 1, 3)
1723/* We use the combination of InD and Level to index into cpu->ccsidr[];
1724 * define a mask for this and check that it doesn't permit running off
1725 * the end of the array.
1726 */
1727FIELD(V7M_CSSELR, INDEX, 0, 4)
1728
1729/* v7M FPCCR bits */
1730FIELD(V7M_FPCCR, LSPACT, 0, 1)
1731FIELD(V7M_FPCCR, USER, 1, 1)
1732FIELD(V7M_FPCCR, S, 2, 1)
1733FIELD(V7M_FPCCR, THREAD, 3, 1)
1734FIELD(V7M_FPCCR, HFRDY, 4, 1)
1735FIELD(V7M_FPCCR, MMRDY, 5, 1)
1736FIELD(V7M_FPCCR, BFRDY, 6, 1)
1737FIELD(V7M_FPCCR, SFRDY, 7, 1)
1738FIELD(V7M_FPCCR, MONRDY, 8, 1)
1739FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1740FIELD(V7M_FPCCR, UFRDY, 10, 1)
1741FIELD(V7M_FPCCR, RES0, 11, 15)
1742FIELD(V7M_FPCCR, TS, 26, 1)
1743FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1744FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1745FIELD(V7M_FPCCR, LSPENS, 29, 1)
1746FIELD(V7M_FPCCR, LSPEN, 30, 1)
1747FIELD(V7M_FPCCR, ASPEN, 31, 1)
1748/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1749#define R_V7M_FPCCR_BANKED_MASK                 \
1750    (R_V7M_FPCCR_LSPACT_MASK |                  \
1751     R_V7M_FPCCR_USER_MASK |                    \
1752     R_V7M_FPCCR_THREAD_MASK |                  \
1753     R_V7M_FPCCR_MMRDY_MASK |                   \
1754     R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1755     R_V7M_FPCCR_UFRDY_MASK |                   \
1756     R_V7M_FPCCR_ASPEN_MASK)
1757
1758/*
1759 * System register ID fields.
1760 */
1761FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1762FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1763FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1764FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1765FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1766FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1767FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1768FIELD(CLIDR_EL1, LOUIS, 21, 3)
1769FIELD(CLIDR_EL1, LOC, 24, 3)
1770FIELD(CLIDR_EL1, LOUU, 27, 3)
1771FIELD(CLIDR_EL1, ICB, 30, 3)
1772
1773/* When FEAT_CCIDX is implemented */
1774FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1775FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1776FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1777
1778/* When FEAT_CCIDX is not implemented */
1779FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1780FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1781FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1782
1783FIELD(CTR_EL0,  IMINLINE, 0, 4)
1784FIELD(CTR_EL0,  L1IP, 14, 2)
1785FIELD(CTR_EL0,  DMINLINE, 16, 4)
1786FIELD(CTR_EL0,  ERG, 20, 4)
1787FIELD(CTR_EL0,  CWG, 24, 4)
1788FIELD(CTR_EL0,  IDC, 28, 1)
1789FIELD(CTR_EL0,  DIC, 29, 1)
1790FIELD(CTR_EL0,  TMINLINE, 32, 6)
1791
1792FIELD(MIDR_EL1, REVISION, 0, 4)
1793FIELD(MIDR_EL1, PARTNUM, 4, 12)
1794FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1795FIELD(MIDR_EL1, VARIANT, 20, 4)
1796FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1797
1798FIELD(ID_ISAR0, SWAP, 0, 4)
1799FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1800FIELD(ID_ISAR0, BITFIELD, 8, 4)
1801FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1802FIELD(ID_ISAR0, COPROC, 16, 4)
1803FIELD(ID_ISAR0, DEBUG, 20, 4)
1804FIELD(ID_ISAR0, DIVIDE, 24, 4)
1805
1806FIELD(ID_ISAR1, ENDIAN, 0, 4)
1807FIELD(ID_ISAR1, EXCEPT, 4, 4)
1808FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1809FIELD(ID_ISAR1, EXTEND, 12, 4)
1810FIELD(ID_ISAR1, IFTHEN, 16, 4)
1811FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1812FIELD(ID_ISAR1, INTERWORK, 24, 4)
1813FIELD(ID_ISAR1, JAZELLE, 28, 4)
1814
1815FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1816FIELD(ID_ISAR2, MEMHINT, 4, 4)
1817FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1818FIELD(ID_ISAR2, MULT, 12, 4)
1819FIELD(ID_ISAR2, MULTS, 16, 4)
1820FIELD(ID_ISAR2, MULTU, 20, 4)
1821FIELD(ID_ISAR2, PSR_AR, 24, 4)
1822FIELD(ID_ISAR2, REVERSAL, 28, 4)
1823
1824FIELD(ID_ISAR3, SATURATE, 0, 4)
1825FIELD(ID_ISAR3, SIMD, 4, 4)
1826FIELD(ID_ISAR3, SVC, 8, 4)
1827FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1828FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1829FIELD(ID_ISAR3, T32COPY, 20, 4)
1830FIELD(ID_ISAR3, TRUENOP, 24, 4)
1831FIELD(ID_ISAR3, T32EE, 28, 4)
1832
1833FIELD(ID_ISAR4, UNPRIV, 0, 4)
1834FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1835FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1836FIELD(ID_ISAR4, SMC, 12, 4)
1837FIELD(ID_ISAR4, BARRIER, 16, 4)
1838FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1839FIELD(ID_ISAR4, PSR_M, 24, 4)
1840FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1841
1842FIELD(ID_ISAR5, SEVL, 0, 4)
1843FIELD(ID_ISAR5, AES, 4, 4)
1844FIELD(ID_ISAR5, SHA1, 8, 4)
1845FIELD(ID_ISAR5, SHA2, 12, 4)
1846FIELD(ID_ISAR5, CRC32, 16, 4)
1847FIELD(ID_ISAR5, RDM, 24, 4)
1848FIELD(ID_ISAR5, VCMA, 28, 4)
1849
1850FIELD(ID_ISAR6, JSCVT, 0, 4)
1851FIELD(ID_ISAR6, DP, 4, 4)
1852FIELD(ID_ISAR6, FHM, 8, 4)
1853FIELD(ID_ISAR6, SB, 12, 4)
1854FIELD(ID_ISAR6, SPECRES, 16, 4)
1855FIELD(ID_ISAR6, BF16, 20, 4)
1856FIELD(ID_ISAR6, I8MM, 24, 4)
1857
1858FIELD(ID_MMFR0, VMSA, 0, 4)
1859FIELD(ID_MMFR0, PMSA, 4, 4)
1860FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1861FIELD(ID_MMFR0, SHARELVL, 12, 4)
1862FIELD(ID_MMFR0, TCM, 16, 4)
1863FIELD(ID_MMFR0, AUXREG, 20, 4)
1864FIELD(ID_MMFR0, FCSE, 24, 4)
1865FIELD(ID_MMFR0, INNERSHR, 28, 4)
1866
1867FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1868FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1869FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1870FIELD(ID_MMFR1, L1UNISW, 12, 4)
1871FIELD(ID_MMFR1, L1HVD, 16, 4)
1872FIELD(ID_MMFR1, L1UNI, 20, 4)
1873FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1874FIELD(ID_MMFR1, BPRED, 28, 4)
1875
1876FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1877FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1878FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1879FIELD(ID_MMFR2, HVDTLB, 12, 4)
1880FIELD(ID_MMFR2, UNITLB, 16, 4)
1881FIELD(ID_MMFR2, MEMBARR, 20, 4)
1882FIELD(ID_MMFR2, WFISTALL, 24, 4)
1883FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1884
1885FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1886FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1887FIELD(ID_MMFR3, BPMAINT, 8, 4)
1888FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1889FIELD(ID_MMFR3, PAN, 16, 4)
1890FIELD(ID_MMFR3, COHWALK, 20, 4)
1891FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1892FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1893
1894FIELD(ID_MMFR4, SPECSEI, 0, 4)
1895FIELD(ID_MMFR4, AC2, 4, 4)
1896FIELD(ID_MMFR4, XNX, 8, 4)
1897FIELD(ID_MMFR4, CNP, 12, 4)
1898FIELD(ID_MMFR4, HPDS, 16, 4)
1899FIELD(ID_MMFR4, LSM, 20, 4)
1900FIELD(ID_MMFR4, CCIDX, 24, 4)
1901FIELD(ID_MMFR4, EVT, 28, 4)
1902
1903FIELD(ID_MMFR5, ETS, 0, 4)
1904
1905FIELD(ID_PFR0, STATE0, 0, 4)
1906FIELD(ID_PFR0, STATE1, 4, 4)
1907FIELD(ID_PFR0, STATE2, 8, 4)
1908FIELD(ID_PFR0, STATE3, 12, 4)
1909FIELD(ID_PFR0, CSV2, 16, 4)
1910FIELD(ID_PFR0, AMU, 20, 4)
1911FIELD(ID_PFR0, DIT, 24, 4)
1912FIELD(ID_PFR0, RAS, 28, 4)
1913
1914FIELD(ID_PFR1, PROGMOD, 0, 4)
1915FIELD(ID_PFR1, SECURITY, 4, 4)
1916FIELD(ID_PFR1, MPROGMOD, 8, 4)
1917FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1918FIELD(ID_PFR1, GENTIMER, 16, 4)
1919FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1920FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1921FIELD(ID_PFR1, GIC, 28, 4)
1922
1923FIELD(ID_PFR2, CSV3, 0, 4)
1924FIELD(ID_PFR2, SSBS, 4, 4)
1925FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1926
1927FIELD(ID_AA64ISAR0, AES, 4, 4)
1928FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1929FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1930FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1931FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1932FIELD(ID_AA64ISAR0, RDM, 28, 4)
1933FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1934FIELD(ID_AA64ISAR0, SM3, 36, 4)
1935FIELD(ID_AA64ISAR0, SM4, 40, 4)
1936FIELD(ID_AA64ISAR0, DP, 44, 4)
1937FIELD(ID_AA64ISAR0, FHM, 48, 4)
1938FIELD(ID_AA64ISAR0, TS, 52, 4)
1939FIELD(ID_AA64ISAR0, TLB, 56, 4)
1940FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1941
1942FIELD(ID_AA64ISAR1, DPB, 0, 4)
1943FIELD(ID_AA64ISAR1, APA, 4, 4)
1944FIELD(ID_AA64ISAR1, API, 8, 4)
1945FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1946FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1947FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1948FIELD(ID_AA64ISAR1, GPA, 24, 4)
1949FIELD(ID_AA64ISAR1, GPI, 28, 4)
1950FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1951FIELD(ID_AA64ISAR1, SB, 36, 4)
1952FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1953FIELD(ID_AA64ISAR1, BF16, 44, 4)
1954FIELD(ID_AA64ISAR1, DGH, 48, 4)
1955FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1956
1957FIELD(ID_AA64PFR0, EL0, 0, 4)
1958FIELD(ID_AA64PFR0, EL1, 4, 4)
1959FIELD(ID_AA64PFR0, EL2, 8, 4)
1960FIELD(ID_AA64PFR0, EL3, 12, 4)
1961FIELD(ID_AA64PFR0, FP, 16, 4)
1962FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1963FIELD(ID_AA64PFR0, GIC, 24, 4)
1964FIELD(ID_AA64PFR0, RAS, 28, 4)
1965FIELD(ID_AA64PFR0, SVE, 32, 4)
1966FIELD(ID_AA64PFR0, SEL2, 36, 4)
1967FIELD(ID_AA64PFR0, MPAM, 40, 4)
1968FIELD(ID_AA64PFR0, AMU, 44, 4)
1969FIELD(ID_AA64PFR0, DIT, 48, 4)
1970FIELD(ID_AA64PFR0, CSV2, 56, 4)
1971FIELD(ID_AA64PFR0, CSV3, 60, 4)
1972
1973FIELD(ID_AA64PFR1, BT, 0, 4)
1974FIELD(ID_AA64PFR1, SSBS, 4, 4)
1975FIELD(ID_AA64PFR1, MTE, 8, 4)
1976FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1977FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
1978
1979FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1980FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1981FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1982FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1983FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1984FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1985FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1986FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1987FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1988FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1989FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1990FIELD(ID_AA64MMFR0, EXS, 44, 4)
1991FIELD(ID_AA64MMFR0, FGT, 56, 4)
1992FIELD(ID_AA64MMFR0, ECV, 60, 4)
1993
1994FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1995FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1996FIELD(ID_AA64MMFR1, VH, 8, 4)
1997FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1998FIELD(ID_AA64MMFR1, LO, 16, 4)
1999FIELD(ID_AA64MMFR1, PAN, 20, 4)
2000FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2001FIELD(ID_AA64MMFR1, XNX, 28, 4)
2002FIELD(ID_AA64MMFR1, TWED, 32, 4)
2003FIELD(ID_AA64MMFR1, ETS, 36, 4)
2004
2005FIELD(ID_AA64MMFR2, CNP, 0, 4)
2006FIELD(ID_AA64MMFR2, UAO, 4, 4)
2007FIELD(ID_AA64MMFR2, LSM, 8, 4)
2008FIELD(ID_AA64MMFR2, IESB, 12, 4)
2009FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2010FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2011FIELD(ID_AA64MMFR2, NV, 24, 4)
2012FIELD(ID_AA64MMFR2, ST, 28, 4)
2013FIELD(ID_AA64MMFR2, AT, 32, 4)
2014FIELD(ID_AA64MMFR2, IDS, 36, 4)
2015FIELD(ID_AA64MMFR2, FWB, 40, 4)
2016FIELD(ID_AA64MMFR2, TTL, 48, 4)
2017FIELD(ID_AA64MMFR2, BBM, 52, 4)
2018FIELD(ID_AA64MMFR2, EVT, 56, 4)
2019FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2020
2021FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2022FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2023FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2024FIELD(ID_AA64DFR0, BRPS, 12, 4)
2025FIELD(ID_AA64DFR0, WRPS, 20, 4)
2026FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2027FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2028FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2029FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2030FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2031
2032FIELD(ID_DFR0, COPDBG, 0, 4)
2033FIELD(ID_DFR0, COPSDBG, 4, 4)
2034FIELD(ID_DFR0, MMAPDBG, 8, 4)
2035FIELD(ID_DFR0, COPTRC, 12, 4)
2036FIELD(ID_DFR0, MMAPTRC, 16, 4)
2037FIELD(ID_DFR0, MPROFDBG, 20, 4)
2038FIELD(ID_DFR0, PERFMON, 24, 4)
2039FIELD(ID_DFR0, TRACEFILT, 28, 4)
2040
2041FIELD(ID_DFR1, MTPMU, 0, 4)
2042
2043FIELD(DBGDIDR, SE_IMP, 12, 1)
2044FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2045FIELD(DBGDIDR, VERSION, 16, 4)
2046FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2047FIELD(DBGDIDR, BRPS, 24, 4)
2048FIELD(DBGDIDR, WRPS, 28, 4)
2049
2050FIELD(MVFR0, SIMDREG, 0, 4)
2051FIELD(MVFR0, FPSP, 4, 4)
2052FIELD(MVFR0, FPDP, 8, 4)
2053FIELD(MVFR0, FPTRAP, 12, 4)
2054FIELD(MVFR0, FPDIVIDE, 16, 4)
2055FIELD(MVFR0, FPSQRT, 20, 4)
2056FIELD(MVFR0, FPSHVEC, 24, 4)
2057FIELD(MVFR0, FPROUND, 28, 4)
2058
2059FIELD(MVFR1, FPFTZ, 0, 4)
2060FIELD(MVFR1, FPDNAN, 4, 4)
2061FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2062FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2063FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2064FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2065FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2066FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2067FIELD(MVFR1, FPHP, 24, 4)
2068FIELD(MVFR1, SIMDFMAC, 28, 4)
2069
2070FIELD(MVFR2, SIMDMISC, 0, 4)
2071FIELD(MVFR2, FPMISC, 4, 4)
2072
2073QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2074
2075/* If adding a feature bit which corresponds to a Linux ELF
2076 * HWCAP bit, remember to update the feature-bit-to-hwcap
2077 * mapping in linux-user/elfload.c:get_elf_hwcap().
2078 */
2079enum arm_features {
2080    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2081    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2082    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2083    ARM_FEATURE_V6,
2084    ARM_FEATURE_V6K,
2085    ARM_FEATURE_V7,
2086    ARM_FEATURE_THUMB2,
2087    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2088    ARM_FEATURE_NEON,
2089    ARM_FEATURE_M, /* Microcontroller profile.  */
2090    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2091    ARM_FEATURE_THUMB2EE,
2092    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2093    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2094    ARM_FEATURE_V4T,
2095    ARM_FEATURE_V5,
2096    ARM_FEATURE_STRONGARM,
2097    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2098    ARM_FEATURE_GENERIC_TIMER,
2099    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2100    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2101    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2102    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2103    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2104    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2105    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2106    ARM_FEATURE_V8,
2107    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2108    ARM_FEATURE_CBAR, /* has cp15 CBAR */
2109    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2110    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2111    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2112    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2113    ARM_FEATURE_PMU, /* has PMU support */
2114    ARM_FEATURE_VBAR, /* has cp15 VBAR */
2115    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2116    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2117    ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2118};
2119
2120static inline int arm_feature(CPUARMState *env, int feature)
2121{
2122    return (env->features & (1ULL << feature)) != 0;
2123}
2124
2125void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2126
2127#if !defined(CONFIG_USER_ONLY)
2128/* Return true if exception levels below EL3 are in secure state,
2129 * or would be following an exception return to that level.
2130 * Unlike arm_is_secure() (which is always a question about the
2131 * _current_ state of the CPU) this doesn't care about the current
2132 * EL or mode.
2133 */
2134static inline bool arm_is_secure_below_el3(CPUARMState *env)
2135{
2136    if (arm_feature(env, ARM_FEATURE_EL3)) {
2137        return !(env->cp15.scr_el3 & SCR_NS);
2138    } else {
2139        /* If EL3 is not supported then the secure state is implementation
2140         * defined, in which case QEMU defaults to non-secure.
2141         */
2142        return false;
2143    }
2144}
2145
2146/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2147static inline bool arm_is_el3_or_mon(CPUARMState *env)
2148{
2149    if (arm_feature(env, ARM_FEATURE_EL3)) {
2150        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2151            /* CPU currently in AArch64 state and EL3 */
2152            return true;
2153        } else if (!is_a64(env) &&
2154                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2155            /* CPU currently in AArch32 state and monitor mode */
2156            return true;
2157        }
2158    }
2159    return false;
2160}
2161
2162/* Return true if the processor is in secure state */
2163static inline bool arm_is_secure(CPUARMState *env)
2164{
2165    if (arm_is_el3_or_mon(env)) {
2166        return true;
2167    }
2168    return arm_is_secure_below_el3(env);
2169}
2170
2171/*
2172 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2173 * This corresponds to the pseudocode EL2Enabled()
2174 */
2175static inline bool arm_is_el2_enabled(CPUARMState *env)
2176{
2177    if (arm_feature(env, ARM_FEATURE_EL2)) {
2178        if (arm_is_secure_below_el3(env)) {
2179            return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2180        }
2181        return true;
2182    }
2183    return false;
2184}
2185
2186#else
2187static inline bool arm_is_secure_below_el3(CPUARMState *env)
2188{
2189    return false;
2190}
2191
2192static inline bool arm_is_secure(CPUARMState *env)
2193{
2194    return false;
2195}
2196
2197static inline bool arm_is_el2_enabled(CPUARMState *env)
2198{
2199    return false;
2200}
2201#endif
2202
2203/**
2204 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2205 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2206 * "for all purposes other than a direct read or write access of HCR_EL2."
2207 * Not included here is HCR_RW.
2208 */
2209uint64_t arm_hcr_el2_eff(CPUARMState *env);
2210
2211/* Return true if the specified exception level is running in AArch64 state. */
2212static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2213{
2214    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2215     * and if we're not in EL0 then the state of EL0 isn't well defined.)
2216     */
2217    assert(el >= 1 && el <= 3);
2218    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2219
2220    /* The highest exception level is always at the maximum supported
2221     * register width, and then lower levels have a register width controlled
2222     * by bits in the SCR or HCR registers.
2223     */
2224    if (el == 3) {
2225        return aa64;
2226    }
2227
2228    if (arm_feature(env, ARM_FEATURE_EL3) &&
2229        ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2230        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2231    }
2232
2233    if (el == 2) {
2234        return aa64;
2235    }
2236
2237    if (arm_is_el2_enabled(env)) {
2238        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2239    }
2240
2241    return aa64;
2242}
2243
2244/* Function for determing whether guest cp register reads and writes should
2245 * access the secure or non-secure bank of a cp register.  When EL3 is
2246 * operating in AArch32 state, the NS-bit determines whether the secure
2247 * instance of a cp register should be used. When EL3 is AArch64 (or if
2248 * it doesn't exist at all) then there is no register banking, and all
2249 * accesses are to the non-secure version.
2250 */
2251static inline bool access_secure_reg(CPUARMState *env)
2252{
2253    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2254                !arm_el_is_aa64(env, 3) &&
2255                !(env->cp15.scr_el3 & SCR_NS));
2256
2257    return ret;
2258}
2259
2260/* Macros for accessing a specified CP register bank */
2261#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2262    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2263
2264#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2265    do {                                                \
2266        if (_secure) {                                   \
2267            (_env)->cp15._regname##_s = (_val);            \
2268        } else {                                        \
2269            (_env)->cp15._regname##_ns = (_val);           \
2270        }                                               \
2271    } while (0)
2272
2273/* Macros for automatically accessing a specific CP register bank depending on
2274 * the current secure state of the system.  These macros are not intended for
2275 * supporting instruction translation reads/writes as these are dependent
2276 * solely on the SCR.NS bit and not the mode.
2277 */
2278#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2279    A32_BANKED_REG_GET((_env), _regname,                \
2280                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2281
2282#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2283    A32_BANKED_REG_SET((_env), _regname,                                    \
2284                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2285                       (_val))
2286
2287void arm_cpu_list(void);
2288uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2289                                 uint32_t cur_el, bool secure);
2290
2291/* Interface between CPU and Interrupt controller.  */
2292#ifndef CONFIG_USER_ONLY
2293bool armv7m_nvic_can_take_pending_exception(void *opaque);
2294#else
2295static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2296{
2297    return true;
2298}
2299#endif
2300/**
2301 * armv7m_nvic_set_pending: mark the specified exception as pending
2302 * @opaque: the NVIC
2303 * @irq: the exception number to mark pending
2304 * @secure: false for non-banked exceptions or for the nonsecure
2305 * version of a banked exception, true for the secure version of a banked
2306 * exception.
2307 *
2308 * Marks the specified exception as pending. Note that we will assert()
2309 * if @secure is true and @irq does not specify one of the fixed set
2310 * of architecturally banked exceptions.
2311 */
2312void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2313/**
2314 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2315 * @opaque: the NVIC
2316 * @irq: the exception number to mark pending
2317 * @secure: false for non-banked exceptions or for the nonsecure
2318 * version of a banked exception, true for the secure version of a banked
2319 * exception.
2320 *
2321 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2322 * exceptions (exceptions generated in the course of trying to take
2323 * a different exception).
2324 */
2325void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2326/**
2327 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2328 * @opaque: the NVIC
2329 * @irq: the exception number to mark pending
2330 * @secure: false for non-banked exceptions or for the nonsecure
2331 * version of a banked exception, true for the secure version of a banked
2332 * exception.
2333 *
2334 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2335 * generated in the course of lazy stacking of FP registers.
2336 */
2337void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2338/**
2339 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2340 *    exception, and whether it targets Secure state
2341 * @opaque: the NVIC
2342 * @pirq: set to pending exception number
2343 * @ptargets_secure: set to whether pending exception targets Secure
2344 *
2345 * This function writes the number of the highest priority pending
2346 * exception (the one which would be made active by
2347 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2348 * to true if the current highest priority pending exception should
2349 * be taken to Secure state, false for NS.
2350 */
2351void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2352                                      bool *ptargets_secure);
2353/**
2354 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2355 * @opaque: the NVIC
2356 *
2357 * Move the current highest priority pending exception from the pending
2358 * state to the active state, and update v7m.exception to indicate that
2359 * it is the exception currently being handled.
2360 */
2361void armv7m_nvic_acknowledge_irq(void *opaque);
2362/**
2363 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2364 * @opaque: the NVIC
2365 * @irq: the exception number to complete
2366 * @secure: true if this exception was secure
2367 *
2368 * Returns: -1 if the irq was not active
2369 *           1 if completing this irq brought us back to base (no active irqs)
2370 *           0 if there is still an irq active after this one was completed
2371 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2372 */
2373int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2374/**
2375 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2376 * @opaque: the NVIC
2377 * @irq: the exception number to mark pending
2378 * @secure: false for non-banked exceptions or for the nonsecure
2379 * version of a banked exception, true for the secure version of a banked
2380 * exception.
2381 *
2382 * Return whether an exception is "ready", i.e. whether the exception is
2383 * enabled and is configured at a priority which would allow it to
2384 * interrupt the current execution priority. This controls whether the
2385 * RDY bit for it in the FPCCR is set.
2386 */
2387bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2388/**
2389 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2390 * @opaque: the NVIC
2391 *
2392 * Returns: the raw execution priority as defined by the v8M architecture.
2393 * This is the execution priority minus the effects of AIRCR.PRIS,
2394 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2395 * (v8M ARM ARM I_PKLD.)
2396 */
2397int armv7m_nvic_raw_execution_priority(void *opaque);
2398/**
2399 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2400 * priority is negative for the specified security state.
2401 * @opaque: the NVIC
2402 * @secure: the security state to test
2403 * This corresponds to the pseudocode IsReqExecPriNeg().
2404 */
2405#ifndef CONFIG_USER_ONLY
2406bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2407#else
2408static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2409{
2410    return false;
2411}
2412#endif
2413
2414/* Interface for defining coprocessor registers.
2415 * Registers are defined in tables of arm_cp_reginfo structs
2416 * which are passed to define_arm_cp_regs().
2417 */
2418
2419/* When looking up a coprocessor register we look for it
2420 * via an integer which encodes all of:
2421 *  coprocessor number
2422 *  Crn, Crm, opc1, opc2 fields
2423 *  32 or 64 bit register (ie is it accessed via MRC/MCR
2424 *    or via MRRC/MCRR?)
2425 *  non-secure/secure bank (AArch32 only)
2426 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2427 * (In this case crn and opc2 should be zero.)
2428 * For AArch64, there is no 32/64 bit size distinction;
2429 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2430 * and 4 bit CRn and CRm. The encoding patterns are chosen
2431 * to be easy to convert to and from the KVM encodings, and also
2432 * so that the hashtable can contain both AArch32 and AArch64
2433 * registers (to allow for interprocessing where we might run
2434 * 32 bit code on a 64 bit core).
2435 */
2436/* This bit is private to our hashtable cpreg; in KVM register
2437 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2438 * in the upper bits of the 64 bit ID.
2439 */
2440#define CP_REG_AA64_SHIFT 28
2441#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2442
2443/* To enable banking of coprocessor registers depending on ns-bit we
2444 * add a bit to distinguish between secure and non-secure cpregs in the
2445 * hashtable.
2446 */
2447#define CP_REG_NS_SHIFT 29
2448#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2449
2450#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2451    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2452     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2453
2454#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2455    (CP_REG_AA64_MASK |                                 \
2456     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2457     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2458     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2459     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2460     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2461     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2462
2463/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2464 * version used as a key for the coprocessor register hashtable
2465 */
2466static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2467{
2468    uint32_t cpregid = kvmid;
2469    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2470        cpregid |= CP_REG_AA64_MASK;
2471    } else {
2472        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2473            cpregid |= (1 << 15);
2474        }
2475
2476        /* KVM is always non-secure so add the NS flag on AArch32 register
2477         * entries.
2478         */
2479         cpregid |= 1 << CP_REG_NS_SHIFT;
2480    }
2481    return cpregid;
2482}
2483
2484/* Convert a truncated 32 bit hashtable key into the full
2485 * 64 bit KVM register ID.
2486 */
2487static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2488{
2489    uint64_t kvmid;
2490
2491    if (cpregid & CP_REG_AA64_MASK) {
2492        kvmid = cpregid & ~CP_REG_AA64_MASK;
2493        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2494    } else {
2495        kvmid = cpregid & ~(1 << 15);
2496        if (cpregid & (1 << 15)) {
2497            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2498        } else {
2499            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2500        }
2501    }
2502    return kvmid;
2503}
2504
2505/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2506 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2507 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2508 * TCG can assume the value to be constant (ie load at translate time)
2509 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2510 * indicates that the TB should not be ended after a write to this register
2511 * (the default is that the TB ends after cp writes). OVERRIDE permits
2512 * a register definition to override a previous definition for the
2513 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2514 * old must have the OVERRIDE bit set.
2515 * ALIAS indicates that this register is an alias view of some underlying
2516 * state which is also visible via another register, and that the other
2517 * register is handling migration and reset; registers marked ALIAS will not be
2518 * migrated but may have their state set by syncing of register state from KVM.
2519 * NO_RAW indicates that this register has no underlying state and does not
2520 * support raw access for state saving/loading; it will not be used for either
2521 * migration or KVM state synchronization. (Typically this is for "registers"
2522 * which are actually used as instructions for cache maintenance and so on.)
2523 * IO indicates that this register does I/O and therefore its accesses
2524 * need to be marked with gen_io_start() and also end the TB. In particular,
2525 * registers which implement clocks or timers require this.
2526 * RAISES_EXC is for when the read or write hook might raise an exception;
2527 * the generated code will synchronize the CPU state before calling the hook
2528 * so that it is safe for the hook to call raise_exception().
2529 * NEWEL is for writes to registers that might change the exception
2530 * level - typically on older ARM chips. For those cases we need to
2531 * re-read the new el when recomputing the translation flags.
2532 */
2533#define ARM_CP_SPECIAL           0x0001
2534#define ARM_CP_CONST             0x0002
2535#define ARM_CP_64BIT             0x0004
2536#define ARM_CP_SUPPRESS_TB_END   0x0008
2537#define ARM_CP_OVERRIDE          0x0010
2538#define ARM_CP_ALIAS             0x0020
2539#define ARM_CP_IO                0x0040
2540#define ARM_CP_NO_RAW            0x0080
2541#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2542#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2543#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2544#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2545#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2546#define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2547#define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2548#define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2549#define ARM_CP_FPU               0x1000
2550#define ARM_CP_SVE               0x2000
2551#define ARM_CP_NO_GDB            0x4000
2552#define ARM_CP_RAISES_EXC        0x8000
2553#define ARM_CP_NEWEL             0x10000
2554/* Used only as a terminator for ARMCPRegInfo lists */
2555#define ARM_CP_SENTINEL          0xfffff
2556/* Mask of only the flag bits in a type field */
2557#define ARM_CP_FLAG_MASK         0x1f0ff
2558
2559/* Valid values for ARMCPRegInfo state field, indicating which of
2560 * the AArch32 and AArch64 execution states this register is visible in.
2561 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2562 * If the reginfo is declared to be visible in both states then a second
2563 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2564 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2565 * Note that we rely on the values of these enums as we iterate through
2566 * the various states in some places.
2567 */
2568enum {
2569    ARM_CP_STATE_AA32 = 0,
2570    ARM_CP_STATE_AA64 = 1,
2571    ARM_CP_STATE_BOTH = 2,
2572};
2573
2574/* ARM CP register secure state flags.  These flags identify security state
2575 * attributes for a given CP register entry.
2576 * The existence of both or neither secure and non-secure flags indicates that
2577 * the register has both a secure and non-secure hash entry.  A single one of
2578 * these flags causes the register to only be hashed for the specified
2579 * security state.
2580 * Although definitions may have any combination of the S/NS bits, each
2581 * registered entry will only have one to identify whether the entry is secure
2582 * or non-secure.
2583 */
2584enum {
2585    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2586    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2587};
2588
2589/* Return true if cptype is a valid type field. This is used to try to
2590 * catch errors where the sentinel has been accidentally left off the end
2591 * of a list of registers.
2592 */
2593static inline bool cptype_valid(int cptype)
2594{
2595    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2596        || ((cptype & ARM_CP_SPECIAL) &&
2597            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2598}
2599
2600/* Access rights:
2601 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2602 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2603 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2604 * (ie any of the privileged modes in Secure state, or Monitor mode).
2605 * If a register is accessible in one privilege level it's always accessible
2606 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2607 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2608 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2609 * terminology a little and call this PL3.
2610 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2611 * with the ELx exception levels.
2612 *
2613 * If access permissions for a register are more complex than can be
2614 * described with these bits, then use a laxer set of restrictions, and
2615 * do the more restrictive/complex check inside a helper function.
2616 */
2617#define PL3_R 0x80
2618#define PL3_W 0x40
2619#define PL2_R (0x20 | PL3_R)
2620#define PL2_W (0x10 | PL3_W)
2621#define PL1_R (0x08 | PL2_R)
2622#define PL1_W (0x04 | PL2_W)
2623#define PL0_R (0x02 | PL1_R)
2624#define PL0_W (0x01 | PL1_W)
2625
2626/*
2627 * For user-mode some registers are accessible to EL0 via a kernel
2628 * trap-and-emulate ABI. In this case we define the read permissions
2629 * as actually being PL0_R. However some bits of any given register
2630 * may still be masked.
2631 */
2632#ifdef CONFIG_USER_ONLY
2633#define PL0U_R PL0_R
2634#else
2635#define PL0U_R PL1_R
2636#endif
2637
2638#define PL3_RW (PL3_R | PL3_W)
2639#define PL2_RW (PL2_R | PL2_W)
2640#define PL1_RW (PL1_R | PL1_W)
2641#define PL0_RW (PL0_R | PL0_W)
2642
2643/* Return the highest implemented Exception Level */
2644static inline int arm_highest_el(CPUARMState *env)
2645{
2646    if (arm_feature(env, ARM_FEATURE_EL3)) {
2647        return 3;
2648    }
2649    if (arm_feature(env, ARM_FEATURE_EL2)) {
2650        return 2;
2651    }
2652    return 1;
2653}
2654
2655/* Return true if a v7M CPU is in Handler mode */
2656static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2657{
2658    return env->v7m.exception != 0;
2659}
2660
2661/* Return the current Exception Level (as per ARMv8; note that this differs
2662 * from the ARMv7 Privilege Level).
2663 */
2664static inline int arm_current_el(CPUARMState *env)
2665{
2666    if (arm_feature(env, ARM_FEATURE_M)) {
2667        return arm_v7m_is_handler_mode(env) ||
2668            !(env->v7m.control[env->v7m.secure] & 1);
2669    }
2670
2671    if (is_a64(env)) {
2672        return extract32(env->pstate, 2, 2);
2673    }
2674
2675    switch (env->uncached_cpsr & 0x1f) {
2676    case ARM_CPU_MODE_USR:
2677        return 0;
2678    case ARM_CPU_MODE_HYP:
2679        return 2;
2680    case ARM_CPU_MODE_MON:
2681        return 3;
2682    default:
2683        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2684            /* If EL3 is 32-bit then all secure privileged modes run in
2685             * EL3
2686             */
2687            return 3;
2688        }
2689
2690        return 1;
2691    }
2692}
2693
2694typedef struct ARMCPRegInfo ARMCPRegInfo;
2695
2696typedef enum CPAccessResult {
2697    /* Access is permitted */
2698    CP_ACCESS_OK = 0,
2699    /* Access fails due to a configurable trap or enable which would
2700     * result in a categorized exception syndrome giving information about
2701     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2702     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2703     * PL1 if in EL0, otherwise to the current EL).
2704     */
2705    CP_ACCESS_TRAP = 1,
2706    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2707     * Note that this is not a catch-all case -- the set of cases which may
2708     * result in this failure is specifically defined by the architecture.
2709     */
2710    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2711    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2712    CP_ACCESS_TRAP_EL2 = 3,
2713    CP_ACCESS_TRAP_EL3 = 4,
2714    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2715    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2716    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2717    /* Access fails and results in an exception syndrome for an FP access,
2718     * trapped directly to EL2 or EL3
2719     */
2720    CP_ACCESS_TRAP_FP_EL2 = 7,
2721    CP_ACCESS_TRAP_FP_EL3 = 8,
2722} CPAccessResult;
2723
2724/* Access functions for coprocessor registers. These cannot fail and
2725 * may not raise exceptions.
2726 */
2727typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2728typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2729                       uint64_t value);
2730/* Access permission check functions for coprocessor registers. */
2731typedef CPAccessResult CPAccessFn(CPUARMState *env,
2732                                  const ARMCPRegInfo *opaque,
2733                                  bool isread);
2734/* Hook function for register reset */
2735typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2736
2737#define CP_ANY 0xff
2738
2739/* Definition of an ARM coprocessor register */
2740struct ARMCPRegInfo {
2741    /* Name of register (useful mainly for debugging, need not be unique) */
2742    const char *name;
2743    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2744     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2745     * 'wildcard' field -- any value of that field in the MRC/MCR insn
2746     * will be decoded to this register. The register read and write
2747     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2748     * used by the program, so it is possible to register a wildcard and
2749     * then behave differently on read/write if necessary.
2750     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2751     * must both be zero.
2752     * For AArch64-visible registers, opc0 is also used.
2753     * Since there are no "coprocessors" in AArch64, cp is purely used as a
2754     * way to distinguish (for KVM's benefit) guest-visible system registers
2755     * from demuxed ones provided to preserve the "no side effects on
2756     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2757     * visible (to match KVM's encoding); cp==0 will be converted to
2758     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2759     */
2760    uint8_t cp;
2761    uint8_t crn;
2762    uint8_t crm;
2763    uint8_t opc0;
2764    uint8_t opc1;
2765    uint8_t opc2;
2766    /* Execution state in which this register is visible: ARM_CP_STATE_* */
2767    int state;
2768    /* Register type: ARM_CP_* bits/values */
2769    int type;
2770    /* Access rights: PL*_[RW] */
2771    int access;
2772    /* Security state: ARM_CP_SECSTATE_* bits/values */
2773    int secure;
2774    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2775     * this register was defined: can be used to hand data through to the
2776     * register read/write functions, since they are passed the ARMCPRegInfo*.
2777     */
2778    void *opaque;
2779    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2780     * fieldoffset is non-zero, the reset value of the register.
2781     */
2782    uint64_t resetvalue;
2783    /* Offset of the field in CPUARMState for this register.
2784     *
2785     * This is not needed if either:
2786     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2787     *  2. both readfn and writefn are specified
2788     */
2789    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2790
2791    /* Offsets of the secure and non-secure fields in CPUARMState for the
2792     * register if it is banked.  These fields are only used during the static
2793     * registration of a register.  During hashing the bank associated
2794     * with a given security state is copied to fieldoffset which is used from
2795     * there on out.
2796     *
2797     * It is expected that register definitions use either fieldoffset or
2798     * bank_fieldoffsets in the definition but not both.  It is also expected
2799     * that both bank offsets are set when defining a banked register.  This
2800     * use indicates that a register is banked.
2801     */
2802    ptrdiff_t bank_fieldoffsets[2];
2803
2804    /* Function for making any access checks for this register in addition to
2805     * those specified by the 'access' permissions bits. If NULL, no extra
2806     * checks required. The access check is performed at runtime, not at
2807     * translate time.
2808     */
2809    CPAccessFn *accessfn;
2810    /* Function for handling reads of this register. If NULL, then reads
2811     * will be done by loading from the offset into CPUARMState specified
2812     * by fieldoffset.
2813     */
2814    CPReadFn *readfn;
2815    /* Function for handling writes of this register. If NULL, then writes
2816     * will be done by writing to the offset into CPUARMState specified
2817     * by fieldoffset.
2818     */
2819    CPWriteFn *writefn;
2820    /* Function for doing a "raw" read; used when we need to copy
2821     * coprocessor state to the kernel for KVM or out for
2822     * migration. This only needs to be provided if there is also a
2823     * readfn and it has side effects (for instance clear-on-read bits).
2824     */
2825    CPReadFn *raw_readfn;
2826    /* Function for doing a "raw" write; used when we need to copy KVM
2827     * kernel coprocessor state into userspace, or for inbound
2828     * migration. This only needs to be provided if there is also a
2829     * writefn and it masks out "unwritable" bits or has write-one-to-clear
2830     * or similar behaviour.
2831     */
2832    CPWriteFn *raw_writefn;
2833    /* Function for resetting the register. If NULL, then reset will be done
2834     * by writing resetvalue to the field specified in fieldoffset. If
2835     * fieldoffset is 0 then no reset will be done.
2836     */
2837    CPResetFn *resetfn;
2838
2839    /*
2840     * "Original" writefn and readfn.
2841     * For ARMv8.1-VHE register aliases, we overwrite the read/write
2842     * accessor functions of various EL1/EL0 to perform the runtime
2843     * check for which sysreg should actually be modified, and then
2844     * forwards the operation.  Before overwriting the accessors,
2845     * the original function is copied here, so that accesses that
2846     * really do go to the EL1/EL0 version proceed normally.
2847     * (The corresponding EL2 register is linked via opaque.)
2848     */
2849    CPReadFn *orig_readfn;
2850    CPWriteFn *orig_writefn;
2851};
2852
2853/* Macros which are lvalues for the field in CPUARMState for the
2854 * ARMCPRegInfo *ri.
2855 */
2856#define CPREG_FIELD32(env, ri) \
2857    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2858#define CPREG_FIELD64(env, ri) \
2859    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2860
2861#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2862
2863void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2864                                    const ARMCPRegInfo *regs, void *opaque);
2865void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2866                                       const ARMCPRegInfo *regs, void *opaque);
2867static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2868{
2869    define_arm_cp_regs_with_opaque(cpu, regs, 0);
2870}
2871static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2872{
2873    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2874}
2875const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2876
2877/*
2878 * Definition of an ARM co-processor register as viewed from
2879 * userspace. This is used for presenting sanitised versions of
2880 * registers to userspace when emulating the Linux AArch64 CPU
2881 * ID/feature ABI (advertised as HWCAP_CPUID).
2882 */
2883typedef struct ARMCPRegUserSpaceInfo {
2884    /* Name of register */
2885    const char *name;
2886
2887    /* Is the name actually a glob pattern */
2888    bool is_glob;
2889
2890    /* Only some bits are exported to user space */
2891    uint64_t exported_bits;
2892
2893    /* Fixed bits are applied after the mask */
2894    uint64_t fixed_bits;
2895} ARMCPRegUserSpaceInfo;
2896
2897#define REGUSERINFO_SENTINEL { .name = NULL }
2898
2899void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2900
2901/* CPWriteFn that can be used to implement writes-ignored behaviour */
2902void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2903                         uint64_t value);
2904/* CPReadFn that can be used for read-as-zero behaviour */
2905uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2906
2907/* CPResetFn that does nothing, for use if no reset is required even
2908 * if fieldoffset is non zero.
2909 */
2910void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2911
2912/* Return true if this reginfo struct's field in the cpu state struct
2913 * is 64 bits wide.
2914 */
2915static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2916{
2917    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2918}
2919
2920static inline bool cp_access_ok(int current_el,
2921                                const ARMCPRegInfo *ri, int isread)
2922{
2923    return (ri->access >> ((current_el * 2) + isread)) & 1;
2924}
2925
2926/* Raw read of a coprocessor register (as needed for migration, etc) */
2927uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2928
2929/**
2930 * write_list_to_cpustate
2931 * @cpu: ARMCPU
2932 *
2933 * For each register listed in the ARMCPU cpreg_indexes list, write
2934 * its value from the cpreg_values list into the ARMCPUState structure.
2935 * This updates TCG's working data structures from KVM data or
2936 * from incoming migration state.
2937 *
2938 * Returns: true if all register values were updated correctly,
2939 * false if some register was unknown or could not be written.
2940 * Note that we do not stop early on failure -- we will attempt
2941 * writing all registers in the list.
2942 */
2943bool write_list_to_cpustate(ARMCPU *cpu);
2944
2945/**
2946 * write_cpustate_to_list:
2947 * @cpu: ARMCPU
2948 * @kvm_sync: true if this is for syncing back to KVM
2949 *
2950 * For each register listed in the ARMCPU cpreg_indexes list, write
2951 * its value from the ARMCPUState structure into the cpreg_values list.
2952 * This is used to copy info from TCG's working data structures into
2953 * KVM or for outbound migration.
2954 *
2955 * @kvm_sync is true if we are doing this in order to sync the
2956 * register state back to KVM. In this case we will only update
2957 * values in the list if the previous list->cpustate sync actually
2958 * successfully wrote the CPU state. Otherwise we will keep the value
2959 * that is in the list.
2960 *
2961 * Returns: true if all register values were read correctly,
2962 * false if some register was unknown or could not be read.
2963 * Note that we do not stop early on failure -- we will attempt
2964 * reading all registers in the list.
2965 */
2966bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2967
2968#define ARM_CPUID_TI915T      0x54029152
2969#define ARM_CPUID_TI925T      0x54029252
2970
2971#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2972#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2973#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2974
2975#define cpu_signal_handler cpu_arm_signal_handler
2976#define cpu_list arm_cpu_list
2977
2978/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2979 *
2980 * If EL3 is 64-bit:
2981 *  + NonSecure EL1 & 0 stage 1
2982 *  + NonSecure EL1 & 0 stage 2
2983 *  + NonSecure EL2
2984 *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2985 *  + Secure EL1 & 0
2986 *  + Secure EL3
2987 * If EL3 is 32-bit:
2988 *  + NonSecure PL1 & 0 stage 1
2989 *  + NonSecure PL1 & 0 stage 2
2990 *  + NonSecure PL2
2991 *  + Secure PL0
2992 *  + Secure PL1
2993 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2994 *
2995 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2996 *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2997 *     because they may differ in access permissions even if the VA->PA map is
2998 *     the same
2999 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3000 *     translation, which means that we have one mmu_idx that deals with two
3001 *     concatenated translation regimes [this sort of combined s1+2 TLB is
3002 *     architecturally permitted]
3003 *  3. we don't need to allocate an mmu_idx to translations that we won't be
3004 *     handling via the TLB. The only way to do a stage 1 translation without
3005 *     the immediate stage 2 translation is via the ATS or AT system insns,
3006 *     which can be slow-pathed and always do a page table walk.
3007 *     The only use of stage 2 translations is either as part of an s1+2
3008 *     lookup or when loading the descriptors during a stage 1 page table walk,
3009 *     and in both those cases we don't use the TLB.
3010 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3011 *     translation regimes, because they map reasonably well to each other
3012 *     and they can't both be active at the same time.
3013 *  5. we want to be able to use the TLB for accesses done as part of a
3014 *     stage1 page table walk, rather than having to walk the stage2 page
3015 *     table over and over.
3016 *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3017 *     Never (PAN) bit within PSTATE.
3018 *
3019 * This gives us the following list of cases:
3020 *
3021 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3022 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3023 * NS EL1 EL1&0 stage 1+2 +PAN
3024 * NS EL0 EL2&0
3025 * NS EL2 EL2&0
3026 * NS EL2 EL2&0 +PAN
3027 * NS EL2 (aka NS PL2)
3028 * S EL0 EL1&0 (aka S PL0)
3029 * S EL1 EL1&0 (not used if EL3 is 32 bit)
3030 * S EL1 EL1&0 +PAN
3031 * S EL3 (aka S PL1)
3032 *
3033 * for a total of 11 different mmu_idx.
3034 *
3035 * R profile CPUs have an MPU, but can use the same set of MMU indexes
3036 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3037 * NS EL2 if we ever model a Cortex-R52).
3038 *
3039 * M profile CPUs are rather different as they do not have a true MMU.
3040 * They have the following different MMU indexes:
3041 *  User
3042 *  Privileged
3043 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3044 *  Privileged, execution priority negative (ditto)
3045 * If the CPU supports the v8M Security Extension then there are also:
3046 *  Secure User
3047 *  Secure Privileged
3048 *  Secure User, execution priority negative
3049 *  Secure Privileged, execution priority negative
3050 *
3051 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3052 * are not quite the same -- different CPU types (most notably M profile
3053 * vs A/R profile) would like to use MMU indexes with different semantics,
3054 * but since we don't ever need to use all of those in a single CPU we
3055 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3056 * modes + total number of M profile MMU modes". The lower bits of
3057 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3058 * the same for any particular CPU.
3059 * Variables of type ARMMUIdx are always full values, and the core
3060 * index values are in variables of type 'int'.
3061 *
3062 * Our enumeration includes at the end some entries which are not "true"
3063 * mmu_idx values in that they don't have corresponding TLBs and are only
3064 * valid for doing slow path page table walks.
3065 *
3066 * The constant names here are patterned after the general style of the names
3067 * of the AT/ATS operations.
3068 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3069 * For M profile we arrange them to have a bit for priv, a bit for negpri
3070 * and a bit for secure.
3071 */
3072#define ARM_MMU_IDX_A     0x10  /* A profile */
3073#define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3074#define ARM_MMU_IDX_M     0x40  /* M profile */
3075
3076/* Meanings of the bits for A profile mmu idx values */
3077#define ARM_MMU_IDX_A_NS     0x8
3078
3079/* Meanings of the bits for M profile mmu idx values */
3080#define ARM_MMU_IDX_M_PRIV   0x1
3081#define ARM_MMU_IDX_M_NEGPRI 0x2
3082#define ARM_MMU_IDX_M_S      0x4  /* Secure */
3083
3084#define ARM_MMU_IDX_TYPE_MASK \
3085    (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3086#define ARM_MMU_IDX_COREIDX_MASK 0xf
3087
3088typedef enum ARMMMUIdx {
3089    /*
3090     * A-profile.
3091     */
3092    ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3093    ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3094    ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3095    ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3096    ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3097    ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3098    ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3099    ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3100
3101    ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3102    ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3103    ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3104    ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3105    ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3106    ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3107    ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3108
3109    /*
3110     * These are not allocated TLBs and are used only for AT system
3111     * instructions or for the first stage of an S12 page table walk.
3112     */
3113    ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3114    ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3115    ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3116    ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3117    ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3118    ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3119    /*
3120     * Not allocated a TLB: used only for second stage of an S12 page
3121     * table walk, or for descriptor loads during first stage of an S1
3122     * page table walk. Note that if we ever want to have a TLB for this
3123     * then various TLB flush insns which currently are no-ops or flush
3124     * only stage 1 MMU indexes will need to change to flush stage 2.
3125     */
3126    ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3127    ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3128
3129    /*
3130     * M-profile.
3131     */
3132    ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3133    ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3134    ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3135    ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3136    ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3137    ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3138    ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3139    ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3140} ARMMMUIdx;
3141
3142/*
3143 * Bit macros for the core-mmu-index values for each index,
3144 * for use when calling tlb_flush_by_mmuidx() and friends.
3145 */
3146#define TO_CORE_BIT(NAME) \
3147    ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3148
3149typedef enum ARMMMUIdxBit {
3150    TO_CORE_BIT(E10_0),
3151    TO_CORE_BIT(E20_0),
3152    TO_CORE_BIT(E10_1),
3153    TO_CORE_BIT(E10_1_PAN),
3154    TO_CORE_BIT(E2),
3155    TO_CORE_BIT(E20_2),
3156    TO_CORE_BIT(E20_2_PAN),
3157    TO_CORE_BIT(SE10_0),
3158    TO_CORE_BIT(SE20_0),
3159    TO_CORE_BIT(SE10_1),
3160    TO_CORE_BIT(SE20_2),
3161    TO_CORE_BIT(SE10_1_PAN),
3162    TO_CORE_BIT(SE20_2_PAN),
3163    TO_CORE_BIT(SE2),
3164    TO_CORE_BIT(SE3),
3165
3166    TO_CORE_BIT(MUser),
3167    TO_CORE_BIT(MPriv),
3168    TO_CORE_BIT(MUserNegPri),
3169    TO_CORE_BIT(MPrivNegPri),
3170    TO_CORE_BIT(MSUser),
3171    TO_CORE_BIT(MSPriv),
3172    TO_CORE_BIT(MSUserNegPri),
3173    TO_CORE_BIT(MSPrivNegPri),
3174} ARMMMUIdxBit;
3175
3176#undef TO_CORE_BIT
3177
3178#define MMU_USER_IDX 0
3179
3180/* Indexes used when registering address spaces with cpu_address_space_init */
3181typedef enum ARMASIdx {
3182    ARMASIdx_NS = 0,
3183    ARMASIdx_S = 1,
3184    ARMASIdx_TagNS = 2,
3185    ARMASIdx_TagS = 3,
3186} ARMASIdx;
3187
3188/* Return the Exception Level targeted by debug exceptions. */
3189static inline int arm_debug_target_el(CPUARMState *env)
3190{
3191    bool secure = arm_is_secure(env);
3192    bool route_to_el2 = false;
3193
3194    if (arm_is_el2_enabled(env)) {
3195        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3196                       env->cp15.mdcr_el2 & MDCR_TDE;
3197    }
3198
3199    if (route_to_el2) {
3200        return 2;
3201    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3202               !arm_el_is_aa64(env, 3) && secure) {
3203        return 3;
3204    } else {
3205        return 1;
3206    }
3207}
3208
3209static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3210{
3211    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3212     * CSSELR is RAZ/WI.
3213     */
3214    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3215}
3216
3217/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3218static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3219{
3220    int cur_el = arm_current_el(env);
3221    int debug_el;
3222
3223    if (cur_el == 3) {
3224        return false;
3225    }
3226
3227    /* MDCR_EL3.SDD disables debug events from Secure state */
3228    if (arm_is_secure_below_el3(env)
3229        && extract32(env->cp15.mdcr_el3, 16, 1)) {
3230        return false;
3231    }
3232
3233    /*
3234     * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3235     * while not masking the (D)ebug bit in DAIF.
3236     */
3237    debug_el = arm_debug_target_el(env);
3238
3239    if (cur_el == debug_el) {
3240        return extract32(env->cp15.mdscr_el1, 13, 1)
3241            && !(env->daif & PSTATE_D);
3242    }
3243
3244    /* Otherwise the debug target needs to be a higher EL */
3245    return debug_el > cur_el;
3246}
3247
3248static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3249{
3250    int el = arm_current_el(env);
3251
3252    if (el == 0 && arm_el_is_aa64(env, 1)) {
3253        return aa64_generate_debug_exceptions(env);
3254    }
3255
3256    if (arm_is_secure(env)) {
3257        int spd;
3258
3259        if (el == 0 && (env->cp15.sder & 1)) {
3260            /* SDER.SUIDEN means debug exceptions from Secure EL0
3261             * are always enabled. Otherwise they are controlled by
3262             * SDCR.SPD like those from other Secure ELs.
3263             */
3264            return true;
3265        }
3266
3267        spd = extract32(env->cp15.mdcr_el3, 14, 2);
3268        switch (spd) {
3269        case 1:
3270            /* SPD == 0b01 is reserved, but behaves as 0b00. */
3271        case 0:
3272            /* For 0b00 we return true if external secure invasive debug
3273             * is enabled. On real hardware this is controlled by external
3274             * signals to the core. QEMU always permits debug, and behaves
3275             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3276             */
3277            return true;
3278        case 2:
3279            return false;
3280        case 3:
3281            return true;
3282        }
3283    }
3284
3285    return el != 2;
3286}
3287
3288/* Return true if debugging exceptions are currently enabled.
3289 * This corresponds to what in ARM ARM pseudocode would be
3290 *    if UsingAArch32() then
3291 *        return AArch32.GenerateDebugExceptions()
3292 *    else
3293 *        return AArch64.GenerateDebugExceptions()
3294 * We choose to push the if() down into this function for clarity,
3295 * since the pseudocode has it at all callsites except for the one in
3296 * CheckSoftwareStep(), where it is elided because both branches would
3297 * always return the same value.
3298 */
3299static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3300{
3301    if (env->aarch64) {
3302        return aa64_generate_debug_exceptions(env);
3303    } else {
3304        return aa32_generate_debug_exceptions(env);
3305    }
3306}
3307
3308/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3309 * implicitly means this always returns false in pre-v8 CPUs.)
3310 */
3311static inline bool arm_singlestep_active(CPUARMState *env)
3312{
3313    return extract32(env->cp15.mdscr_el1, 0, 1)
3314        && arm_el_is_aa64(env, arm_debug_target_el(env))
3315        && arm_generate_debug_exceptions(env);
3316}
3317
3318static inline bool arm_sctlr_b(CPUARMState *env)
3319{
3320    return
3321        /* We need not implement SCTLR.ITD in user-mode emulation, so
3322         * let linux-user ignore the fact that it conflicts with SCTLR_B.
3323         * This lets people run BE32 binaries with "-cpu any".
3324         */
3325#ifndef CONFIG_USER_ONLY
3326        !arm_feature(env, ARM_FEATURE_V7) &&
3327#endif
3328        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3329}
3330
3331uint64_t arm_sctlr(CPUARMState *env, int el);
3332
3333static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3334                                                  bool sctlr_b)
3335{
3336#ifdef CONFIG_USER_ONLY
3337    /*
3338     * In system mode, BE32 is modelled in line with the
3339     * architecture (as word-invariant big-endianness), where loads
3340     * and stores are done little endian but from addresses which
3341     * are adjusted by XORing with the appropriate constant. So the
3342     * endianness to use for the raw data access is not affected by
3343     * SCTLR.B.
3344     * In user mode, however, we model BE32 as byte-invariant
3345     * big-endianness (because user-only code cannot tell the
3346     * difference), and so we need to use a data access endianness
3347     * that depends on SCTLR.B.
3348     */
3349    if (sctlr_b) {
3350        return true;
3351    }
3352#endif
3353    /* In 32bit endianness is determined by looking at CPSR's E bit */
3354    return env->uncached_cpsr & CPSR_E;
3355}
3356
3357static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3358{
3359    return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3360}
3361
3362/* Return true if the processor is in big-endian mode. */
3363static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3364{
3365    if (!is_a64(env)) {
3366        return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3367    } else {
3368        int cur_el = arm_current_el(env);
3369        uint64_t sctlr = arm_sctlr(env, cur_el);
3370        return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3371    }
3372}
3373
3374typedef CPUARMState CPUArchState;
3375typedef ARMCPU ArchCPU;
3376
3377#include "exec/cpu-all.h"
3378
3379/*
3380 * Bit usage in the TB flags field: bit 31 indicates whether we are
3381 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3382 * We put flags which are shared between 32 and 64 bit mode at the top
3383 * of the word, and flags which apply to only one mode at the bottom.
3384 *
3385 *  31          20    18    14          9              0
3386 * +--------------+-----+-----+----------+--------------+
3387 * |              |     |   TBFLAG_A32   |              |
3388 * |              |     +-----+----------+  TBFLAG_AM32 |
3389 * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3390 * |              +-----------+----------+--------------|
3391 * |              |            TBFLAG_A64               |
3392 * +--------------+-------------------------------------+
3393 *  31          20                                     0
3394 *
3395 * Unless otherwise noted, these bits are cached in env->hflags.
3396 */
3397FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3398FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3399FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3400FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3401FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3402/* Target EL if we take a floating-point-disabled exception */
3403FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3404/* For A-profile only, target EL for debug exceptions.  */
3405FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3406
3407/*
3408 * Bit usage when in AArch32 state, both A- and M-profile.
3409 */
3410FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3411FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3412
3413/*
3414 * Bit usage when in AArch32 state, for A-profile only.
3415 */
3416FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3417FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3418/*
3419 * We store the bottom two bits of the CPAR as TB flags and handle
3420 * checks on the other bits at runtime. This shares the same bits as
3421 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3422 * Not cached, because VECLEN+VECSTRIDE are not cached.
3423 */
3424FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3425FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3426FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3427FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3428/*
3429 * Indicates whether cp register reads and writes by guest code should access
3430 * the secure or nonsecure bank of banked registers; note that this is not
3431 * the same thing as the current security state of the processor!
3432 */
3433FIELD(TBFLAG_A32, NS, 17, 1)
3434
3435/*
3436 * Bit usage when in AArch32 state, for M-profile only.
3437 */
3438/* Handler (ie not Thread) mode */
3439FIELD(TBFLAG_M32, HANDLER, 9, 1)
3440/* Whether we should generate stack-limit checks */
3441FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3442/* Set if FPCCR.LSPACT is set */
3443FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3444/* Set if we must create a new FP context */
3445FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3446/* Set if FPCCR.S does not match current security state */
3447FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3448
3449/*
3450 * Bit usage when in AArch64 state
3451 */
3452FIELD(TBFLAG_A64, TBII, 0, 2)
3453FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3454FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3455FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3456FIELD(TBFLAG_A64, BT, 9, 1)
3457FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3458FIELD(TBFLAG_A64, TBID, 12, 2)
3459FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3460FIELD(TBFLAG_A64, ATA, 15, 1)
3461FIELD(TBFLAG_A64, TCMA, 16, 2)
3462FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3463FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3464
3465/**
3466 * cpu_mmu_index:
3467 * @env: The cpu environment
3468 * @ifetch: True for code access, false for data access.
3469 *
3470 * Return the core mmu index for the current translation regime.
3471 * This function is used by generic TCG code paths.
3472 */
3473static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3474{
3475    return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3476}
3477
3478static inline bool bswap_code(bool sctlr_b)
3479{
3480#ifdef CONFIG_USER_ONLY
3481    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3482     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3483     * would also end up as a mixed-endian mode with BE code, LE data.
3484     */
3485    return
3486#ifdef TARGET_WORDS_BIGENDIAN
3487        1 ^
3488#endif
3489        sctlr_b;
3490#else
3491    /* All code access in ARM is little endian, and there are no loaders
3492     * doing swaps that need to be reversed
3493     */
3494    return 0;
3495#endif
3496}
3497
3498#ifdef CONFIG_USER_ONLY
3499static inline bool arm_cpu_bswap_data(CPUARMState *env)
3500{
3501    return
3502#ifdef TARGET_WORDS_BIGENDIAN
3503       1 ^
3504#endif
3505       arm_cpu_data_is_big_endian(env);
3506}
3507#endif
3508
3509void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3510                          target_ulong *cs_base, uint32_t *flags);
3511
3512enum {
3513    QEMU_PSCI_CONDUIT_DISABLED = 0,
3514    QEMU_PSCI_CONDUIT_SMC = 1,
3515    QEMU_PSCI_CONDUIT_HVC = 2,
3516};
3517
3518#ifndef CONFIG_USER_ONLY
3519/* Return the address space index to use for a memory access */
3520static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3521{
3522    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3523}
3524
3525/* Return the AddressSpace to use for a memory access
3526 * (which depends on whether the access is S or NS, and whether
3527 * the board gave us a separate AddressSpace for S accesses).
3528 */
3529static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3530{
3531    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3532}
3533#endif
3534
3535/**
3536 * arm_register_pre_el_change_hook:
3537 * Register a hook function which will be called immediately before this
3538 * CPU changes exception level or mode. The hook function will be
3539 * passed a pointer to the ARMCPU and the opaque data pointer passed
3540 * to this function when the hook was registered.
3541 *
3542 * Note that if a pre-change hook is called, any registered post-change hooks
3543 * are guaranteed to subsequently be called.
3544 */
3545void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3546                                 void *opaque);
3547/**
3548 * arm_register_el_change_hook:
3549 * Register a hook function which will be called immediately after this
3550 * CPU changes exception level or mode. The hook function will be
3551 * passed a pointer to the ARMCPU and the opaque data pointer passed
3552 * to this function when the hook was registered.
3553 *
3554 * Note that any registered hooks registered here are guaranteed to be called
3555 * if pre-change hooks have been.
3556 */
3557void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3558        *opaque);
3559
3560/**
3561 * arm_rebuild_hflags:
3562 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3563 */
3564void arm_rebuild_hflags(CPUARMState *env);
3565
3566/**
3567 * aa32_vfp_dreg:
3568 * Return a pointer to the Dn register within env in 32-bit mode.
3569 */
3570static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3571{
3572    return &env->vfp.zregs[regno >> 1].d[regno & 1];
3573}
3574
3575/**
3576 * aa32_vfp_qreg:
3577 * Return a pointer to the Qn register within env in 32-bit mode.
3578 */
3579static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3580{
3581    return &env->vfp.zregs[regno].d[0];
3582}
3583
3584/**
3585 * aa64_vfp_qreg:
3586 * Return a pointer to the Qn register within env in 64-bit mode.
3587 */
3588static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3589{
3590    return &env->vfp.zregs[regno].d[0];
3591}
3592
3593/* Shared between translate-sve.c and sve_helper.c.  */
3594extern const uint64_t pred_esz_masks[4];
3595
3596/* Helper for the macros below, validating the argument type. */
3597static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3598{
3599    return x;
3600}
3601
3602/*
3603 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3604 * Using these should be a bit more self-documenting than using the
3605 * generic target bits directly.
3606 */
3607#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3608#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3609
3610/*
3611 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3612 */
3613#define PAGE_BTI  PAGE_TARGET_1
3614#define PAGE_MTE  PAGE_TARGET_2
3615
3616#ifdef TARGET_TAGGED_ADDRESSES
3617/**
3618 * cpu_untagged_addr:
3619 * @cs: CPU context
3620 * @x: tagged address
3621 *
3622 * Remove any address tag from @x.  This is explicitly related to the
3623 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3624 *
3625 * There should be a better place to put this, but we need this in
3626 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3627 */
3628static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3629{
3630    ARMCPU *cpu = ARM_CPU(cs);
3631    if (cpu->env.tagged_addr_enable) {
3632        /*
3633         * TBI is enabled for userspace but not kernelspace addresses.
3634         * Only clear the tag if bit 55 is clear.
3635         */
3636        x &= sextract64(x, 0, 56);
3637    }
3638    return x;
3639}
3640#endif
3641
3642/*
3643 * Naming convention for isar_feature functions:
3644 * Functions which test 32-bit ID registers should have _aa32_ in
3645 * their name. Functions which test 64-bit ID registers should have
3646 * _aa64_ in their name. These must only be used in code where we
3647 * know for certain that the CPU has AArch32 or AArch64 respectively
3648 * or where the correct answer for a CPU which doesn't implement that
3649 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3650 * system registers that are specific to that CPU state, for "should
3651 * we let this system register bit be set" tests where the 32-bit
3652 * flavour of the register doesn't have the bit, and so on).
3653 * Functions which simply ask "does this feature exist at all" have
3654 * _any_ in their name, and always return the logical OR of the _aa64_
3655 * and the _aa32_ function.
3656 */
3657
3658/*
3659 * 32-bit feature tests via id registers.
3660 */
3661static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3662{
3663    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3664}
3665
3666static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3667{
3668    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3669}
3670
3671static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3672{
3673    /* (M-profile) low-overhead loops and branch future */
3674    return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3675}
3676
3677static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3678{
3679    return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3680}
3681
3682static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3683{
3684    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3685}
3686
3687static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3688{
3689    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3690}
3691
3692static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3693{
3694    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3695}
3696
3697static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3698{
3699    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3700}
3701
3702static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3703{
3704    return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3705}
3706
3707static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3708{
3709    return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3710}
3711
3712static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3713{
3714    return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3715}
3716
3717static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3718{
3719    return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3720}
3721
3722static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3723{
3724    return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3725}
3726
3727static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3728{
3729    return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3730}
3731
3732static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3733{
3734    return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3735}
3736
3737static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3738{
3739    return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3740}
3741
3742static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3743{
3744    return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3745}
3746
3747static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3748{
3749    return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3750}
3751
3752static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3753{
3754    /*
3755     * Return true if M-profile state handling insns
3756     * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3757     */
3758    return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3759}
3760
3761static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3762{
3763    /* Sadly this is encoded differently for A-profile and M-profile */
3764    if (isar_feature_aa32_mprofile(id)) {
3765        return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3766    } else {
3767        return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3768    }
3769}
3770
3771static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3772{
3773    /*
3774     * Return true if either VFP or SIMD is implemented.
3775     * In this case, a minimum of VFP w/ D0-D15.
3776     */
3777    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3778}
3779
3780static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3781{
3782    /* Return true if D16-D31 are implemented */
3783    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3784}
3785
3786static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3787{
3788    return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3789}
3790
3791static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3792{
3793    /* Return true if CPU supports single precision floating point, VFPv2 */
3794    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3795}
3796
3797static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3798{
3799    /* Return true if CPU supports single precision floating point, VFPv3 */
3800    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3801}
3802
3803static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3804{
3805    /* Return true if CPU supports double precision floating point, VFPv2 */
3806    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3807}
3808
3809static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3810{
3811    /* Return true if CPU supports double precision floating point, VFPv3 */
3812    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3813}
3814
3815static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3816{
3817    return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3818}
3819
3820/*
3821 * We always set the FP and SIMD FP16 fields to indicate identical
3822 * levels of support (assuming SIMD is implemented at all), so
3823 * we only need one set of accessors.
3824 */
3825static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3826{
3827    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3828}
3829
3830static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3831{
3832    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3833}
3834
3835/*
3836 * Note that this ID register field covers both VFP and Neon FMAC,
3837 * so should usually be tested in combination with some other
3838 * check that confirms the presence of whichever of VFP or Neon is
3839 * relevant, to avoid accidentally enabling a Neon feature on
3840 * a VFP-no-Neon core or vice-versa.
3841 */
3842static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3843{
3844    return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3845}
3846
3847static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3848{
3849    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3850}
3851
3852static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3853{
3854    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3855}
3856
3857static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3858{
3859    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3860}
3861
3862static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3863{
3864    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3865}
3866
3867static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3868{
3869    return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3870}
3871
3872static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3873{
3874    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3875}
3876
3877static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3878{
3879    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3880}
3881
3882static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3883{
3884    /* 0xf means "non-standard IMPDEF PMU" */
3885    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3886        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3887}
3888
3889static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3890{
3891    /* 0xf means "non-standard IMPDEF PMU" */
3892    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3893        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3894}
3895
3896static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3897{
3898    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3899}
3900
3901static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3902{
3903    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3904}
3905
3906static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3907{
3908    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3909}
3910
3911static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3912{
3913    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3914}
3915
3916static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3917{
3918    return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3919}
3920
3921static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3922{
3923    return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3924}
3925
3926/*
3927 * 64-bit feature tests via id registers.
3928 */
3929static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3930{
3931    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3932}
3933
3934static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3935{
3936    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3937}
3938
3939static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3940{
3941    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3942}
3943
3944static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3945{
3946    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3947}
3948
3949static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3950{
3951    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3952}
3953
3954static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3955{
3956    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3957}
3958
3959static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3960{
3961    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3962}
3963
3964static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3965{
3966    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3967}
3968
3969static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3970{
3971    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3972}
3973
3974static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3975{
3976    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3977}
3978
3979static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3980{
3981    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3982}
3983
3984static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3985{
3986    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3987}
3988
3989static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3990{
3991    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3992}
3993
3994static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3995{
3996    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3997}
3998
3999static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4000{
4001    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4002}
4003
4004static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4005{
4006    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4007}
4008
4009static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4010{
4011    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4012}
4013
4014static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4015{
4016    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4017}
4018
4019static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4020{
4021    /*
4022     * Return true if any form of pauth is enabled, as this
4023     * predicate controls migration of the 128-bit keys.
4024     */
4025    return (id->id_aa64isar1 &
4026            (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4027             FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4028             FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4029             FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4030}
4031
4032static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4033{
4034    /*
4035     * Return true if pauth is enabled with the architected QARMA algorithm.
4036     * QEMU will always set APA+GPA to the same value.
4037     */
4038    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4039}
4040
4041static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4042{
4043    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4044}
4045
4046static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4047{
4048    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4049}
4050
4051static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4052{
4053    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4054}
4055
4056static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4057{
4058    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4059}
4060
4061static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4062{
4063    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4064}
4065
4066static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4067{
4068    /* We always set the AdvSIMD and FP fields identically.  */
4069    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4070}
4071
4072static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4073{
4074    /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4075    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4076}
4077
4078static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4079{
4080    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4081}
4082
4083static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4084{
4085    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4086}
4087
4088static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4089{
4090    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4091}
4092
4093static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4094{
4095    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4096}
4097
4098static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4099{
4100    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4101}
4102
4103static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4104{
4105    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4106}
4107
4108static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4109{
4110    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4111}
4112
4113static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4114{
4115    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4116}
4117
4118static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4119{
4120    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4121}
4122
4123static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4124{
4125    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4126}
4127
4128static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4129{
4130    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4131}
4132
4133static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4134{
4135    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4136}
4137
4138static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4139{
4140    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4141}
4142
4143static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4144{
4145    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4146        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4147}
4148
4149static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4150{
4151    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4152        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4153}
4154
4155static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4156{
4157    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4158}
4159
4160static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4161{
4162    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4163}
4164
4165static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4166{
4167    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4168}
4169
4170static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4171{
4172    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4173}
4174
4175static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4176{
4177    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4178}
4179
4180static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4181{
4182    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4183}
4184
4185/*
4186 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4187 */
4188static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4189{
4190    return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4191}
4192
4193static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4194{
4195    return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4196}
4197
4198static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4199{
4200    return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4201}
4202
4203static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4204{
4205    return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4206}
4207
4208static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4209{
4210    return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4211}
4212
4213static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4214{
4215    return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4216}
4217
4218/*
4219 * Forward to the above feature tests given an ARMCPU pointer.
4220 */
4221#define cpu_isar_feature(name, cpu) \
4222    ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4223
4224#endif
4225