qemu/target/arm/helper.c
<<
>>
Prefs
   1/*
   2 * ARM generic helpers.
   3 *
   4 * This code is licensed under the GNU GPL v2 or later.
   5 *
   6 * SPDX-License-Identifier: GPL-2.0-or-later
   7 */
   8
   9#include "qemu/osdep.h"
  10#include "qemu/units.h"
  11#include "target/arm/idau.h"
  12#include "trace.h"
  13#include "cpu.h"
  14#include "internals.h"
  15#include "exec/gdbstub.h"
  16#include "exec/helper-proto.h"
  17#include "qemu/host-utils.h"
  18#include "qemu/main-loop.h"
  19#include "qemu/bitops.h"
  20#include "qemu/crc32c.h"
  21#include "qemu/qemu-print.h"
  22#include "exec/exec-all.h"
  23#include <zlib.h> /* For crc32 */
  24#include "hw/irq.h"
  25#include "semihosting/semihost.h"
  26#include "sysemu/cpus.h"
  27#include "sysemu/cpu-timers.h"
  28#include "sysemu/kvm.h"
  29#include "sysemu/tcg.h"
  30#include "qemu/range.h"
  31#include "qapi/qapi-commands-machine-target.h"
  32#include "qapi/error.h"
  33#include "qemu/guest-random.h"
  34#ifdef CONFIG_TCG
  35#include "arm_ldst.h"
  36#include "exec/cpu_ldst.h"
  37#include "semihosting/common-semi.h"
  38#endif
  39
  40#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
  41#define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
  42
  43#ifndef CONFIG_USER_ONLY
  44
  45static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
  46                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
  47                               bool s1_is_el0,
  48                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
  49                               target_ulong *page_size_ptr,
  50                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
  51    __attribute__((nonnull));
  52#endif
  53
  54static void switch_mode(CPUARMState *env, int mode);
  55static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
  56
  57static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
  58{
  59    ARMCPU *cpu = env_archcpu(env);
  60    int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
  61
  62    /* VFP data registers are always little-endian.  */
  63    if (reg < nregs) {
  64        return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
  65    }
  66    if (arm_feature(env, ARM_FEATURE_NEON)) {
  67        /* Aliases for Q regs.  */
  68        nregs += 16;
  69        if (reg < nregs) {
  70            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
  71            return gdb_get_reg128(buf, q[0], q[1]);
  72        }
  73    }
  74    switch (reg - nregs) {
  75    case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
  76    case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
  77    case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
  78    }
  79    return 0;
  80}
  81
  82static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
  83{
  84    ARMCPU *cpu = env_archcpu(env);
  85    int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
  86
  87    if (reg < nregs) {
  88        *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
  89        return 8;
  90    }
  91    if (arm_feature(env, ARM_FEATURE_NEON)) {
  92        nregs += 16;
  93        if (reg < nregs) {
  94            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
  95            q[0] = ldq_le_p(buf);
  96            q[1] = ldq_le_p(buf + 8);
  97            return 16;
  98        }
  99    }
 100    switch (reg - nregs) {
 101    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
 102    case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
 103    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
 104    }
 105    return 0;
 106}
 107
 108static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
 109{
 110    switch (reg) {
 111    case 0 ... 31:
 112    {
 113        /* 128 bit FP register - quads are in LE order */
 114        uint64_t *q = aa64_vfp_qreg(env, reg);
 115        return gdb_get_reg128(buf, q[1], q[0]);
 116    }
 117    case 32:
 118        /* FPSR */
 119        return gdb_get_reg32(buf, vfp_get_fpsr(env));
 120    case 33:
 121        /* FPCR */
 122        return gdb_get_reg32(buf,vfp_get_fpcr(env));
 123    default:
 124        return 0;
 125    }
 126}
 127
 128static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 129{
 130    switch (reg) {
 131    case 0 ... 31:
 132        /* 128 bit FP register */
 133        {
 134            uint64_t *q = aa64_vfp_qreg(env, reg);
 135            q[0] = ldq_le_p(buf);
 136            q[1] = ldq_le_p(buf + 8);
 137            return 16;
 138        }
 139    case 32:
 140        /* FPSR */
 141        vfp_set_fpsr(env, ldl_p(buf));
 142        return 4;
 143    case 33:
 144        /* FPCR */
 145        vfp_set_fpcr(env, ldl_p(buf));
 146        return 4;
 147    default:
 148        return 0;
 149    }
 150}
 151
 152static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
 153{
 154    assert(ri->fieldoffset);
 155    if (cpreg_field_is_64bit(ri)) {
 156        return CPREG_FIELD64(env, ri);
 157    } else {
 158        return CPREG_FIELD32(env, ri);
 159    }
 160}
 161
 162static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 163                      uint64_t value)
 164{
 165    assert(ri->fieldoffset);
 166    if (cpreg_field_is_64bit(ri)) {
 167        CPREG_FIELD64(env, ri) = value;
 168    } else {
 169        CPREG_FIELD32(env, ri) = value;
 170    }
 171}
 172
 173static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
 174{
 175    return (char *)env + ri->fieldoffset;
 176}
 177
 178uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
 179{
 180    /* Raw read of a coprocessor register (as needed for migration, etc). */
 181    if (ri->type & ARM_CP_CONST) {
 182        return ri->resetvalue;
 183    } else if (ri->raw_readfn) {
 184        return ri->raw_readfn(env, ri);
 185    } else if (ri->readfn) {
 186        return ri->readfn(env, ri);
 187    } else {
 188        return raw_read(env, ri);
 189    }
 190}
 191
 192static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
 193                             uint64_t v)
 194{
 195    /* Raw write of a coprocessor register (as needed for migration, etc).
 196     * Note that constant registers are treated as write-ignored; the
 197     * caller should check for success by whether a readback gives the
 198     * value written.
 199     */
 200    if (ri->type & ARM_CP_CONST) {
 201        return;
 202    } else if (ri->raw_writefn) {
 203        ri->raw_writefn(env, ri, v);
 204    } else if (ri->writefn) {
 205        ri->writefn(env, ri, v);
 206    } else {
 207        raw_write(env, ri, v);
 208    }
 209}
 210
 211/**
 212 * arm_get/set_gdb_*: get/set a gdb register
 213 * @env: the CPU state
 214 * @buf: a buffer to copy to/from
 215 * @reg: register number (offset from start of group)
 216 *
 217 * We return the number of bytes copied
 218 */
 219
 220static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
 221{
 222    ARMCPU *cpu = env_archcpu(env);
 223    const ARMCPRegInfo *ri;
 224    uint32_t key;
 225
 226    key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
 227    ri = get_arm_cp_reginfo(cpu->cp_regs, key);
 228    if (ri) {
 229        if (cpreg_field_is_64bit(ri)) {
 230            return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
 231        } else {
 232            return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
 233        }
 234    }
 235    return 0;
 236}
 237
 238static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
 239{
 240    return 0;
 241}
 242
 243#ifdef TARGET_AARCH64
 244static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
 245{
 246    ARMCPU *cpu = env_archcpu(env);
 247
 248    switch (reg) {
 249    /* The first 32 registers are the zregs */
 250    case 0 ... 31:
 251    {
 252        int vq, len = 0;
 253        for (vq = 0; vq < cpu->sve_max_vq; vq++) {
 254            len += gdb_get_reg128(buf,
 255                                  env->vfp.zregs[reg].d[vq * 2 + 1],
 256                                  env->vfp.zregs[reg].d[vq * 2]);
 257        }
 258        return len;
 259    }
 260    case 32:
 261        return gdb_get_reg32(buf, vfp_get_fpsr(env));
 262    case 33:
 263        return gdb_get_reg32(buf, vfp_get_fpcr(env));
 264    /* then 16 predicates and the ffr */
 265    case 34 ... 50:
 266    {
 267        int preg = reg - 34;
 268        int vq, len = 0;
 269        for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
 270            len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
 271        }
 272        return len;
 273    }
 274    case 51:
 275    {
 276        /*
 277         * We report in Vector Granules (VG) which is 64bit in a Z reg
 278         * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
 279         */
 280        int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
 281        return gdb_get_reg64(buf, vq * 2);
 282    }
 283    default:
 284        /* gdbstub asked for something out our range */
 285        qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
 286        break;
 287    }
 288
 289    return 0;
 290}
 291
 292static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
 293{
 294    ARMCPU *cpu = env_archcpu(env);
 295
 296    /* The first 32 registers are the zregs */
 297    switch (reg) {
 298    /* The first 32 registers are the zregs */
 299    case 0 ... 31:
 300    {
 301        int vq, len = 0;
 302        uint64_t *p = (uint64_t *) buf;
 303        for (vq = 0; vq < cpu->sve_max_vq; vq++) {
 304            env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
 305            env->vfp.zregs[reg].d[vq * 2] = *p++;
 306            len += 16;
 307        }
 308        return len;
 309    }
 310    case 32:
 311        vfp_set_fpsr(env, *(uint32_t *)buf);
 312        return 4;
 313    case 33:
 314        vfp_set_fpcr(env, *(uint32_t *)buf);
 315        return 4;
 316    case 34 ... 50:
 317    {
 318        int preg = reg - 34;
 319        int vq, len = 0;
 320        uint64_t *p = (uint64_t *) buf;
 321        for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
 322            env->vfp.pregs[preg].p[vq / 4] = *p++;
 323            len += 8;
 324        }
 325        return len;
 326    }
 327    case 51:
 328        /* cannot set vg via gdbstub */
 329        return 0;
 330    default:
 331        /* gdbstub asked for something out our range */
 332        break;
 333    }
 334
 335    return 0;
 336}
 337#endif /* TARGET_AARCH64 */
 338
 339static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
 340{
 341   /* Return true if the regdef would cause an assertion if you called
 342    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
 343    * program bug for it not to have the NO_RAW flag).
 344    * NB that returning false here doesn't necessarily mean that calling
 345    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
 346    * read/write access functions which are safe for raw use" from "has
 347    * read/write access functions which have side effects but has forgotten
 348    * to provide raw access functions".
 349    * The tests here line up with the conditions in read/write_raw_cp_reg()
 350    * and assertions in raw_read()/raw_write().
 351    */
 352    if ((ri->type & ARM_CP_CONST) ||
 353        ri->fieldoffset ||
 354        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
 355        return false;
 356    }
 357    return true;
 358}
 359
 360bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
 361{
 362    /* Write the coprocessor state from cpu->env to the (index,value) list. */
 363    int i;
 364    bool ok = true;
 365
 366    for (i = 0; i < cpu->cpreg_array_len; i++) {
 367        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 368        const ARMCPRegInfo *ri;
 369        uint64_t newval;
 370
 371        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 372        if (!ri) {
 373            ok = false;
 374            continue;
 375        }
 376        if (ri->type & ARM_CP_NO_RAW) {
 377            continue;
 378        }
 379
 380        newval = read_raw_cp_reg(&cpu->env, ri);
 381        if (kvm_sync) {
 382            /*
 383             * Only sync if the previous list->cpustate sync succeeded.
 384             * Rather than tracking the success/failure state for every
 385             * item in the list, we just recheck "does the raw write we must
 386             * have made in write_list_to_cpustate() read back OK" here.
 387             */
 388            uint64_t oldval = cpu->cpreg_values[i];
 389
 390            if (oldval == newval) {
 391                continue;
 392            }
 393
 394            write_raw_cp_reg(&cpu->env, ri, oldval);
 395            if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
 396                continue;
 397            }
 398
 399            write_raw_cp_reg(&cpu->env, ri, newval);
 400        }
 401        cpu->cpreg_values[i] = newval;
 402    }
 403    return ok;
 404}
 405
 406bool write_list_to_cpustate(ARMCPU *cpu)
 407{
 408    int i;
 409    bool ok = true;
 410
 411    for (i = 0; i < cpu->cpreg_array_len; i++) {
 412        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 413        uint64_t v = cpu->cpreg_values[i];
 414        const ARMCPRegInfo *ri;
 415
 416        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 417        if (!ri) {
 418            ok = false;
 419            continue;
 420        }
 421        if (ri->type & ARM_CP_NO_RAW) {
 422            continue;
 423        }
 424        /* Write value and confirm it reads back as written
 425         * (to catch read-only registers and partially read-only
 426         * registers where the incoming migration value doesn't match)
 427         */
 428        write_raw_cp_reg(&cpu->env, ri, v);
 429        if (read_raw_cp_reg(&cpu->env, ri) != v) {
 430            ok = false;
 431        }
 432    }
 433    return ok;
 434}
 435
 436static void add_cpreg_to_list(gpointer key, gpointer opaque)
 437{
 438    ARMCPU *cpu = opaque;
 439    uint64_t regidx;
 440    const ARMCPRegInfo *ri;
 441
 442    regidx = *(uint32_t *)key;
 443    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 444
 445    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 446        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
 447        /* The value array need not be initialized at this point */
 448        cpu->cpreg_array_len++;
 449    }
 450}
 451
 452static void count_cpreg(gpointer key, gpointer opaque)
 453{
 454    ARMCPU *cpu = opaque;
 455    uint64_t regidx;
 456    const ARMCPRegInfo *ri;
 457
 458    regidx = *(uint32_t *)key;
 459    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 460
 461    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 462        cpu->cpreg_array_len++;
 463    }
 464}
 465
 466static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 467{
 468    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
 469    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
 470
 471    if (aidx > bidx) {
 472        return 1;
 473    }
 474    if (aidx < bidx) {
 475        return -1;
 476    }
 477    return 0;
 478}
 479
 480void init_cpreg_list(ARMCPU *cpu)
 481{
 482    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
 483     * Note that we require cpreg_tuples[] to be sorted by key ID.
 484     */
 485    GList *keys;
 486    int arraylen;
 487
 488    keys = g_hash_table_get_keys(cpu->cp_regs);
 489    keys = g_list_sort(keys, cpreg_key_compare);
 490
 491    cpu->cpreg_array_len = 0;
 492
 493    g_list_foreach(keys, count_cpreg, cpu);
 494
 495    arraylen = cpu->cpreg_array_len;
 496    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
 497    cpu->cpreg_values = g_new(uint64_t, arraylen);
 498    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
 499    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
 500    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
 501    cpu->cpreg_array_len = 0;
 502
 503    g_list_foreach(keys, add_cpreg_to_list, cpu);
 504
 505    assert(cpu->cpreg_array_len == arraylen);
 506
 507    g_list_free(keys);
 508}
 509
 510/*
 511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
 512 */
 513static CPAccessResult access_el3_aa32ns(CPUARMState *env,
 514                                        const ARMCPRegInfo *ri,
 515                                        bool isread)
 516{
 517    if (!is_a64(env) && arm_current_el(env) == 3 &&
 518        arm_is_secure_below_el3(env)) {
 519        return CP_ACCESS_TRAP_UNCATEGORIZED;
 520    }
 521    return CP_ACCESS_OK;
 522}
 523
 524/* Some secure-only AArch32 registers trap to EL3 if used from
 525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 527 * We assume that the .access field is set to PL1_RW.
 528 */
 529static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
 530                                            const ARMCPRegInfo *ri,
 531                                            bool isread)
 532{
 533    if (arm_current_el(env) == 3) {
 534        return CP_ACCESS_OK;
 535    }
 536    if (arm_is_secure_below_el3(env)) {
 537        if (env->cp15.scr_el3 & SCR_EEL2) {
 538            return CP_ACCESS_TRAP_EL2;
 539        }
 540        return CP_ACCESS_TRAP_EL3;
 541    }
 542    /* This will be EL1 NS and EL2 NS, which just UNDEF */
 543    return CP_ACCESS_TRAP_UNCATEGORIZED;
 544}
 545
 546static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
 547{
 548    return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
 549}
 550
 551/* Check for traps to "powerdown debug" registers, which are controlled
 552 * by MDCR.TDOSA
 553 */
 554static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
 555                                   bool isread)
 556{
 557    int el = arm_current_el(env);
 558    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 559    bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
 560        (arm_hcr_el2_eff(env) & HCR_TGE);
 561
 562    if (el < 2 && mdcr_el2_tdosa) {
 563        return CP_ACCESS_TRAP_EL2;
 564    }
 565    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
 566        return CP_ACCESS_TRAP_EL3;
 567    }
 568    return CP_ACCESS_OK;
 569}
 570
 571/* Check for traps to "debug ROM" registers, which are controlled
 572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 573 */
 574static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
 575                                  bool isread)
 576{
 577    int el = arm_current_el(env);
 578    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 579    bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
 580        (arm_hcr_el2_eff(env) & HCR_TGE);
 581
 582    if (el < 2 && mdcr_el2_tdra) {
 583        return CP_ACCESS_TRAP_EL2;
 584    }
 585    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 586        return CP_ACCESS_TRAP_EL3;
 587    }
 588    return CP_ACCESS_OK;
 589}
 590
 591/* Check for traps to general debug registers, which are controlled
 592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 593 */
 594static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
 595                                  bool isread)
 596{
 597    int el = arm_current_el(env);
 598    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 599    bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
 600        (arm_hcr_el2_eff(env) & HCR_TGE);
 601
 602    if (el < 2 && mdcr_el2_tda) {
 603        return CP_ACCESS_TRAP_EL2;
 604    }
 605    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 606        return CP_ACCESS_TRAP_EL3;
 607    }
 608    return CP_ACCESS_OK;
 609}
 610
 611/* Check for traps to performance monitor registers, which are controlled
 612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 613 */
 614static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
 615                                 bool isread)
 616{
 617    int el = arm_current_el(env);
 618    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 619
 620    if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
 621        return CP_ACCESS_TRAP_EL2;
 622    }
 623    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 624        return CP_ACCESS_TRAP_EL3;
 625    }
 626    return CP_ACCESS_OK;
 627}
 628
 629/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
 630static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
 631                                      bool isread)
 632{
 633    if (arm_current_el(env) == 1) {
 634        uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
 635        if (arm_hcr_el2_eff(env) & trap) {
 636            return CP_ACCESS_TRAP_EL2;
 637        }
 638    }
 639    return CP_ACCESS_OK;
 640}
 641
 642/* Check for traps from EL1 due to HCR_EL2.TSW.  */
 643static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
 644                                 bool isread)
 645{
 646    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
 647        return CP_ACCESS_TRAP_EL2;
 648    }
 649    return CP_ACCESS_OK;
 650}
 651
 652/* Check for traps from EL1 due to HCR_EL2.TACR.  */
 653static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
 654                                  bool isread)
 655{
 656    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
 657        return CP_ACCESS_TRAP_EL2;
 658    }
 659    return CP_ACCESS_OK;
 660}
 661
 662/* Check for traps from EL1 due to HCR_EL2.TTLB. */
 663static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
 664                                  bool isread)
 665{
 666    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
 667        return CP_ACCESS_TRAP_EL2;
 668    }
 669    return CP_ACCESS_OK;
 670}
 671
 672static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 673{
 674    ARMCPU *cpu = env_archcpu(env);
 675
 676    raw_write(env, ri, value);
 677    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
 678}
 679
 680static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 681{
 682    ARMCPU *cpu = env_archcpu(env);
 683
 684    if (raw_read(env, ri) != value) {
 685        /* Unlike real hardware the qemu TLB uses virtual addresses,
 686         * not modified virtual addresses, so this causes a TLB flush.
 687         */
 688        tlb_flush(CPU(cpu));
 689        raw_write(env, ri, value);
 690    }
 691}
 692
 693static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 694                             uint64_t value)
 695{
 696    ARMCPU *cpu = env_archcpu(env);
 697
 698    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
 699        && !extended_addresses_enabled(env)) {
 700        /* For VMSA (when not using the LPAE long descriptor page table
 701         * format) this register includes the ASID, so do a TLB flush.
 702         * For PMSA it is purely a process ID and no action is needed.
 703         */
 704        tlb_flush(CPU(cpu));
 705    }
 706    raw_write(env, ri, value);
 707}
 708
 709/* IS variants of TLB operations must affect all cores */
 710static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 711                             uint64_t value)
 712{
 713    CPUState *cs = env_cpu(env);
 714
 715    tlb_flush_all_cpus_synced(cs);
 716}
 717
 718static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 719                             uint64_t value)
 720{
 721    CPUState *cs = env_cpu(env);
 722
 723    tlb_flush_all_cpus_synced(cs);
 724}
 725
 726static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 727                             uint64_t value)
 728{
 729    CPUState *cs = env_cpu(env);
 730
 731    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 732}
 733
 734static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 735                             uint64_t value)
 736{
 737    CPUState *cs = env_cpu(env);
 738
 739    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 740}
 741
 742/*
 743 * Non-IS variants of TLB operations are upgraded to
 744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
 745 * force broadcast of these operations.
 746 */
 747static bool tlb_force_broadcast(CPUARMState *env)
 748{
 749    return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
 750}
 751
 752static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 753                          uint64_t value)
 754{
 755    /* Invalidate all (TLBIALL) */
 756    CPUState *cs = env_cpu(env);
 757
 758    if (tlb_force_broadcast(env)) {
 759        tlb_flush_all_cpus_synced(cs);
 760    } else {
 761        tlb_flush(cs);
 762    }
 763}
 764
 765static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 766                          uint64_t value)
 767{
 768    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 769    CPUState *cs = env_cpu(env);
 770
 771    value &= TARGET_PAGE_MASK;
 772    if (tlb_force_broadcast(env)) {
 773        tlb_flush_page_all_cpus_synced(cs, value);
 774    } else {
 775        tlb_flush_page(cs, value);
 776    }
 777}
 778
 779static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 780                           uint64_t value)
 781{
 782    /* Invalidate by ASID (TLBIASID) */
 783    CPUState *cs = env_cpu(env);
 784
 785    if (tlb_force_broadcast(env)) {
 786        tlb_flush_all_cpus_synced(cs);
 787    } else {
 788        tlb_flush(cs);
 789    }
 790}
 791
 792static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 793                           uint64_t value)
 794{
 795    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 796    CPUState *cs = env_cpu(env);
 797
 798    value &= TARGET_PAGE_MASK;
 799    if (tlb_force_broadcast(env)) {
 800        tlb_flush_page_all_cpus_synced(cs, value);
 801    } else {
 802        tlb_flush_page(cs, value);
 803    }
 804}
 805
 806static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
 807                               uint64_t value)
 808{
 809    CPUState *cs = env_cpu(env);
 810
 811    tlb_flush_by_mmuidx(cs,
 812                        ARMMMUIdxBit_E10_1 |
 813                        ARMMMUIdxBit_E10_1_PAN |
 814                        ARMMMUIdxBit_E10_0);
 815}
 816
 817static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 818                                  uint64_t value)
 819{
 820    CPUState *cs = env_cpu(env);
 821
 822    tlb_flush_by_mmuidx_all_cpus_synced(cs,
 823                                        ARMMMUIdxBit_E10_1 |
 824                                        ARMMMUIdxBit_E10_1_PAN |
 825                                        ARMMMUIdxBit_E10_0);
 826}
 827
 828
 829static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 830                              uint64_t value)
 831{
 832    CPUState *cs = env_cpu(env);
 833
 834    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
 835}
 836
 837static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 838                                 uint64_t value)
 839{
 840    CPUState *cs = env_cpu(env);
 841
 842    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
 843}
 844
 845static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 846                              uint64_t value)
 847{
 848    CPUState *cs = env_cpu(env);
 849    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 850
 851    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
 852}
 853
 854static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 855                                 uint64_t value)
 856{
 857    CPUState *cs = env_cpu(env);
 858    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 859
 860    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 861                                             ARMMMUIdxBit_E2);
 862}
 863
 864static const ARMCPRegInfo cp_reginfo[] = {
 865    /* Define the secure and non-secure FCSE identifier CP registers
 866     * separately because there is no secure bank in V8 (no _EL3).  This allows
 867     * the secure register to be properly reset and migrated. There is also no
 868     * v8 EL1 version of the register so the non-secure instance stands alone.
 869     */
 870    { .name = "FCSEIDR",
 871      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 872      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 873      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
 874      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 875    { .name = "FCSEIDR_S",
 876      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 877      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 878      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
 879      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 880    /* Define the secure and non-secure context identifier CP registers
 881     * separately because there is no secure bank in V8 (no _EL3).  This allows
 882     * the secure register to be properly reset and migrated.  In the
 883     * non-secure case, the 32-bit register will have reset and migration
 884     * disabled during registration as it is handled by the 64-bit instance.
 885     */
 886    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
 887      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 888      .access = PL1_RW, .accessfn = access_tvm_trvm,
 889      .secure = ARM_CP_SECSTATE_NS,
 890      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
 891      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 892    { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
 893      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 894      .access = PL1_RW, .accessfn = access_tvm_trvm,
 895      .secure = ARM_CP_SECSTATE_S,
 896      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
 897      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 898    REGINFO_SENTINEL
 899};
 900
 901static const ARMCPRegInfo not_v8_cp_reginfo[] = {
 902    /* NB: Some of these registers exist in v8 but with more precise
 903     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
 904     */
 905    /* MMU Domain access control / MPU write buffer control */
 906    { .name = "DACR",
 907      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
 908      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
 909      .writefn = dacr_write, .raw_writefn = raw_write,
 910      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 911                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 912    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
 913     * For v6 and v5, these mappings are overly broad.
 914     */
 915    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
 916      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 917    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
 918      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 919    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
 920      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 921    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
 922      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 923    /* Cache maintenance ops; some of this space may be overridden later. */
 924    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 925      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 926      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 927    REGINFO_SENTINEL
 928};
 929
 930static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 931    /* Not all pre-v6 cores implemented this WFI, so this is slightly
 932     * over-broad.
 933     */
 934    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 935      .access = PL1_W, .type = ARM_CP_WFI },
 936    REGINFO_SENTINEL
 937};
 938
 939static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 940    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 941     * is UNPREDICTABLE; we choose to NOP as most implementations do).
 942     */
 943    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 944      .access = PL1_W, .type = ARM_CP_WFI },
 945    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
 946     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 947     * OMAPCP will override this space.
 948     */
 949    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 950      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 951      .resetvalue = 0 },
 952    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 953      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 954      .resetvalue = 0 },
 955    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 956    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 957      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 958      .resetvalue = 0 },
 959    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
 960     * implementing it as RAZ means the "debug architecture version" bits
 961     * will read as a reserved value, which should cause Linux to not try
 962     * to use the debug hardware.
 963     */
 964    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 965      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 966    /* MMU TLB control. Note that the wildcarding means we cover not just
 967     * the unified TLB ops but also the dside/iside/inner-shareable variants.
 968     */
 969    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 970      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
 971      .type = ARM_CP_NO_RAW },
 972    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 973      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
 974      .type = ARM_CP_NO_RAW },
 975    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 976      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
 977      .type = ARM_CP_NO_RAW },
 978    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 979      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
 980      .type = ARM_CP_NO_RAW },
 981    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
 982      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
 983    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
 984      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
 985    REGINFO_SENTINEL
 986};
 987
 988static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 989                        uint64_t value)
 990{
 991    uint32_t mask = 0;
 992
 993    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
 994    if (!arm_feature(env, ARM_FEATURE_V8)) {
 995        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
 996         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
 997         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
 998         */
 999        if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000            /* VFP coprocessor: cp10 & cp11 [23:20] */
1001            mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1002
1003            if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004                /* ASEDIS [31] bit is RAO/WI */
1005                value |= (1 << 31);
1006            }
1007
1008            /* VFPv3 and upwards with NEON implement 32 double precision
1009             * registers (D0-D31).
1010             */
1011            if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013                value |= (1 << 30);
1014            }
1015        }
1016        value &= mask;
1017    }
1018
1019    /*
1020     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1022     */
1023    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025        value &= ~(0xf << 20);
1026        value |= env->cp15.cpacr_el1 & (0xf << 20);
1027    }
1028
1029    env->cp15.cpacr_el1 = value;
1030}
1031
1032static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1033{
1034    /*
1035     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1037     */
1038    uint64_t value = env->cp15.cpacr_el1;
1039
1040    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042        value &= ~(0xf << 20);
1043    }
1044    return value;
1045}
1046
1047
1048static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1049{
1050    /* Call cpacr_write() so that we reset with the correct RAO bits set
1051     * for our CPU features.
1052     */
1053    cpacr_write(env, ri, 0);
1054}
1055
1056static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057                                   bool isread)
1058{
1059    if (arm_feature(env, ARM_FEATURE_V8)) {
1060        /* Check if CPACR accesses are to be trapped to EL2 */
1061        if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062            (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063            return CP_ACCESS_TRAP_EL2;
1064        /* Check if CPACR accesses are to be trapped to EL3 */
1065        } else if (arm_current_el(env) < 3 &&
1066                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067            return CP_ACCESS_TRAP_EL3;
1068        }
1069    }
1070
1071    return CP_ACCESS_OK;
1072}
1073
1074static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075                                  bool isread)
1076{
1077    /* Check if CPTR accesses are set to trap to EL3 */
1078    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079        return CP_ACCESS_TRAP_EL3;
1080    }
1081
1082    return CP_ACCESS_OK;
1083}
1084
1085static const ARMCPRegInfo v6_cp_reginfo[] = {
1086    /* prefetch by MVA in v6, NOP in v7 */
1087    { .name = "MVA_prefetch",
1088      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089      .access = PL1_W, .type = ARM_CP_NOP },
1090    /* We need to break the TB after ISB to execute self-modifying code
1091     * correctly and also to take any pending interrupts immediately.
1092     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1093     */
1094    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097      .access = PL0_W, .type = ARM_CP_NOP },
1098    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099      .access = PL0_W, .type = ARM_CP_NOP },
1100    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101      .access = PL1_RW, .accessfn = access_tvm_trvm,
1102      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103                             offsetof(CPUARMState, cp15.ifar_ns) },
1104      .resetvalue = 0, },
1105    /* Watchpoint Fault Address Register : should actually only be present
1106     * for 1136, 1176, 11MPCore.
1107     */
1108    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113      .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114    REGINFO_SENTINEL
1115};
1116
1117/* Definitions for the PMU registers */
1118#define PMCRN_MASK  0xf800
1119#define PMCRN_SHIFT 11
1120#define PMCRLC  0x40
1121#define PMCRDP  0x20
1122#define PMCRX   0x10
1123#define PMCRD   0x8
1124#define PMCRC   0x4
1125#define PMCRP   0x2
1126#define PMCRE   0x1
1127/*
1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129 * which can be written as 1 to trigger behaviour but which stay RAZ).
1130 */
1131#define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1132
1133#define PMXEVTYPER_P          0x80000000
1134#define PMXEVTYPER_U          0x40000000
1135#define PMXEVTYPER_NSK        0x20000000
1136#define PMXEVTYPER_NSU        0x10000000
1137#define PMXEVTYPER_NSH        0x08000000
1138#define PMXEVTYPER_M          0x04000000
1139#define PMXEVTYPER_MT         0x02000000
1140#define PMXEVTYPER_EVTCOUNT   0x0000ffff
1141#define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142                               PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143                               PMXEVTYPER_M | PMXEVTYPER_MT | \
1144                               PMXEVTYPER_EVTCOUNT)
1145
1146#define PMCCFILTR             0xf8000000
1147#define PMCCFILTR_M           PMXEVTYPER_M
1148#define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1149
1150static inline uint32_t pmu_num_counters(CPUARMState *env)
1151{
1152  return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1153}
1154
1155/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156static inline uint64_t pmu_counter_mask(CPUARMState *env)
1157{
1158  return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1159}
1160
1161typedef struct pm_event {
1162    uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163    /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164    bool (*supported)(CPUARMState *);
1165    /*
1166     * Retrieve the current count of the underlying event. The programmed
1167     * counters hold a difference from the return value from this function
1168     */
1169    uint64_t (*get_count)(CPUARMState *);
1170    /*
1171     * Return how many nanoseconds it will take (at a minimum) for count events
1172     * to occur. A negative value indicates the counter will never overflow, or
1173     * that the counter has otherwise arranged for the overflow bit to be set
1174     * and the PMU interrupt to be raised on overflow.
1175     */
1176    int64_t (*ns_per_count)(uint64_t);
1177} pm_event;
1178
1179static bool event_always_supported(CPUARMState *env)
1180{
1181    return true;
1182}
1183
1184static uint64_t swinc_get_count(CPUARMState *env)
1185{
1186    /*
1187     * SW_INCR events are written directly to the pmevcntr's by writes to
1188     * PMSWINC, so there is no underlying count maintained by the PMU itself
1189     */
1190    return 0;
1191}
1192
1193static int64_t swinc_ns_per(uint64_t ignored)
1194{
1195    return -1;
1196}
1197
1198/*
1199 * Return the underlying cycle count for the PMU cycle counters. If we're in
1200 * usermode, simply return 0.
1201 */
1202static uint64_t cycles_get_count(CPUARMState *env)
1203{
1204#ifndef CONFIG_USER_ONLY
1205    return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206                   ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207#else
1208    return cpu_get_host_ticks();
1209#endif
1210}
1211
1212#ifndef CONFIG_USER_ONLY
1213static int64_t cycles_ns_per(uint64_t cycles)
1214{
1215    return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1216}
1217
1218static bool instructions_supported(CPUARMState *env)
1219{
1220    return icount_enabled() == 1; /* Precise instruction counting */
1221}
1222
1223static uint64_t instructions_get_count(CPUARMState *env)
1224{
1225    return (uint64_t)icount_get_raw();
1226}
1227
1228static int64_t instructions_ns_per(uint64_t icount)
1229{
1230    return icount_to_ns((int64_t)icount);
1231}
1232#endif
1233
1234static bool pmu_8_1_events_supported(CPUARMState *env)
1235{
1236    /* For events which are supported in any v8.1 PMU */
1237    return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1238}
1239
1240static bool pmu_8_4_events_supported(CPUARMState *env)
1241{
1242    /* For events which are supported in any v8.1 PMU */
1243    return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1244}
1245
1246static uint64_t zero_event_get_count(CPUARMState *env)
1247{
1248    /* For events which on QEMU never fire, so their count is always zero */
1249    return 0;
1250}
1251
1252static int64_t zero_event_ns_per(uint64_t cycles)
1253{
1254    /* An event which never fires can never overflow */
1255    return -1;
1256}
1257
1258static const pm_event pm_events[] = {
1259    { .number = 0x000, /* SW_INCR */
1260      .supported = event_always_supported,
1261      .get_count = swinc_get_count,
1262      .ns_per_count = swinc_ns_per,
1263    },
1264#ifndef CONFIG_USER_ONLY
1265    { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266      .supported = instructions_supported,
1267      .get_count = instructions_get_count,
1268      .ns_per_count = instructions_ns_per,
1269    },
1270    { .number = 0x011, /* CPU_CYCLES, Cycle */
1271      .supported = event_always_supported,
1272      .get_count = cycles_get_count,
1273      .ns_per_count = cycles_ns_per,
1274    },
1275#endif
1276    { .number = 0x023, /* STALL_FRONTEND */
1277      .supported = pmu_8_1_events_supported,
1278      .get_count = zero_event_get_count,
1279      .ns_per_count = zero_event_ns_per,
1280    },
1281    { .number = 0x024, /* STALL_BACKEND */
1282      .supported = pmu_8_1_events_supported,
1283      .get_count = zero_event_get_count,
1284      .ns_per_count = zero_event_ns_per,
1285    },
1286    { .number = 0x03c, /* STALL */
1287      .supported = pmu_8_4_events_supported,
1288      .get_count = zero_event_get_count,
1289      .ns_per_count = zero_event_ns_per,
1290    },
1291};
1292
1293/*
1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295 * events (i.e. the statistical profiling extension), this implementation
1296 * should first be updated to something sparse instead of the current
1297 * supported_event_map[] array.
1298 */
1299#define MAX_EVENT_ID 0x3c
1300#define UNSUPPORTED_EVENT UINT16_MAX
1301static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1302
1303/*
1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305 * of ARM event numbers to indices in our pm_events array.
1306 *
1307 * Note: Events in the 0x40XX range are not currently supported.
1308 */
1309void pmu_init(ARMCPU *cpu)
1310{
1311    unsigned int i;
1312
1313    /*
1314     * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315     * events to them
1316     */
1317    for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318        supported_event_map[i] = UNSUPPORTED_EVENT;
1319    }
1320    cpu->pmceid0 = 0;
1321    cpu->pmceid1 = 0;
1322
1323    for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324        const pm_event *cnt = &pm_events[i];
1325        assert(cnt->number <= MAX_EVENT_ID);
1326        /* We do not currently support events in the 0x40xx range */
1327        assert(cnt->number <= 0x3f);
1328
1329        if (cnt->supported(&cpu->env)) {
1330            supported_event_map[cnt->number] = i;
1331            uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332            if (cnt->number & 0x20) {
1333                cpu->pmceid1 |= event_mask;
1334            } else {
1335                cpu->pmceid0 |= event_mask;
1336            }
1337        }
1338    }
1339}
1340
1341/*
1342 * Check at runtime whether a PMU event is supported for the current machine
1343 */
1344static bool event_supported(uint16_t number)
1345{
1346    if (number > MAX_EVENT_ID) {
1347        return false;
1348    }
1349    return supported_event_map[number] != UNSUPPORTED_EVENT;
1350}
1351
1352static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353                                   bool isread)
1354{
1355    /* Performance monitor registers user accessibility is controlled
1356     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357     * trapping to EL2 or EL3 for other accesses.
1358     */
1359    int el = arm_current_el(env);
1360    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1361
1362    if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363        return CP_ACCESS_TRAP;
1364    }
1365    if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366        return CP_ACCESS_TRAP_EL2;
1367    }
1368    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369        return CP_ACCESS_TRAP_EL3;
1370    }
1371
1372    return CP_ACCESS_OK;
1373}
1374
1375static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376                                           const ARMCPRegInfo *ri,
1377                                           bool isread)
1378{
1379    /* ER: event counter read trap control */
1380    if (arm_feature(env, ARM_FEATURE_V8)
1381        && arm_current_el(env) == 0
1382        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383        && isread) {
1384        return CP_ACCESS_OK;
1385    }
1386
1387    return pmreg_access(env, ri, isread);
1388}
1389
1390static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391                                         const ARMCPRegInfo *ri,
1392                                         bool isread)
1393{
1394    /* SW: software increment write trap control */
1395    if (arm_feature(env, ARM_FEATURE_V8)
1396        && arm_current_el(env) == 0
1397        && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398        && !isread) {
1399        return CP_ACCESS_OK;
1400    }
1401
1402    return pmreg_access(env, ri, isread);
1403}
1404
1405static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406                                        const ARMCPRegInfo *ri,
1407                                        bool isread)
1408{
1409    /* ER: event counter read trap control */
1410    if (arm_feature(env, ARM_FEATURE_V8)
1411        && arm_current_el(env) == 0
1412        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413        return CP_ACCESS_OK;
1414    }
1415
1416    return pmreg_access(env, ri, isread);
1417}
1418
1419static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420                                         const ARMCPRegInfo *ri,
1421                                         bool isread)
1422{
1423    /* CR: cycle counter read trap control */
1424    if (arm_feature(env, ARM_FEATURE_V8)
1425        && arm_current_el(env) == 0
1426        && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427        && isread) {
1428        return CP_ACCESS_OK;
1429    }
1430
1431    return pmreg_access(env, ri, isread);
1432}
1433
1434/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435 * the current EL, security state, and register configuration.
1436 */
1437static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1438{
1439    uint64_t filter;
1440    bool e, p, u, nsk, nsu, nsh, m;
1441    bool enabled, prohibited, filtered;
1442    bool secure = arm_is_secure(env);
1443    int el = arm_current_el(env);
1444    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445    uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1446
1447    if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448        return false;
1449    }
1450
1451    if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452            (counter < hpmn || counter == 31)) {
1453        e = env->cp15.c9_pmcr & PMCRE;
1454    } else {
1455        e = mdcr_el2 & MDCR_HPME;
1456    }
1457    enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1458
1459    if (!secure) {
1460        if (el == 2 && (counter < hpmn || counter == 31)) {
1461            prohibited = mdcr_el2 & MDCR_HPMD;
1462        } else {
1463            prohibited = false;
1464        }
1465    } else {
1466        prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467           !(env->cp15.mdcr_el3 & MDCR_SPME);
1468    }
1469
1470    if (prohibited && counter == 31) {
1471        prohibited = env->cp15.c9_pmcr & PMCRDP;
1472    }
1473
1474    if (counter == 31) {
1475        filter = env->cp15.pmccfiltr_el0;
1476    } else {
1477        filter = env->cp15.c14_pmevtyper[counter];
1478    }
1479
1480    p   = filter & PMXEVTYPER_P;
1481    u   = filter & PMXEVTYPER_U;
1482    nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483    nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484    nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485    m   = arm_el_is_aa64(env, 1) &&
1486              arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1487
1488    if (el == 0) {
1489        filtered = secure ? u : u != nsu;
1490    } else if (el == 1) {
1491        filtered = secure ? p : p != nsk;
1492    } else if (el == 2) {
1493        filtered = !nsh;
1494    } else { /* EL3 */
1495        filtered = m != p;
1496    }
1497
1498    if (counter != 31) {
1499        /*
1500         * If not checking PMCCNTR, ensure the counter is setup to an event we
1501         * support
1502         */
1503        uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504        if (!event_supported(event)) {
1505            return false;
1506        }
1507    }
1508
1509    return enabled && !prohibited && !filtered;
1510}
1511
1512static void pmu_update_irq(CPUARMState *env)
1513{
1514    ARMCPU *cpu = env_archcpu(env);
1515    qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516            (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1517}
1518
1519/*
1520 * Ensure c15_ccnt is the guest-visible count so that operations such as
1521 * enabling/disabling the counter or filtering, modifying the count itself,
1522 * etc. can be done logically. This is essentially a no-op if the counter is
1523 * not enabled at the time of the call.
1524 */
1525static void pmccntr_op_start(CPUARMState *env)
1526{
1527    uint64_t cycles = cycles_get_count(env);
1528
1529    if (pmu_counter_enabled(env, 31)) {
1530        uint64_t eff_cycles = cycles;
1531        if (env->cp15.c9_pmcr & PMCRD) {
1532            /* Increment once every 64 processor clock cycles */
1533            eff_cycles /= 64;
1534        }
1535
1536        uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1537
1538        uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539                                 1ull << 63 : 1ull << 31;
1540        if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541            env->cp15.c9_pmovsr |= (1 << 31);
1542            pmu_update_irq(env);
1543        }
1544
1545        env->cp15.c15_ccnt = new_pmccntr;
1546    }
1547    env->cp15.c15_ccnt_delta = cycles;
1548}
1549
1550/*
1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553 * pmccntr_op_start.
1554 */
1555static void pmccntr_op_finish(CPUARMState *env)
1556{
1557    if (pmu_counter_enabled(env, 31)) {
1558#ifndef CONFIG_USER_ONLY
1559        /* Calculate when the counter will next overflow */
1560        uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561        if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562            remaining_cycles = (uint32_t)remaining_cycles;
1563        }
1564        int64_t overflow_in = cycles_ns_per(remaining_cycles);
1565
1566        if (overflow_in > 0) {
1567            int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568                overflow_in;
1569            ARMCPU *cpu = env_archcpu(env);
1570            timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1571        }
1572#endif
1573
1574        uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575        if (env->cp15.c9_pmcr & PMCRD) {
1576            /* Increment once every 64 processor clock cycles */
1577            prev_cycles /= 64;
1578        }
1579        env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1580    }
1581}
1582
1583static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1584{
1585
1586    uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587    uint64_t count = 0;
1588    if (event_supported(event)) {
1589        uint16_t event_idx = supported_event_map[event];
1590        count = pm_events[event_idx].get_count(env);
1591    }
1592
1593    if (pmu_counter_enabled(env, counter)) {
1594        uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1595
1596        if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597            env->cp15.c9_pmovsr |= (1 << counter);
1598            pmu_update_irq(env);
1599        }
1600        env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1601    }
1602    env->cp15.c14_pmevcntr_delta[counter] = count;
1603}
1604
1605static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1606{
1607    if (pmu_counter_enabled(env, counter)) {
1608#ifndef CONFIG_USER_ONLY
1609        uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610        uint16_t event_idx = supported_event_map[event];
1611        uint64_t delta = UINT32_MAX -
1612            (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613        int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1614
1615        if (overflow_in > 0) {
1616            int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617                overflow_in;
1618            ARMCPU *cpu = env_archcpu(env);
1619            timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1620        }
1621#endif
1622
1623        env->cp15.c14_pmevcntr_delta[counter] -=
1624            env->cp15.c14_pmevcntr[counter];
1625    }
1626}
1627
1628void pmu_op_start(CPUARMState *env)
1629{
1630    unsigned int i;
1631    pmccntr_op_start(env);
1632    for (i = 0; i < pmu_num_counters(env); i++) {
1633        pmevcntr_op_start(env, i);
1634    }
1635}
1636
1637void pmu_op_finish(CPUARMState *env)
1638{
1639    unsigned int i;
1640    pmccntr_op_finish(env);
1641    for (i = 0; i < pmu_num_counters(env); i++) {
1642        pmevcntr_op_finish(env, i);
1643    }
1644}
1645
1646void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1647{
1648    pmu_op_start(&cpu->env);
1649}
1650
1651void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1652{
1653    pmu_op_finish(&cpu->env);
1654}
1655
1656void arm_pmu_timer_cb(void *opaque)
1657{
1658    ARMCPU *cpu = opaque;
1659
1660    /*
1661     * Update all the counter values based on the current underlying counts,
1662     * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663     * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664     * counter may expire.
1665     */
1666    pmu_op_start(&cpu->env);
1667    pmu_op_finish(&cpu->env);
1668}
1669
1670static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671                       uint64_t value)
1672{
1673    pmu_op_start(env);
1674
1675    if (value & PMCRC) {
1676        /* The counter has been reset */
1677        env->cp15.c15_ccnt = 0;
1678    }
1679
1680    if (value & PMCRP) {
1681        unsigned int i;
1682        for (i = 0; i < pmu_num_counters(env); i++) {
1683            env->cp15.c14_pmevcntr[i] = 0;
1684        }
1685    }
1686
1687    env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688    env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1689
1690    pmu_op_finish(env);
1691}
1692
1693static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694                          uint64_t value)
1695{
1696    unsigned int i;
1697    for (i = 0; i < pmu_num_counters(env); i++) {
1698        /* Increment a counter's count iff: */
1699        if ((value & (1 << i)) && /* counter's bit is set */
1700                /* counter is enabled and not filtered */
1701                pmu_counter_enabled(env, i) &&
1702                /* counter is SW_INCR */
1703                (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704            pmevcntr_op_start(env, i);
1705
1706            /*
1707             * Detect if this write causes an overflow since we can't predict
1708             * PMSWINC overflows like we can for other events
1709             */
1710            uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1711
1712            if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713                env->cp15.c9_pmovsr |= (1 << i);
1714                pmu_update_irq(env);
1715            }
1716
1717            env->cp15.c14_pmevcntr[i] = new_pmswinc;
1718
1719            pmevcntr_op_finish(env, i);
1720        }
1721    }
1722}
1723
1724static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725{
1726    uint64_t ret;
1727    pmccntr_op_start(env);
1728    ret = env->cp15.c15_ccnt;
1729    pmccntr_op_finish(env);
1730    return ret;
1731}
1732
1733static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                         uint64_t value)
1735{
1736    /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737     * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738     * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739     * accessed.
1740     */
1741    env->cp15.c9_pmselr = value & 0x1f;
1742}
1743
1744static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745                        uint64_t value)
1746{
1747    pmccntr_op_start(env);
1748    env->cp15.c15_ccnt = value;
1749    pmccntr_op_finish(env);
1750}
1751
1752static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753                            uint64_t value)
1754{
1755    uint64_t cur_val = pmccntr_read(env, NULL);
1756
1757    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1758}
1759
1760static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761                            uint64_t value)
1762{
1763    pmccntr_op_start(env);
1764    env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765    pmccntr_op_finish(env);
1766}
1767
1768static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769                            uint64_t value)
1770{
1771    pmccntr_op_start(env);
1772    /* M is not accessible from AArch32 */
1773    env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774        (value & PMCCFILTR);
1775    pmccntr_op_finish(env);
1776}
1777
1778static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1779{
1780    /* M is not visible in AArch32 */
1781    return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1782}
1783
1784static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785                            uint64_t value)
1786{
1787    value &= pmu_counter_mask(env);
1788    env->cp15.c9_pmcnten |= value;
1789}
1790
1791static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                             uint64_t value)
1793{
1794    value &= pmu_counter_mask(env);
1795    env->cp15.c9_pmcnten &= ~value;
1796}
1797
1798static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                         uint64_t value)
1800{
1801    value &= pmu_counter_mask(env);
1802    env->cp15.c9_pmovsr &= ~value;
1803    pmu_update_irq(env);
1804}
1805
1806static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                         uint64_t value)
1808{
1809    value &= pmu_counter_mask(env);
1810    env->cp15.c9_pmovsr |= value;
1811    pmu_update_irq(env);
1812}
1813
1814static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                             uint64_t value, const uint8_t counter)
1816{
1817    if (counter == 31) {
1818        pmccfiltr_write(env, ri, value);
1819    } else if (counter < pmu_num_counters(env)) {
1820        pmevcntr_op_start(env, counter);
1821
1822        /*
1823         * If this counter's event type is changing, store the current
1824         * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825         * pmevcntr_op_finish has the correct baseline when it converts back to
1826         * a delta.
1827         */
1828        uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829            PMXEVTYPER_EVTCOUNT;
1830        uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831        if (old_event != new_event) {
1832            uint64_t count = 0;
1833            if (event_supported(new_event)) {
1834                uint16_t event_idx = supported_event_map[new_event];
1835                count = pm_events[event_idx].get_count(env);
1836            }
1837            env->cp15.c14_pmevcntr_delta[counter] = count;
1838        }
1839
1840        env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841        pmevcntr_op_finish(env, counter);
1842    }
1843    /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844     * PMSELR value is equal to or greater than the number of implemented
1845     * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1846     */
1847}
1848
1849static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850                               const uint8_t counter)
1851{
1852    if (counter == 31) {
1853        return env->cp15.pmccfiltr_el0;
1854    } else if (counter < pmu_num_counters(env)) {
1855        return env->cp15.c14_pmevtyper[counter];
1856    } else {
1857      /*
1858       * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859       * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1860       */
1861        return 0;
1862    }
1863}
1864
1865static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866                              uint64_t value)
1867{
1868    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869    pmevtyper_write(env, ri, value, counter);
1870}
1871
1872static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873                               uint64_t value)
1874{
1875    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876    env->cp15.c14_pmevtyper[counter] = value;
1877
1878    /*
1879     * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880     * pmu_op_finish calls when loading saved state for a migration. Because
1881     * we're potentially updating the type of event here, the value written to
1882     * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883     * different counter type. Therefore, we need to set this value to the
1884     * current count for the counter type we're writing so that pmu_op_finish
1885     * has the correct count for its calculation.
1886     */
1887    uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888    if (event_supported(event)) {
1889        uint16_t event_idx = supported_event_map[event];
1890        env->cp15.c14_pmevcntr_delta[counter] =
1891            pm_events[event_idx].get_count(env);
1892    }
1893}
1894
1895static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1896{
1897    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898    return pmevtyper_read(env, ri, counter);
1899}
1900
1901static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902                             uint64_t value)
1903{
1904    pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1905}
1906
1907static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1908{
1909    return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1910}
1911
1912static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913                             uint64_t value, uint8_t counter)
1914{
1915    if (counter < pmu_num_counters(env)) {
1916        pmevcntr_op_start(env, counter);
1917        env->cp15.c14_pmevcntr[counter] = value;
1918        pmevcntr_op_finish(env, counter);
1919    }
1920    /*
1921     * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922     * are CONSTRAINED UNPREDICTABLE.
1923     */
1924}
1925
1926static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927                              uint8_t counter)
1928{
1929    if (counter < pmu_num_counters(env)) {
1930        uint64_t ret;
1931        pmevcntr_op_start(env, counter);
1932        ret = env->cp15.c14_pmevcntr[counter];
1933        pmevcntr_op_finish(env, counter);
1934        return ret;
1935    } else {
1936      /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937       * are CONSTRAINED UNPREDICTABLE. */
1938        return 0;
1939    }
1940}
1941
1942static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943                             uint64_t value)
1944{
1945    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946    pmevcntr_write(env, ri, value, counter);
1947}
1948
1949static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1950{
1951    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952    return pmevcntr_read(env, ri, counter);
1953}
1954
1955static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956                             uint64_t value)
1957{
1958    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959    assert(counter < pmu_num_counters(env));
1960    env->cp15.c14_pmevcntr[counter] = value;
1961    pmevcntr_write(env, ri, value, counter);
1962}
1963
1964static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1965{
1966    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967    assert(counter < pmu_num_counters(env));
1968    return env->cp15.c14_pmevcntr[counter];
1969}
1970
1971static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972                             uint64_t value)
1973{
1974    pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1975}
1976
1977static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1978{
1979    return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1980}
1981
1982static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983                            uint64_t value)
1984{
1985    if (arm_feature(env, ARM_FEATURE_V8)) {
1986        env->cp15.c9_pmuserenr = value & 0xf;
1987    } else {
1988        env->cp15.c9_pmuserenr = value & 1;
1989    }
1990}
1991
1992static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993                             uint64_t value)
1994{
1995    /* We have no event counters so only the C bit can be changed */
1996    value &= pmu_counter_mask(env);
1997    env->cp15.c9_pminten |= value;
1998    pmu_update_irq(env);
1999}
2000
2001static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002                             uint64_t value)
2003{
2004    value &= pmu_counter_mask(env);
2005    env->cp15.c9_pminten &= ~value;
2006    pmu_update_irq(env);
2007}
2008
2009static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010                       uint64_t value)
2011{
2012    /* Note that even though the AArch64 view of this register has bits
2013     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014     * architectural requirements for bits which are RES0 only in some
2015     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2017     */
2018    raw_write(env, ri, value & ~0x1FULL);
2019}
2020
2021static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2022{
2023    /* Begin with base v8.0 state.  */
2024    uint32_t valid_mask = 0x3fff;
2025    ARMCPU *cpu = env_archcpu(env);
2026
2027    if (ri->state == ARM_CP_STATE_AA64) {
2028        if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029            !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030                value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2031        }
2032        valid_mask &= ~SCR_NET;
2033
2034        if (cpu_isar_feature(aa64_lor, cpu)) {
2035            valid_mask |= SCR_TLOR;
2036        }
2037        if (cpu_isar_feature(aa64_pauth, cpu)) {
2038            valid_mask |= SCR_API | SCR_APK;
2039        }
2040        if (cpu_isar_feature(aa64_sel2, cpu)) {
2041            valid_mask |= SCR_EEL2;
2042        }
2043        if (cpu_isar_feature(aa64_mte, cpu)) {
2044            valid_mask |= SCR_ATA;
2045        }
2046    } else {
2047        valid_mask &= ~(SCR_RW | SCR_ST);
2048    }
2049
2050    if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051        valid_mask &= ~SCR_HCE;
2052
2053        /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054         * supported if EL2 exists. The bit is UNK/SBZP when
2055         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056         * when EL2 is unavailable.
2057         * On ARMv8, this bit is always available.
2058         */
2059        if (arm_feature(env, ARM_FEATURE_V7) &&
2060            !arm_feature(env, ARM_FEATURE_V8)) {
2061            valid_mask &= ~SCR_SMD;
2062        }
2063    }
2064
2065    /* Clear all-context RES0 bits.  */
2066    value &= valid_mask;
2067    raw_write(env, ri, value);
2068}
2069
2070static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2071{
2072    /*
2073     * scr_write will set the RES1 bits on an AArch64-only CPU.
2074     * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2075     */
2076    scr_write(env, ri, 0);
2077}
2078
2079static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080                                       const ARMCPRegInfo *ri,
2081                                       bool isread)
2082{
2083    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084        return CP_ACCESS_TRAP_EL2;
2085    }
2086
2087    return CP_ACCESS_OK;
2088}
2089
2090static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2091{
2092    ARMCPU *cpu = env_archcpu(env);
2093
2094    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095     * bank
2096     */
2097    uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098                                        ri->secure & ARM_CP_SECSTATE_S);
2099
2100    return cpu->ccsidr[index];
2101}
2102
2103static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104                         uint64_t value)
2105{
2106    raw_write(env, ri, value & 0xf);
2107}
2108
2109static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2110{
2111    CPUState *cs = env_cpu(env);
2112    bool el1 = arm_current_el(env) == 1;
2113    uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114    uint64_t ret = 0;
2115
2116    if (hcr_el2 & HCR_IMO) {
2117        if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118            ret |= CPSR_I;
2119        }
2120    } else {
2121        if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122            ret |= CPSR_I;
2123        }
2124    }
2125
2126    if (hcr_el2 & HCR_FMO) {
2127        if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128            ret |= CPSR_F;
2129        }
2130    } else {
2131        if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132            ret |= CPSR_F;
2133        }
2134    }
2135
2136    /* External aborts are not possible in QEMU so A bit is always clear */
2137    return ret;
2138}
2139
2140static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141                                       bool isread)
2142{
2143    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144        return CP_ACCESS_TRAP_EL2;
2145    }
2146
2147    return CP_ACCESS_OK;
2148}
2149
2150static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151                                       bool isread)
2152{
2153    if (arm_feature(env, ARM_FEATURE_V8)) {
2154        return access_aa64_tid1(env, ri, isread);
2155    }
2156
2157    return CP_ACCESS_OK;
2158}
2159
2160static const ARMCPRegInfo v7_cp_reginfo[] = {
2161    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163      .access = PL1_W, .type = ARM_CP_NOP },
2164    /* Performance monitors are implementation defined in v7,
2165     * but with an ARM recommended set of registers, which we
2166     * follow.
2167     *
2168     * Performance registers fall into three categories:
2169     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2174     */
2175    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176      .access = PL0_RW, .type = ARM_CP_ALIAS,
2177      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178      .writefn = pmcntenset_write,
2179      .accessfn = pmreg_access,
2180      .raw_writefn = raw_write },
2181    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183      .access = PL0_RW, .accessfn = pmreg_access,
2184      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185      .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187      .access = PL0_RW,
2188      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189      .accessfn = pmreg_access,
2190      .writefn = pmcntenclr_write,
2191      .type = ARM_CP_ALIAS },
2192    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194      .access = PL0_RW, .accessfn = pmreg_access,
2195      .type = ARM_CP_ALIAS,
2196      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197      .writefn = pmcntenclr_write },
2198    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199      .access = PL0_RW, .type = ARM_CP_IO,
2200      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201      .accessfn = pmreg_access,
2202      .writefn = pmovsr_write,
2203      .raw_writefn = raw_write },
2204    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206      .access = PL0_RW, .accessfn = pmreg_access,
2207      .type = ARM_CP_ALIAS | ARM_CP_IO,
2208      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209      .writefn = pmovsr_write,
2210      .raw_writefn = raw_write },
2211    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212      .access = PL0_W, .accessfn = pmreg_access_swinc,
2213      .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214      .writefn = pmswinc_write },
2215    { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217      .access = PL0_W, .accessfn = pmreg_access_swinc,
2218      .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219      .writefn = pmswinc_write },
2220    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221      .access = PL0_RW, .type = ARM_CP_ALIAS,
2222      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223      .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224      .raw_writefn = raw_write},
2225    { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227      .access = PL0_RW, .accessfn = pmreg_access_selr,
2228      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229      .writefn = pmselr_write, .raw_writefn = raw_write, },
2230    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232      .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233      .accessfn = pmreg_access_ccntr },
2234    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236      .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237      .type = ARM_CP_IO,
2238      .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239      .readfn = pmccntr_read, .writefn = pmccntr_write,
2240      .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241    { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242      .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243      .access = PL0_RW, .accessfn = pmreg_access,
2244      .type = ARM_CP_ALIAS | ARM_CP_IO,
2245      .resetvalue = 0, },
2246    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248      .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249      .access = PL0_RW, .accessfn = pmreg_access,
2250      .type = ARM_CP_IO,
2251      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252      .resetvalue = 0, },
2253    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255      .accessfn = pmreg_access,
2256      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257    { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260      .accessfn = pmreg_access,
2261      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264      .accessfn = pmreg_access_xevcntr,
2265      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266    { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269      .accessfn = pmreg_access_xevcntr,
2270      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274      .resetvalue = 0,
2275      .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280      .resetvalue = 0,
2281      .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283      .access = PL1_RW, .accessfn = access_tpm,
2284      .type = ARM_CP_ALIAS | ARM_CP_IO,
2285      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286      .resetvalue = 0,
2287      .writefn = pmintenset_write, .raw_writefn = raw_write },
2288    { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290      .access = PL1_RW, .accessfn = access_tpm,
2291      .type = ARM_CP_IO,
2292      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293      .writefn = pmintenset_write, .raw_writefn = raw_write,
2294      .resetvalue = 0x0 },
2295    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296      .access = PL1_RW, .accessfn = access_tpm,
2297      .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299      .writefn = pmintenclr_write, },
2300    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302      .access = PL1_RW, .accessfn = access_tpm,
2303      .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305      .writefn = pmintenclr_write },
2306    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308      .access = PL1_R,
2309      .accessfn = access_aa64_tid2,
2310      .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313      .access = PL1_RW,
2314      .accessfn = access_aa64_tid2,
2315      .writefn = csselr_write, .resetvalue = 0,
2316      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317                             offsetof(CPUARMState, cp15.csselr_ns) } },
2318    /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319     * just RAZ for all cores:
2320     */
2321    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323      .access = PL1_R, .type = ARM_CP_CONST,
2324      .accessfn = access_aa64_tid1,
2325      .resetvalue = 0 },
2326    /* Auxiliary fault status registers: these also are IMPDEF, and we
2327     * choose to RAZ/WI for all cores.
2328     */
2329    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331      .access = PL1_RW, .accessfn = access_tvm_trvm,
2332      .type = ARM_CP_CONST, .resetvalue = 0 },
2333    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335      .access = PL1_RW, .accessfn = access_tvm_trvm,
2336      .type = ARM_CP_CONST, .resetvalue = 0 },
2337    /* MAIR can just read-as-written because we don't implement caches
2338     * and so don't need to care about memory attributes.
2339     */
2340    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342      .access = PL1_RW, .accessfn = access_tvm_trvm,
2343      .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344      .resetvalue = 0 },
2345    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348      .resetvalue = 0 },
2349    /* For non-long-descriptor page tables these are PRRR and NMRR;
2350     * regardless they still act as reads-as-written for QEMU.
2351     */
2352     /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353      * allows them to assign the correct fieldoffset based on the endianness
2354      * handled in the field definitions.
2355      */
2356    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358      .access = PL1_RW, .accessfn = access_tvm_trvm,
2359      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360                             offsetof(CPUARMState, cp15.mair0_ns) },
2361      .resetfn = arm_cp_reset_ignore },
2362    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364      .access = PL1_RW, .accessfn = access_tvm_trvm,
2365      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366                             offsetof(CPUARMState, cp15.mair1_ns) },
2367      .resetfn = arm_cp_reset_ignore },
2368    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371    /* 32 bit ITLB invalidates */
2372    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374      .writefn = tlbiall_write },
2375    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377      .writefn = tlbimva_write },
2378    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380      .writefn = tlbiasid_write },
2381    /* 32 bit DTLB invalidates */
2382    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384      .writefn = tlbiall_write },
2385    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387      .writefn = tlbimva_write },
2388    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390      .writefn = tlbiasid_write },
2391    /* 32 bit TLB invalidates */
2392    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394      .writefn = tlbiall_write },
2395    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397      .writefn = tlbimva_write },
2398    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400      .writefn = tlbiasid_write },
2401    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403      .writefn = tlbimvaa_write },
2404    REGINFO_SENTINEL
2405};
2406
2407static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408    /* 32 bit TLB invalidates, Inner Shareable */
2409    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411      .writefn = tlbiall_is_write },
2412    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414      .writefn = tlbimva_is_write },
2415    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417      .writefn = tlbiasid_is_write },
2418    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420      .writefn = tlbimvaa_is_write },
2421    REGINFO_SENTINEL
2422};
2423
2424static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425    /* PMOVSSET is not implemented in v7 before v7ve */
2426    { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427      .access = PL0_RW, .accessfn = pmreg_access,
2428      .type = ARM_CP_ALIAS | ARM_CP_IO,
2429      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430      .writefn = pmovsset_write,
2431      .raw_writefn = raw_write },
2432    { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434      .access = PL0_RW, .accessfn = pmreg_access,
2435      .type = ARM_CP_ALIAS | ARM_CP_IO,
2436      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437      .writefn = pmovsset_write,
2438      .raw_writefn = raw_write },
2439    REGINFO_SENTINEL
2440};
2441
2442static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443                        uint64_t value)
2444{
2445    value &= 1;
2446    env->teecr = value;
2447}
2448
2449static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450                                    bool isread)
2451{
2452    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2453        return CP_ACCESS_TRAP;
2454    }
2455    return CP_ACCESS_OK;
2456}
2457
2458static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2459    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2460      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2461      .resetvalue = 0,
2462      .writefn = teecr_write },
2463    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2464      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2465      .accessfn = teehbr_access, .resetvalue = 0 },
2466    REGINFO_SENTINEL
2467};
2468
2469static const ARMCPRegInfo v6k_cp_reginfo[] = {
2470    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2471      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2472      .access = PL0_RW,
2473      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2474    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2475      .access = PL0_RW,
2476      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2477                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2478      .resetfn = arm_cp_reset_ignore },
2479    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2480      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2481      .access = PL0_R|PL1_W,
2482      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2483      .resetvalue = 0},
2484    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2485      .access = PL0_R|PL1_W,
2486      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2487                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2488      .resetfn = arm_cp_reset_ignore },
2489    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2490      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2491      .access = PL1_RW,
2492      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2493    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2494      .access = PL1_RW,
2495      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2496                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2497      .resetvalue = 0 },
2498    REGINFO_SENTINEL
2499};
2500
2501#ifndef CONFIG_USER_ONLY
2502
2503static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2504                                       bool isread)
2505{
2506    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2507     * Writable only at the highest implemented exception level.
2508     */
2509    int el = arm_current_el(env);
2510    uint64_t hcr;
2511    uint32_t cntkctl;
2512
2513    switch (el) {
2514    case 0:
2515        hcr = arm_hcr_el2_eff(env);
2516        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517            cntkctl = env->cp15.cnthctl_el2;
2518        } else {
2519            cntkctl = env->cp15.c14_cntkctl;
2520        }
2521        if (!extract32(cntkctl, 0, 2)) {
2522            return CP_ACCESS_TRAP;
2523        }
2524        break;
2525    case 1:
2526        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2527            arm_is_secure_below_el3(env)) {
2528            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2529            return CP_ACCESS_TRAP_UNCATEGORIZED;
2530        }
2531        break;
2532    case 2:
2533    case 3:
2534        break;
2535    }
2536
2537    if (!isread && el < arm_highest_el(env)) {
2538        return CP_ACCESS_TRAP_UNCATEGORIZED;
2539    }
2540
2541    return CP_ACCESS_OK;
2542}
2543
2544static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2545                                        bool isread)
2546{
2547    unsigned int cur_el = arm_current_el(env);
2548    bool has_el2 = arm_is_el2_enabled(env);
2549    uint64_t hcr = arm_hcr_el2_eff(env);
2550
2551    switch (cur_el) {
2552    case 0:
2553        /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2554        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2555            return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2556                    ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2557        }
2558
2559        /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2560        if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2561            return CP_ACCESS_TRAP;
2562        }
2563
2564        /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2565        if (hcr & HCR_E2H) {
2566            if (timeridx == GTIMER_PHYS &&
2567                !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2568                return CP_ACCESS_TRAP_EL2;
2569            }
2570        } else {
2571            /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2572            if (has_el2 && timeridx == GTIMER_PHYS &&
2573                !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2574                return CP_ACCESS_TRAP_EL2;
2575            }
2576        }
2577        break;
2578
2579    case 1:
2580        /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2581        if (has_el2 && timeridx == GTIMER_PHYS &&
2582            (hcr & HCR_E2H
2583             ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2584             : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2585            return CP_ACCESS_TRAP_EL2;
2586        }
2587        break;
2588    }
2589    return CP_ACCESS_OK;
2590}
2591
2592static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2593                                      bool isread)
2594{
2595    unsigned int cur_el = arm_current_el(env);
2596    bool has_el2 = arm_is_el2_enabled(env);
2597    uint64_t hcr = arm_hcr_el2_eff(env);
2598
2599    switch (cur_el) {
2600    case 0:
2601        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2602            /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2603            return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2604                    ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2605        }
2606
2607        /*
2608         * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2609         * EL0 if EL0[PV]TEN is zero.
2610         */
2611        if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2612            return CP_ACCESS_TRAP;
2613        }
2614        /* fall through */
2615
2616    case 1:
2617        if (has_el2 && timeridx == GTIMER_PHYS) {
2618            if (hcr & HCR_E2H) {
2619                /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2620                if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2621                    return CP_ACCESS_TRAP_EL2;
2622                }
2623            } else {
2624                /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2625                if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2626                    return CP_ACCESS_TRAP_EL2;
2627                }
2628            }
2629        }
2630        break;
2631    }
2632    return CP_ACCESS_OK;
2633}
2634
2635static CPAccessResult gt_pct_access(CPUARMState *env,
2636                                    const ARMCPRegInfo *ri,
2637                                    bool isread)
2638{
2639    return gt_counter_access(env, GTIMER_PHYS, isread);
2640}
2641
2642static CPAccessResult gt_vct_access(CPUARMState *env,
2643                                    const ARMCPRegInfo *ri,
2644                                    bool isread)
2645{
2646    return gt_counter_access(env, GTIMER_VIRT, isread);
2647}
2648
2649static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2650                                       bool isread)
2651{
2652    return gt_timer_access(env, GTIMER_PHYS, isread);
2653}
2654
2655static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2656                                       bool isread)
2657{
2658    return gt_timer_access(env, GTIMER_VIRT, isread);
2659}
2660
2661static CPAccessResult gt_stimer_access(CPUARMState *env,
2662                                       const ARMCPRegInfo *ri,
2663                                       bool isread)
2664{
2665    /* The AArch64 register view of the secure physical timer is
2666     * always accessible from EL3, and configurably accessible from
2667     * Secure EL1.
2668     */
2669    switch (arm_current_el(env)) {
2670    case 1:
2671        if (!arm_is_secure(env)) {
2672            return CP_ACCESS_TRAP;
2673        }
2674        if (!(env->cp15.scr_el3 & SCR_ST)) {
2675            return CP_ACCESS_TRAP_EL3;
2676        }
2677        return CP_ACCESS_OK;
2678    case 0:
2679    case 2:
2680        return CP_ACCESS_TRAP;
2681    case 3:
2682        return CP_ACCESS_OK;
2683    default:
2684        g_assert_not_reached();
2685    }
2686}
2687
2688static uint64_t gt_get_countervalue(CPUARMState *env)
2689{
2690    ARMCPU *cpu = env_archcpu(env);
2691
2692    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2693}
2694
2695static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2696{
2697    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2698
2699    if (gt->ctl & 1) {
2700        /* Timer enabled: calculate and set current ISTATUS, irq, and
2701         * reset timer to when ISTATUS next has to change
2702         */
2703        uint64_t offset = timeridx == GTIMER_VIRT ?
2704                                      cpu->env.cp15.cntvoff_el2 : 0;
2705        uint64_t count = gt_get_countervalue(&cpu->env);
2706        /* Note that this must be unsigned 64 bit arithmetic: */
2707        int istatus = count - offset >= gt->cval;
2708        uint64_t nexttick;
2709        int irqstate;
2710
2711        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2712
2713        irqstate = (istatus && !(gt->ctl & 2));
2714        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2715
2716        if (istatus) {
2717            /* Next transition is when count rolls back over to zero */
2718            nexttick = UINT64_MAX;
2719        } else {
2720            /* Next transition is when we hit cval */
2721            nexttick = gt->cval + offset;
2722        }
2723        /* Note that the desired next expiry time might be beyond the
2724         * signed-64-bit range of a QEMUTimer -- in this case we just
2725         * set the timer for as far in the future as possible. When the
2726         * timer expires we will reset the timer for any remaining period.
2727         */
2728        if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2729            timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2730        } else {
2731            timer_mod(cpu->gt_timer[timeridx], nexttick);
2732        }
2733        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2734    } else {
2735        /* Timer disabled: ISTATUS and timer output always clear */
2736        gt->ctl &= ~4;
2737        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2738        timer_del(cpu->gt_timer[timeridx]);
2739        trace_arm_gt_recalc_disabled(timeridx);
2740    }
2741}
2742
2743static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2744                           int timeridx)
2745{
2746    ARMCPU *cpu = env_archcpu(env);
2747
2748    timer_del(cpu->gt_timer[timeridx]);
2749}
2750
2751static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2752{
2753    return gt_get_countervalue(env);
2754}
2755
2756static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2757{
2758    uint64_t hcr;
2759
2760    switch (arm_current_el(env)) {
2761    case 2:
2762        hcr = arm_hcr_el2_eff(env);
2763        if (hcr & HCR_E2H) {
2764            return 0;
2765        }
2766        break;
2767    case 0:
2768        hcr = arm_hcr_el2_eff(env);
2769        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2770            return 0;
2771        }
2772        break;
2773    }
2774
2775    return env->cp15.cntvoff_el2;
2776}
2777
2778static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2779{
2780    return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2781}
2782
2783static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784                          int timeridx,
2785                          uint64_t value)
2786{
2787    trace_arm_gt_cval_write(timeridx, value);
2788    env->cp15.c14_timer[timeridx].cval = value;
2789    gt_recalc_timer(env_archcpu(env), timeridx);
2790}
2791
2792static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2793                             int timeridx)
2794{
2795    uint64_t offset = 0;
2796
2797    switch (timeridx) {
2798    case GTIMER_VIRT:
2799    case GTIMER_HYPVIRT:
2800        offset = gt_virt_cnt_offset(env);
2801        break;
2802    }
2803
2804    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2805                      (gt_get_countervalue(env) - offset));
2806}
2807
2808static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809                          int timeridx,
2810                          uint64_t value)
2811{
2812    uint64_t offset = 0;
2813
2814    switch (timeridx) {
2815    case GTIMER_VIRT:
2816    case GTIMER_HYPVIRT:
2817        offset = gt_virt_cnt_offset(env);
2818        break;
2819    }
2820
2821    trace_arm_gt_tval_write(timeridx, value);
2822    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2823                                         sextract64(value, 0, 32);
2824    gt_recalc_timer(env_archcpu(env), timeridx);
2825}
2826
2827static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828                         int timeridx,
2829                         uint64_t value)
2830{
2831    ARMCPU *cpu = env_archcpu(env);
2832    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2833
2834    trace_arm_gt_ctl_write(timeridx, value);
2835    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2836    if ((oldval ^ value) & 1) {
2837        /* Enable toggled */
2838        gt_recalc_timer(cpu, timeridx);
2839    } else if ((oldval ^ value) & 2) {
2840        /* IMASK toggled: don't need to recalculate,
2841         * just set the interrupt line based on ISTATUS
2842         */
2843        int irqstate = (oldval & 4) && !(value & 2);
2844
2845        trace_arm_gt_imask_toggle(timeridx, irqstate);
2846        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2847    }
2848}
2849
2850static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2851{
2852    gt_timer_reset(env, ri, GTIMER_PHYS);
2853}
2854
2855static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                               uint64_t value)
2857{
2858    gt_cval_write(env, ri, GTIMER_PHYS, value);
2859}
2860
2861static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2862{
2863    return gt_tval_read(env, ri, GTIMER_PHYS);
2864}
2865
2866static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867                               uint64_t value)
2868{
2869    gt_tval_write(env, ri, GTIMER_PHYS, value);
2870}
2871
2872static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873                              uint64_t value)
2874{
2875    gt_ctl_write(env, ri, GTIMER_PHYS, value);
2876}
2877
2878static int gt_phys_redir_timeridx(CPUARMState *env)
2879{
2880    switch (arm_mmu_idx(env)) {
2881    case ARMMMUIdx_E20_0:
2882    case ARMMMUIdx_E20_2:
2883    case ARMMMUIdx_E20_2_PAN:
2884    case ARMMMUIdx_SE20_0:
2885    case ARMMMUIdx_SE20_2:
2886    case ARMMMUIdx_SE20_2_PAN:
2887        return GTIMER_HYP;
2888    default:
2889        return GTIMER_PHYS;
2890    }
2891}
2892
2893static int gt_virt_redir_timeridx(CPUARMState *env)
2894{
2895    switch (arm_mmu_idx(env)) {
2896    case ARMMMUIdx_E20_0:
2897    case ARMMMUIdx_E20_2:
2898    case ARMMMUIdx_E20_2_PAN:
2899    case ARMMMUIdx_SE20_0:
2900    case ARMMMUIdx_SE20_2:
2901    case ARMMMUIdx_SE20_2_PAN:
2902        return GTIMER_HYPVIRT;
2903    default:
2904        return GTIMER_VIRT;
2905    }
2906}
2907
2908static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2909                                        const ARMCPRegInfo *ri)
2910{
2911    int timeridx = gt_phys_redir_timeridx(env);
2912    return env->cp15.c14_timer[timeridx].cval;
2913}
2914
2915static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916                                     uint64_t value)
2917{
2918    int timeridx = gt_phys_redir_timeridx(env);
2919    gt_cval_write(env, ri, timeridx, value);
2920}
2921
2922static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2923                                        const ARMCPRegInfo *ri)
2924{
2925    int timeridx = gt_phys_redir_timeridx(env);
2926    return gt_tval_read(env, ri, timeridx);
2927}
2928
2929static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930                                     uint64_t value)
2931{
2932    int timeridx = gt_phys_redir_timeridx(env);
2933    gt_tval_write(env, ri, timeridx, value);
2934}
2935
2936static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2937                                       const ARMCPRegInfo *ri)
2938{
2939    int timeridx = gt_phys_redir_timeridx(env);
2940    return env->cp15.c14_timer[timeridx].ctl;
2941}
2942
2943static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944                                    uint64_t value)
2945{
2946    int timeridx = gt_phys_redir_timeridx(env);
2947    gt_ctl_write(env, ri, timeridx, value);
2948}
2949
2950static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2951{
2952    gt_timer_reset(env, ri, GTIMER_VIRT);
2953}
2954
2955static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956                               uint64_t value)
2957{
2958    gt_cval_write(env, ri, GTIMER_VIRT, value);
2959}
2960
2961static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2962{
2963    return gt_tval_read(env, ri, GTIMER_VIRT);
2964}
2965
2966static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967                               uint64_t value)
2968{
2969    gt_tval_write(env, ri, GTIMER_VIRT, value);
2970}
2971
2972static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2973                              uint64_t value)
2974{
2975    gt_ctl_write(env, ri, GTIMER_VIRT, value);
2976}
2977
2978static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979                              uint64_t value)
2980{
2981    ARMCPU *cpu = env_archcpu(env);
2982
2983    trace_arm_gt_cntvoff_write(value);
2984    raw_write(env, ri, value);
2985    gt_recalc_timer(cpu, GTIMER_VIRT);
2986}
2987
2988static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2989                                        const ARMCPRegInfo *ri)
2990{
2991    int timeridx = gt_virt_redir_timeridx(env);
2992    return env->cp15.c14_timer[timeridx].cval;
2993}
2994
2995static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996                                     uint64_t value)
2997{
2998    int timeridx = gt_virt_redir_timeridx(env);
2999    gt_cval_write(env, ri, timeridx, value);
3000}
3001
3002static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3003                                        const ARMCPRegInfo *ri)
3004{
3005    int timeridx = gt_virt_redir_timeridx(env);
3006    return gt_tval_read(env, ri, timeridx);
3007}
3008
3009static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                                     uint64_t value)
3011{
3012    int timeridx = gt_virt_redir_timeridx(env);
3013    gt_tval_write(env, ri, timeridx, value);
3014}
3015
3016static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3017                                       const ARMCPRegInfo *ri)
3018{
3019    int timeridx = gt_virt_redir_timeridx(env);
3020    return env->cp15.c14_timer[timeridx].ctl;
3021}
3022
3023static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024                                    uint64_t value)
3025{
3026    int timeridx = gt_virt_redir_timeridx(env);
3027    gt_ctl_write(env, ri, timeridx, value);
3028}
3029
3030static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3031{
3032    gt_timer_reset(env, ri, GTIMER_HYP);
3033}
3034
3035static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036                              uint64_t value)
3037{
3038    gt_cval_write(env, ri, GTIMER_HYP, value);
3039}
3040
3041static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042{
3043    return gt_tval_read(env, ri, GTIMER_HYP);
3044}
3045
3046static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047                              uint64_t value)
3048{
3049    gt_tval_write(env, ri, GTIMER_HYP, value);
3050}
3051
3052static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053                              uint64_t value)
3054{
3055    gt_ctl_write(env, ri, GTIMER_HYP, value);
3056}
3057
3058static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3059{
3060    gt_timer_reset(env, ri, GTIMER_SEC);
3061}
3062
3063static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                              uint64_t value)
3065{
3066    gt_cval_write(env, ri, GTIMER_SEC, value);
3067}
3068
3069static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3070{
3071    return gt_tval_read(env, ri, GTIMER_SEC);
3072}
3073
3074static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075                              uint64_t value)
3076{
3077    gt_tval_write(env, ri, GTIMER_SEC, value);
3078}
3079
3080static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081                              uint64_t value)
3082{
3083    gt_ctl_write(env, ri, GTIMER_SEC, value);
3084}
3085
3086static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3087{
3088    gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3089}
3090
3091static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092                             uint64_t value)
3093{
3094    gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3095}
3096
3097static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3098{
3099    return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3100}
3101
3102static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103                             uint64_t value)
3104{
3105    gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3106}
3107
3108static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109                            uint64_t value)
3110{
3111    gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3112}
3113
3114void arm_gt_ptimer_cb(void *opaque)
3115{
3116    ARMCPU *cpu = opaque;
3117
3118    gt_recalc_timer(cpu, GTIMER_PHYS);
3119}
3120
3121void arm_gt_vtimer_cb(void *opaque)
3122{
3123    ARMCPU *cpu = opaque;
3124
3125    gt_recalc_timer(cpu, GTIMER_VIRT);
3126}
3127
3128void arm_gt_htimer_cb(void *opaque)
3129{
3130    ARMCPU *cpu = opaque;
3131
3132    gt_recalc_timer(cpu, GTIMER_HYP);
3133}
3134
3135void arm_gt_stimer_cb(void *opaque)
3136{
3137    ARMCPU *cpu = opaque;
3138
3139    gt_recalc_timer(cpu, GTIMER_SEC);
3140}
3141
3142void arm_gt_hvtimer_cb(void *opaque)
3143{
3144    ARMCPU *cpu = opaque;
3145
3146    gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3147}
3148
3149static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3150{
3151    ARMCPU *cpu = env_archcpu(env);
3152
3153    cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3154}
3155
3156static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3157    /* Note that CNTFRQ is purely reads-as-written for the benefit
3158     * of software; writing it doesn't actually change the timer frequency.
3159     * Our reset value matches the fixed frequency we implement the timer at.
3160     */
3161    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3162      .type = ARM_CP_ALIAS,
3163      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3164      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3165    },
3166    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3167      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3168      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3169      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3170      .resetfn = arm_gt_cntfrq_reset,
3171    },
3172    /* overall control: mostly access permissions */
3173    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3174      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3175      .access = PL1_RW,
3176      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3177      .resetvalue = 0,
3178    },
3179    /* per-timer control */
3180    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3181      .secure = ARM_CP_SECSTATE_NS,
3182      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183      .accessfn = gt_ptimer_access,
3184      .fieldoffset = offsetoflow32(CPUARMState,
3185                                   cp15.c14_timer[GTIMER_PHYS].ctl),
3186      .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3187      .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3188    },
3189    { .name = "CNTP_CTL_S",
3190      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3191      .secure = ARM_CP_SECSTATE_S,
3192      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3193      .accessfn = gt_ptimer_access,
3194      .fieldoffset = offsetoflow32(CPUARMState,
3195                                   cp15.c14_timer[GTIMER_SEC].ctl),
3196      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3197    },
3198    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3199      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3200      .type = ARM_CP_IO, .access = PL0_RW,
3201      .accessfn = gt_ptimer_access,
3202      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3203      .resetvalue = 0,
3204      .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3205      .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3206    },
3207    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3208      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3209      .accessfn = gt_vtimer_access,
3210      .fieldoffset = offsetoflow32(CPUARMState,
3211                                   cp15.c14_timer[GTIMER_VIRT].ctl),
3212      .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3213      .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3214    },
3215    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3216      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3217      .type = ARM_CP_IO, .access = PL0_RW,
3218      .accessfn = gt_vtimer_access,
3219      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3220      .resetvalue = 0,
3221      .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3222      .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3223    },
3224    /* TimerValue views: a 32 bit downcounting view of the underlying state */
3225    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3226      .secure = ARM_CP_SECSTATE_NS,
3227      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3228      .accessfn = gt_ptimer_access,
3229      .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3230    },
3231    { .name = "CNTP_TVAL_S",
3232      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3233      .secure = ARM_CP_SECSTATE_S,
3234      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235      .accessfn = gt_ptimer_access,
3236      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3237    },
3238    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3239      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3240      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3241      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3242      .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3243    },
3244    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3245      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246      .accessfn = gt_vtimer_access,
3247      .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3248    },
3249    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3250      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3251      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3252      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3253      .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3254    },
3255    /* The counter itself */
3256    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3257      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3258      .accessfn = gt_pct_access,
3259      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3260    },
3261    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3262      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3263      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3264      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3265    },
3266    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3267      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3268      .accessfn = gt_vct_access,
3269      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3270    },
3271    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3272      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3273      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3274      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3275    },
3276    /* Comparison value, indicating when the timer goes off */
3277    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3278      .secure = ARM_CP_SECSTATE_NS,
3279      .access = PL0_RW,
3280      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3282      .accessfn = gt_ptimer_access,
3283      .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3284      .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3285    },
3286    { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3287      .secure = ARM_CP_SECSTATE_S,
3288      .access = PL0_RW,
3289      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3290      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3291      .accessfn = gt_ptimer_access,
3292      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3293    },
3294    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3295      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3296      .access = PL0_RW,
3297      .type = ARM_CP_IO,
3298      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3299      .resetvalue = 0, .accessfn = gt_ptimer_access,
3300      .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3301      .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3302    },
3303    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3304      .access = PL0_RW,
3305      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3306      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3307      .accessfn = gt_vtimer_access,
3308      .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3309      .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3310    },
3311    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3312      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3313      .access = PL0_RW,
3314      .type = ARM_CP_IO,
3315      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3316      .resetvalue = 0, .accessfn = gt_vtimer_access,
3317      .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3318      .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3319    },
3320    /* Secure timer -- this is actually restricted to only EL3
3321     * and configurably Secure-EL1 via the accessfn.
3322     */
3323    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3324      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3325      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3326      .accessfn = gt_stimer_access,
3327      .readfn = gt_sec_tval_read,
3328      .writefn = gt_sec_tval_write,
3329      .resetfn = gt_sec_timer_reset,
3330    },
3331    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3332      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3333      .type = ARM_CP_IO, .access = PL1_RW,
3334      .accessfn = gt_stimer_access,
3335      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3336      .resetvalue = 0,
3337      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3338    },
3339    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3340      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3341      .type = ARM_CP_IO, .access = PL1_RW,
3342      .accessfn = gt_stimer_access,
3343      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3344      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3345    },
3346    REGINFO_SENTINEL
3347};
3348
3349static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350                                 bool isread)
3351{
3352    if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3353        return CP_ACCESS_TRAP;
3354    }
3355    return CP_ACCESS_OK;
3356}
3357
3358#else
3359
3360/* In user-mode most of the generic timer registers are inaccessible
3361 * however modern kernels (4.12+) allow access to cntvct_el0
3362 */
3363
3364static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3365{
3366    ARMCPU *cpu = env_archcpu(env);
3367
3368    /* Currently we have no support for QEMUTimer in linux-user so we
3369     * can't call gt_get_countervalue(env), instead we directly
3370     * call the lower level functions.
3371     */
3372    return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3373}
3374
3375static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3376    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3377      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3378      .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3379      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3380      .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3381    },
3382    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3383      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3384      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3385      .readfn = gt_virt_cnt_read,
3386    },
3387    REGINFO_SENTINEL
3388};
3389
3390#endif
3391
3392static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3393{
3394    if (arm_feature(env, ARM_FEATURE_LPAE)) {
3395        raw_write(env, ri, value);
3396    } else if (arm_feature(env, ARM_FEATURE_V7)) {
3397        raw_write(env, ri, value & 0xfffff6ff);
3398    } else {
3399        raw_write(env, ri, value & 0xfffff1ff);
3400    }
3401}
3402
3403#ifndef CONFIG_USER_ONLY
3404/* get_phys_addr() isn't present for user-mode-only targets */
3405
3406static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3407                                 bool isread)
3408{
3409    if (ri->opc2 & 4) {
3410        /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3411         * Secure EL1 (which can only happen if EL3 is AArch64).
3412         * They are simply UNDEF if executed from NS EL1.
3413         * They function normally from EL2 or EL3.
3414         */
3415        if (arm_current_el(env) == 1) {
3416            if (arm_is_secure_below_el3(env)) {
3417                if (env->cp15.scr_el3 & SCR_EEL2) {
3418                    return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3419                }
3420                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3421            }
3422            return CP_ACCESS_TRAP_UNCATEGORIZED;
3423        }
3424    }
3425    return CP_ACCESS_OK;
3426}
3427
3428#ifdef CONFIG_TCG
3429static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3430                             MMUAccessType access_type, ARMMMUIdx mmu_idx)
3431{
3432    hwaddr phys_addr;
3433    target_ulong page_size;
3434    int prot;
3435    bool ret;
3436    uint64_t par64;
3437    bool format64 = false;
3438    MemTxAttrs attrs = {};
3439    ARMMMUFaultInfo fi = {};
3440    ARMCacheAttrs cacheattrs = {};
3441
3442    ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3443                        &prot, &page_size, &fi, &cacheattrs);
3444
3445    if (ret) {
3446        /*
3447         * Some kinds of translation fault must cause exceptions rather
3448         * than being reported in the PAR.
3449         */
3450        int current_el = arm_current_el(env);
3451        int target_el;
3452        uint32_t syn, fsr, fsc;
3453        bool take_exc = false;
3454
3455        if (fi.s1ptw && current_el == 1
3456            && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3457            /*
3458             * Synchronous stage 2 fault on an access made as part of the
3459             * translation table walk for AT S1E0* or AT S1E1* insn
3460             * executed from NS EL1. If this is a synchronous external abort
3461             * and SCR_EL3.EA == 1, then we take a synchronous external abort
3462             * to EL3. Otherwise the fault is taken as an exception to EL2,
3463             * and HPFAR_EL2 holds the faulting IPA.
3464             */
3465            if (fi.type == ARMFault_SyncExternalOnWalk &&
3466                (env->cp15.scr_el3 & SCR_EA)) {
3467                target_el = 3;
3468            } else {
3469                env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3470                if (arm_is_secure_below_el3(env) && fi.s1ns) {
3471                    env->cp15.hpfar_el2 |= HPFAR_NS;
3472                }
3473                target_el = 2;
3474            }
3475            take_exc = true;
3476        } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3477            /*
3478             * Synchronous external aborts during a translation table walk
3479             * are taken as Data Abort exceptions.
3480             */
3481            if (fi.stage2) {
3482                if (current_el == 3) {
3483                    target_el = 3;
3484                } else {
3485                    target_el = 2;
3486                }
3487            } else {
3488                target_el = exception_target_el(env);
3489            }
3490            take_exc = true;
3491        }
3492
3493        if (take_exc) {
3494            /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3495            if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3496                arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3497                fsr = arm_fi_to_lfsc(&fi);
3498                fsc = extract32(fsr, 0, 6);
3499            } else {
3500                fsr = arm_fi_to_sfsc(&fi);
3501                fsc = 0x3f;
3502            }
3503            /*
3504             * Report exception with ESR indicating a fault due to a
3505             * translation table walk for a cache maintenance instruction.
3506             */
3507            syn = syn_data_abort_no_iss(current_el == target_el, 0,
3508                                        fi.ea, 1, fi.s1ptw, 1, fsc);
3509            env->exception.vaddress = value;
3510            env->exception.fsr = fsr;
3511            raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3512        }
3513    }
3514
3515    if (is_a64(env)) {
3516        format64 = true;
3517    } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3518        /*
3519         * ATS1Cxx:
3520         * * TTBCR.EAE determines whether the result is returned using the
3521         *   32-bit or the 64-bit PAR format
3522         * * Instructions executed in Hyp mode always use the 64bit format
3523         *
3524         * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3525         * * The Non-secure TTBCR.EAE bit is set to 1
3526         * * The implementation includes EL2, and the value of HCR.VM is 1
3527         *
3528         * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3529         *
3530         * ATS1Hx always uses the 64bit format.
3531         */
3532        format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3533
3534        if (arm_feature(env, ARM_FEATURE_EL2)) {
3535            if (mmu_idx == ARMMMUIdx_E10_0 ||
3536                mmu_idx == ARMMMUIdx_E10_1 ||
3537                mmu_idx == ARMMMUIdx_E10_1_PAN) {
3538                format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3539            } else {
3540                format64 |= arm_current_el(env) == 2;
3541            }
3542        }
3543    }
3544
3545    if (format64) {
3546        /* Create a 64-bit PAR */
3547        par64 = (1 << 11); /* LPAE bit always set */
3548        if (!ret) {
3549            par64 |= phys_addr & ~0xfffULL;
3550            if (!attrs.secure) {
3551                par64 |= (1 << 9); /* NS */
3552            }
3553            par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3554            par64 |= cacheattrs.shareability << 7; /* SH */
3555        } else {
3556            uint32_t fsr = arm_fi_to_lfsc(&fi);
3557
3558            par64 |= 1; /* F */
3559            par64 |= (fsr & 0x3f) << 1; /* FS */
3560            if (fi.stage2) {
3561                par64 |= (1 << 9); /* S */
3562            }
3563            if (fi.s1ptw) {
3564                par64 |= (1 << 8); /* PTW */
3565            }
3566        }
3567    } else {
3568        /* fsr is a DFSR/IFSR value for the short descriptor
3569         * translation table format (with WnR always clear).
3570         * Convert it to a 32-bit PAR.
3571         */
3572        if (!ret) {
3573            /* We do not set any attribute bits in the PAR */
3574            if (page_size == (1 << 24)
3575                && arm_feature(env, ARM_FEATURE_V7)) {
3576                par64 = (phys_addr & 0xff000000) | (1 << 1);
3577            } else {
3578                par64 = phys_addr & 0xfffff000;
3579            }
3580            if (!attrs.secure) {
3581                par64 |= (1 << 9); /* NS */
3582            }
3583        } else {
3584            uint32_t fsr = arm_fi_to_sfsc(&fi);
3585
3586            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3587                    ((fsr & 0xf) << 1) | 1;
3588        }
3589    }
3590    return par64;
3591}
3592#endif /* CONFIG_TCG */
3593
3594static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3595{
3596#ifdef CONFIG_TCG
3597    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3598    uint64_t par64;
3599    ARMMMUIdx mmu_idx;
3600    int el = arm_current_el(env);
3601    bool secure = arm_is_secure_below_el3(env);
3602
3603    switch (ri->opc2 & 6) {
3604    case 0:
3605        /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3606        switch (el) {
3607        case 3:
3608            mmu_idx = ARMMMUIdx_SE3;
3609            break;
3610        case 2:
3611            g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3612            /* fall through */
3613        case 1:
3614            if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3615                mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3616                           : ARMMMUIdx_Stage1_E1_PAN);
3617            } else {
3618                mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3619            }
3620            break;
3621        default:
3622            g_assert_not_reached();
3623        }
3624        break;
3625    case 2:
3626        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3627        switch (el) {
3628        case 3:
3629            mmu_idx = ARMMMUIdx_SE10_0;
3630            break;
3631        case 2:
3632            g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3633            mmu_idx = ARMMMUIdx_Stage1_E0;
3634            break;
3635        case 1:
3636            mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3637            break;
3638        default:
3639            g_assert_not_reached();
3640        }
3641        break;
3642    case 4:
3643        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3644        mmu_idx = ARMMMUIdx_E10_1;
3645        break;
3646    case 6:
3647        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3648        mmu_idx = ARMMMUIdx_E10_0;
3649        break;
3650    default:
3651        g_assert_not_reached();
3652    }
3653
3654    par64 = do_ats_write(env, value, access_type, mmu_idx);
3655
3656    A32_BANKED_CURRENT_REG_SET(env, par, par64);
3657#else
3658    /* Handled by hardware accelerator. */
3659    g_assert_not_reached();
3660#endif /* CONFIG_TCG */
3661}
3662
3663static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3664                        uint64_t value)
3665{
3666#ifdef CONFIG_TCG
3667    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3668    uint64_t par64;
3669
3670    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3671
3672    A32_BANKED_CURRENT_REG_SET(env, par, par64);
3673#else
3674    /* Handled by hardware accelerator. */
3675    g_assert_not_reached();
3676#endif /* CONFIG_TCG */
3677}
3678
3679static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3680                                     bool isread)
3681{
3682    if (arm_current_el(env) == 3 &&
3683        !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3684        return CP_ACCESS_TRAP;
3685    }
3686    return CP_ACCESS_OK;
3687}
3688
3689static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3690                        uint64_t value)
3691{
3692#ifdef CONFIG_TCG
3693    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3694    ARMMMUIdx mmu_idx;
3695    int secure = arm_is_secure_below_el3(env);
3696
3697    switch (ri->opc2 & 6) {
3698    case 0:
3699        switch (ri->opc1) {
3700        case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3701            if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3702                mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3703                           : ARMMMUIdx_Stage1_E1_PAN);
3704            } else {
3705                mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3706            }
3707            break;
3708        case 4: /* AT S1E2R, AT S1E2W */
3709            mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3710            break;
3711        case 6: /* AT S1E3R, AT S1E3W */
3712            mmu_idx = ARMMMUIdx_SE3;
3713            break;
3714        default:
3715            g_assert_not_reached();
3716        }
3717        break;
3718    case 2: /* AT S1E0R, AT S1E0W */
3719        mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3720        break;
3721    case 4: /* AT S12E1R, AT S12E1W */
3722        mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3723        break;
3724    case 6: /* AT S12E0R, AT S12E0W */
3725        mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3726        break;
3727    default:
3728        g_assert_not_reached();
3729    }
3730
3731    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3732#else
3733    /* Handled by hardware accelerator. */
3734    g_assert_not_reached();
3735#endif /* CONFIG_TCG */
3736}
3737#endif
3738
3739static const ARMCPRegInfo vapa_cp_reginfo[] = {
3740    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3741      .access = PL1_RW, .resetvalue = 0,
3742      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3743                             offsetoflow32(CPUARMState, cp15.par_ns) },
3744      .writefn = par_write },
3745#ifndef CONFIG_USER_ONLY
3746    /* This underdecoding is safe because the reginfo is NO_RAW. */
3747    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3748      .access = PL1_W, .accessfn = ats_access,
3749      .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3750#endif
3751    REGINFO_SENTINEL
3752};
3753
3754/* Return basic MPU access permission bits.  */
3755static uint32_t simple_mpu_ap_bits(uint32_t val)
3756{
3757    uint32_t ret;
3758    uint32_t mask;
3759    int i;
3760    ret = 0;
3761    mask = 3;
3762    for (i = 0; i < 16; i += 2) {
3763        ret |= (val >> i) & mask;
3764        mask <<= 2;
3765    }
3766    return ret;
3767}
3768
3769/* Pad basic MPU access permission bits to extended format.  */
3770static uint32_t extended_mpu_ap_bits(uint32_t val)
3771{
3772    uint32_t ret;
3773    uint32_t mask;
3774    int i;
3775    ret = 0;
3776    mask = 3;
3777    for (i = 0; i < 16; i += 2) {
3778        ret |= (val & mask) << i;
3779        mask <<= 2;
3780    }
3781    return ret;
3782}
3783
3784static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                                 uint64_t value)
3786{
3787    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3788}
3789
3790static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3791{
3792    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3793}
3794
3795static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3796                                 uint64_t value)
3797{
3798    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3799}
3800
3801static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3802{
3803    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3804}
3805
3806static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3807{
3808    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3809
3810    if (!u32p) {
3811        return 0;
3812    }
3813
3814    u32p += env->pmsav7.rnr[M_REG_NS];
3815    return *u32p;
3816}
3817
3818static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819                         uint64_t value)
3820{
3821    ARMCPU *cpu = env_archcpu(env);
3822    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3823
3824    if (!u32p) {
3825        return;
3826    }
3827
3828    u32p += env->pmsav7.rnr[M_REG_NS];
3829    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3830    *u32p = value;
3831}
3832
3833static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834                              uint64_t value)
3835{
3836    ARMCPU *cpu = env_archcpu(env);
3837    uint32_t nrgs = cpu->pmsav7_dregion;
3838
3839    if (value >= nrgs) {
3840        qemu_log_mask(LOG_GUEST_ERROR,
3841                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3842                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3843        return;
3844    }
3845
3846    raw_write(env, ri, value);
3847}
3848
3849static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3850    /* Reset for all these registers is handled in arm_cpu_reset(),
3851     * because the PMSAv7 is also used by M-profile CPUs, which do
3852     * not register cpregs but still need the state to be reset.
3853     */
3854    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3855      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3856      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3857      .readfn = pmsav7_read, .writefn = pmsav7_write,
3858      .resetfn = arm_cp_reset_ignore },
3859    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3860      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3861      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3862      .readfn = pmsav7_read, .writefn = pmsav7_write,
3863      .resetfn = arm_cp_reset_ignore },
3864    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3865      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3866      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3867      .readfn = pmsav7_read, .writefn = pmsav7_write,
3868      .resetfn = arm_cp_reset_ignore },
3869    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3870      .access = PL1_RW,
3871      .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3872      .writefn = pmsav7_rgnr_write,
3873      .resetfn = arm_cp_reset_ignore },
3874    REGINFO_SENTINEL
3875};
3876
3877static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3878    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3879      .access = PL1_RW, .type = ARM_CP_ALIAS,
3880      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3881      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3882    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3883      .access = PL1_RW, .type = ARM_CP_ALIAS,
3884      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3885      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3886    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3887      .access = PL1_RW,
3888      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3889      .resetvalue = 0, },
3890    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3891      .access = PL1_RW,
3892      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3893      .resetvalue = 0, },
3894    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3895      .access = PL1_RW,
3896      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3897    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3898      .access = PL1_RW,
3899      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3900    /* Protection region base and size registers */
3901    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3902      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3903      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3904    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3905      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3906      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3907    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3908      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3909      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3910    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3911      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3912      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3913    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3914      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3915      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3916    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3917      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3918      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3919    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3920      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3921      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3922    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3923      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3924      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3925    REGINFO_SENTINEL
3926};
3927
3928static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929                                 uint64_t value)
3930{
3931    TCR *tcr = raw_ptr(env, ri);
3932    int maskshift = extract32(value, 0, 3);
3933
3934    if (!arm_feature(env, ARM_FEATURE_V8)) {
3935        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3936            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3937             * using Long-desciptor translation table format */
3938            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3939        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3940            /* In an implementation that includes the Security Extensions
3941             * TTBCR has additional fields PD0 [4] and PD1 [5] for
3942             * Short-descriptor translation table format.
3943             */
3944            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3945        } else {
3946            value &= TTBCR_N;
3947        }
3948    }
3949
3950    /* Update the masks corresponding to the TCR bank being written
3951     * Note that we always calculate mask and base_mask, but
3952     * they are only used for short-descriptor tables (ie if EAE is 0);
3953     * for long-descriptor tables the TCR fields are used differently
3954     * and the mask and base_mask values are meaningless.
3955     */
3956    tcr->raw_tcr = value;
3957    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3958    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3959}
3960
3961static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962                             uint64_t value)
3963{
3964    ARMCPU *cpu = env_archcpu(env);
3965    TCR *tcr = raw_ptr(env, ri);
3966
3967    if (arm_feature(env, ARM_FEATURE_LPAE)) {
3968        /* With LPAE the TTBCR could result in a change of ASID
3969         * via the TTBCR.A1 bit, so do a TLB flush.
3970         */
3971        tlb_flush(CPU(cpu));
3972    }
3973    /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3974    value = deposit64(tcr->raw_tcr, 0, 32, value);
3975    vmsa_ttbcr_raw_write(env, ri, value);
3976}
3977
3978static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3979{
3980    TCR *tcr = raw_ptr(env, ri);
3981
3982    /* Reset both the TCR as well as the masks corresponding to the bank of
3983     * the TCR being reset.
3984     */
3985    tcr->raw_tcr = 0;
3986    tcr->mask = 0;
3987    tcr->base_mask = 0xffffc000u;
3988}
3989
3990static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3991                               uint64_t value)
3992{
3993    ARMCPU *cpu = env_archcpu(env);
3994    TCR *tcr = raw_ptr(env, ri);
3995
3996    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3997    tlb_flush(CPU(cpu));
3998    tcr->raw_tcr = value;
3999}
4000
4001static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4002                            uint64_t value)
4003{
4004    /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4005    if (cpreg_field_is_64bit(ri) &&
4006        extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4007        ARMCPU *cpu = env_archcpu(env);
4008        tlb_flush(CPU(cpu));
4009    }
4010    raw_write(env, ri, value);
4011}
4012
4013static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014                                    uint64_t value)
4015{
4016    /*
4017     * If we are running with E2&0 regime, then an ASID is active.
4018     * Flush if that might be changing.  Note we're not checking
4019     * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4020     * holds the active ASID, only checking the field that might.
4021     */
4022    if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4023        (arm_hcr_el2_eff(env) & HCR_E2H)) {
4024        uint16_t mask = ARMMMUIdxBit_E20_2 |
4025                        ARMMMUIdxBit_E20_2_PAN |
4026                        ARMMMUIdxBit_E20_0;
4027
4028        if (arm_is_secure_below_el3(env)) {
4029            mask >>= ARM_MMU_IDX_A_NS;
4030        }
4031
4032        tlb_flush_by_mmuidx(env_cpu(env), mask);
4033    }
4034    raw_write(env, ri, value);
4035}
4036
4037static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4038                        uint64_t value)
4039{
4040    ARMCPU *cpu = env_archcpu(env);
4041    CPUState *cs = CPU(cpu);
4042
4043    /*
4044     * A change in VMID to the stage2 page table (Stage2) invalidates
4045     * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4046     */
4047    if (raw_read(env, ri) != value) {
4048        uint16_t mask = ARMMMUIdxBit_E10_1 |
4049                        ARMMMUIdxBit_E10_1_PAN |
4050                        ARMMMUIdxBit_E10_0;
4051
4052        if (arm_is_secure_below_el3(env)) {
4053            mask >>= ARM_MMU_IDX_A_NS;
4054        }
4055
4056        tlb_flush_by_mmuidx(cs, mask);
4057        raw_write(env, ri, value);
4058    }
4059}
4060
4061static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4062    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4063      .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4064      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4065                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4066    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4067      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4068      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4069                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4070    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4071      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4072      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4073                             offsetof(CPUARMState, cp15.dfar_ns) } },
4074    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4075      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4076      .access = PL1_RW, .accessfn = access_tvm_trvm,
4077      .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4078      .resetvalue = 0, },
4079    REGINFO_SENTINEL
4080};
4081
4082static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4083    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4084      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4085      .access = PL1_RW, .accessfn = access_tvm_trvm,
4086      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4087    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4088      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4089      .access = PL1_RW, .accessfn = access_tvm_trvm,
4090      .writefn = vmsa_ttbr_write, .resetvalue = 0,
4091      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4092                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
4093    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4094      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4095      .access = PL1_RW, .accessfn = access_tvm_trvm,
4096      .writefn = vmsa_ttbr_write, .resetvalue = 0,
4097      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4098                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
4099    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4100      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4101      .access = PL1_RW, .accessfn = access_tvm_trvm,
4102      .writefn = vmsa_tcr_el12_write,
4103      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4104      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4105    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4106      .access = PL1_RW, .accessfn = access_tvm_trvm,
4107      .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4108      .raw_writefn = vmsa_ttbcr_raw_write,
4109      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4110                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4111    REGINFO_SENTINEL
4112};
4113
4114/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4115 * qemu tlbs nor adjusting cached masks.
4116 */
4117static const ARMCPRegInfo ttbcr2_reginfo = {
4118    .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4119    .access = PL1_RW, .accessfn = access_tvm_trvm,
4120    .type = ARM_CP_ALIAS,
4121    .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4122                           offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4123};
4124
4125static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4126                                uint64_t value)
4127{
4128    env->cp15.c15_ticonfig = value & 0xe7;
4129    /* The OS_TYPE bit in this register changes the reported CPUID! */
4130    env->cp15.c0_cpuid = (value & (1 << 5)) ?
4131        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4132}
4133
4134static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4135                                uint64_t value)
4136{
4137    env->cp15.c15_threadid = value & 0xffff;
4138}
4139
4140static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4141                           uint64_t value)
4142{
4143    /* Wait-for-interrupt (deprecated) */
4144    cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4145}
4146
4147static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4148                                  uint64_t value)
4149{
4150    /* On OMAP there are registers indicating the max/min index of dcache lines
4151     * containing a dirty line; cache flush operations have to reset these.
4152     */
4153    env->cp15.c15_i_max = 0x000;
4154    env->cp15.c15_i_min = 0xff0;
4155}
4156
4157static const ARMCPRegInfo omap_cp_reginfo[] = {
4158    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4159      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4160      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4161      .resetvalue = 0, },
4162    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4163      .access = PL1_RW, .type = ARM_CP_NOP },
4164    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4165      .access = PL1_RW,
4166      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4167      .writefn = omap_ticonfig_write },
4168    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4169      .access = PL1_RW,
4170      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4171    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4172      .access = PL1_RW, .resetvalue = 0xff0,
4173      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4174    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4175      .access = PL1_RW,
4176      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4177      .writefn = omap_threadid_write },
4178    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4179      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4180      .type = ARM_CP_NO_RAW,
4181      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4182    /* TODO: Peripheral port remap register:
4183     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4184     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4185     * when MMU is off.
4186     */
4187    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4188      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4189      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4190      .writefn = omap_cachemaint_write },
4191    { .name = "C9", .cp = 15, .crn = 9,
4192      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4193      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4194    REGINFO_SENTINEL
4195};
4196
4197static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4198                              uint64_t value)
4199{
4200    env->cp15.c15_cpar = value & 0x3fff;
4201}
4202
4203static const ARMCPRegInfo xscale_cp_reginfo[] = {
4204    { .name = "XSCALE_CPAR",
4205      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4206      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4207      .writefn = xscale_cpar_write, },
4208    { .name = "XSCALE_AUXCR",
4209      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4210      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4211      .resetvalue = 0, },
4212    /* XScale specific cache-lockdown: since we have no cache we NOP these
4213     * and hope the guest does not really rely on cache behaviour.
4214     */
4215    { .name = "XSCALE_LOCK_ICACHE_LINE",
4216      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4217      .access = PL1_W, .type = ARM_CP_NOP },
4218    { .name = "XSCALE_UNLOCK_ICACHE",
4219      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4220      .access = PL1_W, .type = ARM_CP_NOP },
4221    { .name = "XSCALE_DCACHE_LOCK",
4222      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4223      .access = PL1_RW, .type = ARM_CP_NOP },
4224    { .name = "XSCALE_UNLOCK_DCACHE",
4225      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4226      .access = PL1_W, .type = ARM_CP_NOP },
4227    REGINFO_SENTINEL
4228};
4229
4230static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4231    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4232     * implementation of this implementation-defined space.
4233     * Ideally this should eventually disappear in favour of actually
4234     * implementing the correct behaviour for all cores.
4235     */
4236    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4237      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4238      .access = PL1_RW,
4239      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4240      .resetvalue = 0 },
4241    REGINFO_SENTINEL
4242};
4243
4244static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4245    /* Cache status: RAZ because we have no cache so it's always clean */
4246    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4247      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4248      .resetvalue = 0 },
4249    REGINFO_SENTINEL
4250};
4251
4252static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4253    /* We never have a a block transfer operation in progress */
4254    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4255      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4256      .resetvalue = 0 },
4257    /* The cache ops themselves: these all NOP for QEMU */
4258    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4259      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4260    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4261      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4262    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4263      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4264    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4265      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4266    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4267      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4268    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4269      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4270    REGINFO_SENTINEL
4271};
4272
4273static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4274    /* The cache test-and-clean instructions always return (1 << 30)
4275     * to indicate that there are no dirty cache lines.
4276     */
4277    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4278      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4279      .resetvalue = (1 << 30) },
4280    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4281      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4282      .resetvalue = (1 << 30) },
4283    REGINFO_SENTINEL
4284};
4285
4286static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4287    /* Ignore ReadBuffer accesses */
4288    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4289      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4290      .access = PL1_RW, .resetvalue = 0,
4291      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4292    REGINFO_SENTINEL
4293};
4294
4295static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4296{
4297    unsigned int cur_el = arm_current_el(env);
4298
4299    if (arm_is_el2_enabled(env) && cur_el == 1) {
4300        return env->cp15.vpidr_el2;
4301    }
4302    return raw_read(env, ri);
4303}
4304
4305static uint64_t mpidr_read_val(CPUARMState *env)
4306{
4307    ARMCPU *cpu = env_archcpu(env);
4308    uint64_t mpidr = cpu->mp_affinity;
4309
4310    if (arm_feature(env, ARM_FEATURE_V7MP)) {
4311        mpidr |= (1U << 31);
4312        /* Cores which are uniprocessor (non-coherent)
4313         * but still implement the MP extensions set
4314         * bit 30. (For instance, Cortex-R5).
4315         */
4316        if (cpu->mp_is_up) {
4317            mpidr |= (1u << 30);
4318        }
4319    }
4320    return mpidr;
4321}
4322
4323static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4324{
4325    unsigned int cur_el = arm_current_el(env);
4326
4327    if (arm_is_el2_enabled(env) && cur_el == 1) {
4328        return env->cp15.vmpidr_el2;
4329    }
4330    return mpidr_read_val(env);
4331}
4332
4333static const ARMCPRegInfo lpae_cp_reginfo[] = {
4334    /* NOP AMAIR0/1 */
4335    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4336      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4337      .access = PL1_RW, .accessfn = access_tvm_trvm,
4338      .type = ARM_CP_CONST, .resetvalue = 0 },
4339    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4340    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4341      .access = PL1_RW, .accessfn = access_tvm_trvm,
4342      .type = ARM_CP_CONST, .resetvalue = 0 },
4343    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4344      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4345      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4346                             offsetof(CPUARMState, cp15.par_ns)} },
4347    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4348      .access = PL1_RW, .accessfn = access_tvm_trvm,
4349      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4350      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4351                             offsetof(CPUARMState, cp15.ttbr0_ns) },
4352      .writefn = vmsa_ttbr_write, },
4353    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4354      .access = PL1_RW, .accessfn = access_tvm_trvm,
4355      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4356      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4357                             offsetof(CPUARMState, cp15.ttbr1_ns) },
4358      .writefn = vmsa_ttbr_write, },
4359    REGINFO_SENTINEL
4360};
4361
4362static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4363{
4364    return vfp_get_fpcr(env);
4365}
4366
4367static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4368                            uint64_t value)
4369{
4370    vfp_set_fpcr(env, value);
4371}
4372
4373static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4374{
4375    return vfp_get_fpsr(env);
4376}
4377
4378static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4379                            uint64_t value)
4380{
4381    vfp_set_fpsr(env, value);
4382}
4383
4384static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4385                                       bool isread)
4386{
4387    if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4388        return CP_ACCESS_TRAP;
4389    }
4390    return CP_ACCESS_OK;
4391}
4392
4393static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394                            uint64_t value)
4395{
4396    env->daif = value & PSTATE_DAIF;
4397}
4398
4399static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4400{
4401    return env->pstate & PSTATE_PAN;
4402}
4403
4404static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4405                           uint64_t value)
4406{
4407    env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4408}
4409
4410static const ARMCPRegInfo pan_reginfo = {
4411    .name = "PAN", .state = ARM_CP_STATE_AA64,
4412    .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4413    .type = ARM_CP_NO_RAW, .access = PL1_RW,
4414    .readfn = aa64_pan_read, .writefn = aa64_pan_write
4415};
4416
4417static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4418{
4419    return env->pstate & PSTATE_UAO;
4420}
4421
4422static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423                           uint64_t value)
4424{
4425    env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4426}
4427
4428static const ARMCPRegInfo uao_reginfo = {
4429    .name = "UAO", .state = ARM_CP_STATE_AA64,
4430    .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4431    .type = ARM_CP_NO_RAW, .access = PL1_RW,
4432    .readfn = aa64_uao_read, .writefn = aa64_uao_write
4433};
4434
4435static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4436{
4437    return env->pstate & PSTATE_DIT;
4438}
4439
4440static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4441                           uint64_t value)
4442{
4443    env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4444}
4445
4446static const ARMCPRegInfo dit_reginfo = {
4447    .name = "DIT", .state = ARM_CP_STATE_AA64,
4448    .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4449    .type = ARM_CP_NO_RAW, .access = PL0_RW,
4450    .readfn = aa64_dit_read, .writefn = aa64_dit_write
4451};
4452
4453static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4454{
4455    return env->pstate & PSTATE_SSBS;
4456}
4457
4458static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4459                           uint64_t value)
4460{
4461    env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4462}
4463
4464static const ARMCPRegInfo ssbs_reginfo = {
4465    .name = "SSBS", .state = ARM_CP_STATE_AA64,
4466    .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4467    .type = ARM_CP_NO_RAW, .access = PL0_RW,
4468    .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4469};
4470
4471static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4472                                              const ARMCPRegInfo *ri,
4473                                              bool isread)
4474{
4475    /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4476    switch (arm_current_el(env)) {
4477    case 0:
4478        /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4479        if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4480            return CP_ACCESS_TRAP;
4481        }
4482        /* fall through */
4483    case 1:
4484        /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4485        if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4486            return CP_ACCESS_TRAP_EL2;
4487        }
4488        break;
4489    }
4490    return CP_ACCESS_OK;
4491}
4492
4493static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4494                                              const ARMCPRegInfo *ri,
4495                                              bool isread)
4496{
4497    /* Cache invalidate/clean to Point of Unification... */
4498    switch (arm_current_el(env)) {
4499    case 0:
4500        /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4501        if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4502            return CP_ACCESS_TRAP;
4503        }
4504        /* fall through */
4505    case 1:
4506        /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4507        if (arm_hcr_el2_eff(env) & HCR_TPU) {
4508            return CP_ACCESS_TRAP_EL2;
4509        }
4510        break;
4511    }
4512    return CP_ACCESS_OK;
4513}
4514
4515/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4516 * Page D4-1736 (DDI0487A.b)
4517 */
4518
4519static int vae1_tlbmask(CPUARMState *env)
4520{
4521    uint64_t hcr = arm_hcr_el2_eff(env);
4522    uint16_t mask;
4523
4524    if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4525        mask = ARMMMUIdxBit_E20_2 |
4526               ARMMMUIdxBit_E20_2_PAN |
4527               ARMMMUIdxBit_E20_0;
4528    } else {
4529        mask = ARMMMUIdxBit_E10_1 |
4530               ARMMMUIdxBit_E10_1_PAN |
4531               ARMMMUIdxBit_E10_0;
4532    }
4533
4534    if (arm_is_secure_below_el3(env)) {
4535        mask >>= ARM_MMU_IDX_A_NS;
4536    }
4537
4538    return mask;
4539}
4540
4541/* Return 56 if TBI is enabled, 64 otherwise. */
4542static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4543                              uint64_t addr)
4544{
4545    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4546    int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4547    int select = extract64(addr, 55, 1);
4548
4549    return (tbi >> select) & 1 ? 56 : 64;
4550}
4551
4552static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4553{
4554    uint64_t hcr = arm_hcr_el2_eff(env);
4555    ARMMMUIdx mmu_idx;
4556
4557    /* Only the regime of the mmu_idx below is significant. */
4558    if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4559        mmu_idx = ARMMMUIdx_E20_0;
4560    } else {
4561        mmu_idx = ARMMMUIdx_E10_0;
4562    }
4563
4564    if (arm_is_secure_below_el3(env)) {
4565        mmu_idx &= ~ARM_MMU_IDX_A_NS;
4566    }
4567
4568    return tlbbits_for_regime(env, mmu_idx, addr);
4569}
4570
4571static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4572                                      uint64_t value)
4573{
4574    CPUState *cs = env_cpu(env);
4575    int mask = vae1_tlbmask(env);
4576
4577    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4578}
4579
4580static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4581                                    uint64_t value)
4582{
4583    CPUState *cs = env_cpu(env);
4584    int mask = vae1_tlbmask(env);
4585
4586    if (tlb_force_broadcast(env)) {
4587        tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4588    } else {
4589        tlb_flush_by_mmuidx(cs, mask);
4590    }
4591}
4592
4593static int alle1_tlbmask(CPUARMState *env)
4594{
4595    /*
4596     * Note that the 'ALL' scope must invalidate both stage 1 and
4597     * stage 2 translations, whereas most other scopes only invalidate
4598     * stage 1 translations.
4599     */
4600    if (arm_is_secure_below_el3(env)) {
4601        return ARMMMUIdxBit_SE10_1 |
4602               ARMMMUIdxBit_SE10_1_PAN |
4603               ARMMMUIdxBit_SE10_0;
4604    } else {
4605        return ARMMMUIdxBit_E10_1 |
4606               ARMMMUIdxBit_E10_1_PAN |
4607               ARMMMUIdxBit_E10_0;
4608    }
4609}
4610
4611static int e2_tlbmask(CPUARMState *env)
4612{
4613    if (arm_is_secure_below_el3(env)) {
4614        return ARMMMUIdxBit_SE20_0 |
4615               ARMMMUIdxBit_SE20_2 |
4616               ARMMMUIdxBit_SE20_2_PAN |
4617               ARMMMUIdxBit_SE2;
4618    } else {
4619        return ARMMMUIdxBit_E20_0 |
4620               ARMMMUIdxBit_E20_2 |
4621               ARMMMUIdxBit_E20_2_PAN |
4622               ARMMMUIdxBit_E2;
4623    }
4624}
4625
4626static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4627                                  uint64_t value)
4628{
4629    CPUState *cs = env_cpu(env);
4630    int mask = alle1_tlbmask(env);
4631
4632    tlb_flush_by_mmuidx(cs, mask);
4633}
4634
4635static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4636                                  uint64_t value)
4637{
4638    CPUState *cs = env_cpu(env);
4639    int mask = e2_tlbmask(env);
4640
4641    tlb_flush_by_mmuidx(cs, mask);
4642}
4643
4644static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4645                                  uint64_t value)
4646{
4647    ARMCPU *cpu = env_archcpu(env);
4648    CPUState *cs = CPU(cpu);
4649
4650    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4651}
4652
4653static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4654                                    uint64_t value)
4655{
4656    CPUState *cs = env_cpu(env);
4657    int mask = alle1_tlbmask(env);
4658
4659    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4660}
4661
4662static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4663                                    uint64_t value)
4664{
4665    CPUState *cs = env_cpu(env);
4666    int mask = e2_tlbmask(env);
4667
4668    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4669}
4670
4671static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4672                                    uint64_t value)
4673{
4674    CPUState *cs = env_cpu(env);
4675
4676    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4677}
4678
4679static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680                                 uint64_t value)
4681{
4682    /* Invalidate by VA, EL2
4683     * Currently handles both VAE2 and VALE2, since we don't support
4684     * flush-last-level-only.
4685     */
4686    CPUState *cs = env_cpu(env);
4687    int mask = e2_tlbmask(env);
4688    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4689
4690    tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4691}
4692
4693static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4694                                 uint64_t value)
4695{
4696    /* Invalidate by VA, EL3
4697     * Currently handles both VAE3 and VALE3, since we don't support
4698     * flush-last-level-only.
4699     */
4700    ARMCPU *cpu = env_archcpu(env);
4701    CPUState *cs = CPU(cpu);
4702    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4703
4704    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4705}
4706
4707static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4708                                   uint64_t value)
4709{
4710    CPUState *cs = env_cpu(env);
4711    int mask = vae1_tlbmask(env);
4712    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4713    int bits = vae1_tlbbits(env, pageaddr);
4714
4715    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4716}
4717
4718static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4719                                 uint64_t value)
4720{
4721    /* Invalidate by VA, EL1&0 (AArch64 version).
4722     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4723     * since we don't support flush-for-specific-ASID-only or
4724     * flush-last-level-only.
4725     */
4726    CPUState *cs = env_cpu(env);
4727    int mask = vae1_tlbmask(env);
4728    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4729    int bits = vae1_tlbbits(env, pageaddr);
4730
4731    if (tlb_force_broadcast(env)) {
4732        tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4733    } else {
4734        tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4735    }
4736}
4737
4738static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4739                                   uint64_t value)
4740{
4741    CPUState *cs = env_cpu(env);
4742    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4743    bool secure = arm_is_secure_below_el3(env);
4744    int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4745    int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_E2 : ARMMMUIdx_SE2,
4746                                  pageaddr);
4747
4748    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4749}
4750
4751static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4752                                   uint64_t value)
4753{
4754    CPUState *cs = env_cpu(env);
4755    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4756    int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4757
4758    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4759                                                  ARMMMUIdxBit_SE3, bits);
4760}
4761
4762static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4763                                      bool isread)
4764{
4765    int cur_el = arm_current_el(env);
4766
4767    if (cur_el < 2) {
4768        uint64_t hcr = arm_hcr_el2_eff(env);
4769
4770        if (cur_el == 0) {
4771            if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4772                if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4773                    return CP_ACCESS_TRAP_EL2;
4774                }
4775            } else {
4776                if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4777                    return CP_ACCESS_TRAP;
4778                }
4779                if (hcr & HCR_TDZ) {
4780                    return CP_ACCESS_TRAP_EL2;
4781                }
4782            }
4783        } else if (hcr & HCR_TDZ) {
4784            return CP_ACCESS_TRAP_EL2;
4785        }
4786    }
4787    return CP_ACCESS_OK;
4788}
4789
4790static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4791{
4792    ARMCPU *cpu = env_archcpu(env);
4793    int dzp_bit = 1 << 4;
4794
4795    /* DZP indicates whether DC ZVA access is allowed */
4796    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4797        dzp_bit = 0;
4798    }
4799    return cpu->dcz_blocksize | dzp_bit;
4800}
4801
4802static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4803                                    bool isread)
4804{
4805    if (!(env->pstate & PSTATE_SP)) {
4806        /* Access to SP_EL0 is undefined if it's being used as
4807         * the stack pointer.
4808         */
4809        return CP_ACCESS_TRAP_UNCATEGORIZED;
4810    }
4811    return CP_ACCESS_OK;
4812}
4813
4814static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4815{
4816    return env->pstate & PSTATE_SP;
4817}
4818
4819static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4820{
4821    update_spsel(env, val);
4822}
4823
4824static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4825                        uint64_t value)
4826{
4827    ARMCPU *cpu = env_archcpu(env);
4828
4829    if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4830        /* M bit is RAZ/WI for PMSA with no MPU implemented */
4831        value &= ~SCTLR_M;
4832    }
4833
4834    /* ??? Lots of these bits are not implemented.  */
4835
4836    if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4837        if (ri->opc1 == 6) { /* SCTLR_EL3 */
4838            value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4839        } else {
4840            value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4841                       SCTLR_ATA0 | SCTLR_ATA);
4842        }
4843    }
4844
4845    if (raw_read(env, ri) == value) {
4846        /* Skip the TLB flush if nothing actually changed; Linux likes
4847         * to do a lot of pointless SCTLR writes.
4848         */
4849        return;
4850    }
4851
4852    raw_write(env, ri, value);
4853
4854    /* This may enable/disable the MMU, so do a TLB flush.  */
4855    tlb_flush(CPU(cpu));
4856
4857    if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4858        /*
4859         * Normally we would always end the TB on an SCTLR write; see the
4860         * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4861         * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4862         * of hflags from the translator, so do it here.
4863         */
4864        arm_rebuild_hflags(env);
4865    }
4866}
4867
4868static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4869                                     bool isread)
4870{
4871    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4872        return CP_ACCESS_TRAP_FP_EL2;
4873    }
4874    if (env->cp15.cptr_el[3] & CPTR_TFP) {
4875        return CP_ACCESS_TRAP_FP_EL3;
4876    }
4877    return CP_ACCESS_OK;
4878}
4879
4880static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4881                       uint64_t value)
4882{
4883    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4884}
4885
4886static const ARMCPRegInfo v8_cp_reginfo[] = {
4887    /* Minimal set of EL0-visible registers. This will need to be expanded
4888     * significantly for system emulation of AArch64 CPUs.
4889     */
4890    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4891      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4892      .access = PL0_RW, .type = ARM_CP_NZCV },
4893    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4894      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4895      .type = ARM_CP_NO_RAW,
4896      .access = PL0_RW, .accessfn = aa64_daif_access,
4897      .fieldoffset = offsetof(CPUARMState, daif),
4898      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4899    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4900      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4901      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4902      .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4903    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4904      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4905      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4906      .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4907    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4908      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4909      .access = PL0_R, .type = ARM_CP_NO_RAW,
4910      .readfn = aa64_dczid_read },
4911    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4912      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4913      .access = PL0_W, .type = ARM_CP_DC_ZVA,
4914#ifndef CONFIG_USER_ONLY
4915      /* Avoid overhead of an access check that always passes in user-mode */
4916      .accessfn = aa64_zva_access,
4917#endif
4918    },
4919    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4920      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4921      .access = PL1_R, .type = ARM_CP_CURRENTEL },
4922    /* Cache ops: all NOPs since we don't emulate caches */
4923    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4924      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4925      .access = PL1_W, .type = ARM_CP_NOP,
4926      .accessfn = aa64_cacheop_pou_access },
4927    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4928      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4929      .access = PL1_W, .type = ARM_CP_NOP,
4930      .accessfn = aa64_cacheop_pou_access },
4931    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4932      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4933      .access = PL0_W, .type = ARM_CP_NOP,
4934      .accessfn = aa64_cacheop_pou_access },
4935    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4936      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4937      .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4938      .type = ARM_CP_NOP },
4939    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4940      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4941      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4942    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4943      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4944      .access = PL0_W, .type = ARM_CP_NOP,
4945      .accessfn = aa64_cacheop_poc_access },
4946    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4947      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4948      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4949    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4950      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4951      .access = PL0_W, .type = ARM_CP_NOP,
4952      .accessfn = aa64_cacheop_pou_access },
4953    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4954      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4955      .access = PL0_W, .type = ARM_CP_NOP,
4956      .accessfn = aa64_cacheop_poc_access },
4957    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4958      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4959      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4960    /* TLBI operations */
4961    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4962      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4963      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4964      .writefn = tlbi_aa64_vmalle1is_write },
4965    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4966      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4967      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4968      .writefn = tlbi_aa64_vae1is_write },
4969    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4970      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4971      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4972      .writefn = tlbi_aa64_vmalle1is_write },
4973    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4974      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4975      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4976      .writefn = tlbi_aa64_vae1is_write },
4977    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4978      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4979      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4980      .writefn = tlbi_aa64_vae1is_write },
4981    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4982      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4983      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4984      .writefn = tlbi_aa64_vae1is_write },
4985    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4986      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4987      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4988      .writefn = tlbi_aa64_vmalle1_write },
4989    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4990      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4991      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4992      .writefn = tlbi_aa64_vae1_write },
4993    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4994      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4995      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4996      .writefn = tlbi_aa64_vmalle1_write },
4997    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4998      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4999      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5000      .writefn = tlbi_aa64_vae1_write },
5001    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5002      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5003      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5004      .writefn = tlbi_aa64_vae1_write },
5005    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5006      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5007      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5008      .writefn = tlbi_aa64_vae1_write },
5009    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5010      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5011      .access = PL2_W, .type = ARM_CP_NOP },
5012    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5013      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5014      .access = PL2_W, .type = ARM_CP_NOP },
5015    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5016      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5017      .access = PL2_W, .type = ARM_CP_NO_RAW,
5018      .writefn = tlbi_aa64_alle1is_write },
5019    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5020      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5021      .access = PL2_W, .type = ARM_CP_NO_RAW,
5022      .writefn = tlbi_aa64_alle1is_write },
5023    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5024      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5025      .access = PL2_W, .type = ARM_CP_NOP },
5026    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5027      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5028      .access = PL2_W, .type = ARM_CP_NOP },
5029    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5030      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5031      .access = PL2_W, .type = ARM_CP_NO_RAW,
5032      .writefn = tlbi_aa64_alle1_write },
5033    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5034      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5035      .access = PL2_W, .type = ARM_CP_NO_RAW,
5036      .writefn = tlbi_aa64_alle1is_write },
5037#ifndef CONFIG_USER_ONLY
5038    /* 64 bit address translation operations */
5039    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5040      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5041      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5042      .writefn = ats_write64 },
5043    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5044      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5045      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5046      .writefn = ats_write64 },
5047    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5048      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5049      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5050      .writefn = ats_write64 },
5051    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5052      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5053      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5054      .writefn = ats_write64 },
5055    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5056      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5057      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5058      .writefn = ats_write64 },
5059    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5060      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5061      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5062      .writefn = ats_write64 },
5063    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5064      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5065      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5066      .writefn = ats_write64 },
5067    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5068      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5069      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5070      .writefn = ats_write64 },
5071    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5072    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5073      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5074      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5075      .writefn = ats_write64 },
5076    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5077      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5078      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5079      .writefn = ats_write64 },
5080    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5081      .type = ARM_CP_ALIAS,
5082      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5083      .access = PL1_RW, .resetvalue = 0,
5084      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5085      .writefn = par_write },
5086#endif
5087    /* TLB invalidate last level of translation table walk */
5088    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5089      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5090      .writefn = tlbimva_is_write },
5091    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5092      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5093      .writefn = tlbimvaa_is_write },
5094    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5095      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5096      .writefn = tlbimva_write },
5097    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5098      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5099      .writefn = tlbimvaa_write },
5100    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5101      .type = ARM_CP_NO_RAW, .access = PL2_W,
5102      .writefn = tlbimva_hyp_write },
5103    { .name = "TLBIMVALHIS",
5104      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5105      .type = ARM_CP_NO_RAW, .access = PL2_W,
5106      .writefn = tlbimva_hyp_is_write },
5107    { .name = "TLBIIPAS2",
5108      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5109      .type = ARM_CP_NOP, .access = PL2_W },
5110    { .name = "TLBIIPAS2IS",
5111      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5112      .type = ARM_CP_NOP, .access = PL2_W },
5113    { .name = "TLBIIPAS2L",
5114      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5115      .type = ARM_CP_NOP, .access = PL2_W },
5116    { .name = "TLBIIPAS2LIS",
5117      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5118      .type = ARM_CP_NOP, .access = PL2_W },
5119    /* 32 bit cache operations */
5120    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5121      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5122    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5123      .type = ARM_CP_NOP, .access = PL1_W },
5124    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5125      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5126    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5127      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5128    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5129      .type = ARM_CP_NOP, .access = PL1_W },
5130    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5131      .type = ARM_CP_NOP, .access = PL1_W },
5132    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5133      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5134    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5135      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5136    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5137      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5138    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5139      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5140    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5141      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5142    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5143      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5144    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5145      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5146    /* MMU Domain access control / MPU write buffer control */
5147    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5148      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5149      .writefn = dacr_write, .raw_writefn = raw_write,
5150      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5151                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5152    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5153      .type = ARM_CP_ALIAS,
5154      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5155      .access = PL1_RW,
5156      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5157    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5158      .type = ARM_CP_ALIAS,
5159      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5160      .access = PL1_RW,
5161      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5162    /* We rely on the access checks not allowing the guest to write to the
5163     * state field when SPSel indicates that it's being used as the stack
5164     * pointer.
5165     */
5166    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5167      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5168      .access = PL1_RW, .accessfn = sp_el0_access,
5169      .type = ARM_CP_ALIAS,
5170      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5171    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5172      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5173      .access = PL2_RW, .type = ARM_CP_ALIAS,
5174      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5175    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5176      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5177      .type = ARM_CP_NO_RAW,
5178      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5179    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5180      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5181      .type = ARM_CP_ALIAS,
5182      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5183      .access = PL2_RW, .accessfn = fpexc32_access },
5184    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5185      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5186      .access = PL2_RW, .resetvalue = 0,
5187      .writefn = dacr_write, .raw_writefn = raw_write,
5188      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5189    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5190      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5191      .access = PL2_RW, .resetvalue = 0,
5192      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5193    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5194      .type = ARM_CP_ALIAS,
5195      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5196      .access = PL2_RW,
5197      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5198    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5199      .type = ARM_CP_ALIAS,
5200      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5201      .access = PL2_RW,
5202      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5203    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5204      .type = ARM_CP_ALIAS,
5205      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5206      .access = PL2_RW,
5207      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5208    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5209      .type = ARM_CP_ALIAS,
5210      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5211      .access = PL2_RW,
5212      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5213    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5214      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5215      .resetvalue = 0,
5216      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5217    { .name = "SDCR", .type = ARM_CP_ALIAS,
5218      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5219      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5220      .writefn = sdcr_write,
5221      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5222    REGINFO_SENTINEL
5223};
5224
5225/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5226static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5227    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5228      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5229      .access = PL2_RW,
5230      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5231    { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5232      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5233      .access = PL2_RW,
5234      .type = ARM_CP_CONST, .resetvalue = 0 },
5235    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5236      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5237      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5238    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5239      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5240      .access = PL2_RW,
5241      .type = ARM_CP_CONST, .resetvalue = 0 },
5242    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5243      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5244      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5245    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5246      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5247      .access = PL2_RW, .type = ARM_CP_CONST,
5248      .resetvalue = 0 },
5249    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5250      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5251      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5252    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5253      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5254      .access = PL2_RW, .type = ARM_CP_CONST,
5255      .resetvalue = 0 },
5256    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5257      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5258      .access = PL2_RW, .type = ARM_CP_CONST,
5259      .resetvalue = 0 },
5260    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5261      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5262      .access = PL2_RW, .type = ARM_CP_CONST,
5263      .resetvalue = 0 },
5264    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5265      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5266      .access = PL2_RW, .type = ARM_CP_CONST,
5267      .resetvalue = 0 },
5268    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5269      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5270      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5271    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5272      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5273      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5274      .type = ARM_CP_CONST, .resetvalue = 0 },
5275    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5276      .cp = 15, .opc1 = 6, .crm = 2,
5277      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5278      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5279    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5280      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5281      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5282    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5283      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5284      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5285    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5286      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5287      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5288    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5289      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5290      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5291    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5292      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5293      .resetvalue = 0 },
5294    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5295      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5296      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5297    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5298      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5299      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5300    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5301      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5302      .resetvalue = 0 },
5303    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5304      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5305      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5306    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5307      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5308      .resetvalue = 0 },
5309    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5310      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5311      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5312    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5313      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5314      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5315    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5316      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5317      .access = PL2_RW, .accessfn = access_tda,
5318      .type = ARM_CP_CONST, .resetvalue = 0 },
5319    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5320      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5321      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5322      .type = ARM_CP_CONST, .resetvalue = 0 },
5323    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5324      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5325      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5326    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5327      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5328      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5329    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5330      .type = ARM_CP_CONST,
5331      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5332      .access = PL2_RW, .resetvalue = 0 },
5333    REGINFO_SENTINEL
5334};
5335
5336/* Ditto, but for registers which exist in ARMv8 but not v7 */
5337static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5338    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5339      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5340      .access = PL2_RW,
5341      .type = ARM_CP_CONST, .resetvalue = 0 },
5342    REGINFO_SENTINEL
5343};
5344
5345static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5346{
5347    ARMCPU *cpu = env_archcpu(env);
5348
5349    if (arm_feature(env, ARM_FEATURE_V8)) {
5350        valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5351    } else {
5352        valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5353    }
5354
5355    if (arm_feature(env, ARM_FEATURE_EL3)) {
5356        valid_mask &= ~HCR_HCD;
5357    } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5358        /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5359         * However, if we're using the SMC PSCI conduit then QEMU is
5360         * effectively acting like EL3 firmware and so the guest at
5361         * EL2 should retain the ability to prevent EL1 from being
5362         * able to make SMC calls into the ersatz firmware, so in
5363         * that case HCR.TSC should be read/write.
5364         */
5365        valid_mask &= ~HCR_TSC;
5366    }
5367
5368    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5369        if (cpu_isar_feature(aa64_vh, cpu)) {
5370            valid_mask |= HCR_E2H;
5371        }
5372        if (cpu_isar_feature(aa64_lor, cpu)) {
5373            valid_mask |= HCR_TLOR;
5374        }
5375        if (cpu_isar_feature(aa64_pauth, cpu)) {
5376            valid_mask |= HCR_API | HCR_APK;
5377        }
5378        if (cpu_isar_feature(aa64_mte, cpu)) {
5379            valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5380        }
5381    }
5382
5383    /* Clear RES0 bits.  */
5384    value &= valid_mask;
5385
5386    /*
5387     * These bits change the MMU setup:
5388     * HCR_VM enables stage 2 translation
5389     * HCR_PTW forbids certain page-table setups
5390     * HCR_DC disables stage1 and enables stage2 translation
5391     * HCR_DCT enables tagging on (disabled) stage1 translation
5392     */
5393    if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5394        tlb_flush(CPU(cpu));
5395    }
5396    env->cp15.hcr_el2 = value;
5397
5398    /*
5399     * Updates to VI and VF require us to update the status of
5400     * virtual interrupts, which are the logical OR of these bits
5401     * and the state of the input lines from the GIC. (This requires
5402     * that we have the iothread lock, which is done by marking the
5403     * reginfo structs as ARM_CP_IO.)
5404     * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5405     * possible for it to be taken immediately, because VIRQ and
5406     * VFIQ are masked unless running at EL0 or EL1, and HCR
5407     * can only be written at EL2.
5408     */
5409    g_assert(qemu_mutex_iothread_locked());
5410    arm_cpu_update_virq(cpu);
5411    arm_cpu_update_vfiq(cpu);
5412}
5413
5414static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5415{
5416    do_hcr_write(env, value, 0);
5417}
5418
5419static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5420                          uint64_t value)
5421{
5422    /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5423    value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5424    do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5425}
5426
5427static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5428                         uint64_t value)
5429{
5430    /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5431    value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5432    do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5433}
5434
5435/*
5436 * Return the effective value of HCR_EL2.
5437 * Bits that are not included here:
5438 * RW       (read from SCR_EL3.RW as needed)
5439 */
5440uint64_t arm_hcr_el2_eff(CPUARMState *env)
5441{
5442    uint64_t ret = env->cp15.hcr_el2;
5443
5444    if (!arm_is_el2_enabled(env)) {
5445        /*
5446         * "This register has no effect if EL2 is not enabled in the
5447         * current Security state".  This is ARMv8.4-SecEL2 speak for
5448         * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5449         *
5450         * Prior to that, the language was "In an implementation that
5451         * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5452         * as if this field is 0 for all purposes other than a direct
5453         * read or write access of HCR_EL2".  With lots of enumeration
5454         * on a per-field basis.  In current QEMU, this is condition
5455         * is arm_is_secure_below_el3.
5456         *
5457         * Since the v8.4 language applies to the entire register, and
5458         * appears to be backward compatible, use that.
5459         */
5460        return 0;
5461    }
5462
5463    /*
5464     * For a cpu that supports both aarch64 and aarch32, we can set bits
5465     * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5466     * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5467     */
5468    if (!arm_el_is_aa64(env, 2)) {
5469        uint64_t aa32_valid;
5470
5471        /*
5472         * These bits are up-to-date as of ARMv8.6.
5473         * For HCR, it's easiest to list just the 2 bits that are invalid.
5474         * For HCR2, list those that are valid.
5475         */
5476        aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5477        aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5478                       HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5479        ret &= aa32_valid;
5480    }
5481
5482    if (ret & HCR_TGE) {
5483        /* These bits are up-to-date as of ARMv8.6.  */
5484        if (ret & HCR_E2H) {
5485            ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5486                     HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5487                     HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5488                     HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5489                     HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5490                     HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5491        } else {
5492            ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5493        }
5494        ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5495                 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5496                 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5497                 HCR_TLOR);
5498    }
5499
5500    return ret;
5501}
5502
5503static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5504                           uint64_t value)
5505{
5506    /*
5507     * For A-profile AArch32 EL3, if NSACR.CP10
5508     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5509     */
5510    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5511        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5512        value &= ~(0x3 << 10);
5513        value |= env->cp15.cptr_el[2] & (0x3 << 10);
5514    }
5515    env->cp15.cptr_el[2] = value;
5516}
5517
5518static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5519{
5520    /*
5521     * For A-profile AArch32 EL3, if NSACR.CP10
5522     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5523     */
5524    uint64_t value = env->cp15.cptr_el[2];
5525
5526    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5527        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5528        value |= 0x3 << 10;
5529    }
5530    return value;
5531}
5532
5533static const ARMCPRegInfo el2_cp_reginfo[] = {
5534    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5535      .type = ARM_CP_IO,
5536      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5537      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5538      .writefn = hcr_write },
5539    { .name = "HCR", .state = ARM_CP_STATE_AA32,
5540      .type = ARM_CP_ALIAS | ARM_CP_IO,
5541      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5542      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5543      .writefn = hcr_writelow },
5544    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5545      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5546      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5547    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5548      .type = ARM_CP_ALIAS,
5549      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5550      .access = PL2_RW,
5551      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5552    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5553      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5554      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5555    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5556      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5557      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5558    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5559      .type = ARM_CP_ALIAS,
5560      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5561      .access = PL2_RW,
5562      .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5563    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5564      .type = ARM_CP_ALIAS,
5565      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5566      .access = PL2_RW,
5567      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5568    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5569      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5570      .access = PL2_RW, .writefn = vbar_write,
5571      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5572      .resetvalue = 0 },
5573    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5574      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5575      .access = PL3_RW, .type = ARM_CP_ALIAS,
5576      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5577    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5578      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5579      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5580      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5581      .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5582    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5583      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5584      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5585      .resetvalue = 0 },
5586    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5587      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5588      .access = PL2_RW, .type = ARM_CP_ALIAS,
5589      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5590    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5591      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5592      .access = PL2_RW, .type = ARM_CP_CONST,
5593      .resetvalue = 0 },
5594    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5595    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5596      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5597      .access = PL2_RW, .type = ARM_CP_CONST,
5598      .resetvalue = 0 },
5599    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5600      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5601      .access = PL2_RW, .type = ARM_CP_CONST,
5602      .resetvalue = 0 },
5603    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5604      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5605      .access = PL2_RW, .type = ARM_CP_CONST,
5606      .resetvalue = 0 },
5607    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5608      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5609      .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5610      /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5611      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5612    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5613      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5614      .type = ARM_CP_ALIAS,
5615      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5616      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5617    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5618      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5619      .access = PL2_RW,
5620      /* no .writefn needed as this can't cause an ASID change;
5621       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5622       */
5623      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5624    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5625      .cp = 15, .opc1 = 6, .crm = 2,
5626      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5627      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5628      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5629      .writefn = vttbr_write },
5630    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5631      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5632      .access = PL2_RW, .writefn = vttbr_write,
5633      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5634    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5635      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5636      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5637      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5638    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5639      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5640      .access = PL2_RW, .resetvalue = 0,
5641      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5642    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5643      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5644      .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5645      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5646    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5647      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5648      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5649    { .name = "TLBIALLNSNH",
5650      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5651      .type = ARM_CP_NO_RAW, .access = PL2_W,
5652      .writefn = tlbiall_nsnh_write },
5653    { .name = "TLBIALLNSNHIS",
5654      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5655      .type = ARM_CP_NO_RAW, .access = PL2_W,
5656      .writefn = tlbiall_nsnh_is_write },
5657    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5658      .type = ARM_CP_NO_RAW, .access = PL2_W,
5659      .writefn = tlbiall_hyp_write },
5660    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5661      .type = ARM_CP_NO_RAW, .access = PL2_W,
5662      .writefn = tlbiall_hyp_is_write },
5663    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5664      .type = ARM_CP_NO_RAW, .access = PL2_W,
5665      .writefn = tlbimva_hyp_write },
5666    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5667      .type = ARM_CP_NO_RAW, .access = PL2_W,
5668      .writefn = tlbimva_hyp_is_write },
5669    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5670      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5671      .type = ARM_CP_NO_RAW, .access = PL2_W,
5672      .writefn = tlbi_aa64_alle2_write },
5673    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5674      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5675      .type = ARM_CP_NO_RAW, .access = PL2_W,
5676      .writefn = tlbi_aa64_vae2_write },
5677    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5678      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5679      .access = PL2_W, .type = ARM_CP_NO_RAW,
5680      .writefn = tlbi_aa64_vae2_write },
5681    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5682      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5683      .access = PL2_W, .type = ARM_CP_NO_RAW,
5684      .writefn = tlbi_aa64_alle2is_write },
5685    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5686      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5687      .type = ARM_CP_NO_RAW, .access = PL2_W,
5688      .writefn = tlbi_aa64_vae2is_write },
5689    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5690      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5691      .access = PL2_W, .type = ARM_CP_NO_RAW,
5692      .writefn = tlbi_aa64_vae2is_write },
5693#ifndef CONFIG_USER_ONLY
5694    /* Unlike the other EL2-related AT operations, these must
5695     * UNDEF from EL3 if EL2 is not implemented, which is why we
5696     * define them here rather than with the rest of the AT ops.
5697     */
5698    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5699      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5700      .access = PL2_W, .accessfn = at_s1e2_access,
5701      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5702    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5703      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5704      .access = PL2_W, .accessfn = at_s1e2_access,
5705      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5706    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5707     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5708     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5709     * to behave as if SCR.NS was 1.
5710     */
5711    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5712      .access = PL2_W,
5713      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5714    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5715      .access = PL2_W,
5716      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5717    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5718      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5719      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5720       * reset values as IMPDEF. We choose to reset to 3 to comply with
5721       * both ARMv7 and ARMv8.
5722       */
5723      .access = PL2_RW, .resetvalue = 3,
5724      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5725    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5726      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5727      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5728      .writefn = gt_cntvoff_write,
5729      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5730    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5731      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5732      .writefn = gt_cntvoff_write,
5733      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5734    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5735      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5736      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5737      .type = ARM_CP_IO, .access = PL2_RW,
5738      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5739    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5740      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5741      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5742      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5743    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5744      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5745      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5746      .resetfn = gt_hyp_timer_reset,
5747      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5748    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5749      .type = ARM_CP_IO,
5750      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5751      .access = PL2_RW,
5752      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5753      .resetvalue = 0,
5754      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5755#endif
5756    /* The only field of MDCR_EL2 that has a defined architectural reset value
5757     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5758     */
5759    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5760      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5761      .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5762      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5763    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5764      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5765      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5766      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5767    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5768      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5769      .access = PL2_RW,
5770      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5771    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5772      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5773      .access = PL2_RW,
5774      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5775    REGINFO_SENTINEL
5776};
5777
5778static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5779    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5780      .type = ARM_CP_ALIAS | ARM_CP_IO,
5781      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5782      .access = PL2_RW,
5783      .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5784      .writefn = hcr_writehigh },
5785    REGINFO_SENTINEL
5786};
5787
5788static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5789                                  bool isread)
5790{
5791    if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5792        return CP_ACCESS_OK;
5793    }
5794    return CP_ACCESS_TRAP_UNCATEGORIZED;
5795}
5796
5797static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5798    { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5799      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5800      .access = PL2_RW, .accessfn = sel2_access,
5801      .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5802    { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5803      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5804      .access = PL2_RW, .accessfn = sel2_access,
5805      .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5806    REGINFO_SENTINEL
5807};
5808
5809static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5810                                   bool isread)
5811{
5812    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5813     * At Secure EL1 it traps to EL3 or EL2.
5814     */
5815    if (arm_current_el(env) == 3) {
5816        return CP_ACCESS_OK;
5817    }
5818    if (arm_is_secure_below_el3(env)) {
5819        if (env->cp15.scr_el3 & SCR_EEL2) {
5820            return CP_ACCESS_TRAP_EL2;
5821        }
5822        return CP_ACCESS_TRAP_EL3;
5823    }
5824    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5825    if (isread) {
5826        return CP_ACCESS_OK;
5827    }
5828    return CP_ACCESS_TRAP_UNCATEGORIZED;
5829}
5830
5831static const ARMCPRegInfo el3_cp_reginfo[] = {
5832    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5833      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5834      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5835      .resetfn = scr_reset, .writefn = scr_write },
5836    { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5837      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5838      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5839      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5840      .writefn = scr_write },
5841    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5842      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5843      .access = PL3_RW, .resetvalue = 0,
5844      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5845    { .name = "SDER",
5846      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5847      .access = PL3_RW, .resetvalue = 0,
5848      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5849    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5850      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5851      .writefn = vbar_write, .resetvalue = 0,
5852      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5853    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5854      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5855      .access = PL3_RW, .resetvalue = 0,
5856      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5857    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5858      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5859      .access = PL3_RW,
5860      /* no .writefn needed as this can't cause an ASID change;
5861       * we must provide a .raw_writefn and .resetfn because we handle
5862       * reset and migration for the AArch32 TTBCR(S), which might be
5863       * using mask and base_mask.
5864       */
5865      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5866      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5867    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5868      .type = ARM_CP_ALIAS,
5869      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5870      .access = PL3_RW,
5871      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5872    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5873      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5874      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5875    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5876      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5877      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5878    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5879      .type = ARM_CP_ALIAS,
5880      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5881      .access = PL3_RW,
5882      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5883    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5884      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5885      .access = PL3_RW, .writefn = vbar_write,
5886      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5887      .resetvalue = 0 },
5888    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5889      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5890      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5891      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5892    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5893      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5894      .access = PL3_RW, .resetvalue = 0,
5895      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5896    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5897      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5898      .access = PL3_RW, .type = ARM_CP_CONST,
5899      .resetvalue = 0 },
5900    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5901      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5902      .access = PL3_RW, .type = ARM_CP_CONST,
5903      .resetvalue = 0 },
5904    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5905      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5906      .access = PL3_RW, .type = ARM_CP_CONST,
5907      .resetvalue = 0 },
5908    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5909      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5910      .access = PL3_W, .type = ARM_CP_NO_RAW,
5911      .writefn = tlbi_aa64_alle3is_write },
5912    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5913      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5914      .access = PL3_W, .type = ARM_CP_NO_RAW,
5915      .writefn = tlbi_aa64_vae3is_write },
5916    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5917      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5918      .access = PL3_W, .type = ARM_CP_NO_RAW,
5919      .writefn = tlbi_aa64_vae3is_write },
5920    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5921      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5922      .access = PL3_W, .type = ARM_CP_NO_RAW,
5923      .writefn = tlbi_aa64_alle3_write },
5924    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5925      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5926      .access = PL3_W, .type = ARM_CP_NO_RAW,
5927      .writefn = tlbi_aa64_vae3_write },
5928    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5929      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5930      .access = PL3_W, .type = ARM_CP_NO_RAW,
5931      .writefn = tlbi_aa64_vae3_write },
5932    REGINFO_SENTINEL
5933};
5934
5935#ifndef CONFIG_USER_ONLY
5936/* Test if system register redirection is to occur in the current state.  */
5937static bool redirect_for_e2h(CPUARMState *env)
5938{
5939    return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5940}
5941
5942static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5943{
5944    CPReadFn *readfn;
5945
5946    if (redirect_for_e2h(env)) {
5947        /* Switch to the saved EL2 version of the register.  */
5948        ri = ri->opaque;
5949        readfn = ri->readfn;
5950    } else {
5951        readfn = ri->orig_readfn;
5952    }
5953    if (readfn == NULL) {
5954        readfn = raw_read;
5955    }
5956    return readfn(env, ri);
5957}
5958
5959static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5960                          uint64_t value)
5961{
5962    CPWriteFn *writefn;
5963
5964    if (redirect_for_e2h(env)) {
5965        /* Switch to the saved EL2 version of the register.  */
5966        ri = ri->opaque;
5967        writefn = ri->writefn;
5968    } else {
5969        writefn = ri->orig_writefn;
5970    }
5971    if (writefn == NULL) {
5972        writefn = raw_write;
5973    }
5974    writefn(env, ri, value);
5975}
5976
5977static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5978{
5979    struct E2HAlias {
5980        uint32_t src_key, dst_key, new_key;
5981        const char *src_name, *dst_name, *new_name;
5982        bool (*feature)(const ARMISARegisters *id);
5983    };
5984
5985#define K(op0, op1, crn, crm, op2) \
5986    ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5987
5988    static const struct E2HAlias aliases[] = {
5989        { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5990          "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5991        { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5992          "CPACR", "CPTR_EL2", "CPACR_EL12" },
5993        { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5994          "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5995        { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5996          "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5997        { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5998          "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5999        { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6000          "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6001        { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6002          "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6003        { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6004          "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6005        { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6006          "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6007        { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6008          "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6009        { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6010          "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6011        { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6012          "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6013        { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6014          "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6015        { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6016          "VBAR", "VBAR_EL2", "VBAR_EL12" },
6017        { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6018          "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6019        { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6020          "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6021
6022        /*
6023         * Note that redirection of ZCR is mentioned in the description
6024         * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6025         * not in the summary table.
6026         */
6027        { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6028          "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6029
6030        { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6031          "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6032
6033        /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6034        /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6035    };
6036#undef K
6037
6038    size_t i;
6039
6040    for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6041        const struct E2HAlias *a = &aliases[i];
6042        ARMCPRegInfo *src_reg, *dst_reg;
6043
6044        if (a->feature && !a->feature(&cpu->isar)) {
6045            continue;
6046        }
6047
6048        src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6049        dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6050        g_assert(src_reg != NULL);
6051        g_assert(dst_reg != NULL);
6052
6053        /* Cross-compare names to detect typos in the keys.  */
6054        g_assert(strcmp(src_reg->name, a->src_name) == 0);
6055        g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6056
6057        /* None of the core system registers use opaque; we will.  */
6058        g_assert(src_reg->opaque == NULL);
6059
6060        /* Create alias before redirection so we dup the right data. */
6061        if (a->new_key) {
6062            ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6063            uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6064            bool ok;
6065
6066            new_reg->name = a->new_name;
6067            new_reg->type |= ARM_CP_ALIAS;
6068            /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6069            new_reg->access &= PL2_RW | PL3_RW;
6070
6071            ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6072            g_assert(ok);
6073        }
6074
6075        src_reg->opaque = dst_reg;
6076        src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6077        src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6078        if (!src_reg->raw_readfn) {
6079            src_reg->raw_readfn = raw_read;
6080        }
6081        if (!src_reg->raw_writefn) {
6082            src_reg->raw_writefn = raw_write;
6083        }
6084        src_reg->readfn = el2_e2h_read;
6085        src_reg->writefn = el2_e2h_write;
6086    }
6087}
6088#endif
6089
6090static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6091                                     bool isread)
6092{
6093    int cur_el = arm_current_el(env);
6094
6095    if (cur_el < 2) {
6096        uint64_t hcr = arm_hcr_el2_eff(env);
6097
6098        if (cur_el == 0) {
6099            if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6100                if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6101                    return CP_ACCESS_TRAP_EL2;
6102                }
6103            } else {
6104                if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6105                    return CP_ACCESS_TRAP;
6106                }
6107                if (hcr & HCR_TID2) {
6108                    return CP_ACCESS_TRAP_EL2;
6109                }
6110            }
6111        } else if (hcr & HCR_TID2) {
6112            return CP_ACCESS_TRAP_EL2;
6113        }
6114    }
6115
6116    if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6117        return CP_ACCESS_TRAP_EL2;
6118    }
6119
6120    return CP_ACCESS_OK;
6121}
6122
6123static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6124                        uint64_t value)
6125{
6126    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6127     * read via a bit in OSLSR_EL1.
6128     */
6129    int oslock;
6130
6131    if (ri->state == ARM_CP_STATE_AA32) {
6132        oslock = (value == 0xC5ACCE55);
6133    } else {
6134        oslock = value & 1;
6135    }
6136
6137    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6138}
6139
6140static const ARMCPRegInfo debug_cp_reginfo[] = {
6141    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6142     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6143     * unlike DBGDRAR it is never accessible from EL0.
6144     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6145     * accessor.
6146     */
6147    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6148      .access = PL0_R, .accessfn = access_tdra,
6149      .type = ARM_CP_CONST, .resetvalue = 0 },
6150    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6151      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6152      .access = PL1_R, .accessfn = access_tdra,
6153      .type = ARM_CP_CONST, .resetvalue = 0 },
6154    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6155      .access = PL0_R, .accessfn = access_tdra,
6156      .type = ARM_CP_CONST, .resetvalue = 0 },
6157    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6158    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6159      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6160      .access = PL1_RW, .accessfn = access_tda,
6161      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6162      .resetvalue = 0 },
6163    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6164     * We don't implement the configurable EL0 access.
6165     */
6166    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6167      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6168      .type = ARM_CP_ALIAS,
6169      .access = PL1_R, .accessfn = access_tda,
6170      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6171    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6172      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6173      .access = PL1_W, .type = ARM_CP_NO_RAW,
6174      .accessfn = access_tdosa,
6175      .writefn = oslar_write },
6176    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6177      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6178      .access = PL1_R, .resetvalue = 10,
6179      .accessfn = access_tdosa,
6180      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6181    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6182    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6183      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6184      .access = PL1_RW, .accessfn = access_tdosa,
6185      .type = ARM_CP_NOP },
6186    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6187     * implement vector catch debug events yet.
6188     */
6189    { .name = "DBGVCR",
6190      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6191      .access = PL1_RW, .accessfn = access_tda,
6192      .type = ARM_CP_NOP },
6193    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6194     * to save and restore a 32-bit guest's DBGVCR)
6195     */
6196    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6197      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6198      .access = PL2_RW, .accessfn = access_tda,
6199      .type = ARM_CP_NOP },
6200    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6201     * Channel but Linux may try to access this register. The 32-bit
6202     * alias is DBGDCCINT.
6203     */
6204    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6205      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6206      .access = PL1_RW, .accessfn = access_tda,
6207      .type = ARM_CP_NOP },
6208    REGINFO_SENTINEL
6209};
6210
6211static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6212    /* 64 bit access versions of the (dummy) debug registers */
6213    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6214      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6215    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6216      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6217    REGINFO_SENTINEL
6218};
6219
6220/* Return the exception level to which exceptions should be taken
6221 * via SVEAccessTrap.  If an exception should be routed through
6222 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6223 * take care of raising that exception.
6224 * C.f. the ARM pseudocode function CheckSVEEnabled.
6225 */
6226int sve_exception_el(CPUARMState *env, int el)
6227{
6228#ifndef CONFIG_USER_ONLY
6229    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6230
6231    if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6232        bool disabled = false;
6233
6234        /* The CPACR.ZEN controls traps to EL1:
6235         * 0, 2 : trap EL0 and EL1 accesses
6236         * 1    : trap only EL0 accesses
6237         * 3    : trap no accesses
6238         */
6239        if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6240            disabled = true;
6241        } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6242            disabled = el == 0;
6243        }
6244        if (disabled) {
6245            /* route_to_el2 */
6246            return hcr_el2 & HCR_TGE ? 2 : 1;
6247        }
6248
6249        /* Check CPACR.FPEN.  */
6250        if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6251            disabled = true;
6252        } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6253            disabled = el == 0;
6254        }
6255        if (disabled) {
6256            return 0;
6257        }
6258    }
6259
6260    /* CPTR_EL2.  Since TZ and TFP are positive,
6261     * they will be zero when EL2 is not present.
6262     */
6263    if (el <= 2 && arm_is_el2_enabled(env)) {
6264        if (env->cp15.cptr_el[2] & CPTR_TZ) {
6265            return 2;
6266        }
6267        if (env->cp15.cptr_el[2] & CPTR_TFP) {
6268            return 0;
6269        }
6270    }
6271
6272    /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6273    if (arm_feature(env, ARM_FEATURE_EL3)
6274        && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6275        return 3;
6276    }
6277#endif
6278    return 0;
6279}
6280
6281static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6282{
6283    uint32_t end_len;
6284
6285    end_len = start_len &= 0xf;
6286    if (!test_bit(start_len, cpu->sve_vq_map)) {
6287        end_len = find_last_bit(cpu->sve_vq_map, start_len);
6288        assert(end_len < start_len);
6289    }
6290    return end_len;
6291}
6292
6293/*
6294 * Given that SVE is enabled, return the vector length for EL.
6295 */
6296uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6297{
6298    ARMCPU *cpu = env_archcpu(env);
6299    uint32_t zcr_len = cpu->sve_max_vq - 1;
6300
6301    if (el <= 1) {
6302        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6303    }
6304    if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6305        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6306    }
6307    if (arm_feature(env, ARM_FEATURE_EL3)) {
6308        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6309    }
6310
6311    return sve_zcr_get_valid_len(cpu, zcr_len);
6312}
6313
6314static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6315                      uint64_t value)
6316{
6317    int cur_el = arm_current_el(env);
6318    int old_len = sve_zcr_len_for_el(env, cur_el);
6319    int new_len;
6320
6321    /* Bits other than [3:0] are RAZ/WI.  */
6322    QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6323    raw_write(env, ri, value & 0xf);
6324
6325    /*
6326     * Because we arrived here, we know both FP and SVE are enabled;
6327     * otherwise we would have trapped access to the ZCR_ELn register.
6328     */
6329    new_len = sve_zcr_len_for_el(env, cur_el);
6330    if (new_len < old_len) {
6331        aarch64_sve_narrow_vq(env, new_len + 1);
6332    }
6333}
6334
6335static const ARMCPRegInfo zcr_el1_reginfo = {
6336    .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6337    .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6338    .access = PL1_RW, .type = ARM_CP_SVE,
6339    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6340    .writefn = zcr_write, .raw_writefn = raw_write
6341};
6342
6343static const ARMCPRegInfo zcr_el2_reginfo = {
6344    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6345    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6346    .access = PL2_RW, .type = ARM_CP_SVE,
6347    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6348    .writefn = zcr_write, .raw_writefn = raw_write
6349};
6350
6351static const ARMCPRegInfo zcr_no_el2_reginfo = {
6352    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6353    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6354    .access = PL2_RW, .type = ARM_CP_SVE,
6355    .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6356};
6357
6358static const ARMCPRegInfo zcr_el3_reginfo = {
6359    .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6360    .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6361    .access = PL3_RW, .type = ARM_CP_SVE,
6362    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6363    .writefn = zcr_write, .raw_writefn = raw_write
6364};
6365
6366void hw_watchpoint_update(ARMCPU *cpu, int n)
6367{
6368    CPUARMState *env = &cpu->env;
6369    vaddr len = 0;
6370    vaddr wvr = env->cp15.dbgwvr[n];
6371    uint64_t wcr = env->cp15.dbgwcr[n];
6372    int mask;
6373    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6374
6375    if (env->cpu_watchpoint[n]) {
6376        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6377        env->cpu_watchpoint[n] = NULL;
6378    }
6379
6380    if (!extract64(wcr, 0, 1)) {
6381        /* E bit clear : watchpoint disabled */
6382        return;
6383    }
6384
6385    switch (extract64(wcr, 3, 2)) {
6386    case 0:
6387        /* LSC 00 is reserved and must behave as if the wp is disabled */
6388        return;
6389    case 1:
6390        flags |= BP_MEM_READ;
6391        break;
6392    case 2:
6393        flags |= BP_MEM_WRITE;
6394        break;
6395    case 3:
6396        flags |= BP_MEM_ACCESS;
6397        break;
6398    }
6399
6400    /* Attempts to use both MASK and BAS fields simultaneously are
6401     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6402     * thus generating a watchpoint for every byte in the masked region.
6403     */
6404    mask = extract64(wcr, 24, 4);
6405    if (mask == 1 || mask == 2) {
6406        /* Reserved values of MASK; we must act as if the mask value was
6407         * some non-reserved value, or as if the watchpoint were disabled.
6408         * We choose the latter.
6409         */
6410        return;
6411    } else if (mask) {
6412        /* Watchpoint covers an aligned area up to 2GB in size */
6413        len = 1ULL << mask;
6414        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6415         * whether the watchpoint fires when the unmasked bits match; we opt
6416         * to generate the exceptions.
6417         */
6418        wvr &= ~(len - 1);
6419    } else {
6420        /* Watchpoint covers bytes defined by the byte address select bits */
6421        int bas = extract64(wcr, 5, 8);
6422        int basstart;
6423
6424        if (extract64(wvr, 2, 1)) {
6425            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6426             * ignored, and BAS[3:0] define which bytes to watch.
6427             */
6428            bas &= 0xf;
6429        }
6430
6431        if (bas == 0) {
6432            /* This must act as if the watchpoint is disabled */
6433            return;
6434        }
6435
6436        /* The BAS bits are supposed to be programmed to indicate a contiguous
6437         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6438         * we fire for each byte in the word/doubleword addressed by the WVR.
6439         * We choose to ignore any non-zero bits after the first range of 1s.
6440         */
6441        basstart = ctz32(bas);
6442        len = cto32(bas >> basstart);
6443        wvr += basstart;
6444    }
6445
6446    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6447                          &env->cpu_watchpoint[n]);
6448}
6449
6450void hw_watchpoint_update_all(ARMCPU *cpu)
6451{
6452    int i;
6453    CPUARMState *env = &cpu->env;
6454
6455    /* Completely clear out existing QEMU watchpoints and our array, to
6456     * avoid possible stale entries following migration load.
6457     */
6458    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6459    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6460
6461    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6462        hw_watchpoint_update(cpu, i);
6463    }
6464}
6465
6466static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6467                         uint64_t value)
6468{
6469    ARMCPU *cpu = env_archcpu(env);
6470    int i = ri->crm;
6471
6472    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6473     * register reads and behaves as if values written are sign extended.
6474     * Bits [1:0] are RES0.
6475     */
6476    value = sextract64(value, 0, 49) & ~3ULL;
6477
6478    raw_write(env, ri, value);
6479    hw_watchpoint_update(cpu, i);
6480}
6481
6482static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6483                         uint64_t value)
6484{
6485    ARMCPU *cpu = env_archcpu(env);
6486    int i = ri->crm;
6487
6488    raw_write(env, ri, value);
6489    hw_watchpoint_update(cpu, i);
6490}
6491
6492void hw_breakpoint_update(ARMCPU *cpu, int n)
6493{
6494    CPUARMState *env = &cpu->env;
6495    uint64_t bvr = env->cp15.dbgbvr[n];
6496    uint64_t bcr = env->cp15.dbgbcr[n];
6497    vaddr addr;
6498    int bt;
6499    int flags = BP_CPU;
6500
6501    if (env->cpu_breakpoint[n]) {
6502        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6503        env->cpu_breakpoint[n] = NULL;
6504    }
6505
6506    if (!extract64(bcr, 0, 1)) {
6507        /* E bit clear : watchpoint disabled */
6508        return;
6509    }
6510
6511    bt = extract64(bcr, 20, 4);
6512
6513    switch (bt) {
6514    case 4: /* unlinked address mismatch (reserved if AArch64) */
6515    case 5: /* linked address mismatch (reserved if AArch64) */
6516        qemu_log_mask(LOG_UNIMP,
6517                      "arm: address mismatch breakpoint types not implemented\n");
6518        return;
6519    case 0: /* unlinked address match */
6520    case 1: /* linked address match */
6521    {
6522        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6523         * we behave as if the register was sign extended. Bits [1:0] are
6524         * RES0. The BAS field is used to allow setting breakpoints on 16
6525         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6526         * a bp will fire if the addresses covered by the bp and the addresses
6527         * covered by the insn overlap but the insn doesn't start at the
6528         * start of the bp address range. We choose to require the insn and
6529         * the bp to have the same address. The constraints on writing to
6530         * BAS enforced in dbgbcr_write mean we have only four cases:
6531         *  0b0000  => no breakpoint
6532         *  0b0011  => breakpoint on addr
6533         *  0b1100  => breakpoint on addr + 2
6534         *  0b1111  => breakpoint on addr
6535         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6536         */
6537        int bas = extract64(bcr, 5, 4);
6538        addr = sextract64(bvr, 0, 49) & ~3ULL;
6539        if (bas == 0) {
6540            return;
6541        }
6542        if (bas == 0xc) {
6543            addr += 2;
6544        }
6545        break;
6546    }
6547    case 2: /* unlinked context ID match */
6548    case 8: /* unlinked VMID match (reserved if no EL2) */
6549    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6550        qemu_log_mask(LOG_UNIMP,
6551                      "arm: unlinked context breakpoint types not implemented\n");
6552        return;
6553    case 9: /* linked VMID match (reserved if no EL2) */
6554    case 11: /* linked context ID and VMID match (reserved if no EL2) */
6555    case 3: /* linked context ID match */
6556    default:
6557        /* We must generate no events for Linked context matches (unless
6558         * they are linked to by some other bp/wp, which is handled in
6559         * updates for the linking bp/wp). We choose to also generate no events
6560         * for reserved values.
6561         */
6562        return;
6563    }
6564
6565    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6566}
6567
6568void hw_breakpoint_update_all(ARMCPU *cpu)
6569{
6570    int i;
6571    CPUARMState *env = &cpu->env;
6572
6573    /* Completely clear out existing QEMU breakpoints and our array, to
6574     * avoid possible stale entries following migration load.
6575     */
6576    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6577    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6578
6579    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6580        hw_breakpoint_update(cpu, i);
6581    }
6582}
6583
6584static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6585                         uint64_t value)
6586{
6587    ARMCPU *cpu = env_archcpu(env);
6588    int i = ri->crm;
6589
6590    raw_write(env, ri, value);
6591    hw_breakpoint_update(cpu, i);
6592}
6593
6594static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6595                         uint64_t value)
6596{
6597    ARMCPU *cpu = env_archcpu(env);
6598    int i = ri->crm;
6599
6600    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6601     * copy of BAS[0].
6602     */
6603    value = deposit64(value, 6, 1, extract64(value, 5, 1));
6604    value = deposit64(value, 8, 1, extract64(value, 7, 1));
6605
6606    raw_write(env, ri, value);
6607    hw_breakpoint_update(cpu, i);
6608}
6609
6610static void define_debug_regs(ARMCPU *cpu)
6611{
6612    /* Define v7 and v8 architectural debug registers.
6613     * These are just dummy implementations for now.
6614     */
6615    int i;
6616    int wrps, brps, ctx_cmps;
6617
6618    /*
6619     * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6620     * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6621     * the register must not exist for this cpu.
6622     */
6623    if (cpu->isar.dbgdidr != 0) {
6624        ARMCPRegInfo dbgdidr = {
6625            .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6626            .opc1 = 0, .opc2 = 0,
6627            .access = PL0_R, .accessfn = access_tda,
6628            .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6629        };
6630        define_one_arm_cp_reg(cpu, &dbgdidr);
6631    }
6632
6633    /* Note that all these register fields hold "number of Xs minus 1". */
6634    brps = arm_num_brps(cpu);
6635    wrps = arm_num_wrps(cpu);
6636    ctx_cmps = arm_num_ctx_cmps(cpu);
6637
6638    assert(ctx_cmps <= brps);
6639
6640    define_arm_cp_regs(cpu, debug_cp_reginfo);
6641
6642    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6643        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6644    }
6645
6646    for (i = 0; i < brps; i++) {
6647        ARMCPRegInfo dbgregs[] = {
6648            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6649              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6650              .access = PL1_RW, .accessfn = access_tda,
6651              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6652              .writefn = dbgbvr_write, .raw_writefn = raw_write
6653            },
6654            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6655              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6656              .access = PL1_RW, .accessfn = access_tda,
6657              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6658              .writefn = dbgbcr_write, .raw_writefn = raw_write
6659            },
6660            REGINFO_SENTINEL
6661        };
6662        define_arm_cp_regs(cpu, dbgregs);
6663    }
6664
6665    for (i = 0; i < wrps; i++) {
6666        ARMCPRegInfo dbgregs[] = {
6667            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6668              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6669              .access = PL1_RW, .accessfn = access_tda,
6670              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6671              .writefn = dbgwvr_write, .raw_writefn = raw_write
6672            },
6673            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6674              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6675              .access = PL1_RW, .accessfn = access_tda,
6676              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6677              .writefn = dbgwcr_write, .raw_writefn = raw_write
6678            },
6679            REGINFO_SENTINEL
6680        };
6681        define_arm_cp_regs(cpu, dbgregs);
6682    }
6683}
6684
6685static void define_pmu_regs(ARMCPU *cpu)
6686{
6687    /*
6688     * v7 performance monitor control register: same implementor
6689     * field as main ID register, and we implement four counters in
6690     * addition to the cycle count register.
6691     */
6692    unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6693    ARMCPRegInfo pmcr = {
6694        .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6695        .access = PL0_RW,
6696        .type = ARM_CP_IO | ARM_CP_ALIAS,
6697        .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6698        .accessfn = pmreg_access, .writefn = pmcr_write,
6699        .raw_writefn = raw_write,
6700    };
6701    ARMCPRegInfo pmcr64 = {
6702        .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6703        .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6704        .access = PL0_RW, .accessfn = pmreg_access,
6705        .type = ARM_CP_IO,
6706        .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6707        .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6708                      PMCRLC,
6709        .writefn = pmcr_write, .raw_writefn = raw_write,
6710    };
6711    define_one_arm_cp_reg(cpu, &pmcr);
6712    define_one_arm_cp_reg(cpu, &pmcr64);
6713    for (i = 0; i < pmcrn; i++) {
6714        char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6715        char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6716        char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6717        char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6718        ARMCPRegInfo pmev_regs[] = {
6719            { .name = pmevcntr_name, .cp = 15, .crn = 14,
6720              .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6721              .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6722              .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6723              .accessfn = pmreg_access },
6724            { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6725              .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6726              .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6727              .type = ARM_CP_IO,
6728              .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6729              .raw_readfn = pmevcntr_rawread,
6730              .raw_writefn = pmevcntr_rawwrite },
6731            { .name = pmevtyper_name, .cp = 15, .crn = 14,
6732              .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6733              .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6734              .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6735              .accessfn = pmreg_access },
6736            { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6737              .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6738              .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6739              .type = ARM_CP_IO,
6740              .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6741              .raw_writefn = pmevtyper_rawwrite },
6742            REGINFO_SENTINEL
6743        };
6744        define_arm_cp_regs(cpu, pmev_regs);
6745        g_free(pmevcntr_name);
6746        g_free(pmevcntr_el0_name);
6747        g_free(pmevtyper_name);
6748        g_free(pmevtyper_el0_name);
6749    }
6750    if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6751        ARMCPRegInfo v81_pmu_regs[] = {
6752            { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6753              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6754              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6755              .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6756            { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6757              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6758              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6759              .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6760            REGINFO_SENTINEL
6761        };
6762        define_arm_cp_regs(cpu, v81_pmu_regs);
6763    }
6764    if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6765        static const ARMCPRegInfo v84_pmmir = {
6766            .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6767            .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6768            .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6769            .resetvalue = 0
6770        };
6771        define_one_arm_cp_reg(cpu, &v84_pmmir);
6772    }
6773}
6774
6775/* We don't know until after realize whether there's a GICv3
6776 * attached, and that is what registers the gicv3 sysregs.
6777 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6778 * at runtime.
6779 */
6780static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6781{
6782    ARMCPU *cpu = env_archcpu(env);
6783    uint64_t pfr1 = cpu->isar.id_pfr1;
6784
6785    if (env->gicv3state) {
6786        pfr1 |= 1 << 28;
6787    }
6788    return pfr1;
6789}
6790
6791#ifndef CONFIG_USER_ONLY
6792static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6793{
6794    ARMCPU *cpu = env_archcpu(env);
6795    uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6796
6797    if (env->gicv3state) {
6798        pfr0 |= 1 << 24;
6799    }
6800    return pfr0;
6801}
6802#endif
6803
6804/* Shared logic between LORID and the rest of the LOR* registers.
6805 * Secure state exclusion has already been dealt with.
6806 */
6807static CPAccessResult access_lor_ns(CPUARMState *env,
6808                                    const ARMCPRegInfo *ri, bool isread)
6809{
6810    int el = arm_current_el(env);
6811
6812    if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6813        return CP_ACCESS_TRAP_EL2;
6814    }
6815    if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6816        return CP_ACCESS_TRAP_EL3;
6817    }
6818    return CP_ACCESS_OK;
6819}
6820
6821static CPAccessResult access_lor_other(CPUARMState *env,
6822                                       const ARMCPRegInfo *ri, bool isread)
6823{
6824    if (arm_is_secure_below_el3(env)) {
6825        /* Access denied in secure mode.  */
6826        return CP_ACCESS_TRAP;
6827    }
6828    return access_lor_ns(env, ri, isread);
6829}
6830
6831/*
6832 * A trivial implementation of ARMv8.1-LOR leaves all of these
6833 * registers fixed at 0, which indicates that there are zero
6834 * supported Limited Ordering regions.
6835 */
6836static const ARMCPRegInfo lor_reginfo[] = {
6837    { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6838      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6839      .access = PL1_RW, .accessfn = access_lor_other,
6840      .type = ARM_CP_CONST, .resetvalue = 0 },
6841    { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6842      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6843      .access = PL1_RW, .accessfn = access_lor_other,
6844      .type = ARM_CP_CONST, .resetvalue = 0 },
6845    { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6846      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6847      .access = PL1_RW, .accessfn = access_lor_other,
6848      .type = ARM_CP_CONST, .resetvalue = 0 },
6849    { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6850      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6851      .access = PL1_RW, .accessfn = access_lor_other,
6852      .type = ARM_CP_CONST, .resetvalue = 0 },
6853    { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6854      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6855      .access = PL1_R, .accessfn = access_lor_ns,
6856      .type = ARM_CP_CONST, .resetvalue = 0 },
6857    REGINFO_SENTINEL
6858};
6859
6860#ifdef TARGET_AARCH64
6861static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6862                                   bool isread)
6863{
6864    int el = arm_current_el(env);
6865
6866    if (el < 2 &&
6867        arm_feature(env, ARM_FEATURE_EL2) &&
6868        !(arm_hcr_el2_eff(env) & HCR_APK)) {
6869        return CP_ACCESS_TRAP_EL2;
6870    }
6871    if (el < 3 &&
6872        arm_feature(env, ARM_FEATURE_EL3) &&
6873        !(env->cp15.scr_el3 & SCR_APK)) {
6874        return CP_ACCESS_TRAP_EL3;
6875    }
6876    return CP_ACCESS_OK;
6877}
6878
6879static const ARMCPRegInfo pauth_reginfo[] = {
6880    { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6881      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6882      .access = PL1_RW, .accessfn = access_pauth,
6883      .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6884    { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6885      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6886      .access = PL1_RW, .accessfn = access_pauth,
6887      .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6888    { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6889      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6890      .access = PL1_RW, .accessfn = access_pauth,
6891      .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6892    { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6893      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6894      .access = PL1_RW, .accessfn = access_pauth,
6895      .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6896    { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6897      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6898      .access = PL1_RW, .accessfn = access_pauth,
6899      .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6900    { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6901      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6902      .access = PL1_RW, .accessfn = access_pauth,
6903      .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6904    { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6905      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6906      .access = PL1_RW, .accessfn = access_pauth,
6907      .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6908    { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6909      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6910      .access = PL1_RW, .accessfn = access_pauth,
6911      .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6912    { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6913      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6914      .access = PL1_RW, .accessfn = access_pauth,
6915      .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6916    { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6917      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6918      .access = PL1_RW, .accessfn = access_pauth,
6919      .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6920    REGINFO_SENTINEL
6921};
6922
6923static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6924{
6925    Error *err = NULL;
6926    uint64_t ret;
6927
6928    /* Success sets NZCV = 0000.  */
6929    env->NF = env->CF = env->VF = 0, env->ZF = 1;
6930
6931    if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6932        /*
6933         * ??? Failed, for unknown reasons in the crypto subsystem.
6934         * The best we can do is log the reason and return the
6935         * timed-out indication to the guest.  There is no reason
6936         * we know to expect this failure to be transitory, so the
6937         * guest may well hang retrying the operation.
6938         */
6939        qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6940                      ri->name, error_get_pretty(err));
6941        error_free(err);
6942
6943        env->ZF = 0; /* NZCF = 0100 */
6944        return 0;
6945    }
6946    return ret;
6947}
6948
6949/* We do not support re-seeding, so the two registers operate the same.  */
6950static const ARMCPRegInfo rndr_reginfo[] = {
6951    { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6952      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6953      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6954      .access = PL0_R, .readfn = rndr_readfn },
6955    { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6956      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6957      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6958      .access = PL0_R, .readfn = rndr_readfn },
6959    REGINFO_SENTINEL
6960};
6961
6962#ifndef CONFIG_USER_ONLY
6963static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6964                          uint64_t value)
6965{
6966    ARMCPU *cpu = env_archcpu(env);
6967    /* CTR_EL0 System register -> DminLine, bits [19:16] */
6968    uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6969    uint64_t vaddr_in = (uint64_t) value;
6970    uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6971    void *haddr;
6972    int mem_idx = cpu_mmu_index(env, false);
6973
6974    /* This won't be crossing page boundaries */
6975    haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6976    if (haddr) {
6977
6978        ram_addr_t offset;
6979        MemoryRegion *mr;
6980
6981        /* RCU lock is already being held */
6982        mr = memory_region_from_host(haddr, &offset);
6983
6984        if (mr) {
6985            memory_region_writeback(mr, offset, dline_size);
6986        }
6987    }
6988}
6989
6990static const ARMCPRegInfo dcpop_reg[] = {
6991    { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6992      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6993      .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6994      .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6995    REGINFO_SENTINEL
6996};
6997
6998static const ARMCPRegInfo dcpodp_reg[] = {
6999    { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7000      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7001      .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7002      .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7003    REGINFO_SENTINEL
7004};
7005#endif /*CONFIG_USER_ONLY*/
7006
7007static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7008                                       bool isread)
7009{
7010    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7011        return CP_ACCESS_TRAP_EL2;
7012    }
7013
7014    return CP_ACCESS_OK;
7015}
7016
7017static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7018                                 bool isread)
7019{
7020    int el = arm_current_el(env);
7021
7022    if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7023        uint64_t hcr = arm_hcr_el2_eff(env);
7024        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7025            return CP_ACCESS_TRAP_EL2;
7026        }
7027    }
7028    if (el < 3 &&
7029        arm_feature(env, ARM_FEATURE_EL3) &&
7030        !(env->cp15.scr_el3 & SCR_ATA)) {
7031        return CP_ACCESS_TRAP_EL3;
7032    }
7033    return CP_ACCESS_OK;
7034}
7035
7036static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7037{
7038    return env->pstate & PSTATE_TCO;
7039}
7040
7041static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7042{
7043    env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7044}
7045
7046static const ARMCPRegInfo mte_reginfo[] = {
7047    { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7048      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7049      .access = PL1_RW, .accessfn = access_mte,
7050      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7051    { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7052      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7053      .access = PL1_RW, .accessfn = access_mte,
7054      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7055    { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7056      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7057      .access = PL2_RW, .accessfn = access_mte,
7058      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7059    { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7060      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7061      .access = PL3_RW,
7062      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7063    { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7064      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7065      .access = PL1_RW, .accessfn = access_mte,
7066      .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7067    { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7068      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7069      .access = PL1_RW, .accessfn = access_mte,
7070      .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7071    { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7072      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7073      .access = PL1_R, .accessfn = access_aa64_tid5,
7074      .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7075    { .name = "TCO", .state = ARM_CP_STATE_AA64,
7076      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7077      .type = ARM_CP_NO_RAW,
7078      .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7079    { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7080      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7081      .type = ARM_CP_NOP, .access = PL1_W,
7082      .accessfn = aa64_cacheop_poc_access },
7083    { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7084      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7085      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7086    { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7087      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7088      .type = ARM_CP_NOP, .access = PL1_W,
7089      .accessfn = aa64_cacheop_poc_access },
7090    { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7091      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7092      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7093    { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7094      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7095      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7096    { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7097      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7098      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7099    { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7100      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7101      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7102    { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7103      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7104      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7105    REGINFO_SENTINEL
7106};
7107
7108static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7109    { .name = "TCO", .state = ARM_CP_STATE_AA64,
7110      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7111      .type = ARM_CP_CONST, .access = PL0_RW, },
7112    REGINFO_SENTINEL
7113};
7114
7115static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7116    { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7117      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7118      .type = ARM_CP_NOP, .access = PL0_W,
7119      .accessfn = aa64_cacheop_poc_access },
7120    { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7121      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7122      .type = ARM_CP_NOP, .access = PL0_W,
7123      .accessfn = aa64_cacheop_poc_access },
7124    { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7125      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7126      .type = ARM_CP_NOP, .access = PL0_W,
7127      .accessfn = aa64_cacheop_poc_access },
7128    { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7129      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7130      .type = ARM_CP_NOP, .access = PL0_W,
7131      .accessfn = aa64_cacheop_poc_access },
7132    { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7133      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7134      .type = ARM_CP_NOP, .access = PL0_W,
7135      .accessfn = aa64_cacheop_poc_access },
7136    { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7137      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7138      .type = ARM_CP_NOP, .access = PL0_W,
7139      .accessfn = aa64_cacheop_poc_access },
7140    { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7141      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7142      .type = ARM_CP_NOP, .access = PL0_W,
7143      .accessfn = aa64_cacheop_poc_access },
7144    { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7145      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7146      .type = ARM_CP_NOP, .access = PL0_W,
7147      .accessfn = aa64_cacheop_poc_access },
7148    { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7149      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7150      .access = PL0_W, .type = ARM_CP_DC_GVA,
7151#ifndef CONFIG_USER_ONLY
7152      /* Avoid overhead of an access check that always passes in user-mode */
7153      .accessfn = aa64_zva_access,
7154#endif
7155    },
7156    { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7157      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7158      .access = PL0_W, .type = ARM_CP_DC_GZVA,
7159#ifndef CONFIG_USER_ONLY
7160      /* Avoid overhead of an access check that always passes in user-mode */
7161      .accessfn = aa64_zva_access,
7162#endif
7163    },
7164    REGINFO_SENTINEL
7165};
7166
7167#endif
7168
7169static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7170                                     bool isread)
7171{
7172    int el = arm_current_el(env);
7173
7174    if (el == 0) {
7175        uint64_t sctlr = arm_sctlr(env, el);
7176        if (!(sctlr & SCTLR_EnRCTX)) {
7177            return CP_ACCESS_TRAP;
7178        }
7179    } else if (el == 1) {
7180        uint64_t hcr = arm_hcr_el2_eff(env);
7181        if (hcr & HCR_NV) {
7182            return CP_ACCESS_TRAP_EL2;
7183        }
7184    }
7185    return CP_ACCESS_OK;
7186}
7187
7188static const ARMCPRegInfo predinv_reginfo[] = {
7189    { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7190      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7191      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7192    { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7193      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7194      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7195    { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7196      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7197      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7198    /*
7199     * Note the AArch32 opcodes have a different OPC1.
7200     */
7201    { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7202      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7203      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7204    { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7205      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7206      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7207    { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7208      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7209      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7210    REGINFO_SENTINEL
7211};
7212
7213static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7214{
7215    /* Read the high 32 bits of the current CCSIDR */
7216    return extract64(ccsidr_read(env, ri), 32, 32);
7217}
7218
7219static const ARMCPRegInfo ccsidr2_reginfo[] = {
7220    { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7221      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7222      .access = PL1_R,
7223      .accessfn = access_aa64_tid2,
7224      .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7225    REGINFO_SENTINEL
7226};
7227
7228static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7229                                       bool isread)
7230{
7231    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7232        return CP_ACCESS_TRAP_EL2;
7233    }
7234
7235    return CP_ACCESS_OK;
7236}
7237
7238static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7239                                       bool isread)
7240{
7241    if (arm_feature(env, ARM_FEATURE_V8)) {
7242        return access_aa64_tid3(env, ri, isread);
7243    }
7244
7245    return CP_ACCESS_OK;
7246}
7247
7248static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7249                                     bool isread)
7250{
7251    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7252        return CP_ACCESS_TRAP_EL2;
7253    }
7254
7255    return CP_ACCESS_OK;
7256}
7257
7258static const ARMCPRegInfo jazelle_regs[] = {
7259    { .name = "JIDR",
7260      .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7261      .access = PL1_R, .accessfn = access_jazelle,
7262      .type = ARM_CP_CONST, .resetvalue = 0 },
7263    { .name = "JOSCR",
7264      .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7265      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7266    { .name = "JMCR",
7267      .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7268      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7269    REGINFO_SENTINEL
7270};
7271
7272static const ARMCPRegInfo vhe_reginfo[] = {
7273    { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7274      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7275      .access = PL2_RW,
7276      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7277    { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7278      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7279      .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7280      .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7281#ifndef CONFIG_USER_ONLY
7282    { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7283      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7284      .fieldoffset =
7285        offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7286      .type = ARM_CP_IO, .access = PL2_RW,
7287      .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7288    { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7289      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7290      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7291      .resetfn = gt_hv_timer_reset,
7292      .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7293    { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7294      .type = ARM_CP_IO,
7295      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7296      .access = PL2_RW,
7297      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7298      .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7299    { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7300      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7301      .type = ARM_CP_IO | ARM_CP_ALIAS,
7302      .access = PL2_RW, .accessfn = e2h_access,
7303      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7304      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7305    { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7306      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7307      .type = ARM_CP_IO | ARM_CP_ALIAS,
7308      .access = PL2_RW, .accessfn = e2h_access,
7309      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7310      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7311    { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7312      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7313      .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7314      .access = PL2_RW, .accessfn = e2h_access,
7315      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7316    { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7317      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7318      .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7319      .access = PL2_RW, .accessfn = e2h_access,
7320      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7321    { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7322      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7323      .type = ARM_CP_IO | ARM_CP_ALIAS,
7324      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7325      .access = PL2_RW, .accessfn = e2h_access,
7326      .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7327    { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7328      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7329      .type = ARM_CP_IO | ARM_CP_ALIAS,
7330      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7331      .access = PL2_RW, .accessfn = e2h_access,
7332      .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7333#endif
7334    REGINFO_SENTINEL
7335};
7336
7337#ifndef CONFIG_USER_ONLY
7338static const ARMCPRegInfo ats1e1_reginfo[] = {
7339    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7340      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7341      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7342      .writefn = ats_write64 },
7343    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7344      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7345      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7346      .writefn = ats_write64 },
7347    REGINFO_SENTINEL
7348};
7349
7350static const ARMCPRegInfo ats1cp_reginfo[] = {
7351    { .name = "ATS1CPRP",
7352      .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7353      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7354      .writefn = ats_write },
7355    { .name = "ATS1CPWP",
7356      .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7357      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7358      .writefn = ats_write },
7359    REGINFO_SENTINEL
7360};
7361#endif
7362
7363/*
7364 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7365 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7366 * is non-zero, which is never for ARMv7, optionally in ARMv8
7367 * and mandatorily for ARMv8.2 and up.
7368 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7369 * implementation is RAZ/WI we can ignore this detail, as we
7370 * do for ACTLR.
7371 */
7372static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7373    { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7374      .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7375      .access = PL1_RW, .accessfn = access_tacr,
7376      .type = ARM_CP_CONST, .resetvalue = 0 },
7377    { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7378      .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7379      .access = PL2_RW, .type = ARM_CP_CONST,
7380      .resetvalue = 0 },
7381    REGINFO_SENTINEL
7382};
7383
7384void register_cp_regs_for_features(ARMCPU *cpu)
7385{
7386    /* Register all the coprocessor registers based on feature bits */
7387    CPUARMState *env = &cpu->env;
7388    if (arm_feature(env, ARM_FEATURE_M)) {
7389        /* M profile has no coprocessor registers */
7390        return;
7391    }
7392
7393    define_arm_cp_regs(cpu, cp_reginfo);
7394    if (!arm_feature(env, ARM_FEATURE_V8)) {
7395        /* Must go early as it is full of wildcards that may be
7396         * overridden by later definitions.
7397         */
7398        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7399    }
7400
7401    if (arm_feature(env, ARM_FEATURE_V6)) {
7402        /* The ID registers all have impdef reset values */
7403        ARMCPRegInfo v6_idregs[] = {
7404            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7405              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7406              .access = PL1_R, .type = ARM_CP_CONST,
7407              .accessfn = access_aa32_tid3,
7408              .resetvalue = cpu->isar.id_pfr0 },
7409            /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7410             * the value of the GIC field until after we define these regs.
7411             */
7412            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7413              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7414              .access = PL1_R, .type = ARM_CP_NO_RAW,
7415              .accessfn = access_aa32_tid3,
7416              .readfn = id_pfr1_read,
7417              .writefn = arm_cp_write_ignore },
7418            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7419              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7420              .access = PL1_R, .type = ARM_CP_CONST,
7421              .accessfn = access_aa32_tid3,
7422              .resetvalue = cpu->isar.id_dfr0 },
7423            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7424              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7425              .access = PL1_R, .type = ARM_CP_CONST,
7426              .accessfn = access_aa32_tid3,
7427              .resetvalue = cpu->id_afr0 },
7428            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7429              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7430              .access = PL1_R, .type = ARM_CP_CONST,
7431              .accessfn = access_aa32_tid3,
7432              .resetvalue = cpu->isar.id_mmfr0 },
7433            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7434              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7435              .access = PL1_R, .type = ARM_CP_CONST,
7436              .accessfn = access_aa32_tid3,
7437              .resetvalue = cpu->isar.id_mmfr1 },
7438            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7439              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7440              .access = PL1_R, .type = ARM_CP_CONST,
7441              .accessfn = access_aa32_tid3,
7442              .resetvalue = cpu->isar.id_mmfr2 },
7443            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7444              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7445              .access = PL1_R, .type = ARM_CP_CONST,
7446              .accessfn = access_aa32_tid3,
7447              .resetvalue = cpu->isar.id_mmfr3 },
7448            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7449              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7450              .access = PL1_R, .type = ARM_CP_CONST,
7451              .accessfn = access_aa32_tid3,
7452              .resetvalue = cpu->isar.id_isar0 },
7453            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7454              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7455              .access = PL1_R, .type = ARM_CP_CONST,
7456              .accessfn = access_aa32_tid3,
7457              .resetvalue = cpu->isar.id_isar1 },
7458            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7459              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7460              .access = PL1_R, .type = ARM_CP_CONST,
7461              .accessfn = access_aa32_tid3,
7462              .resetvalue = cpu->isar.id_isar2 },
7463            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7464              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7465              .access = PL1_R, .type = ARM_CP_CONST,
7466              .accessfn = access_aa32_tid3,
7467              .resetvalue = cpu->isar.id_isar3 },
7468            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7469              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7470              .access = PL1_R, .type = ARM_CP_CONST,
7471              .accessfn = access_aa32_tid3,
7472              .resetvalue = cpu->isar.id_isar4 },
7473            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7474              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7475              .access = PL1_R, .type = ARM_CP_CONST,
7476              .accessfn = access_aa32_tid3,
7477              .resetvalue = cpu->isar.id_isar5 },
7478            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7479              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7480              .access = PL1_R, .type = ARM_CP_CONST,
7481              .accessfn = access_aa32_tid3,
7482              .resetvalue = cpu->isar.id_mmfr4 },
7483            { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7484              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7485              .access = PL1_R, .type = ARM_CP_CONST,
7486              .accessfn = access_aa32_tid3,
7487              .resetvalue = cpu->isar.id_isar6 },
7488            REGINFO_SENTINEL
7489        };
7490        define_arm_cp_regs(cpu, v6_idregs);
7491        define_arm_cp_regs(cpu, v6_cp_reginfo);
7492    } else {
7493        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7494    }
7495    if (arm_feature(env, ARM_FEATURE_V6K)) {
7496        define_arm_cp_regs(cpu, v6k_cp_reginfo);
7497    }
7498    if (arm_feature(env, ARM_FEATURE_V7MP) &&
7499        !arm_feature(env, ARM_FEATURE_PMSA)) {
7500        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7501    }
7502    if (arm_feature(env, ARM_FEATURE_V7VE)) {
7503        define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7504    }
7505    if (arm_feature(env, ARM_FEATURE_V7)) {
7506        ARMCPRegInfo clidr = {
7507            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7508            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7509            .access = PL1_R, .type = ARM_CP_CONST,
7510            .accessfn = access_aa64_tid2,
7511            .resetvalue = cpu->clidr
7512        };
7513        define_one_arm_cp_reg(cpu, &clidr);
7514        define_arm_cp_regs(cpu, v7_cp_reginfo);
7515        define_debug_regs(cpu);
7516        define_pmu_regs(cpu);
7517    } else {
7518        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7519    }
7520    if (arm_feature(env, ARM_FEATURE_V8)) {
7521        /* AArch64 ID registers, which all have impdef reset values.
7522         * Note that within the ID register ranges the unused slots
7523         * must all RAZ, not UNDEF; future architecture versions may
7524         * define new registers here.
7525         */
7526        ARMCPRegInfo v8_idregs[] = {
7527            /*
7528             * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7529             * emulation because we don't know the right value for the
7530             * GIC field until after we define these regs.
7531             */
7532            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7533              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7534              .access = PL1_R,
7535#ifdef CONFIG_USER_ONLY
7536              .type = ARM_CP_CONST,
7537              .resetvalue = cpu->isar.id_aa64pfr0
7538#else
7539              .type = ARM_CP_NO_RAW,
7540              .accessfn = access_aa64_tid3,
7541              .readfn = id_aa64pfr0_read,
7542              .writefn = arm_cp_write_ignore
7543#endif
7544            },
7545            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7546              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7547              .access = PL1_R, .type = ARM_CP_CONST,
7548              .accessfn = access_aa64_tid3,
7549              .resetvalue = cpu->isar.id_aa64pfr1},
7550            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7551              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7552              .access = PL1_R, .type = ARM_CP_CONST,
7553              .accessfn = access_aa64_tid3,
7554              .resetvalue = 0 },
7555            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7556              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7557              .access = PL1_R, .type = ARM_CP_CONST,
7558              .accessfn = access_aa64_tid3,
7559              .resetvalue = 0 },
7560            { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7561              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7562              .access = PL1_R, .type = ARM_CP_CONST,
7563              .accessfn = access_aa64_tid3,
7564              /* At present, only SVEver == 0 is defined anyway.  */
7565              .resetvalue = 0 },
7566            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7567              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7568              .access = PL1_R, .type = ARM_CP_CONST,
7569              .accessfn = access_aa64_tid3,
7570              .resetvalue = 0 },
7571            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7572              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7573              .access = PL1_R, .type = ARM_CP_CONST,
7574              .accessfn = access_aa64_tid3,
7575              .resetvalue = 0 },
7576            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7577              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7578              .access = PL1_R, .type = ARM_CP_CONST,
7579              .accessfn = access_aa64_tid3,
7580              .resetvalue = 0 },
7581            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7582              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7583              .access = PL1_R, .type = ARM_CP_CONST,
7584              .accessfn = access_aa64_tid3,
7585              .resetvalue = cpu->isar.id_aa64dfr0 },
7586            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7587              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7588              .access = PL1_R, .type = ARM_CP_CONST,
7589              .accessfn = access_aa64_tid3,
7590              .resetvalue = cpu->isar.id_aa64dfr1 },
7591            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7592              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7593              .access = PL1_R, .type = ARM_CP_CONST,
7594              .accessfn = access_aa64_tid3,
7595              .resetvalue = 0 },
7596            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7597              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7598              .access = PL1_R, .type = ARM_CP_CONST,
7599              .accessfn = access_aa64_tid3,
7600              .resetvalue = 0 },
7601            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7602              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7603              .access = PL1_R, .type = ARM_CP_CONST,
7604              .accessfn = access_aa64_tid3,
7605              .resetvalue = cpu->id_aa64afr0 },
7606            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7607              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7608              .access = PL1_R, .type = ARM_CP_CONST,
7609              .accessfn = access_aa64_tid3,
7610              .resetvalue = cpu->id_aa64afr1 },
7611            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7612              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7613              .access = PL1_R, .type = ARM_CP_CONST,
7614              .accessfn = access_aa64_tid3,
7615              .resetvalue = 0 },
7616            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7617              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7618              .access = PL1_R, .type = ARM_CP_CONST,
7619              .accessfn = access_aa64_tid3,
7620              .resetvalue = 0 },
7621            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7622              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7623              .access = PL1_R, .type = ARM_CP_CONST,
7624              .accessfn = access_aa64_tid3,
7625              .resetvalue = cpu->isar.id_aa64isar0 },
7626            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7627              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7628              .access = PL1_R, .type = ARM_CP_CONST,
7629              .accessfn = access_aa64_tid3,
7630              .resetvalue = cpu->isar.id_aa64isar1 },
7631            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7632              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7633              .access = PL1_R, .type = ARM_CP_CONST,
7634              .accessfn = access_aa64_tid3,
7635              .resetvalue = 0 },
7636            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7637              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7638              .access = PL1_R, .type = ARM_CP_CONST,
7639              .accessfn = access_aa64_tid3,
7640              .resetvalue = 0 },
7641            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7642              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7643              .access = PL1_R, .type = ARM_CP_CONST,
7644              .accessfn = access_aa64_tid3,
7645              .resetvalue = 0 },
7646            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7647              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7648              .access = PL1_R, .type = ARM_CP_CONST,
7649              .accessfn = access_aa64_tid3,
7650              .resetvalue = 0 },
7651            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7652              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7653              .access = PL1_R, .type = ARM_CP_CONST,
7654              .accessfn = access_aa64_tid3,
7655              .resetvalue = 0 },
7656            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7657              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7658              .access = PL1_R, .type = ARM_CP_CONST,
7659              .accessfn = access_aa64_tid3,
7660              .resetvalue = 0 },
7661            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7662              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7663              .access = PL1_R, .type = ARM_CP_CONST,
7664              .accessfn = access_aa64_tid3,
7665              .resetvalue = cpu->isar.id_aa64mmfr0 },
7666            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7667              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7668              .access = PL1_R, .type = ARM_CP_CONST,
7669              .accessfn = access_aa64_tid3,
7670              .resetvalue = cpu->isar.id_aa64mmfr1 },
7671            { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7672              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7673              .access = PL1_R, .type = ARM_CP_CONST,
7674              .accessfn = access_aa64_tid3,
7675              .resetvalue = cpu->isar.id_aa64mmfr2 },
7676            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7677              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7678              .access = PL1_R, .type = ARM_CP_CONST,
7679              .accessfn = access_aa64_tid3,
7680              .resetvalue = 0 },
7681            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7682              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7683              .access = PL1_R, .type = ARM_CP_CONST,
7684              .accessfn = access_aa64_tid3,
7685              .resetvalue = 0 },
7686            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7687              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7688              .access = PL1_R, .type = ARM_CP_CONST,
7689              .accessfn = access_aa64_tid3,
7690              .resetvalue = 0 },
7691            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7692              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7693              .access = PL1_R, .type = ARM_CP_CONST,
7694              .accessfn = access_aa64_tid3,
7695              .resetvalue = 0 },
7696            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7697              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7698              .access = PL1_R, .type = ARM_CP_CONST,
7699              .accessfn = access_aa64_tid3,
7700              .resetvalue = 0 },
7701            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7702              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7703              .access = PL1_R, .type = ARM_CP_CONST,
7704              .accessfn = access_aa64_tid3,
7705              .resetvalue = cpu->isar.mvfr0 },
7706            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7707              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7708              .access = PL1_R, .type = ARM_CP_CONST,
7709              .accessfn = access_aa64_tid3,
7710              .resetvalue = cpu->isar.mvfr1 },
7711            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7712              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7713              .access = PL1_R, .type = ARM_CP_CONST,
7714              .accessfn = access_aa64_tid3,
7715              .resetvalue = cpu->isar.mvfr2 },
7716            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7717              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7718              .access = PL1_R, .type = ARM_CP_CONST,
7719              .accessfn = access_aa64_tid3,
7720              .resetvalue = 0 },
7721            { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7722              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7723              .access = PL1_R, .type = ARM_CP_CONST,
7724              .accessfn = access_aa64_tid3,
7725              .resetvalue = cpu->isar.id_pfr2 },
7726            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7727              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7728              .access = PL1_R, .type = ARM_CP_CONST,
7729              .accessfn = access_aa64_tid3,
7730              .resetvalue = 0 },
7731            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7732              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7733              .access = PL1_R, .type = ARM_CP_CONST,
7734              .accessfn = access_aa64_tid3,
7735              .resetvalue = 0 },
7736            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7737              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7738              .access = PL1_R, .type = ARM_CP_CONST,
7739              .accessfn = access_aa64_tid3,
7740              .resetvalue = 0 },
7741            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7742              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7743              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7744              .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7745            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7746              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7747              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7748              .resetvalue = cpu->pmceid0 },
7749            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7750              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7751              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7752              .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7753            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7754              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7755              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7756              .resetvalue = cpu->pmceid1 },
7757            REGINFO_SENTINEL
7758        };
7759#ifdef CONFIG_USER_ONLY
7760        ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7761            { .name = "ID_AA64PFR0_EL1",
7762              .exported_bits = 0x000f000f00ff0000,
7763              .fixed_bits    = 0x0000000000000011 },
7764            { .name = "ID_AA64PFR1_EL1",
7765              .exported_bits = 0x00000000000000f0 },
7766            { .name = "ID_AA64PFR*_EL1_RESERVED",
7767              .is_glob = true                     },
7768            { .name = "ID_AA64ZFR0_EL1"           },
7769            { .name = "ID_AA64MMFR0_EL1",
7770              .fixed_bits    = 0x00000000ff000000 },
7771            { .name = "ID_AA64MMFR1_EL1"          },
7772            { .name = "ID_AA64MMFR*_EL1_RESERVED",
7773              .is_glob = true                     },
7774            { .name = "ID_AA64DFR0_EL1",
7775              .fixed_bits    = 0x0000000000000006 },
7776            { .name = "ID_AA64DFR1_EL1"           },
7777            { .name = "ID_AA64DFR*_EL1_RESERVED",
7778              .is_glob = true                     },
7779            { .name = "ID_AA64AFR*",
7780              .is_glob = true                     },
7781            { .name = "ID_AA64ISAR0_EL1",
7782              .exported_bits = 0x00fffffff0fffff0 },
7783            { .name = "ID_AA64ISAR1_EL1",
7784              .exported_bits = 0x000000f0ffffffff },
7785            { .name = "ID_AA64ISAR*_EL1_RESERVED",
7786              .is_glob = true                     },
7787            REGUSERINFO_SENTINEL
7788        };
7789        modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7790#endif
7791        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7792        if (!arm_feature(env, ARM_FEATURE_EL3) &&
7793            !arm_feature(env, ARM_FEATURE_EL2)) {
7794            ARMCPRegInfo rvbar = {
7795                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7796                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7797                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7798            };
7799            define_one_arm_cp_reg(cpu, &rvbar);
7800        }
7801        define_arm_cp_regs(cpu, v8_idregs);
7802        define_arm_cp_regs(cpu, v8_cp_reginfo);
7803    }
7804    if (arm_feature(env, ARM_FEATURE_EL2)) {
7805        uint64_t vmpidr_def = mpidr_read_val(env);
7806        ARMCPRegInfo vpidr_regs[] = {
7807            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7808              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7809              .access = PL2_RW, .accessfn = access_el3_aa32ns,
7810              .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7811              .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7812            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7813              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7814              .access = PL2_RW, .resetvalue = cpu->midr,
7815              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7816            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7817              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7818              .access = PL2_RW, .accessfn = access_el3_aa32ns,
7819              .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7820              .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7821            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7822              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7823              .access = PL2_RW,
7824              .resetvalue = vmpidr_def,
7825              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7826            REGINFO_SENTINEL
7827        };
7828        define_arm_cp_regs(cpu, vpidr_regs);
7829        define_arm_cp_regs(cpu, el2_cp_reginfo);
7830        if (arm_feature(env, ARM_FEATURE_V8)) {
7831            define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7832        }
7833        if (cpu_isar_feature(aa64_sel2, cpu)) {
7834            define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7835        }
7836        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7837        if (!arm_feature(env, ARM_FEATURE_EL3)) {
7838            ARMCPRegInfo rvbar = {
7839                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7840                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7841                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7842            };
7843            define_one_arm_cp_reg(cpu, &rvbar);
7844        }
7845    } else {
7846        /* If EL2 is missing but higher ELs are enabled, we need to
7847         * register the no_el2 reginfos.
7848         */
7849        if (arm_feature(env, ARM_FEATURE_EL3)) {
7850            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7851             * of MIDR_EL1 and MPIDR_EL1.
7852             */
7853            ARMCPRegInfo vpidr_regs[] = {
7854                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7855                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7856                  .access = PL2_RW, .accessfn = access_el3_aa32ns,
7857                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7858                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7859                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7860                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7861                  .access = PL2_RW, .accessfn = access_el3_aa32ns,
7862                  .type = ARM_CP_NO_RAW,
7863                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7864                REGINFO_SENTINEL
7865            };
7866            define_arm_cp_regs(cpu, vpidr_regs);
7867            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7868            if (arm_feature(env, ARM_FEATURE_V8)) {
7869                define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7870            }
7871        }
7872    }
7873    if (arm_feature(env, ARM_FEATURE_EL3)) {
7874        define_arm_cp_regs(cpu, el3_cp_reginfo);
7875        ARMCPRegInfo el3_regs[] = {
7876            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7877              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7878              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7879            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7880              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7881              .access = PL3_RW,
7882              .raw_writefn = raw_write, .writefn = sctlr_write,
7883              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7884              .resetvalue = cpu->reset_sctlr },
7885            REGINFO_SENTINEL
7886        };
7887
7888        define_arm_cp_regs(cpu, el3_regs);
7889    }
7890    /* The behaviour of NSACR is sufficiently various that we don't
7891     * try to describe it in a single reginfo:
7892     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7893     *     reads as constant 0xc00 from NS EL1 and NS EL2
7894     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7895     *  if v7 without EL3, register doesn't exist
7896     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7897     */
7898    if (arm_feature(env, ARM_FEATURE_EL3)) {
7899        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7900            ARMCPRegInfo nsacr = {
7901                .name = "NSACR", .type = ARM_CP_CONST,
7902                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7903                .access = PL1_RW, .accessfn = nsacr_access,
7904                .resetvalue = 0xc00
7905            };
7906            define_one_arm_cp_reg(cpu, &nsacr);
7907        } else {
7908            ARMCPRegInfo nsacr = {
7909                .name = "NSACR",
7910                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7911                .access = PL3_RW | PL1_R,
7912                .resetvalue = 0,
7913                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7914            };
7915            define_one_arm_cp_reg(cpu, &nsacr);
7916        }
7917    } else {
7918        if (arm_feature(env, ARM_FEATURE_V8)) {
7919            ARMCPRegInfo nsacr = {
7920                .name = "NSACR", .type = ARM_CP_CONST,
7921                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7922                .access = PL1_R,
7923                .resetvalue = 0xc00
7924            };
7925            define_one_arm_cp_reg(cpu, &nsacr);
7926        }
7927    }
7928
7929    if (arm_feature(env, ARM_FEATURE_PMSA)) {
7930        if (arm_feature(env, ARM_FEATURE_V6)) {
7931            /* PMSAv6 not implemented */
7932            assert(arm_feature(env, ARM_FEATURE_V7));
7933            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7934            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7935        } else {
7936            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7937        }
7938    } else {
7939        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7940        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7941        /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
7942        if (cpu_isar_feature(aa32_hpd, cpu)) {
7943            define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7944        }
7945    }
7946    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7947        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7948    }
7949    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7950        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7951    }
7952    if (arm_feature(env, ARM_FEATURE_VAPA)) {
7953        define_arm_cp_regs(cpu, vapa_cp_reginfo);
7954    }
7955    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7956        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7957    }
7958    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7959        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7960    }
7961    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7962        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7963    }
7964    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7965        define_arm_cp_regs(cpu, omap_cp_reginfo);
7966    }
7967    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7968        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7969    }
7970    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7971        define_arm_cp_regs(cpu, xscale_cp_reginfo);
7972    }
7973    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7974        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7975    }
7976    if (arm_feature(env, ARM_FEATURE_LPAE)) {
7977        define_arm_cp_regs(cpu, lpae_cp_reginfo);
7978    }
7979    if (cpu_isar_feature(aa32_jazelle, cpu)) {
7980        define_arm_cp_regs(cpu, jazelle_regs);
7981    }
7982    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7983     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7984     * be read-only (ie write causes UNDEF exception).
7985     */
7986    {
7987        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7988            /* Pre-v8 MIDR space.
7989             * Note that the MIDR isn't a simple constant register because
7990             * of the TI925 behaviour where writes to another register can
7991             * cause the MIDR value to change.
7992             *
7993             * Unimplemented registers in the c15 0 0 0 space default to
7994             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7995             * and friends override accordingly.
7996             */
7997            { .name = "MIDR",
7998              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7999              .access = PL1_R, .resetvalue = cpu->midr,
8000              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8001              .readfn = midr_read,
8002              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8003              .type = ARM_CP_OVERRIDE },
8004            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8005            { .name = "DUMMY",
8006              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8007              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8008            { .name = "DUMMY",
8009              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8010              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8011            { .name = "DUMMY",
8012              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8013              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8014            { .name = "DUMMY",
8015              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8016              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8017            { .name = "DUMMY",
8018              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8019              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8020            REGINFO_SENTINEL
8021        };
8022        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8023            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8024              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8025              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8026              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8027              .readfn = midr_read },
8028            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8029            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8030              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8031              .access = PL1_R, .resetvalue = cpu->midr },
8032            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8033              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8034              .access = PL1_R, .resetvalue = cpu->midr },
8035            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8036              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8037              .access = PL1_R,
8038              .accessfn = access_aa64_tid1,
8039              .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8040            REGINFO_SENTINEL
8041        };
8042        ARMCPRegInfo id_cp_reginfo[] = {
8043            /* These are common to v8 and pre-v8 */
8044            { .name = "CTR",
8045              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8046              .access = PL1_R, .accessfn = ctr_el0_access,
8047              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8048            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8049              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8050              .access = PL0_R, .accessfn = ctr_el0_access,
8051              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8052            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8053            { .name = "TCMTR",
8054              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8055              .access = PL1_R,
8056              .accessfn = access_aa32_tid1,
8057              .type = ARM_CP_CONST, .resetvalue = 0 },
8058            REGINFO_SENTINEL
8059        };
8060        /* TLBTR is specific to VMSA */
8061        ARMCPRegInfo id_tlbtr_reginfo = {
8062              .name = "TLBTR",
8063              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8064              .access = PL1_R,
8065              .accessfn = access_aa32_tid1,
8066              .type = ARM_CP_CONST, .resetvalue = 0,
8067        };
8068        /* MPUIR is specific to PMSA V6+ */
8069        ARMCPRegInfo id_mpuir_reginfo = {
8070              .name = "MPUIR",
8071              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8072              .access = PL1_R, .type = ARM_CP_CONST,
8073              .resetvalue = cpu->pmsav7_dregion << 8
8074        };
8075        ARMCPRegInfo crn0_wi_reginfo = {
8076            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8077            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8078            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8079        };
8080#ifdef CONFIG_USER_ONLY
8081        ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8082            { .name = "MIDR_EL1",
8083              .exported_bits = 0x00000000ffffffff },
8084            { .name = "REVIDR_EL1"                },
8085            REGUSERINFO_SENTINEL
8086        };
8087        modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8088#endif
8089        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8090            arm_feature(env, ARM_FEATURE_STRONGARM)) {
8091            ARMCPRegInfo *r;
8092            /* Register the blanket "writes ignored" value first to cover the
8093             * whole space. Then update the specific ID registers to allow write
8094             * access, so that they ignore writes rather than causing them to
8095             * UNDEF.
8096             */
8097            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8098            for (r = id_pre_v8_midr_cp_reginfo;
8099                 r->type != ARM_CP_SENTINEL; r++) {
8100                r->access = PL1_RW;
8101            }
8102            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8103                r->access = PL1_RW;
8104            }
8105            id_mpuir_reginfo.access = PL1_RW;
8106            id_tlbtr_reginfo.access = PL1_RW;
8107        }
8108        if (arm_feature(env, ARM_FEATURE_V8)) {
8109            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8110        } else {
8111            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8112        }
8113        define_arm_cp_regs(cpu, id_cp_reginfo);
8114        if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8115            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8116        } else if (arm_feature(env, ARM_FEATURE_V7)) {
8117            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8118        }
8119    }
8120
8121    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8122        ARMCPRegInfo mpidr_cp_reginfo[] = {
8123            { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8124              .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8125              .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8126            REGINFO_SENTINEL
8127        };
8128#ifdef CONFIG_USER_ONLY
8129        ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8130            { .name = "MPIDR_EL1",
8131              .fixed_bits = 0x0000000080000000 },
8132            REGUSERINFO_SENTINEL
8133        };
8134        modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8135#endif
8136        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8137    }
8138
8139    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8140        ARMCPRegInfo auxcr_reginfo[] = {
8141            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8142              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8143              .access = PL1_RW, .accessfn = access_tacr,
8144              .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8145            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8146              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8147              .access = PL2_RW, .type = ARM_CP_CONST,
8148              .resetvalue = 0 },
8149            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8150              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8151              .access = PL3_RW, .type = ARM_CP_CONST,
8152              .resetvalue = 0 },
8153            REGINFO_SENTINEL
8154        };
8155        define_arm_cp_regs(cpu, auxcr_reginfo);
8156        if (cpu_isar_feature(aa32_ac2, cpu)) {
8157            define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8158        }
8159    }
8160
8161    if (arm_feature(env, ARM_FEATURE_CBAR)) {
8162        /*
8163         * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8164         * There are two flavours:
8165         *  (1) older 32-bit only cores have a simple 32-bit CBAR
8166         *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8167         *      32-bit register visible to AArch32 at a different encoding
8168         *      to the "flavour 1" register and with the bits rearranged to
8169         *      be able to squash a 64-bit address into the 32-bit view.
8170         * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8171         * in future if we support AArch32-only configs of some of the
8172         * AArch64 cores we might need to add a specific feature flag
8173         * to indicate cores with "flavour 2" CBAR.
8174         */
8175        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8176            /* 32 bit view is [31:18] 0...0 [43:32]. */
8177            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8178                | extract64(cpu->reset_cbar, 32, 12);
8179            ARMCPRegInfo cbar_reginfo[] = {
8180                { .name = "CBAR",
8181                  .type = ARM_CP_CONST,
8182                  .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8183                  .access = PL1_R, .resetvalue = cbar32 },
8184                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8185                  .type = ARM_CP_CONST,
8186                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8187                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
8188                REGINFO_SENTINEL
8189            };
8190            /* We don't implement a r/w 64 bit CBAR currently */
8191            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8192            define_arm_cp_regs(cpu, cbar_reginfo);
8193        } else {
8194            ARMCPRegInfo cbar = {
8195                .name = "CBAR",
8196                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8197                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8198                .fieldoffset = offsetof(CPUARMState,
8199                                        cp15.c15_config_base_address)
8200            };
8201            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8202                cbar.access = PL1_R;
8203                cbar.fieldoffset = 0;
8204                cbar.type = ARM_CP_CONST;
8205            }
8206            define_one_arm_cp_reg(cpu, &cbar);
8207        }
8208    }
8209
8210    if (arm_feature(env, ARM_FEATURE_VBAR)) {
8211        ARMCPRegInfo vbar_cp_reginfo[] = {
8212            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8213              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8214              .access = PL1_RW, .writefn = vbar_write,
8215              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8216                                     offsetof(CPUARMState, cp15.vbar_ns) },
8217              .resetvalue = 0 },
8218            REGINFO_SENTINEL
8219        };
8220        define_arm_cp_regs(cpu, vbar_cp_reginfo);
8221    }
8222
8223    /* Generic registers whose values depend on the implementation */
8224    {
8225        ARMCPRegInfo sctlr = {
8226            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8227            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8228            .access = PL1_RW, .accessfn = access_tvm_trvm,
8229            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8230                                   offsetof(CPUARMState, cp15.sctlr_ns) },
8231            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8232            .raw_writefn = raw_write,
8233        };
8234        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8235            /* Normally we would always end the TB on an SCTLR write, but Linux
8236             * arch/arm/mach-pxa/sleep.S expects two instructions following
8237             * an MMU enable to execute from cache.  Imitate this behaviour.
8238             */
8239            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8240        }
8241        define_one_arm_cp_reg(cpu, &sctlr);
8242    }
8243
8244    if (cpu_isar_feature(aa64_lor, cpu)) {
8245        define_arm_cp_regs(cpu, lor_reginfo);
8246    }
8247    if (cpu_isar_feature(aa64_pan, cpu)) {
8248        define_one_arm_cp_reg(cpu, &pan_reginfo);
8249    }
8250#ifndef CONFIG_USER_ONLY
8251    if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8252        define_arm_cp_regs(cpu, ats1e1_reginfo);
8253    }
8254    if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8255        define_arm_cp_regs(cpu, ats1cp_reginfo);
8256    }
8257#endif
8258    if (cpu_isar_feature(aa64_uao, cpu)) {
8259        define_one_arm_cp_reg(cpu, &uao_reginfo);
8260    }
8261
8262    if (cpu_isar_feature(aa64_dit, cpu)) {
8263        define_one_arm_cp_reg(cpu, &dit_reginfo);
8264    }
8265    if (cpu_isar_feature(aa64_ssbs, cpu)) {
8266        define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8267    }
8268
8269    if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8270        define_arm_cp_regs(cpu, vhe_reginfo);
8271    }
8272
8273    if (cpu_isar_feature(aa64_sve, cpu)) {
8274        define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8275        if (arm_feature(env, ARM_FEATURE_EL2)) {
8276            define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8277        } else {
8278            define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8279        }
8280        if (arm_feature(env, ARM_FEATURE_EL3)) {
8281            define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8282        }
8283    }
8284
8285#ifdef TARGET_AARCH64
8286    if (cpu_isar_feature(aa64_pauth, cpu)) {
8287        define_arm_cp_regs(cpu, pauth_reginfo);
8288    }
8289    if (cpu_isar_feature(aa64_rndr, cpu)) {
8290        define_arm_cp_regs(cpu, rndr_reginfo);
8291    }
8292#ifndef CONFIG_USER_ONLY
8293    /* Data Cache clean instructions up to PoP */
8294    if (cpu_isar_feature(aa64_dcpop, cpu)) {
8295        define_one_arm_cp_reg(cpu, dcpop_reg);
8296
8297        if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8298            define_one_arm_cp_reg(cpu, dcpodp_reg);
8299        }
8300    }
8301#endif /*CONFIG_USER_ONLY*/
8302
8303    /*
8304     * If full MTE is enabled, add all of the system registers.
8305     * If only "instructions available at EL0" are enabled,
8306     * then define only a RAZ/WI version of PSTATE.TCO.
8307     */
8308    if (cpu_isar_feature(aa64_mte, cpu)) {
8309        define_arm_cp_regs(cpu, mte_reginfo);
8310        define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8311    } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8312        define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8313        define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8314    }
8315#endif
8316
8317    if (cpu_isar_feature(any_predinv, cpu)) {
8318        define_arm_cp_regs(cpu, predinv_reginfo);
8319    }
8320
8321    if (cpu_isar_feature(any_ccidx, cpu)) {
8322        define_arm_cp_regs(cpu, ccsidr2_reginfo);
8323    }
8324
8325#ifndef CONFIG_USER_ONLY
8326    /*
8327     * Register redirections and aliases must be done last,
8328     * after the registers from the other extensions have been defined.
8329     */
8330    if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8331        define_arm_vh_e2h_redirects_aliases(cpu);
8332    }
8333#endif
8334}
8335
8336void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8337{
8338    CPUState *cs = CPU(cpu);
8339    CPUARMState *env = &cpu->env;
8340
8341    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8342        /*
8343         * The lower part of each SVE register aliases to the FPU
8344         * registers so we don't need to include both.
8345         */
8346#ifdef TARGET_AARCH64
8347        if (isar_feature_aa64_sve(&cpu->isar)) {
8348            gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8349                                     arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8350                                     "sve-registers.xml", 0);
8351        } else
8352#endif
8353        {
8354            gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8355                                     aarch64_fpu_gdb_set_reg,
8356                                     34, "aarch64-fpu.xml", 0);
8357        }
8358    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8359        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8360                                 51, "arm-neon.xml", 0);
8361    } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8362        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8363                                 35, "arm-vfp3.xml", 0);
8364    } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8365        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8366                                 19, "arm-vfp.xml", 0);
8367    }
8368    gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8369                             arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8370                             "system-registers.xml", 0);
8371
8372}
8373
8374/* Sort alphabetically by type name, except for "any". */
8375static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8376{
8377    ObjectClass *class_a = (ObjectClass *)a;
8378    ObjectClass *class_b = (ObjectClass *)b;
8379    const char *name_a, *name_b;
8380
8381    name_a = object_class_get_name(class_a);
8382    name_b = object_class_get_name(class_b);
8383    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8384        return 1;
8385    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8386        return -1;
8387    } else {
8388        return strcmp(name_a, name_b);
8389    }
8390}
8391
8392static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8393{
8394    ObjectClass *oc = data;
8395    const char *typename;
8396    char *name;
8397
8398    typename = object_class_get_name(oc);
8399    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8400    qemu_printf("  %s\n", name);
8401    g_free(name);
8402}
8403
8404void arm_cpu_list(void)
8405{
8406    GSList *list;
8407
8408    list = object_class_get_list(TYPE_ARM_CPU, false);
8409    list = g_slist_sort(list, arm_cpu_list_compare);
8410    qemu_printf("Available CPUs:\n");
8411    g_slist_foreach(list, arm_cpu_list_entry, NULL);
8412    g_slist_free(list);
8413}
8414
8415static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8416{
8417    ObjectClass *oc = data;
8418    CpuDefinitionInfoList **cpu_list = user_data;
8419    CpuDefinitionInfo *info;
8420    const char *typename;
8421
8422    typename = object_class_get_name(oc);
8423    info = g_malloc0(sizeof(*info));
8424    info->name = g_strndup(typename,
8425                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
8426    info->q_typename = g_strdup(typename);
8427
8428    QAPI_LIST_PREPEND(*cpu_list, info);
8429}
8430
8431CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8432{
8433    CpuDefinitionInfoList *cpu_list = NULL;
8434    GSList *list;
8435
8436    list = object_class_get_list(TYPE_ARM_CPU, false);
8437    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8438    g_slist_free(list);
8439
8440    return cpu_list;
8441}
8442
8443static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8444                                   void *opaque, int state, int secstate,
8445                                   int crm, int opc1, int opc2,
8446                                   const char *name)
8447{
8448    /* Private utility function for define_one_arm_cp_reg_with_opaque():
8449     * add a single reginfo struct to the hash table.
8450     */
8451    uint32_t *key = g_new(uint32_t, 1);
8452    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8453    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8454    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8455
8456    r2->name = g_strdup(name);
8457    /* Reset the secure state to the specific incoming state.  This is
8458     * necessary as the register may have been defined with both states.
8459     */
8460    r2->secure = secstate;
8461
8462    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8463        /* Register is banked (using both entries in array).
8464         * Overwriting fieldoffset as the array is only used to define
8465         * banked registers but later only fieldoffset is used.
8466         */
8467        r2->fieldoffset = r->bank_fieldoffsets[ns];
8468    }
8469
8470    if (state == ARM_CP_STATE_AA32) {
8471        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8472            /* If the register is banked then we don't need to migrate or
8473             * reset the 32-bit instance in certain cases:
8474             *
8475             * 1) If the register has both 32-bit and 64-bit instances then we
8476             *    can count on the 64-bit instance taking care of the
8477             *    non-secure bank.
8478             * 2) If ARMv8 is enabled then we can count on a 64-bit version
8479             *    taking care of the secure bank.  This requires that separate
8480             *    32 and 64-bit definitions are provided.
8481             */
8482            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8483                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8484                r2->type |= ARM_CP_ALIAS;
8485            }
8486        } else if ((secstate != r->secure) && !ns) {
8487            /* The register is not banked so we only want to allow migration of
8488             * the non-secure instance.
8489             */
8490            r2->type |= ARM_CP_ALIAS;
8491        }
8492
8493        if (r->state == ARM_CP_STATE_BOTH) {
8494            /* We assume it is a cp15 register if the .cp field is left unset.
8495             */
8496            if (r2->cp == 0) {
8497                r2->cp = 15;
8498            }
8499
8500#ifdef HOST_WORDS_BIGENDIAN
8501            if (r2->fieldoffset) {
8502                r2->fieldoffset += sizeof(uint32_t);
8503            }
8504#endif
8505        }
8506    }
8507    if (state == ARM_CP_STATE_AA64) {
8508        /* To allow abbreviation of ARMCPRegInfo
8509         * definitions, we treat cp == 0 as equivalent to
8510         * the value for "standard guest-visible sysreg".
8511         * STATE_BOTH definitions are also always "standard
8512         * sysreg" in their AArch64 view (the .cp value may
8513         * be non-zero for the benefit of the AArch32 view).
8514         */
8515        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8516            r2->cp = CP_REG_ARM64_SYSREG_CP;
8517        }
8518        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8519                                  r2->opc0, opc1, opc2);
8520    } else {
8521        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8522    }
8523    if (opaque) {
8524        r2->opaque = opaque;
8525    }
8526    /* reginfo passed to helpers is correct for the actual access,
8527     * and is never ARM_CP_STATE_BOTH:
8528     */
8529    r2->state = state;
8530    /* Make sure reginfo passed to helpers for wildcarded regs
8531     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8532     */
8533    r2->crm = crm;
8534    r2->opc1 = opc1;
8535    r2->opc2 = opc2;
8536    /* By convention, for wildcarded registers only the first
8537     * entry is used for migration; the others are marked as
8538     * ALIAS so we don't try to transfer the register
8539     * multiple times. Special registers (ie NOP/WFI) are
8540     * never migratable and not even raw-accessible.
8541     */
8542    if ((r->type & ARM_CP_SPECIAL)) {
8543        r2->type |= ARM_CP_NO_RAW;
8544    }
8545    if (((r->crm == CP_ANY) && crm != 0) ||
8546        ((r->opc1 == CP_ANY) && opc1 != 0) ||
8547        ((r->opc2 == CP_ANY) && opc2 != 0)) {
8548        r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8549    }
8550
8551    /* Check that raw accesses are either forbidden or handled. Note that
8552     * we can't assert this earlier because the setup of fieldoffset for
8553     * banked registers has to be done first.
8554     */
8555    if (!(r2->type & ARM_CP_NO_RAW)) {
8556        assert(!raw_accessors_invalid(r2));
8557    }
8558
8559    /* Overriding of an existing definition must be explicitly
8560     * requested.
8561     */
8562    if (!(r->type & ARM_CP_OVERRIDE)) {
8563        ARMCPRegInfo *oldreg;
8564        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8565        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8566            fprintf(stderr, "Register redefined: cp=%d %d bit "
8567                    "crn=%d crm=%d opc1=%d opc2=%d, "
8568                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8569                    r2->crn, r2->crm, r2->opc1, r2->opc2,
8570                    oldreg->name, r2->name);
8571            g_assert_not_reached();
8572        }
8573    }
8574    g_hash_table_insert(cpu->cp_regs, key, r2);
8575}
8576
8577
8578void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8579                                       const ARMCPRegInfo *r, void *opaque)
8580{
8581    /* Define implementations of coprocessor registers.
8582     * We store these in a hashtable because typically
8583     * there are less than 150 registers in a space which
8584     * is 16*16*16*8*8 = 262144 in size.
8585     * Wildcarding is supported for the crm, opc1 and opc2 fields.
8586     * If a register is defined twice then the second definition is
8587     * used, so this can be used to define some generic registers and
8588     * then override them with implementation specific variations.
8589     * At least one of the original and the second definition should
8590     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8591     * against accidental use.
8592     *
8593     * The state field defines whether the register is to be
8594     * visible in the AArch32 or AArch64 execution state. If the
8595     * state is set to ARM_CP_STATE_BOTH then we synthesise a
8596     * reginfo structure for the AArch32 view, which sees the lower
8597     * 32 bits of the 64 bit register.
8598     *
8599     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8600     * be wildcarded. AArch64 registers are always considered to be 64
8601     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8602     * the register, if any.
8603     */
8604    int crm, opc1, opc2, state;
8605    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8606    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8607    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8608    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8609    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8610    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8611    /* 64 bit registers have only CRm and Opc1 fields */
8612    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8613    /* op0 only exists in the AArch64 encodings */
8614    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8615    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8616    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8617    /*
8618     * This API is only for Arm's system coprocessors (14 and 15) or
8619     * (M-profile or v7A-and-earlier only) for implementation defined
8620     * coprocessors in the range 0..7.  Our decode assumes this, since
8621     * 8..13 can be used for other insns including VFP and Neon. See
8622     * valid_cp() in translate.c.  Assert here that we haven't tried
8623     * to use an invalid coprocessor number.
8624     */
8625    switch (r->state) {
8626    case ARM_CP_STATE_BOTH:
8627        /* 0 has a special meaning, but otherwise the same rules as AA32. */
8628        if (r->cp == 0) {
8629            break;
8630        }
8631        /* fall through */
8632    case ARM_CP_STATE_AA32:
8633        if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8634            !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8635            assert(r->cp >= 14 && r->cp <= 15);
8636        } else {
8637            assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8638        }
8639        break;
8640    case ARM_CP_STATE_AA64:
8641        assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8642        break;
8643    default:
8644        g_assert_not_reached();
8645    }
8646    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8647     * encodes a minimum access level for the register. We roll this
8648     * runtime check into our general permission check code, so check
8649     * here that the reginfo's specified permissions are strict enough
8650     * to encompass the generic architectural permission check.
8651     */
8652    if (r->state != ARM_CP_STATE_AA32) {
8653        int mask = 0;
8654        switch (r->opc1) {
8655        case 0:
8656            /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8657            mask = PL0U_R | PL1_RW;
8658            break;
8659        case 1: case 2:
8660            /* min_EL EL1 */
8661            mask = PL1_RW;
8662            break;
8663        case 3:
8664            /* min_EL EL0 */
8665            mask = PL0_RW;
8666            break;
8667        case 4:
8668        case 5:
8669            /* min_EL EL2 */
8670            mask = PL2_RW;
8671            break;
8672        case 6:
8673            /* min_EL EL3 */
8674            mask = PL3_RW;
8675            break;
8676        case 7:
8677            /* min_EL EL1, secure mode only (we don't check the latter) */
8678            mask = PL1_RW;
8679            break;
8680        default:
8681            /* broken reginfo with out-of-range opc1 */
8682            assert(false);
8683            break;
8684        }
8685        /* assert our permissions are not too lax (stricter is fine) */
8686        assert((r->access & ~mask) == 0);
8687    }
8688
8689    /* Check that the register definition has enough info to handle
8690     * reads and writes if they are permitted.
8691     */
8692    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8693        if (r->access & PL3_R) {
8694            assert((r->fieldoffset ||
8695                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8696                   r->readfn);
8697        }
8698        if (r->access & PL3_W) {
8699            assert((r->fieldoffset ||
8700                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8701                   r->writefn);
8702        }
8703    }
8704    /* Bad type field probably means missing sentinel at end of reg list */
8705    assert(cptype_valid(r->type));
8706    for (crm = crmmin; crm <= crmmax; crm++) {
8707        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8708            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8709                for (state = ARM_CP_STATE_AA32;
8710                     state <= ARM_CP_STATE_AA64; state++) {
8711                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8712                        continue;
8713                    }
8714                    if (state == ARM_CP_STATE_AA32) {
8715                        /* Under AArch32 CP registers can be common
8716                         * (same for secure and non-secure world) or banked.
8717                         */
8718                        char *name;
8719
8720                        switch (r->secure) {
8721                        case ARM_CP_SECSTATE_S:
8722                        case ARM_CP_SECSTATE_NS:
8723                            add_cpreg_to_hashtable(cpu, r, opaque, state,
8724                                                   r->secure, crm, opc1, opc2,
8725                                                   r->name);
8726                            break;
8727                        default:
8728                            name = g_strdup_printf("%s_S", r->name);
8729                            add_cpreg_to_hashtable(cpu, r, opaque, state,
8730                                                   ARM_CP_SECSTATE_S,
8731                                                   crm, opc1, opc2, name);
8732                            g_free(name);
8733                            add_cpreg_to_hashtable(cpu, r, opaque, state,
8734                                                   ARM_CP_SECSTATE_NS,
8735                                                   crm, opc1, opc2, r->name);
8736                            break;
8737                        }
8738                    } else {
8739                        /* AArch64 registers get mapped to non-secure instance
8740                         * of AArch32 */
8741                        add_cpreg_to_hashtable(cpu, r, opaque, state,
8742                                               ARM_CP_SECSTATE_NS,
8743                                               crm, opc1, opc2, r->name);
8744                    }
8745                }
8746            }
8747        }
8748    }
8749}
8750
8751void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8752                                    const ARMCPRegInfo *regs, void *opaque)
8753{
8754    /* Define a whole list of registers */
8755    const ARMCPRegInfo *r;
8756    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8757        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8758    }
8759}
8760
8761/*
8762 * Modify ARMCPRegInfo for access from userspace.
8763 *
8764 * This is a data driven modification directed by
8765 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8766 * user-space cannot alter any values and dynamic values pertaining to
8767 * execution state are hidden from user space view anyway.
8768 */
8769void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8770{
8771    const ARMCPRegUserSpaceInfo *m;
8772    ARMCPRegInfo *r;
8773
8774    for (m = mods; m->name; m++) {
8775        GPatternSpec *pat = NULL;
8776        if (m->is_glob) {
8777            pat = g_pattern_spec_new(m->name);
8778        }
8779        for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8780            if (pat && g_pattern_match_string(pat, r->name)) {
8781                r->type = ARM_CP_CONST;
8782                r->access = PL0U_R;
8783                r->resetvalue = 0;
8784                /* continue */
8785            } else if (strcmp(r->name, m->name) == 0) {
8786                r->type = ARM_CP_CONST;
8787                r->access = PL0U_R;
8788                r->resetvalue &= m->exported_bits;
8789                r->resetvalue |= m->fixed_bits;
8790                break;
8791            }
8792        }
8793        if (pat) {
8794            g_pattern_spec_free(pat);
8795        }
8796    }
8797}
8798
8799const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8800{
8801    return g_hash_table_lookup(cpregs, &encoded_cp);
8802}
8803
8804void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8805                         uint64_t value)
8806{
8807    /* Helper coprocessor write function for write-ignore registers */
8808}
8809
8810uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8811{
8812    /* Helper coprocessor write function for read-as-zero registers */
8813    return 0;
8814}
8815
8816void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8817{
8818    /* Helper coprocessor reset function for do-nothing-on-reset registers */
8819}
8820
8821static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8822{
8823    /* Return true if it is not valid for us to switch to
8824     * this CPU mode (ie all the UNPREDICTABLE cases in
8825     * the ARM ARM CPSRWriteByInstr pseudocode).
8826     */
8827
8828    /* Changes to or from Hyp via MSR and CPS are illegal. */
8829    if (write_type == CPSRWriteByInstr &&
8830        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8831         mode == ARM_CPU_MODE_HYP)) {
8832        return 1;
8833    }
8834
8835    switch (mode) {
8836    case ARM_CPU_MODE_USR:
8837        return 0;
8838    case ARM_CPU_MODE_SYS:
8839    case ARM_CPU_MODE_SVC:
8840    case ARM_CPU_MODE_ABT:
8841    case ARM_CPU_MODE_UND:
8842    case ARM_CPU_MODE_IRQ:
8843    case ARM_CPU_MODE_FIQ:
8844        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8845         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8846         */
8847        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8848         * and CPS are treated as illegal mode changes.
8849         */
8850        if (write_type == CPSRWriteByInstr &&
8851            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8852            (arm_hcr_el2_eff(env) & HCR_TGE)) {
8853            return 1;
8854        }
8855        return 0;
8856    case ARM_CPU_MODE_HYP:
8857        return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8858    case ARM_CPU_MODE_MON:
8859        return arm_current_el(env) < 3;
8860    default:
8861        return 1;
8862    }
8863}
8864
8865uint32_t cpsr_read(CPUARMState *env)
8866{
8867    int ZF;
8868    ZF = (env->ZF == 0);
8869    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8870        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8871        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8872        | ((env->condexec_bits & 0xfc) << 8)
8873        | (env->GE << 16) | (env->daif & CPSR_AIF);
8874}
8875
8876void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8877                CPSRWriteType write_type)
8878{
8879    uint32_t changed_daif;
8880
8881    if (mask & CPSR_NZCV) {
8882        env->ZF = (~val) & CPSR_Z;
8883        env->NF = val;
8884        env->CF = (val >> 29) & 1;
8885        env->VF = (val << 3) & 0x80000000;
8886    }
8887    if (mask & CPSR_Q)
8888        env->QF = ((val & CPSR_Q) != 0);
8889    if (mask & CPSR_T)
8890        env->thumb = ((val & CPSR_T) != 0);
8891    if (mask & CPSR_IT_0_1) {
8892        env->condexec_bits &= ~3;
8893        env->condexec_bits |= (val >> 25) & 3;
8894    }
8895    if (mask & CPSR_IT_2_7) {
8896        env->condexec_bits &= 3;
8897        env->condexec_bits |= (val >> 8) & 0xfc;
8898    }
8899    if (mask & CPSR_GE) {
8900        env->GE = (val >> 16) & 0xf;
8901    }
8902
8903    /* In a V7 implementation that includes the security extensions but does
8904     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8905     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8906     * bits respectively.
8907     *
8908     * In a V8 implementation, it is permitted for privileged software to
8909     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8910     */
8911    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8912        arm_feature(env, ARM_FEATURE_EL3) &&
8913        !arm_feature(env, ARM_FEATURE_EL2) &&
8914        !arm_is_secure(env)) {
8915
8916        changed_daif = (env->daif ^ val) & mask;
8917
8918        if (changed_daif & CPSR_A) {
8919            /* Check to see if we are allowed to change the masking of async
8920             * abort exceptions from a non-secure state.
8921             */
8922            if (!(env->cp15.scr_el3 & SCR_AW)) {
8923                qemu_log_mask(LOG_GUEST_ERROR,
8924                              "Ignoring attempt to switch CPSR_A flag from "
8925                              "non-secure world with SCR.AW bit clear\n");
8926                mask &= ~CPSR_A;
8927            }
8928        }
8929
8930        if (changed_daif & CPSR_F) {
8931            /* Check to see if we are allowed to change the masking of FIQ
8932             * exceptions from a non-secure state.
8933             */
8934            if (!(env->cp15.scr_el3 & SCR_FW)) {
8935                qemu_log_mask(LOG_GUEST_ERROR,
8936                              "Ignoring attempt to switch CPSR_F flag from "
8937                              "non-secure world with SCR.FW bit clear\n");
8938                mask &= ~CPSR_F;
8939            }
8940
8941            /* Check whether non-maskable FIQ (NMFI) support is enabled.
8942             * If this bit is set software is not allowed to mask
8943             * FIQs, but is allowed to set CPSR_F to 0.
8944             */
8945            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8946                (val & CPSR_F)) {
8947                qemu_log_mask(LOG_GUEST_ERROR,
8948                              "Ignoring attempt to enable CPSR_F flag "
8949                              "(non-maskable FIQ [NMFI] support enabled)\n");
8950                mask &= ~CPSR_F;
8951            }
8952        }
8953    }
8954
8955    env->daif &= ~(CPSR_AIF & mask);
8956    env->daif |= val & CPSR_AIF & mask;
8957
8958    if (write_type != CPSRWriteRaw &&
8959        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8960        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8961            /* Note that we can only get here in USR mode if this is a
8962             * gdb stub write; for this case we follow the architectural
8963             * behaviour for guest writes in USR mode of ignoring an attempt
8964             * to switch mode. (Those are caught by translate.c for writes
8965             * triggered by guest instructions.)
8966             */
8967            mask &= ~CPSR_M;
8968        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8969            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8970             * v7, and has defined behaviour in v8:
8971             *  + leave CPSR.M untouched
8972             *  + allow changes to the other CPSR fields
8973             *  + set PSTATE.IL
8974             * For user changes via the GDB stub, we don't set PSTATE.IL,
8975             * as this would be unnecessarily harsh for a user error.
8976             */
8977            mask &= ~CPSR_M;
8978            if (write_type != CPSRWriteByGDBStub &&
8979                arm_feature(env, ARM_FEATURE_V8)) {
8980                mask |= CPSR_IL;
8981                val |= CPSR_IL;
8982            }
8983            qemu_log_mask(LOG_GUEST_ERROR,
8984                          "Illegal AArch32 mode switch attempt from %s to %s\n",
8985                          aarch32_mode_name(env->uncached_cpsr),
8986                          aarch32_mode_name(val));
8987        } else {
8988            qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8989                          write_type == CPSRWriteExceptionReturn ?
8990                          "Exception return from AArch32" :
8991                          "AArch32 mode switch from",
8992                          aarch32_mode_name(env->uncached_cpsr),
8993                          aarch32_mode_name(val), env->regs[15]);
8994            switch_mode(env, val & CPSR_M);
8995        }
8996    }
8997    mask &= ~CACHED_CPSR_BITS;
8998    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8999}
9000
9001/* Sign/zero extend */
9002uint32_t HELPER(sxtb16)(uint32_t x)
9003{
9004    uint32_t res;
9005    res = (uint16_t)(int8_t)x;
9006    res |= (uint32_t)(int8_t)(x >> 16) << 16;
9007    return res;
9008}
9009
9010uint32_t HELPER(uxtb16)(uint32_t x)
9011{
9012    uint32_t res;
9013    res = (uint16_t)(uint8_t)x;
9014    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9015    return res;
9016}
9017
9018int32_t HELPER(sdiv)(int32_t num, int32_t den)
9019{
9020    if (den == 0)
9021      return 0;
9022    if (num == INT_MIN && den == -1)
9023      return INT_MIN;
9024    return num / den;
9025}
9026
9027uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
9028{
9029    if (den == 0)
9030      return 0;
9031    return num / den;
9032}
9033
9034uint32_t HELPER(rbit)(uint32_t x)
9035{
9036    return revbit32(x);
9037}
9038
9039#ifdef CONFIG_USER_ONLY
9040
9041static void switch_mode(CPUARMState *env, int mode)
9042{
9043    ARMCPU *cpu = env_archcpu(env);
9044
9045    if (mode != ARM_CPU_MODE_USR) {
9046        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9047    }
9048}
9049
9050uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9051                                 uint32_t cur_el, bool secure)
9052{
9053    return 1;
9054}
9055
9056void aarch64_sync_64_to_32(CPUARMState *env)
9057{
9058    g_assert_not_reached();
9059}
9060
9061#else
9062
9063static void switch_mode(CPUARMState *env, int mode)
9064{
9065    int old_mode;
9066    int i;
9067
9068    old_mode = env->uncached_cpsr & CPSR_M;
9069    if (mode == old_mode)
9070        return;
9071
9072    if (old_mode == ARM_CPU_MODE_FIQ) {
9073        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9074        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9075    } else if (mode == ARM_CPU_MODE_FIQ) {
9076        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9077        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9078    }
9079
9080    i = bank_number(old_mode);
9081    env->banked_r13[i] = env->regs[13];
9082    env->banked_spsr[i] = env->spsr;
9083
9084    i = bank_number(mode);
9085    env->regs[13] = env->banked_r13[i];
9086    env->spsr = env->banked_spsr[i];
9087
9088    env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9089    env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9090}
9091
9092/* Physical Interrupt Target EL Lookup Table
9093 *
9094 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9095 *
9096 * The below multi-dimensional table is used for looking up the target
9097 * exception level given numerous condition criteria.  Specifically, the
9098 * target EL is based on SCR and HCR routing controls as well as the
9099 * currently executing EL and secure state.
9100 *
9101 *    Dimensions:
9102 *    target_el_table[2][2][2][2][2][4]
9103 *                    |  |  |  |  |  +--- Current EL
9104 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9105 *                    |  |  |  +--------- HCR mask override
9106 *                    |  |  +------------ SCR exec state control
9107 *                    |  +--------------- SCR mask override
9108 *                    +------------------ 32-bit(0)/64-bit(1) EL3
9109 *
9110 *    The table values are as such:
9111 *    0-3 = EL0-EL3
9112 *     -1 = Cannot occur
9113 *
9114 * The ARM ARM target EL table includes entries indicating that an "exception
9115 * is not taken".  The two cases where this is applicable are:
9116 *    1) An exception is taken from EL3 but the SCR does not have the exception
9117 *    routed to EL3.
9118 *    2) An exception is taken from EL2 but the HCR does not have the exception
9119 *    routed to EL2.
9120 * In these two cases, the below table contain a target of EL1.  This value is
9121 * returned as it is expected that the consumer of the table data will check
9122 * for "target EL >= current EL" to ensure the exception is not taken.
9123 *
9124 *            SCR     HCR
9125 *         64  EA     AMO                 From
9126 *        BIT IRQ     IMO      Non-secure         Secure
9127 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9128 */
9129static const int8_t target_el_table[2][2][2][2][2][4] = {
9130    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9131       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9132      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9133       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9134     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9135       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9136      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9137       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9138    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9139       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9140      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9141       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9142     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9143       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9144      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9145       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9146};
9147
9148/*
9149 * Determine the target EL for physical exceptions
9150 */
9151uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9152                                 uint32_t cur_el, bool secure)
9153{
9154    CPUARMState *env = cs->env_ptr;
9155    bool rw;
9156    bool scr;
9157    bool hcr;
9158    int target_el;
9159    /* Is the highest EL AArch64? */
9160    bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9161    uint64_t hcr_el2;
9162
9163    if (arm_feature(env, ARM_FEATURE_EL3)) {
9164        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9165    } else {
9166        /* Either EL2 is the highest EL (and so the EL2 register width
9167         * is given by is64); or there is no EL2 or EL3, in which case
9168         * the value of 'rw' does not affect the table lookup anyway.
9169         */
9170        rw = is64;
9171    }
9172
9173    hcr_el2 = arm_hcr_el2_eff(env);
9174    switch (excp_idx) {
9175    case EXCP_IRQ:
9176        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9177        hcr = hcr_el2 & HCR_IMO;
9178        break;
9179    case EXCP_FIQ:
9180        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9181        hcr = hcr_el2 & HCR_FMO;
9182        break;
9183    default:
9184        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9185        hcr = hcr_el2 & HCR_AMO;
9186        break;
9187    };
9188
9189    /*
9190     * For these purposes, TGE and AMO/IMO/FMO both force the
9191     * interrupt to EL2.  Fold TGE into the bit extracted above.
9192     */
9193    hcr |= (hcr_el2 & HCR_TGE) != 0;
9194
9195    /* Perform a table-lookup for the target EL given the current state */
9196    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9197
9198    assert(target_el > 0);
9199
9200    return target_el;
9201}
9202
9203void arm_log_exception(int idx)
9204{
9205    if (qemu_loglevel_mask(CPU_LOG_INT)) {
9206        const char *exc = NULL;
9207        static const char * const excnames[] = {
9208            [EXCP_UDEF] = "Undefined Instruction",
9209            [EXCP_SWI] = "SVC",
9210            [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9211            [EXCP_DATA_ABORT] = "Data Abort",
9212            [EXCP_IRQ] = "IRQ",
9213            [EXCP_FIQ] = "FIQ",
9214            [EXCP_BKPT] = "Breakpoint",
9215            [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9216            [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9217            [EXCP_HVC] = "Hypervisor Call",
9218            [EXCP_HYP_TRAP] = "Hypervisor Trap",
9219            [EXCP_SMC] = "Secure Monitor Call",
9220            [EXCP_VIRQ] = "Virtual IRQ",
9221            [EXCP_VFIQ] = "Virtual FIQ",
9222            [EXCP_SEMIHOST] = "Semihosting call",
9223            [EXCP_NOCP] = "v7M NOCP UsageFault",
9224            [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9225            [EXCP_STKOF] = "v8M STKOF UsageFault",
9226            [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9227            [EXCP_LSERR] = "v8M LSERR UsageFault",
9228            [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9229        };
9230
9231        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9232            exc = excnames[idx];
9233        }
9234        if (!exc) {
9235            exc = "unknown";
9236        }
9237        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9238    }
9239}
9240
9241/*
9242 * Function used to synchronize QEMU's AArch64 register set with AArch32
9243 * register set.  This is necessary when switching between AArch32 and AArch64
9244 * execution state.
9245 */
9246void aarch64_sync_32_to_64(CPUARMState *env)
9247{
9248    int i;
9249    uint32_t mode = env->uncached_cpsr & CPSR_M;
9250
9251    /* We can blanket copy R[0:7] to X[0:7] */
9252    for (i = 0; i < 8; i++) {
9253        env->xregs[i] = env->regs[i];
9254    }
9255
9256    /*
9257     * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9258     * Otherwise, they come from the banked user regs.
9259     */
9260    if (mode == ARM_CPU_MODE_FIQ) {
9261        for (i = 8; i < 13; i++) {
9262            env->xregs[i] = env->usr_regs[i - 8];
9263        }
9264    } else {
9265        for (i = 8; i < 13; i++) {
9266            env->xregs[i] = env->regs[i];
9267        }
9268    }
9269
9270    /*
9271     * Registers x13-x23 are the various mode SP and FP registers. Registers
9272     * r13 and r14 are only copied if we are in that mode, otherwise we copy
9273     * from the mode banked register.
9274     */
9275    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9276        env->xregs[13] = env->regs[13];
9277        env->xregs[14] = env->regs[14];
9278    } else {
9279        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9280        /* HYP is an exception in that it is copied from r14 */
9281        if (mode == ARM_CPU_MODE_HYP) {
9282            env->xregs[14] = env->regs[14];
9283        } else {
9284            env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9285        }
9286    }
9287
9288    if (mode == ARM_CPU_MODE_HYP) {
9289        env->xregs[15] = env->regs[13];
9290    } else {
9291        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9292    }
9293
9294    if (mode == ARM_CPU_MODE_IRQ) {
9295        env->xregs[16] = env->regs[14];
9296        env->xregs[17] = env->regs[13];
9297    } else {
9298        env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9299        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9300    }
9301
9302    if (mode == ARM_CPU_MODE_SVC) {
9303        env->xregs[18] = env->regs[14];
9304        env->xregs[19] = env->regs[13];
9305    } else {
9306        env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9307        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9308    }
9309
9310    if (mode == ARM_CPU_MODE_ABT) {
9311        env->xregs[20] = env->regs[14];
9312        env->xregs[21] = env->regs[13];
9313    } else {
9314        env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9315        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9316    }
9317
9318    if (mode == ARM_CPU_MODE_UND) {
9319        env->xregs[22] = env->regs[14];
9320        env->xregs[23] = env->regs[13];
9321    } else {
9322        env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9323        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9324    }
9325
9326    /*
9327     * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9328     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9329     * FIQ bank for r8-r14.
9330     */
9331    if (mode == ARM_CPU_MODE_FIQ) {
9332        for (i = 24; i < 31; i++) {
9333            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9334        }
9335    } else {
9336        for (i = 24; i < 29; i++) {
9337            env->xregs[i] = env->fiq_regs[i - 24];
9338        }
9339        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9340        env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9341    }
9342
9343    env->pc = env->regs[15];
9344}
9345
9346/*
9347 * Function used to synchronize QEMU's AArch32 register set with AArch64
9348 * register set.  This is necessary when switching between AArch32 and AArch64
9349 * execution state.
9350 */
9351void aarch64_sync_64_to_32(CPUARMState *env)
9352{
9353    int i;
9354    uint32_t mode = env->uncached_cpsr & CPSR_M;
9355
9356    /* We can blanket copy X[0:7] to R[0:7] */
9357    for (i = 0; i < 8; i++) {
9358        env->regs[i] = env->xregs[i];
9359    }
9360
9361    /*
9362     * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9363     * Otherwise, we copy x8-x12 into the banked user regs.
9364     */
9365    if (mode == ARM_CPU_MODE_FIQ) {
9366        for (i = 8; i < 13; i++) {
9367            env->usr_regs[i - 8] = env->xregs[i];
9368        }
9369    } else {
9370        for (i = 8; i < 13; i++) {
9371            env->regs[i] = env->xregs[i];
9372        }
9373    }
9374
9375    /*
9376     * Registers r13 & r14 depend on the current mode.
9377     * If we are in a given mode, we copy the corresponding x registers to r13
9378     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9379     * for the mode.
9380     */
9381    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9382        env->regs[13] = env->xregs[13];
9383        env->regs[14] = env->xregs[14];
9384    } else {
9385        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9386
9387        /*
9388         * HYP is an exception in that it does not have its own banked r14 but
9389         * shares the USR r14
9390         */
9391        if (mode == ARM_CPU_MODE_HYP) {
9392            env->regs[14] = env->xregs[14];
9393        } else {
9394            env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9395        }
9396    }
9397
9398    if (mode == ARM_CPU_MODE_HYP) {
9399        env->regs[13] = env->xregs[15];
9400    } else {
9401        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9402    }
9403
9404    if (mode == ARM_CPU_MODE_IRQ) {
9405        env->regs[14] = env->xregs[16];
9406        env->regs[13] = env->xregs[17];
9407    } else {
9408        env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9409        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9410    }
9411
9412    if (mode == ARM_CPU_MODE_SVC) {
9413        env->regs[14] = env->xregs[18];
9414        env->regs[13] = env->xregs[19];
9415    } else {
9416        env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9417        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9418    }
9419
9420    if (mode == ARM_CPU_MODE_ABT) {
9421        env->regs[14] = env->xregs[20];
9422        env->regs[13] = env->xregs[21];
9423    } else {
9424        env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9425        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9426    }
9427
9428    if (mode == ARM_CPU_MODE_UND) {
9429        env->regs[14] = env->xregs[22];
9430        env->regs[13] = env->xregs[23];
9431    } else {
9432        env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9433        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9434    }
9435
9436    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9437     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9438     * FIQ bank for r8-r14.
9439     */
9440    if (mode == ARM_CPU_MODE_FIQ) {
9441        for (i = 24; i < 31; i++) {
9442            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9443        }
9444    } else {
9445        for (i = 24; i < 29; i++) {
9446            env->fiq_regs[i - 24] = env->xregs[i];
9447        }
9448        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9449        env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9450    }
9451
9452    env->regs[15] = env->pc;
9453}
9454
9455static void take_aarch32_exception(CPUARMState *env, int new_mode,
9456                                   uint32_t mask, uint32_t offset,
9457                                   uint32_t newpc)
9458{
9459    int new_el;
9460
9461    /* Change the CPU state so as to actually take the exception. */
9462    switch_mode(env, new_mode);
9463
9464    /*
9465     * For exceptions taken to AArch32 we must clear the SS bit in both
9466     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9467     */
9468    env->pstate &= ~PSTATE_SS;
9469    env->spsr = cpsr_read(env);
9470    /* Clear IT bits.  */
9471    env->condexec_bits = 0;
9472    /* Switch to the new mode, and to the correct instruction set.  */
9473    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9474
9475    /* This must be after mode switching. */
9476    new_el = arm_current_el(env);
9477
9478    /* Set new mode endianness */
9479    env->uncached_cpsr &= ~CPSR_E;
9480    if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9481        env->uncached_cpsr |= CPSR_E;
9482    }
9483    /* J and IL must always be cleared for exception entry */
9484    env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9485    env->daif |= mask;
9486
9487    if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9488        if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9489            env->uncached_cpsr |= CPSR_SSBS;
9490        } else {
9491            env->uncached_cpsr &= ~CPSR_SSBS;
9492        }
9493    }
9494
9495    if (new_mode == ARM_CPU_MODE_HYP) {
9496        env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9497        env->elr_el[2] = env->regs[15];
9498    } else {
9499        /* CPSR.PAN is normally preserved preserved unless...  */
9500        if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9501            switch (new_el) {
9502            case 3:
9503                if (!arm_is_secure_below_el3(env)) {
9504                    /* ... the target is EL3, from non-secure state.  */
9505                    env->uncached_cpsr &= ~CPSR_PAN;
9506                    break;
9507                }
9508                /* ... the target is EL3, from secure state ... */
9509                /* fall through */
9510            case 1:
9511                /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9512                if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9513                    env->uncached_cpsr |= CPSR_PAN;
9514                }
9515                break;
9516            }
9517        }
9518        /*
9519         * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9520         * and we should just guard the thumb mode on V4
9521         */
9522        if (arm_feature(env, ARM_FEATURE_V4T)) {
9523            env->thumb =
9524                (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9525        }
9526        env->regs[14] = env->regs[15] + offset;
9527    }
9528    env->regs[15] = newpc;
9529    arm_rebuild_hflags(env);
9530}
9531
9532static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9533{
9534    /*
9535     * Handle exception entry to Hyp mode; this is sufficiently
9536     * different to entry to other AArch32 modes that we handle it
9537     * separately here.
9538     *
9539     * The vector table entry used is always the 0x14 Hyp mode entry point,
9540     * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9541     * The offset applied to the preferred return address is always zero
9542     * (see DDI0487C.a section G1.12.3).
9543     * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9544     */
9545    uint32_t addr, mask;
9546    ARMCPU *cpu = ARM_CPU(cs);
9547    CPUARMState *env = &cpu->env;
9548
9549    switch (cs->exception_index) {
9550    case EXCP_UDEF:
9551        addr = 0x04;
9552        break;
9553    case EXCP_SWI:
9554        addr = 0x14;
9555        break;
9556    case EXCP_BKPT:
9557        /* Fall through to prefetch abort.  */
9558    case EXCP_PREFETCH_ABORT:
9559        env->cp15.ifar_s = env->exception.vaddress;
9560        qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9561                      (uint32_t)env->exception.vaddress);
9562        addr = 0x0c;
9563        break;
9564    case EXCP_DATA_ABORT:
9565        env->cp15.dfar_s = env->exception.vaddress;
9566        qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9567                      (uint32_t)env->exception.vaddress);
9568        addr = 0x10;
9569        break;
9570    case EXCP_IRQ:
9571        addr = 0x18;
9572        break;
9573    case EXCP_FIQ:
9574        addr = 0x1c;
9575        break;
9576    case EXCP_HVC:
9577        addr = 0x08;
9578        break;
9579    case EXCP_HYP_TRAP:
9580        addr = 0x14;
9581        break;
9582    default:
9583        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9584    }
9585
9586    if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9587        if (!arm_feature(env, ARM_FEATURE_V8)) {
9588            /*
9589             * QEMU syndrome values are v8-style. v7 has the IL bit
9590             * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9591             * If this is a v7 CPU, squash the IL bit in those cases.
9592             */
9593            if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9594                (cs->exception_index == EXCP_DATA_ABORT &&
9595                 !(env->exception.syndrome & ARM_EL_ISV)) ||
9596                syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9597                env->exception.syndrome &= ~ARM_EL_IL;
9598            }
9599        }
9600        env->cp15.esr_el[2] = env->exception.syndrome;
9601    }
9602
9603    if (arm_current_el(env) != 2 && addr < 0x14) {
9604        addr = 0x14;
9605    }
9606
9607    mask = 0;
9608    if (!(env->cp15.scr_el3 & SCR_EA)) {
9609        mask |= CPSR_A;
9610    }
9611    if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9612        mask |= CPSR_I;
9613    }
9614    if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9615        mask |= CPSR_F;
9616    }
9617
9618    addr += env->cp15.hvbar;
9619
9620    take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9621}
9622
9623static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9624{
9625    ARMCPU *cpu = ARM_CPU(cs);
9626    CPUARMState *env = &cpu->env;
9627    uint32_t addr;
9628    uint32_t mask;
9629    int new_mode;
9630    uint32_t offset;
9631    uint32_t moe;
9632
9633    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9634    switch (syn_get_ec(env->exception.syndrome)) {
9635    case EC_BREAKPOINT:
9636    case EC_BREAKPOINT_SAME_EL:
9637        moe = 1;
9638        break;
9639    case EC_WATCHPOINT:
9640    case EC_WATCHPOINT_SAME_EL:
9641        moe = 10;
9642        break;
9643    case EC_AA32_BKPT:
9644        moe = 3;
9645        break;
9646    case EC_VECTORCATCH:
9647        moe = 5;
9648        break;
9649    default:
9650        moe = 0;
9651        break;
9652    }
9653
9654    if (moe) {
9655        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9656    }
9657
9658    if (env->exception.target_el == 2) {
9659        arm_cpu_do_interrupt_aarch32_hyp(cs);
9660        return;
9661    }
9662
9663    switch (cs->exception_index) {
9664    case EXCP_UDEF:
9665        new_mode = ARM_CPU_MODE_UND;
9666        addr = 0x04;
9667        mask = CPSR_I;
9668        if (env->thumb)
9669            offset = 2;
9670        else
9671            offset = 4;
9672        break;
9673    case EXCP_SWI:
9674        new_mode = ARM_CPU_MODE_SVC;
9675        addr = 0x08;
9676        mask = CPSR_I;
9677        /* The PC already points to the next instruction.  */
9678        offset = 0;
9679        break;
9680    case EXCP_BKPT:
9681        /* Fall through to prefetch abort.  */
9682    case EXCP_PREFETCH_ABORT:
9683        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9684        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9685        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9686                      env->exception.fsr, (uint32_t)env->exception.vaddress);
9687        new_mode = ARM_CPU_MODE_ABT;
9688        addr = 0x0c;
9689        mask = CPSR_A | CPSR_I;
9690        offset = 4;
9691        break;
9692    case EXCP_DATA_ABORT:
9693        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9694        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9695        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9696                      env->exception.fsr,
9697                      (uint32_t)env->exception.vaddress);
9698        new_mode = ARM_CPU_MODE_ABT;
9699        addr = 0x10;
9700        mask = CPSR_A | CPSR_I;
9701        offset = 8;
9702        break;
9703    case EXCP_IRQ:
9704        new_mode = ARM_CPU_MODE_IRQ;
9705        addr = 0x18;
9706        /* Disable IRQ and imprecise data aborts.  */
9707        mask = CPSR_A | CPSR_I;
9708        offset = 4;
9709        if (env->cp15.scr_el3 & SCR_IRQ) {
9710            /* IRQ routed to monitor mode */
9711            new_mode = ARM_CPU_MODE_MON;
9712            mask |= CPSR_F;
9713        }
9714        break;
9715    case EXCP_FIQ:
9716        new_mode = ARM_CPU_MODE_FIQ;
9717        addr = 0x1c;
9718        /* Disable FIQ, IRQ and imprecise data aborts.  */
9719        mask = CPSR_A | CPSR_I | CPSR_F;
9720        if (env->cp15.scr_el3 & SCR_FIQ) {
9721            /* FIQ routed to monitor mode */
9722            new_mode = ARM_CPU_MODE_MON;
9723        }
9724        offset = 4;
9725        break;
9726    case EXCP_VIRQ:
9727        new_mode = ARM_CPU_MODE_IRQ;
9728        addr = 0x18;
9729        /* Disable IRQ and imprecise data aborts.  */
9730        mask = CPSR_A | CPSR_I;
9731        offset = 4;
9732        break;
9733    case EXCP_VFIQ:
9734        new_mode = ARM_CPU_MODE_FIQ;
9735        addr = 0x1c;
9736        /* Disable FIQ, IRQ and imprecise data aborts.  */
9737        mask = CPSR_A | CPSR_I | CPSR_F;
9738        offset = 4;
9739        break;
9740    case EXCP_SMC:
9741        new_mode = ARM_CPU_MODE_MON;
9742        addr = 0x08;
9743        mask = CPSR_A | CPSR_I | CPSR_F;
9744        offset = 0;
9745        break;
9746    default:
9747        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9748        return; /* Never happens.  Keep compiler happy.  */
9749    }
9750
9751    if (new_mode == ARM_CPU_MODE_MON) {
9752        addr += env->cp15.mvbar;
9753    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9754        /* High vectors. When enabled, base address cannot be remapped. */
9755        addr += 0xffff0000;
9756    } else {
9757        /* ARM v7 architectures provide a vector base address register to remap
9758         * the interrupt vector table.
9759         * This register is only followed in non-monitor mode, and is banked.
9760         * Note: only bits 31:5 are valid.
9761         */
9762        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9763    }
9764
9765    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9766        env->cp15.scr_el3 &= ~SCR_NS;
9767    }
9768
9769    take_aarch32_exception(env, new_mode, mask, offset, addr);
9770}
9771
9772static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9773{
9774    /*
9775     * Return the register number of the AArch64 view of the AArch32
9776     * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9777     * be that of the AArch32 mode the exception came from.
9778     */
9779    int mode = env->uncached_cpsr & CPSR_M;
9780
9781    switch (aarch32_reg) {
9782    case 0 ... 7:
9783        return aarch32_reg;
9784    case 8 ... 12:
9785        return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9786    case 13:
9787        switch (mode) {
9788        case ARM_CPU_MODE_USR:
9789        case ARM_CPU_MODE_SYS:
9790            return 13;
9791        case ARM_CPU_MODE_HYP:
9792            return 15;
9793        case ARM_CPU_MODE_IRQ:
9794            return 17;
9795        case ARM_CPU_MODE_SVC:
9796            return 19;
9797        case ARM_CPU_MODE_ABT:
9798            return 21;
9799        case ARM_CPU_MODE_UND:
9800            return 23;
9801        case ARM_CPU_MODE_FIQ:
9802            return 29;
9803        default:
9804            g_assert_not_reached();
9805        }
9806    case 14:
9807        switch (mode) {
9808        case ARM_CPU_MODE_USR:
9809        case ARM_CPU_MODE_SYS:
9810        case ARM_CPU_MODE_HYP:
9811            return 14;
9812        case ARM_CPU_MODE_IRQ:
9813            return 16;
9814        case ARM_CPU_MODE_SVC:
9815            return 18;
9816        case ARM_CPU_MODE_ABT:
9817            return 20;
9818        case ARM_CPU_MODE_UND:
9819            return 22;
9820        case ARM_CPU_MODE_FIQ:
9821            return 30;
9822        default:
9823            g_assert_not_reached();
9824        }
9825    case 15:
9826        return 31;
9827    default:
9828        g_assert_not_reached();
9829    }
9830}
9831
9832static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9833{
9834    uint32_t ret = cpsr_read(env);
9835
9836    /* Move DIT to the correct location for SPSR_ELx */
9837    if (ret & CPSR_DIT) {
9838        ret &= ~CPSR_DIT;
9839        ret |= PSTATE_DIT;
9840    }
9841    /* Merge PSTATE.SS into SPSR_ELx */
9842    ret |= env->pstate & PSTATE_SS;
9843
9844    return ret;
9845}
9846
9847/* Handle exception entry to a target EL which is using AArch64 */
9848static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9849{
9850    ARMCPU *cpu = ARM_CPU(cs);
9851    CPUARMState *env = &cpu->env;
9852    unsigned int new_el = env->exception.target_el;
9853    target_ulong addr = env->cp15.vbar_el[new_el];
9854    unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9855    unsigned int old_mode;
9856    unsigned int cur_el = arm_current_el(env);
9857    int rt;
9858
9859    /*
9860     * Note that new_el can never be 0.  If cur_el is 0, then
9861     * el0_a64 is is_a64(), else el0_a64 is ignored.
9862     */
9863    aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9864
9865    if (cur_el < new_el) {
9866        /* Entry vector offset depends on whether the implemented EL
9867         * immediately lower than the target level is using AArch32 or AArch64
9868         */
9869        bool is_aa64;
9870        uint64_t hcr;
9871
9872        switch (new_el) {
9873        case 3:
9874            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9875            break;
9876        case 2:
9877            hcr = arm_hcr_el2_eff(env);
9878            if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9879                is_aa64 = (hcr & HCR_RW) != 0;
9880                break;
9881            }
9882            /* fall through */
9883        case 1:
9884            is_aa64 = is_a64(env);
9885            break;
9886        default:
9887            g_assert_not_reached();
9888        }
9889
9890        if (is_aa64) {
9891            addr += 0x400;
9892        } else {
9893            addr += 0x600;
9894        }
9895    } else if (pstate_read(env) & PSTATE_SP) {
9896        addr += 0x200;
9897    }
9898
9899    switch (cs->exception_index) {
9900    case EXCP_PREFETCH_ABORT:
9901    case EXCP_DATA_ABORT:
9902        env->cp15.far_el[new_el] = env->exception.vaddress;
9903        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9904                      env->cp15.far_el[new_el]);
9905        /* fall through */
9906    case EXCP_BKPT:
9907    case EXCP_UDEF:
9908    case EXCP_SWI:
9909    case EXCP_HVC:
9910    case EXCP_HYP_TRAP:
9911    case EXCP_SMC:
9912        switch (syn_get_ec(env->exception.syndrome)) {
9913        case EC_ADVSIMDFPACCESSTRAP:
9914            /*
9915             * QEMU internal FP/SIMD syndromes from AArch32 include the
9916             * TA and coproc fields which are only exposed if the exception
9917             * is taken to AArch32 Hyp mode. Mask them out to get a valid
9918             * AArch64 format syndrome.
9919             */
9920            env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9921            break;
9922        case EC_CP14RTTRAP:
9923        case EC_CP15RTTRAP:
9924        case EC_CP14DTTRAP:
9925            /*
9926             * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9927             * the raw register field from the insn; when taking this to
9928             * AArch64 we must convert it to the AArch64 view of the register
9929             * number. Notice that we read a 4-bit AArch32 register number and
9930             * write back a 5-bit AArch64 one.
9931             */
9932            rt = extract32(env->exception.syndrome, 5, 4);
9933            rt = aarch64_regnum(env, rt);
9934            env->exception.syndrome = deposit32(env->exception.syndrome,
9935                                                5, 5, rt);
9936            break;
9937        case EC_CP15RRTTRAP:
9938        case EC_CP14RRTTRAP:
9939            /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9940            rt = extract32(env->exception.syndrome, 5, 4);
9941            rt = aarch64_regnum(env, rt);
9942            env->exception.syndrome = deposit32(env->exception.syndrome,
9943                                                5, 5, rt);
9944            rt = extract32(env->exception.syndrome, 10, 4);
9945            rt = aarch64_regnum(env, rt);
9946            env->exception.syndrome = deposit32(env->exception.syndrome,
9947                                                10, 5, rt);
9948            break;
9949        }
9950        env->cp15.esr_el[new_el] = env->exception.syndrome;
9951        break;
9952    case EXCP_IRQ:
9953    case EXCP_VIRQ:
9954        addr += 0x80;
9955        break;
9956    case EXCP_FIQ:
9957    case EXCP_VFIQ:
9958        addr += 0x100;
9959        break;
9960    default:
9961        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9962    }
9963
9964    if (is_a64(env)) {
9965        old_mode = pstate_read(env);
9966        aarch64_save_sp(env, arm_current_el(env));
9967        env->elr_el[new_el] = env->pc;
9968    } else {
9969        old_mode = cpsr_read_for_spsr_elx(env);
9970        env->elr_el[new_el] = env->regs[15];
9971
9972        aarch64_sync_32_to_64(env);
9973
9974        env->condexec_bits = 0;
9975    }
9976    env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9977
9978    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9979                  env->elr_el[new_el]);
9980
9981    if (cpu_isar_feature(aa64_pan, cpu)) {
9982        /* The value of PSTATE.PAN is normally preserved, except when ... */
9983        new_mode |= old_mode & PSTATE_PAN;
9984        switch (new_el) {
9985        case 2:
9986            /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
9987            if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9988                != (HCR_E2H | HCR_TGE)) {
9989                break;
9990            }
9991            /* fall through */
9992        case 1:
9993            /* ... the target is EL1 ... */
9994            /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
9995            if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9996                new_mode |= PSTATE_PAN;
9997            }
9998            break;
9999        }
10000    }
10001    if (cpu_isar_feature(aa64_mte, cpu)) {
10002        new_mode |= PSTATE_TCO;
10003    }
10004
10005    if (cpu_isar_feature(aa64_ssbs, cpu)) {
10006        if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10007            new_mode |= PSTATE_SSBS;
10008        } else {
10009            new_mode &= ~PSTATE_SSBS;
10010        }
10011    }
10012
10013    pstate_write(env, PSTATE_DAIF | new_mode);
10014    env->aarch64 = 1;
10015    aarch64_restore_sp(env, new_el);
10016    helper_rebuild_hflags_a64(env, new_el);
10017
10018    env->pc = addr;
10019
10020    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10021                  new_el, env->pc, pstate_read(env));
10022}
10023
10024/*
10025 * Do semihosting call and set the appropriate return value. All the
10026 * permission and validity checks have been done at translate time.
10027 *
10028 * We only see semihosting exceptions in TCG only as they are not
10029 * trapped to the hypervisor in KVM.
10030 */
10031#ifdef CONFIG_TCG
10032static void handle_semihosting(CPUState *cs)
10033{
10034    ARMCPU *cpu = ARM_CPU(cs);
10035    CPUARMState *env = &cpu->env;
10036
10037    if (is_a64(env)) {
10038        qemu_log_mask(CPU_LOG_INT,
10039                      "...handling as semihosting call 0x%" PRIx64 "\n",
10040                      env->xregs[0]);
10041        env->xregs[0] = do_common_semihosting(cs);
10042        env->pc += 4;
10043    } else {
10044        qemu_log_mask(CPU_LOG_INT,
10045                      "...handling as semihosting call 0x%x\n",
10046                      env->regs[0]);
10047        env->regs[0] = do_common_semihosting(cs);
10048        env->regs[15] += env->thumb ? 2 : 4;
10049    }
10050}
10051#endif
10052
10053/* Handle a CPU exception for A and R profile CPUs.
10054 * Do any appropriate logging, handle PSCI calls, and then hand off
10055 * to the AArch64-entry or AArch32-entry function depending on the
10056 * target exception level's register width.
10057 *
10058 * Note: this is used for both TCG (as the do_interrupt tcg op),
10059 *       and KVM to re-inject guest debug exceptions, and to
10060 *       inject a Synchronous-External-Abort.
10061 */
10062void arm_cpu_do_interrupt(CPUState *cs)
10063{
10064    ARMCPU *cpu = ARM_CPU(cs);
10065    CPUARMState *env = &cpu->env;
10066    unsigned int new_el = env->exception.target_el;
10067
10068    assert(!arm_feature(env, ARM_FEATURE_M));
10069
10070    arm_log_exception(cs->exception_index);
10071    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10072                  new_el);
10073    if (qemu_loglevel_mask(CPU_LOG_INT)
10074        && !excp_is_internal(cs->exception_index)) {
10075        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10076                      syn_get_ec(env->exception.syndrome),
10077                      env->exception.syndrome);
10078    }
10079
10080    if (arm_is_psci_call(cpu, cs->exception_index)) {
10081        arm_handle_psci_call(cpu);
10082        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10083        return;
10084    }
10085
10086    /*
10087     * Semihosting semantics depend on the register width of the code
10088     * that caused the exception, not the target exception level, so
10089     * must be handled here.
10090     */
10091#ifdef CONFIG_TCG
10092    if (cs->exception_index == EXCP_SEMIHOST) {
10093        handle_semihosting(cs);
10094        return;
10095    }
10096#endif
10097
10098    /* Hooks may change global state so BQL should be held, also the
10099     * BQL needs to be held for any modification of
10100     * cs->interrupt_request.
10101     */
10102    g_assert(qemu_mutex_iothread_locked());
10103
10104    arm_call_pre_el_change_hook(cpu);
10105
10106    assert(!excp_is_internal(cs->exception_index));
10107    if (arm_el_is_aa64(env, new_el)) {
10108        arm_cpu_do_interrupt_aarch64(cs);
10109    } else {
10110        arm_cpu_do_interrupt_aarch32(cs);
10111    }
10112
10113    arm_call_el_change_hook(cpu);
10114
10115    if (!kvm_enabled()) {
10116        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10117    }
10118}
10119#endif /* !CONFIG_USER_ONLY */
10120
10121uint64_t arm_sctlr(CPUARMState *env, int el)
10122{
10123    /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10124    if (el == 0) {
10125        ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10126        el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10127             ? 2 : 1;
10128    }
10129    return env->cp15.sctlr_el[el];
10130}
10131
10132/* Return the SCTLR value which controls this address translation regime */
10133static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10134{
10135    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10136}
10137
10138#ifndef CONFIG_USER_ONLY
10139
10140/* Return true if the specified stage of address translation is disabled */
10141static inline bool regime_translation_disabled(CPUARMState *env,
10142                                               ARMMMUIdx mmu_idx)
10143{
10144    uint64_t hcr_el2;
10145
10146    if (arm_feature(env, ARM_FEATURE_M)) {
10147        switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10148                (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10149        case R_V7M_MPU_CTRL_ENABLE_MASK:
10150            /* Enabled, but not for HardFault and NMI */
10151            return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10152        case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10153            /* Enabled for all cases */
10154            return false;
10155        case 0:
10156        default:
10157            /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10158             * we warned about that in armv7m_nvic.c when the guest set it.
10159             */
10160            return true;
10161        }
10162    }
10163
10164    hcr_el2 = arm_hcr_el2_eff(env);
10165
10166    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10167        /* HCR.DC means HCR.VM behaves as 1 */
10168        return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10169    }
10170
10171    if (hcr_el2 & HCR_TGE) {
10172        /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10173        if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10174            return true;
10175        }
10176    }
10177
10178    if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10179        /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10180        return true;
10181    }
10182
10183    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10184}
10185
10186static inline bool regime_translation_big_endian(CPUARMState *env,
10187                                                 ARMMMUIdx mmu_idx)
10188{
10189    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10190}
10191
10192/* Return the TTBR associated with this translation regime */
10193static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10194                                   int ttbrn)
10195{
10196    if (mmu_idx == ARMMMUIdx_Stage2) {
10197        return env->cp15.vttbr_el2;
10198    }
10199    if (mmu_idx == ARMMMUIdx_Stage2_S) {
10200        return env->cp15.vsttbr_el2;
10201    }
10202    if (ttbrn == 0) {
10203        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10204    } else {
10205        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10206    }
10207}
10208
10209#endif /* !CONFIG_USER_ONLY */
10210
10211/* Convert a possible stage1+2 MMU index into the appropriate
10212 * stage 1 MMU index
10213 */
10214static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10215{
10216    switch (mmu_idx) {
10217    case ARMMMUIdx_SE10_0:
10218        return ARMMMUIdx_Stage1_SE0;
10219    case ARMMMUIdx_SE10_1:
10220        return ARMMMUIdx_Stage1_SE1;
10221    case ARMMMUIdx_SE10_1_PAN:
10222        return ARMMMUIdx_Stage1_SE1_PAN;
10223    case ARMMMUIdx_E10_0:
10224        return ARMMMUIdx_Stage1_E0;
10225    case ARMMMUIdx_E10_1:
10226        return ARMMMUIdx_Stage1_E1;
10227    case ARMMMUIdx_E10_1_PAN:
10228        return ARMMMUIdx_Stage1_E1_PAN;
10229    default:
10230        return mmu_idx;
10231    }
10232}
10233
10234/* Return true if the translation regime is using LPAE format page tables */
10235static inline bool regime_using_lpae_format(CPUARMState *env,
10236                                            ARMMMUIdx mmu_idx)
10237{
10238    int el = regime_el(env, mmu_idx);
10239    if (el == 2 || arm_el_is_aa64(env, el)) {
10240        return true;
10241    }
10242    if (arm_feature(env, ARM_FEATURE_LPAE)
10243        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10244        return true;
10245    }
10246    return false;
10247}
10248
10249/* Returns true if the stage 1 translation regime is using LPAE format page
10250 * tables. Used when raising alignment exceptions, whose FSR changes depending
10251 * on whether the long or short descriptor format is in use. */
10252bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10253{
10254    mmu_idx = stage_1_mmu_idx(mmu_idx);
10255
10256    return regime_using_lpae_format(env, mmu_idx);
10257}
10258
10259#ifndef CONFIG_USER_ONLY
10260static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10261{
10262    switch (mmu_idx) {
10263    case ARMMMUIdx_SE10_0:
10264    case ARMMMUIdx_E20_0:
10265    case ARMMMUIdx_SE20_0:
10266    case ARMMMUIdx_Stage1_E0:
10267    case ARMMMUIdx_Stage1_SE0:
10268    case ARMMMUIdx_MUser:
10269    case ARMMMUIdx_MSUser:
10270    case ARMMMUIdx_MUserNegPri:
10271    case ARMMMUIdx_MSUserNegPri:
10272        return true;
10273    default:
10274        return false;
10275    case ARMMMUIdx_E10_0:
10276    case ARMMMUIdx_E10_1:
10277    case ARMMMUIdx_E10_1_PAN:
10278        g_assert_not_reached();
10279    }
10280}
10281
10282/* Translate section/page access permissions to page
10283 * R/W protection flags
10284 *
10285 * @env:         CPUARMState
10286 * @mmu_idx:     MMU index indicating required translation regime
10287 * @ap:          The 3-bit access permissions (AP[2:0])
10288 * @domain_prot: The 2-bit domain access permissions
10289 */
10290static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10291                                int ap, int domain_prot)
10292{
10293    bool is_user = regime_is_user(env, mmu_idx);
10294
10295    if (domain_prot == 3) {
10296        return PAGE_READ | PAGE_WRITE;
10297    }
10298
10299    switch (ap) {
10300    case 0:
10301        if (arm_feature(env, ARM_FEATURE_V7)) {
10302            return 0;
10303        }
10304        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10305        case SCTLR_S:
10306            return is_user ? 0 : PAGE_READ;
10307        case SCTLR_R:
10308            return PAGE_READ;
10309        default:
10310            return 0;
10311        }
10312    case 1:
10313        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10314    case 2:
10315        if (is_user) {
10316            return PAGE_READ;
10317        } else {
10318            return PAGE_READ | PAGE_WRITE;
10319        }
10320    case 3:
10321        return PAGE_READ | PAGE_WRITE;
10322    case 4: /* Reserved.  */
10323        return 0;
10324    case 5:
10325        return is_user ? 0 : PAGE_READ;
10326    case 6:
10327        return PAGE_READ;
10328    case 7:
10329        if (!arm_feature(env, ARM_FEATURE_V6K)) {
10330            return 0;
10331        }
10332        return PAGE_READ;
10333    default:
10334        g_assert_not_reached();
10335    }
10336}
10337
10338/* Translate section/page access permissions to page
10339 * R/W protection flags.
10340 *
10341 * @ap:      The 2-bit simple AP (AP[2:1])
10342 * @is_user: TRUE if accessing from PL0
10343 */
10344static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10345{
10346    switch (ap) {
10347    case 0:
10348        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10349    case 1:
10350        return PAGE_READ | PAGE_WRITE;
10351    case 2:
10352        return is_user ? 0 : PAGE_READ;
10353    case 3:
10354        return PAGE_READ;
10355    default:
10356        g_assert_not_reached();
10357    }
10358}
10359
10360static inline int
10361simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10362{
10363    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10364}
10365
10366/* Translate S2 section/page access permissions to protection flags
10367 *
10368 * @env:     CPUARMState
10369 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10370 * @xn:      XN (execute-never) bits
10371 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10372 */
10373static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10374{
10375    int prot = 0;
10376
10377    if (s2ap & 1) {
10378        prot |= PAGE_READ;
10379    }
10380    if (s2ap & 2) {
10381        prot |= PAGE_WRITE;
10382    }
10383
10384    if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10385        switch (xn) {
10386        case 0:
10387            prot |= PAGE_EXEC;
10388            break;
10389        case 1:
10390            if (s1_is_el0) {
10391                prot |= PAGE_EXEC;
10392            }
10393            break;
10394        case 2:
10395            break;
10396        case 3:
10397            if (!s1_is_el0) {
10398                prot |= PAGE_EXEC;
10399            }
10400            break;
10401        default:
10402            g_assert_not_reached();
10403        }
10404    } else {
10405        if (!extract32(xn, 1, 1)) {
10406            if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10407                prot |= PAGE_EXEC;
10408            }
10409        }
10410    }
10411    return prot;
10412}
10413
10414/* Translate section/page access permissions to protection flags
10415 *
10416 * @env:     CPUARMState
10417 * @mmu_idx: MMU index indicating required translation regime
10418 * @is_aa64: TRUE if AArch64
10419 * @ap:      The 2-bit simple AP (AP[2:1])
10420 * @ns:      NS (non-secure) bit
10421 * @xn:      XN (execute-never) bit
10422 * @pxn:     PXN (privileged execute-never) bit
10423 */
10424static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10425                      int ap, int ns, int xn, int pxn)
10426{
10427    bool is_user = regime_is_user(env, mmu_idx);
10428    int prot_rw, user_rw;
10429    bool have_wxn;
10430    int wxn = 0;
10431
10432    assert(mmu_idx != ARMMMUIdx_Stage2);
10433    assert(mmu_idx != ARMMMUIdx_Stage2_S);
10434
10435    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10436    if (is_user) {
10437        prot_rw = user_rw;
10438    } else {
10439        if (user_rw && regime_is_pan(env, mmu_idx)) {
10440            /* PAN forbids data accesses but doesn't affect insn fetch */
10441            prot_rw = 0;
10442        } else {
10443            prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10444        }
10445    }
10446
10447    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10448        return prot_rw;
10449    }
10450
10451    /* TODO have_wxn should be replaced with
10452     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10453     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10454     * compatible processors have EL2, which is required for [U]WXN.
10455     */
10456    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10457
10458    if (have_wxn) {
10459        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10460    }
10461
10462    if (is_aa64) {
10463        if (regime_has_2_ranges(mmu_idx) && !is_user) {
10464            xn = pxn || (user_rw & PAGE_WRITE);
10465        }
10466    } else if (arm_feature(env, ARM_FEATURE_V7)) {
10467        switch (regime_el(env, mmu_idx)) {
10468        case 1:
10469        case 3:
10470            if (is_user) {
10471                xn = xn || !(user_rw & PAGE_READ);
10472            } else {
10473                int uwxn = 0;
10474                if (have_wxn) {
10475                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10476                }
10477                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10478                     (uwxn && (user_rw & PAGE_WRITE));
10479            }
10480            break;
10481        case 2:
10482            break;
10483        }
10484    } else {
10485        xn = wxn = 0;
10486    }
10487
10488    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10489        return prot_rw;
10490    }
10491    return prot_rw | PAGE_EXEC;
10492}
10493
10494static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10495                                     uint32_t *table, uint32_t address)
10496{
10497    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10498    TCR *tcr = regime_tcr(env, mmu_idx);
10499
10500    if (address & tcr->mask) {
10501        if (tcr->raw_tcr & TTBCR_PD1) {
10502            /* Translation table walk disabled for TTBR1 */
10503            return false;
10504        }
10505        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10506    } else {
10507        if (tcr->raw_tcr & TTBCR_PD0) {
10508            /* Translation table walk disabled for TTBR0 */
10509            return false;
10510        }
10511        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10512    }
10513    *table |= (address >> 18) & 0x3ffc;
10514    return true;
10515}
10516
10517/* Translate a S1 pagetable walk through S2 if needed.  */
10518static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10519                               hwaddr addr, bool *is_secure,
10520                               ARMMMUFaultInfo *fi)
10521{
10522    if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10523        !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10524        target_ulong s2size;
10525        hwaddr s2pa;
10526        int s2prot;
10527        int ret;
10528        ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10529                                          : ARMMMUIdx_Stage2;
10530        ARMCacheAttrs cacheattrs = {};
10531        MemTxAttrs txattrs = {};
10532
10533        ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10534                                 &s2pa, &txattrs, &s2prot, &s2size, fi,
10535                                 &cacheattrs);
10536        if (ret) {
10537            assert(fi->type != ARMFault_None);
10538            fi->s2addr = addr;
10539            fi->stage2 = true;
10540            fi->s1ptw = true;
10541            fi->s1ns = !*is_secure;
10542            return ~0;
10543        }
10544        if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10545            (cacheattrs.attrs & 0xf0) == 0) {
10546            /*
10547             * PTW set and S1 walk touched S2 Device memory:
10548             * generate Permission fault.
10549             */
10550            fi->type = ARMFault_Permission;
10551            fi->s2addr = addr;
10552            fi->stage2 = true;
10553            fi->s1ptw = true;
10554            fi->s1ns = !*is_secure;
10555            return ~0;
10556        }
10557
10558        if (arm_is_secure_below_el3(env)) {
10559            /* Check if page table walk is to secure or non-secure PA space. */
10560            if (*is_secure) {
10561                *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10562            } else {
10563                *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10564            }
10565        } else {
10566            assert(!*is_secure);
10567        }
10568
10569        addr = s2pa;
10570    }
10571    return addr;
10572}
10573
10574/* All loads done in the course of a page table walk go through here. */
10575static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10576                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10577{
10578    ARMCPU *cpu = ARM_CPU(cs);
10579    CPUARMState *env = &cpu->env;
10580    MemTxAttrs attrs = {};
10581    MemTxResult result = MEMTX_OK;
10582    AddressSpace *as;
10583    uint32_t data;
10584
10585    addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10586    attrs.secure = is_secure;
10587    as = arm_addressspace(cs, attrs);
10588    if (fi->s1ptw) {
10589        return 0;
10590    }
10591    if (regime_translation_big_endian(env, mmu_idx)) {
10592        data = address_space_ldl_be(as, addr, attrs, &result);
10593    } else {
10594        data = address_space_ldl_le(as, addr, attrs, &result);
10595    }
10596    if (result == MEMTX_OK) {
10597        return data;
10598    }
10599    fi->type = ARMFault_SyncExternalOnWalk;
10600    fi->ea = arm_extabort_type(result);
10601    return 0;
10602}
10603
10604static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10605                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10606{
10607    ARMCPU *cpu = ARM_CPU(cs);
10608    CPUARMState *env = &cpu->env;
10609    MemTxAttrs attrs = {};
10610    MemTxResult result = MEMTX_OK;
10611    AddressSpace *as;
10612    uint64_t data;
10613
10614    addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10615    attrs.secure = is_secure;
10616    as = arm_addressspace(cs, attrs);
10617    if (fi->s1ptw) {
10618        return 0;
10619    }
10620    if (regime_translation_big_endian(env, mmu_idx)) {
10621        data = address_space_ldq_be(as, addr, attrs, &result);
10622    } else {
10623        data = address_space_ldq_le(as, addr, attrs, &result);
10624    }
10625    if (result == MEMTX_OK) {
10626        return data;
10627    }
10628    fi->type = ARMFault_SyncExternalOnWalk;
10629    fi->ea = arm_extabort_type(result);
10630    return 0;
10631}
10632
10633static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10634                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
10635                             hwaddr *phys_ptr, int *prot,
10636                             target_ulong *page_size,
10637                             ARMMMUFaultInfo *fi)
10638{
10639    CPUState *cs = env_cpu(env);
10640    int level = 1;
10641    uint32_t table;
10642    uint32_t desc;
10643    int type;
10644    int ap;
10645    int domain = 0;
10646    int domain_prot;
10647    hwaddr phys_addr;
10648    uint32_t dacr;
10649
10650    /* Pagetable walk.  */
10651    /* Lookup l1 descriptor.  */
10652    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10653        /* Section translation fault if page walk is disabled by PD0 or PD1 */
10654        fi->type = ARMFault_Translation;
10655        goto do_fault;
10656    }
10657    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10658                       mmu_idx, fi);
10659    if (fi->type != ARMFault_None) {
10660        goto do_fault;
10661    }
10662    type = (desc & 3);
10663    domain = (desc >> 5) & 0x0f;
10664    if (regime_el(env, mmu_idx) == 1) {
10665        dacr = env->cp15.dacr_ns;
10666    } else {
10667        dacr = env->cp15.dacr_s;
10668    }
10669    domain_prot = (dacr >> (domain * 2)) & 3;
10670    if (type == 0) {
10671        /* Section translation fault.  */
10672        fi->type = ARMFault_Translation;
10673        goto do_fault;
10674    }
10675    if (type != 2) {
10676        level = 2;
10677    }
10678    if (domain_prot == 0 || domain_prot == 2) {
10679        fi->type = ARMFault_Domain;
10680        goto do_fault;
10681    }
10682    if (type == 2) {
10683        /* 1Mb section.  */
10684        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10685        ap = (desc >> 10) & 3;
10686        *page_size = 1024 * 1024;
10687    } else {
10688        /* Lookup l2 entry.  */
10689        if (type == 1) {
10690            /* Coarse pagetable.  */
10691            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10692        } else {
10693            /* Fine pagetable.  */
10694            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10695        }
10696        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10697                           mmu_idx, fi);
10698        if (fi->type != ARMFault_None) {
10699            goto do_fault;
10700        }
10701        switch (desc & 3) {
10702        case 0: /* Page translation fault.  */
10703            fi->type = ARMFault_Translation;
10704            goto do_fault;
10705        case 1: /* 64k page.  */
10706            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10707            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10708            *page_size = 0x10000;
10709            break;
10710        case 2: /* 4k page.  */
10711            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10712            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10713            *page_size = 0x1000;
10714            break;
10715        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10716            if (type == 1) {
10717                /* ARMv6/XScale extended small page format */
10718                if (arm_feature(env, ARM_FEATURE_XSCALE)
10719                    || arm_feature(env, ARM_FEATURE_V6)) {
10720                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10721                    *page_size = 0x1000;
10722                } else {
10723                    /* UNPREDICTABLE in ARMv5; we choose to take a
10724                     * page translation fault.
10725                     */
10726                    fi->type = ARMFault_Translation;
10727                    goto do_fault;
10728                }
10729            } else {
10730                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10731                *page_size = 0x400;
10732            }
10733            ap = (desc >> 4) & 3;
10734            break;
10735        default:
10736            /* Never happens, but compiler isn't smart enough to tell.  */
10737            abort();
10738        }
10739    }
10740    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10741    *prot |= *prot ? PAGE_EXEC : 0;
10742    if (!(*prot & (1 << access_type))) {
10743        /* Access permission fault.  */
10744        fi->type = ARMFault_Permission;
10745        goto do_fault;
10746    }
10747    *phys_ptr = phys_addr;
10748    return false;
10749do_fault:
10750    fi->domain = domain;
10751    fi->level = level;
10752    return true;
10753}
10754
10755static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10756                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
10757                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10758                             target_ulong *page_size, ARMMMUFaultInfo *fi)
10759{
10760    CPUState *cs = env_cpu(env);
10761    ARMCPU *cpu = env_archcpu(env);
10762    int level = 1;
10763    uint32_t table;
10764    uint32_t desc;
10765    uint32_t xn;
10766    uint32_t pxn = 0;
10767    int type;
10768    int ap;
10769    int domain = 0;
10770    int domain_prot;
10771    hwaddr phys_addr;
10772    uint32_t dacr;
10773    bool ns;
10774
10775    /* Pagetable walk.  */
10776    /* Lookup l1 descriptor.  */
10777    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10778        /* Section translation fault if page walk is disabled by PD0 or PD1 */
10779        fi->type = ARMFault_Translation;
10780        goto do_fault;
10781    }
10782    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10783                       mmu_idx, fi);
10784    if (fi->type != ARMFault_None) {
10785        goto do_fault;
10786    }
10787    type = (desc & 3);
10788    if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10789        /* Section translation fault, or attempt to use the encoding
10790         * which is Reserved on implementations without PXN.
10791         */
10792        fi->type = ARMFault_Translation;
10793        goto do_fault;
10794    }
10795    if ((type == 1) || !(desc & (1 << 18))) {
10796        /* Page or Section.  */
10797        domain = (desc >> 5) & 0x0f;
10798    }
10799    if (regime_el(env, mmu_idx) == 1) {
10800        dacr = env->cp15.dacr_ns;
10801    } else {
10802        dacr = env->cp15.dacr_s;
10803    }
10804    if (type == 1) {
10805        level = 2;
10806    }
10807    domain_prot = (dacr >> (domain * 2)) & 3;
10808    if (domain_prot == 0 || domain_prot == 2) {
10809        /* Section or Page domain fault */
10810        fi->type = ARMFault_Domain;
10811        goto do_fault;
10812    }
10813    if (type != 1) {
10814        if (desc & (1 << 18)) {
10815            /* Supersection.  */
10816            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10817            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10818            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10819            *page_size = 0x1000000;
10820        } else {
10821            /* Section.  */
10822            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10823            *page_size = 0x100000;
10824        }
10825        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10826        xn = desc & (1 << 4);
10827        pxn = desc & 1;
10828        ns = extract32(desc, 19, 1);
10829    } else {
10830        if (cpu_isar_feature(aa32_pxn, cpu)) {
10831            pxn = (desc >> 2) & 1;
10832        }
10833        ns = extract32(desc, 3, 1);
10834        /* Lookup l2 entry.  */
10835        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10836        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10837                           mmu_idx, fi);
10838        if (fi->type != ARMFault_None) {
10839            goto do_fault;
10840        }
10841        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10842        switch (desc & 3) {
10843        case 0: /* Page translation fault.  */
10844            fi->type = ARMFault_Translation;
10845            goto do_fault;
10846        case 1: /* 64k page.  */
10847            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10848            xn = desc & (1 << 15);
10849            *page_size = 0x10000;
10850            break;
10851        case 2: case 3: /* 4k page.  */
10852            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10853            xn = desc & 1;
10854            *page_size = 0x1000;
10855            break;
10856        default:
10857            /* Never happens, but compiler isn't smart enough to tell.  */
10858            abort();
10859        }
10860    }
10861    if (domain_prot == 3) {
10862        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10863    } else {
10864        if (pxn && !regime_is_user(env, mmu_idx)) {
10865            xn = 1;
10866        }
10867        if (xn && access_type == MMU_INST_FETCH) {
10868            fi->type = ARMFault_Permission;
10869            goto do_fault;
10870        }
10871
10872        if (arm_feature(env, ARM_FEATURE_V6K) &&
10873                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10874            /* The simplified model uses AP[0] as an access control bit.  */
10875            if ((ap & 1) == 0) {
10876                /* Access flag fault.  */
10877                fi->type = ARMFault_AccessFlag;
10878                goto do_fault;
10879            }
10880            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10881        } else {
10882            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10883        }
10884        if (*prot && !xn) {
10885            *prot |= PAGE_EXEC;
10886        }
10887        if (!(*prot & (1 << access_type))) {
10888            /* Access permission fault.  */
10889            fi->type = ARMFault_Permission;
10890            goto do_fault;
10891        }
10892    }
10893    if (ns) {
10894        /* The NS bit will (as required by the architecture) have no effect if
10895         * the CPU doesn't support TZ or this is a non-secure translation
10896         * regime, because the attribute will already be non-secure.
10897         */
10898        attrs->secure = false;
10899    }
10900    *phys_ptr = phys_addr;
10901    return false;
10902do_fault:
10903    fi->domain = domain;
10904    fi->level = level;
10905    return true;
10906}
10907
10908/*
10909 * check_s2_mmu_setup
10910 * @cpu:        ARMCPU
10911 * @is_aa64:    True if the translation regime is in AArch64 state
10912 * @startlevel: Suggested starting level
10913 * @inputsize:  Bitsize of IPAs
10914 * @stride:     Page-table stride (See the ARM ARM)
10915 *
10916 * Returns true if the suggested S2 translation parameters are OK and
10917 * false otherwise.
10918 */
10919static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10920                               int inputsize, int stride)
10921{
10922    const int grainsize = stride + 3;
10923    int startsizecheck;
10924
10925    /* Negative levels are never allowed.  */
10926    if (level < 0) {
10927        return false;
10928    }
10929
10930    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10931    if (startsizecheck < 1 || startsizecheck > stride + 4) {
10932        return false;
10933    }
10934
10935    if (is_aa64) {
10936        CPUARMState *env = &cpu->env;
10937        unsigned int pamax = arm_pamax(cpu);
10938
10939        switch (stride) {
10940        case 13: /* 64KB Pages.  */
10941            if (level == 0 || (level == 1 && pamax <= 42)) {
10942                return false;
10943            }
10944            break;
10945        case 11: /* 16KB Pages.  */
10946            if (level == 0 || (level == 1 && pamax <= 40)) {
10947                return false;
10948            }
10949            break;
10950        case 9: /* 4KB Pages.  */
10951            if (level == 0 && pamax <= 42) {
10952                return false;
10953            }
10954            break;
10955        default:
10956            g_assert_not_reached();
10957        }
10958
10959        /* Inputsize checks.  */
10960        if (inputsize > pamax &&
10961            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10962            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10963            return false;
10964        }
10965    } else {
10966        /* AArch32 only supports 4KB pages. Assert on that.  */
10967        assert(stride == 9);
10968
10969        if (level == 0) {
10970            return false;
10971        }
10972    }
10973    return true;
10974}
10975
10976/* Translate from the 4-bit stage 2 representation of
10977 * memory attributes (without cache-allocation hints) to
10978 * the 8-bit representation of the stage 1 MAIR registers
10979 * (which includes allocation hints).
10980 *
10981 * ref: shared/translation/attrs/S2AttrDecode()
10982 *      .../S2ConvertAttrsHints()
10983 */
10984static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10985{
10986    uint8_t hiattr = extract32(s2attrs, 2, 2);
10987    uint8_t loattr = extract32(s2attrs, 0, 2);
10988    uint8_t hihint = 0, lohint = 0;
10989
10990    if (hiattr != 0) { /* normal memory */
10991        if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
10992            hiattr = loattr = 1; /* non-cacheable */
10993        } else {
10994            if (hiattr != 1) { /* Write-through or write-back */
10995                hihint = 3; /* RW allocate */
10996            }
10997            if (loattr != 1) { /* Write-through or write-back */
10998                lohint = 3; /* RW allocate */
10999            }
11000        }
11001    }
11002
11003    return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11004}
11005#endif /* !CONFIG_USER_ONLY */
11006
11007static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11008{
11009    if (regime_has_2_ranges(mmu_idx)) {
11010        return extract64(tcr, 37, 2);
11011    } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11012        return 0; /* VTCR_EL2 */
11013    } else {
11014        /* Replicate the single TBI bit so we always have 2 bits.  */
11015        return extract32(tcr, 20, 1) * 3;
11016    }
11017}
11018
11019static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11020{
11021    if (regime_has_2_ranges(mmu_idx)) {
11022        return extract64(tcr, 51, 2);
11023    } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11024        return 0; /* VTCR_EL2 */
11025    } else {
11026        /* Replicate the single TBID bit so we always have 2 bits.  */
11027        return extract32(tcr, 29, 1) * 3;
11028    }
11029}
11030
11031static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11032{
11033    if (regime_has_2_ranges(mmu_idx)) {
11034        return extract64(tcr, 57, 2);
11035    } else {
11036        /* Replicate the single TCMA bit so we always have 2 bits.  */
11037        return extract32(tcr, 30, 1) * 3;
11038    }
11039}
11040
11041ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11042                                   ARMMMUIdx mmu_idx, bool data)
11043{
11044    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11045    bool epd, hpd, using16k, using64k;
11046    int select, tsz, tbi, max_tsz;
11047
11048    if (!regime_has_2_ranges(mmu_idx)) {
11049        select = 0;
11050        tsz = extract32(tcr, 0, 6);
11051        using64k = extract32(tcr, 14, 1);
11052        using16k = extract32(tcr, 15, 1);
11053        if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11054            /* VTCR_EL2 */
11055            hpd = false;
11056        } else {
11057            hpd = extract32(tcr, 24, 1);
11058        }
11059        epd = false;
11060    } else {
11061        /*
11062         * Bit 55 is always between the two regions, and is canonical for
11063         * determining if address tagging is enabled.
11064         */
11065        select = extract64(va, 55, 1);
11066        if (!select) {
11067            tsz = extract32(tcr, 0, 6);
11068            epd = extract32(tcr, 7, 1);
11069            using64k = extract32(tcr, 14, 1);
11070            using16k = extract32(tcr, 15, 1);
11071            hpd = extract64(tcr, 41, 1);
11072        } else {
11073            int tg = extract32(tcr, 30, 2);
11074            using16k = tg == 1;
11075            using64k = tg == 3;
11076            tsz = extract32(tcr, 16, 6);
11077            epd = extract32(tcr, 23, 1);
11078            hpd = extract64(tcr, 42, 1);
11079        }
11080    }
11081
11082    if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11083        max_tsz = 48 - using64k;
11084    } else {
11085        max_tsz = 39;
11086    }
11087
11088    tsz = MIN(tsz, max_tsz);
11089    tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11090
11091    /* Present TBI as a composite with TBID.  */
11092    tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11093    if (!data) {
11094        tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11095    }
11096    tbi = (tbi >> select) & 1;
11097
11098    return (ARMVAParameters) {
11099        .tsz = tsz,
11100        .select = select,
11101        .tbi = tbi,
11102        .epd = epd,
11103        .hpd = hpd,
11104        .using16k = using16k,
11105        .using64k = using64k,
11106    };
11107}
11108
11109#ifndef CONFIG_USER_ONLY
11110static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11111                                          ARMMMUIdx mmu_idx)
11112{
11113    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11114    uint32_t el = regime_el(env, mmu_idx);
11115    int select, tsz;
11116    bool epd, hpd;
11117
11118    assert(mmu_idx != ARMMMUIdx_Stage2_S);
11119
11120    if (mmu_idx == ARMMMUIdx_Stage2) {
11121        /* VTCR */
11122        bool sext = extract32(tcr, 4, 1);
11123        bool sign = extract32(tcr, 3, 1);
11124
11125        /*
11126         * If the sign-extend bit is not the same as t0sz[3], the result
11127         * is unpredictable. Flag this as a guest error.
11128         */
11129        if (sign != sext) {
11130            qemu_log_mask(LOG_GUEST_ERROR,
11131                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11132        }
11133        tsz = sextract32(tcr, 0, 4) + 8;
11134        select = 0;
11135        hpd = false;
11136        epd = false;
11137    } else if (el == 2) {
11138        /* HTCR */
11139        tsz = extract32(tcr, 0, 3);
11140        select = 0;
11141        hpd = extract64(tcr, 24, 1);
11142        epd = false;
11143    } else {
11144        int t0sz = extract32(tcr, 0, 3);
11145        int t1sz = extract32(tcr, 16, 3);
11146
11147        if (t1sz == 0) {
11148            select = va > (0xffffffffu >> t0sz);
11149        } else {
11150            /* Note that we will detect errors later.  */
11151            select = va >= ~(0xffffffffu >> t1sz);
11152        }
11153        if (!select) {
11154            tsz = t0sz;
11155            epd = extract32(tcr, 7, 1);
11156            hpd = extract64(tcr, 41, 1);
11157        } else {
11158            tsz = t1sz;
11159            epd = extract32(tcr, 23, 1);
11160            hpd = extract64(tcr, 42, 1);
11161        }
11162        /* For aarch32, hpd0 is not enabled without t2e as well.  */
11163        hpd &= extract32(tcr, 6, 1);
11164    }
11165
11166    return (ARMVAParameters) {
11167        .tsz = tsz,
11168        .select = select,
11169        .epd = epd,
11170        .hpd = hpd,
11171    };
11172}
11173
11174/**
11175 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11176 *
11177 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11178 * prot and page_size may not be filled in, and the populated fsr value provides
11179 * information on why the translation aborted, in the format of a long-format
11180 * DFSR/IFSR fault register, with the following caveats:
11181 *  * the WnR bit is never set (the caller must do this).
11182 *
11183 * @env: CPUARMState
11184 * @address: virtual address to get physical address for
11185 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11186 * @mmu_idx: MMU index indicating required translation regime
11187 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11188 *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11189 *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11190 * @phys_ptr: set to the physical address corresponding to the virtual address
11191 * @attrs: set to the memory transaction attributes to use
11192 * @prot: set to the permissions for the page containing phys_ptr
11193 * @page_size_ptr: set to the size of the page containing phys_ptr
11194 * @fi: set to fault info if the translation fails
11195 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11196 */
11197static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11198                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11199                               bool s1_is_el0,
11200                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11201                               target_ulong *page_size_ptr,
11202                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11203{
11204    ARMCPU *cpu = env_archcpu(env);
11205    CPUState *cs = CPU(cpu);
11206    /* Read an LPAE long-descriptor translation table. */
11207    ARMFaultType fault_type = ARMFault_Translation;
11208    uint32_t level;
11209    ARMVAParameters param;
11210    uint64_t ttbr;
11211    hwaddr descaddr, indexmask, indexmask_grainsize;
11212    uint32_t tableattrs;
11213    target_ulong page_size;
11214    uint32_t attrs;
11215    int32_t stride;
11216    int addrsize, inputsize;
11217    TCR *tcr = regime_tcr(env, mmu_idx);
11218    int ap, ns, xn, pxn;
11219    uint32_t el = regime_el(env, mmu_idx);
11220    uint64_t descaddrmask;
11221    bool aarch64 = arm_el_is_aa64(env, el);
11222    bool guarded = false;
11223
11224    /* TODO: This code does not support shareability levels. */
11225    if (aarch64) {
11226        param = aa64_va_parameters(env, address, mmu_idx,
11227                                   access_type != MMU_INST_FETCH);
11228        level = 0;
11229        addrsize = 64 - 8 * param.tbi;
11230        inputsize = 64 - param.tsz;
11231    } else {
11232        param = aa32_va_parameters(env, address, mmu_idx);
11233        level = 1;
11234        addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11235        inputsize = addrsize - param.tsz;
11236    }
11237
11238    /*
11239     * We determined the region when collecting the parameters, but we
11240     * have not yet validated that the address is valid for the region.
11241     * Extract the top bits and verify that they all match select.
11242     *
11243     * For aa32, if inputsize == addrsize, then we have selected the
11244     * region by exclusion in aa32_va_parameters and there is no more
11245     * validation to do here.
11246     */
11247    if (inputsize < addrsize) {
11248        target_ulong top_bits = sextract64(address, inputsize,
11249                                           addrsize - inputsize);
11250        if (-top_bits != param.select) {
11251            /* The gap between the two regions is a Translation fault */
11252            fault_type = ARMFault_Translation;
11253            goto do_fault;
11254        }
11255    }
11256
11257    if (param.using64k) {
11258        stride = 13;
11259    } else if (param.using16k) {
11260        stride = 11;
11261    } else {
11262        stride = 9;
11263    }
11264
11265    /* Note that QEMU ignores shareability and cacheability attributes,
11266     * so we don't need to do anything with the SH, ORGN, IRGN fields
11267     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11268     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11269     * implement any ASID-like capability so we can ignore it (instead
11270     * we will always flush the TLB any time the ASID is changed).
11271     */
11272    ttbr = regime_ttbr(env, mmu_idx, param.select);
11273
11274    /* Here we should have set up all the parameters for the translation:
11275     * inputsize, ttbr, epd, stride, tbi
11276     */
11277
11278    if (param.epd) {
11279        /* Translation table walk disabled => Translation fault on TLB miss
11280         * Note: This is always 0 on 64-bit EL2 and EL3.
11281         */
11282        goto do_fault;
11283    }
11284
11285    if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11286        /* The starting level depends on the virtual address size (which can
11287         * be up to 48 bits) and the translation granule size. It indicates
11288         * the number of strides (stride bits at a time) needed to
11289         * consume the bits of the input address. In the pseudocode this is:
11290         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11291         * where their 'inputsize' is our 'inputsize', 'grainsize' is
11292         * our 'stride + 3' and 'stride' is our 'stride'.
11293         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11294         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11295         * = 4 - (inputsize - 4) / stride;
11296         */
11297        level = 4 - (inputsize - 4) / stride;
11298    } else {
11299        /* For stage 2 translations the starting level is specified by the
11300         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11301         */
11302        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11303        uint32_t startlevel;
11304        bool ok;
11305
11306        if (!aarch64 || stride == 9) {
11307            /* AArch32 or 4KB pages */
11308            startlevel = 2 - sl0;
11309
11310            if (cpu_isar_feature(aa64_st, cpu)) {
11311                startlevel &= 3;
11312            }
11313        } else {
11314            /* 16KB or 64KB pages */
11315            startlevel = 3 - sl0;
11316        }
11317
11318        /* Check that the starting level is valid. */
11319        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11320                                inputsize, stride);
11321        if (!ok) {
11322            fault_type = ARMFault_Translation;
11323            goto do_fault;
11324        }
11325        level = startlevel;
11326    }
11327
11328    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11329    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11330
11331    /* Now we can extract the actual base address from the TTBR */
11332    descaddr = extract64(ttbr, 0, 48);
11333    /*
11334     * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11335     * and also to mask out CnP (bit 0) which could validly be non-zero.
11336     */
11337    descaddr &= ~indexmask;
11338
11339    /* The address field in the descriptor goes up to bit 39 for ARMv7
11340     * but up to bit 47 for ARMv8, but we use the descaddrmask
11341     * up to bit 39 for AArch32, because we don't need other bits in that case
11342     * to construct next descriptor address (anyway they should be all zeroes).
11343     */
11344    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11345                   ~indexmask_grainsize;
11346
11347    /* Secure accesses start with the page table in secure memory and
11348     * can be downgraded to non-secure at any step. Non-secure accesses
11349     * remain non-secure. We implement this by just ORing in the NSTable/NS
11350     * bits at each step.
11351     */
11352    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11353    for (;;) {
11354        uint64_t descriptor;
11355        bool nstable;
11356
11357        descaddr |= (address >> (stride * (4 - level))) & indexmask;
11358        descaddr &= ~7ULL;
11359        nstable = extract32(tableattrs, 4, 1);
11360        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11361        if (fi->type != ARMFault_None) {
11362            goto do_fault;
11363        }
11364
11365        if (!(descriptor & 1) ||
11366            (!(descriptor & 2) && (level == 3))) {
11367            /* Invalid, or the Reserved level 3 encoding */
11368            goto do_fault;
11369        }
11370        descaddr = descriptor & descaddrmask;
11371
11372        if ((descriptor & 2) && (level < 3)) {
11373            /* Table entry. The top five bits are attributes which may
11374             * propagate down through lower levels of the table (and
11375             * which are all arranged so that 0 means "no effect", so
11376             * we can gather them up by ORing in the bits at each level).
11377             */
11378            tableattrs |= extract64(descriptor, 59, 5);
11379            level++;
11380            indexmask = indexmask_grainsize;
11381            continue;
11382        }
11383        /* Block entry at level 1 or 2, or page entry at level 3.
11384         * These are basically the same thing, although the number
11385         * of bits we pull in from the vaddr varies.
11386         */
11387        page_size = (1ULL << ((stride * (4 - level)) + 3));
11388        descaddr |= (address & (page_size - 1));
11389        /* Extract attributes from the descriptor */
11390        attrs = extract64(descriptor, 2, 10)
11391            | (extract64(descriptor, 52, 12) << 10);
11392
11393        if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11394            /* Stage 2 table descriptors do not include any attribute fields */
11395            break;
11396        }
11397        /* Merge in attributes from table descriptors */
11398        attrs |= nstable << 3; /* NS */
11399        guarded = extract64(descriptor, 50, 1);  /* GP */
11400        if (param.hpd) {
11401            /* HPD disables all the table attributes except NSTable.  */
11402            break;
11403        }
11404        attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11405        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11406         * means "force PL1 access only", which means forcing AP[1] to 0.
11407         */
11408        attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11409        attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11410        break;
11411    }
11412    /* Here descaddr is the final physical address, and attributes
11413     * are all in attrs.
11414     */
11415    fault_type = ARMFault_AccessFlag;
11416    if ((attrs & (1 << 8)) == 0) {
11417        /* Access flag */
11418        goto do_fault;
11419    }
11420
11421    ap = extract32(attrs, 4, 2);
11422
11423    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11424        ns = mmu_idx == ARMMMUIdx_Stage2;
11425        xn = extract32(attrs, 11, 2);
11426        *prot = get_S2prot(env, ap, xn, s1_is_el0);
11427    } else {
11428        ns = extract32(attrs, 3, 1);
11429        xn = extract32(attrs, 12, 1);
11430        pxn = extract32(attrs, 11, 1);
11431        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11432    }
11433
11434    fault_type = ARMFault_Permission;
11435    if (!(*prot & (1 << access_type))) {
11436        goto do_fault;
11437    }
11438
11439    if (ns) {
11440        /* The NS bit will (as required by the architecture) have no effect if
11441         * the CPU doesn't support TZ or this is a non-secure translation
11442         * regime, because the attribute will already be non-secure.
11443         */
11444        txattrs->secure = false;
11445    }
11446    /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11447    if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11448        arm_tlb_bti_gp(txattrs) = true;
11449    }
11450
11451    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11452        cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11453    } else {
11454        /* Index into MAIR registers for cache attributes */
11455        uint8_t attrindx = extract32(attrs, 0, 3);
11456        uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11457        assert(attrindx <= 7);
11458        cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11459    }
11460    cacheattrs->shareability = extract32(attrs, 6, 2);
11461
11462    *phys_ptr = descaddr;
11463    *page_size_ptr = page_size;
11464    return false;
11465
11466do_fault:
11467    fi->type = fault_type;
11468    fi->level = level;
11469    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11470    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11471                               mmu_idx == ARMMMUIdx_Stage2_S);
11472    fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11473    return true;
11474}
11475
11476static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11477                                                ARMMMUIdx mmu_idx,
11478                                                int32_t address, int *prot)
11479{
11480    if (!arm_feature(env, ARM_FEATURE_M)) {
11481        *prot = PAGE_READ | PAGE_WRITE;
11482        switch (address) {
11483        case 0xF0000000 ... 0xFFFFFFFF:
11484            if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11485                /* hivecs execing is ok */
11486                *prot |= PAGE_EXEC;
11487            }
11488            break;
11489        case 0x00000000 ... 0x7FFFFFFF:
11490            *prot |= PAGE_EXEC;
11491            break;
11492        }
11493    } else {
11494        /* Default system address map for M profile cores.
11495         * The architecture specifies which regions are execute-never;
11496         * at the MPU level no other checks are defined.
11497         */
11498        switch (address) {
11499        case 0x00000000 ... 0x1fffffff: /* ROM */
11500        case 0x20000000 ... 0x3fffffff: /* SRAM */
11501        case 0x60000000 ... 0x7fffffff: /* RAM */
11502        case 0x80000000 ... 0x9fffffff: /* RAM */
11503            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11504            break;
11505        case 0x40000000 ... 0x5fffffff: /* Peripheral */
11506        case 0xa0000000 ... 0xbfffffff: /* Device */
11507        case 0xc0000000 ... 0xdfffffff: /* Device */
11508        case 0xe0000000 ... 0xffffffff: /* System */
11509            *prot = PAGE_READ | PAGE_WRITE;
11510            break;
11511        default:
11512            g_assert_not_reached();
11513        }
11514    }
11515}
11516
11517static bool pmsav7_use_background_region(ARMCPU *cpu,
11518                                         ARMMMUIdx mmu_idx, bool is_user)
11519{
11520    /* Return true if we should use the default memory map as a
11521     * "background" region if there are no hits against any MPU regions.
11522     */
11523    CPUARMState *env = &cpu->env;
11524
11525    if (is_user) {
11526        return false;
11527    }
11528
11529    if (arm_feature(env, ARM_FEATURE_M)) {
11530        return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11531            & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11532    } else {
11533        return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11534    }
11535}
11536
11537static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11538{
11539    /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11540    return arm_feature(env, ARM_FEATURE_M) &&
11541        extract32(address, 20, 12) == 0xe00;
11542}
11543
11544static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11545{
11546    /* True if address is in the M profile system region
11547     * 0xe0000000 - 0xffffffff
11548     */
11549    return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11550}
11551
11552static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11553                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11554                                 hwaddr *phys_ptr, int *prot,
11555                                 target_ulong *page_size,
11556                                 ARMMMUFaultInfo *fi)
11557{
11558    ARMCPU *cpu = env_archcpu(env);
11559    int n;
11560    bool is_user = regime_is_user(env, mmu_idx);
11561
11562    *phys_ptr = address;
11563    *page_size = TARGET_PAGE_SIZE;
11564    *prot = 0;
11565
11566    if (regime_translation_disabled(env, mmu_idx) ||
11567        m_is_ppb_region(env, address)) {
11568        /* MPU disabled or M profile PPB access: use default memory map.
11569         * The other case which uses the default memory map in the
11570         * v7M ARM ARM pseudocode is exception vector reads from the vector
11571         * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11572         * which always does a direct read using address_space_ldl(), rather
11573         * than going via this function, so we don't need to check that here.
11574         */
11575        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11576    } else { /* MPU enabled */
11577        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11578            /* region search */
11579            uint32_t base = env->pmsav7.drbar[n];
11580            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11581            uint32_t rmask;
11582            bool srdis = false;
11583
11584            if (!(env->pmsav7.drsr[n] & 0x1)) {
11585                continue;
11586            }
11587
11588            if (!rsize) {
11589                qemu_log_mask(LOG_GUEST_ERROR,
11590                              "DRSR[%d]: Rsize field cannot be 0\n", n);
11591                continue;
11592            }
11593            rsize++;
11594            rmask = (1ull << rsize) - 1;
11595
11596            if (base & rmask) {
11597                qemu_log_mask(LOG_GUEST_ERROR,
11598                              "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11599                              "to DRSR region size, mask = 0x%" PRIx32 "\n",
11600                              n, base, rmask);
11601                continue;
11602            }
11603
11604            if (address < base || address > base + rmask) {
11605                /*
11606                 * Address not in this region. We must check whether the
11607                 * region covers addresses in the same page as our address.
11608                 * In that case we must not report a size that covers the
11609                 * whole page for a subsequent hit against a different MPU
11610                 * region or the background region, because it would result in
11611                 * incorrect TLB hits for subsequent accesses to addresses that
11612                 * are in this MPU region.
11613                 */
11614                if (ranges_overlap(base, rmask,
11615                                   address & TARGET_PAGE_MASK,
11616                                   TARGET_PAGE_SIZE)) {
11617                    *page_size = 1;
11618                }
11619                continue;
11620            }
11621
11622            /* Region matched */
11623
11624            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11625                int i, snd;
11626                uint32_t srdis_mask;
11627
11628                rsize -= 3; /* sub region size (power of 2) */
11629                snd = ((address - base) >> rsize) & 0x7;
11630                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11631
11632                srdis_mask = srdis ? 0x3 : 0x0;
11633                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11634                    /* This will check in groups of 2, 4 and then 8, whether
11635                     * the subregion bits are consistent. rsize is incremented
11636                     * back up to give the region size, considering consistent
11637                     * adjacent subregions as one region. Stop testing if rsize
11638                     * is already big enough for an entire QEMU page.
11639                     */
11640                    int snd_rounded = snd & ~(i - 1);
11641                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11642                                                     snd_rounded + 8, i);
11643                    if (srdis_mask ^ srdis_multi) {
11644                        break;
11645                    }
11646                    srdis_mask = (srdis_mask << i) | srdis_mask;
11647                    rsize++;
11648                }
11649            }
11650            if (srdis) {
11651                continue;
11652            }
11653            if (rsize < TARGET_PAGE_BITS) {
11654                *page_size = 1 << rsize;
11655            }
11656            break;
11657        }
11658
11659        if (n == -1) { /* no hits */
11660            if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11661                /* background fault */
11662                fi->type = ARMFault_Background;
11663                return true;
11664            }
11665            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11666        } else { /* a MPU hit! */
11667            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11668            uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11669
11670            if (m_is_system_region(env, address)) {
11671                /* System space is always execute never */
11672                xn = 1;
11673            }
11674
11675            if (is_user) { /* User mode AP bit decoding */
11676                switch (ap) {
11677                case 0:
11678                case 1:
11679                case 5:
11680                    break; /* no access */
11681                case 3:
11682                    *prot |= PAGE_WRITE;
11683                    /* fall through */
11684                case 2:
11685                case 6:
11686                    *prot |= PAGE_READ | PAGE_EXEC;
11687                    break;
11688                case 7:
11689                    /* for v7M, same as 6; for R profile a reserved value */
11690                    if (arm_feature(env, ARM_FEATURE_M)) {
11691                        *prot |= PAGE_READ | PAGE_EXEC;
11692                        break;
11693                    }
11694                    /* fall through */
11695                default:
11696                    qemu_log_mask(LOG_GUEST_ERROR,
11697                                  "DRACR[%d]: Bad value for AP bits: 0x%"
11698                                  PRIx32 "\n", n, ap);
11699                }
11700            } else { /* Priv. mode AP bits decoding */
11701                switch (ap) {
11702                case 0:
11703                    break; /* no access */
11704                case 1:
11705                case 2:
11706                case 3:
11707                    *prot |= PAGE_WRITE;
11708                    /* fall through */
11709                case 5:
11710                case 6:
11711                    *prot |= PAGE_READ | PAGE_EXEC;
11712                    break;
11713                case 7:
11714                    /* for v7M, same as 6; for R profile a reserved value */
11715                    if (arm_feature(env, ARM_FEATURE_M)) {
11716                        *prot |= PAGE_READ | PAGE_EXEC;
11717                        break;
11718                    }
11719                    /* fall through */
11720                default:
11721                    qemu_log_mask(LOG_GUEST_ERROR,
11722                                  "DRACR[%d]: Bad value for AP bits: 0x%"
11723                                  PRIx32 "\n", n, ap);
11724                }
11725            }
11726
11727            /* execute never */
11728            if (xn) {
11729                *prot &= ~PAGE_EXEC;
11730            }
11731        }
11732    }
11733
11734    fi->type = ARMFault_Permission;
11735    fi->level = 1;
11736    return !(*prot & (1 << access_type));
11737}
11738
11739static bool v8m_is_sau_exempt(CPUARMState *env,
11740                              uint32_t address, MMUAccessType access_type)
11741{
11742    /* The architecture specifies that certain address ranges are
11743     * exempt from v8M SAU/IDAU checks.
11744     */
11745    return
11746        (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11747        (address >= 0xe0000000 && address <= 0xe0002fff) ||
11748        (address >= 0xe000e000 && address <= 0xe000efff) ||
11749        (address >= 0xe002e000 && address <= 0xe002efff) ||
11750        (address >= 0xe0040000 && address <= 0xe0041fff) ||
11751        (address >= 0xe00ff000 && address <= 0xe00fffff);
11752}
11753
11754void v8m_security_lookup(CPUARMState *env, uint32_t address,
11755                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11756                                V8M_SAttributes *sattrs)
11757{
11758    /* Look up the security attributes for this address. Compare the
11759     * pseudocode SecurityCheck() function.
11760     * We assume the caller has zero-initialized *sattrs.
11761     */
11762    ARMCPU *cpu = env_archcpu(env);
11763    int r;
11764    bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11765    int idau_region = IREGION_NOTVALID;
11766    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11767    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11768
11769    if (cpu->idau) {
11770        IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11771        IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11772
11773        iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11774                   &idau_nsc);
11775    }
11776
11777    if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11778        /* 0xf0000000..0xffffffff is always S for insn fetches */
11779        return;
11780    }
11781
11782    if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11783        sattrs->ns = !regime_is_secure(env, mmu_idx);
11784        return;
11785    }
11786
11787    if (idau_region != IREGION_NOTVALID) {
11788        sattrs->irvalid = true;
11789        sattrs->iregion = idau_region;
11790    }
11791
11792    switch (env->sau.ctrl & 3) {
11793    case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11794        break;
11795    case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11796        sattrs->ns = true;
11797        break;
11798    default: /* SAU.ENABLE == 1 */
11799        for (r = 0; r < cpu->sau_sregion; r++) {
11800            if (env->sau.rlar[r] & 1) {
11801                uint32_t base = env->sau.rbar[r] & ~0x1f;
11802                uint32_t limit = env->sau.rlar[r] | 0x1f;
11803
11804                if (base <= address && limit >= address) {
11805                    if (base > addr_page_base || limit < addr_page_limit) {
11806                        sattrs->subpage = true;
11807                    }
11808                    if (sattrs->srvalid) {
11809                        /* If we hit in more than one region then we must report
11810                         * as Secure, not NS-Callable, with no valid region
11811                         * number info.
11812                         */
11813                        sattrs->ns = false;
11814                        sattrs->nsc = false;
11815                        sattrs->sregion = 0;
11816                        sattrs->srvalid = false;
11817                        break;
11818                    } else {
11819                        if (env->sau.rlar[r] & 2) {
11820                            sattrs->nsc = true;
11821                        } else {
11822                            sattrs->ns = true;
11823                        }
11824                        sattrs->srvalid = true;
11825                        sattrs->sregion = r;
11826                    }
11827                } else {
11828                    /*
11829                     * Address not in this region. We must check whether the
11830                     * region covers addresses in the same page as our address.
11831                     * In that case we must not report a size that covers the
11832                     * whole page for a subsequent hit against a different MPU
11833                     * region or the background region, because it would result
11834                     * in incorrect TLB hits for subsequent accesses to
11835                     * addresses that are in this MPU region.
11836                     */
11837                    if (limit >= base &&
11838                        ranges_overlap(base, limit - base + 1,
11839                                       addr_page_base,
11840                                       TARGET_PAGE_SIZE)) {
11841                        sattrs->subpage = true;
11842                    }
11843                }
11844            }
11845        }
11846        break;
11847    }
11848
11849    /*
11850     * The IDAU will override the SAU lookup results if it specifies
11851     * higher security than the SAU does.
11852     */
11853    if (!idau_ns) {
11854        if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11855            sattrs->ns = false;
11856            sattrs->nsc = idau_nsc;
11857        }
11858    }
11859}
11860
11861bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11862                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
11863                              hwaddr *phys_ptr, MemTxAttrs *txattrs,
11864                              int *prot, bool *is_subpage,
11865                              ARMMMUFaultInfo *fi, uint32_t *mregion)
11866{
11867    /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11868     * that a full phys-to-virt translation does).
11869     * mregion is (if not NULL) set to the region number which matched,
11870     * or -1 if no region number is returned (MPU off, address did not
11871     * hit a region, address hit in multiple regions).
11872     * We set is_subpage to true if the region hit doesn't cover the
11873     * entire TARGET_PAGE the address is within.
11874     */
11875    ARMCPU *cpu = env_archcpu(env);
11876    bool is_user = regime_is_user(env, mmu_idx);
11877    uint32_t secure = regime_is_secure(env, mmu_idx);
11878    int n;
11879    int matchregion = -1;
11880    bool hit = false;
11881    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11882    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11883
11884    *is_subpage = false;
11885    *phys_ptr = address;
11886    *prot = 0;
11887    if (mregion) {
11888        *mregion = -1;
11889    }
11890
11891    /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11892     * was an exception vector read from the vector table (which is always
11893     * done using the default system address map), because those accesses
11894     * are done in arm_v7m_load_vector(), which always does a direct
11895     * read using address_space_ldl(), rather than going via this function.
11896     */
11897    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11898        hit = true;
11899    } else if (m_is_ppb_region(env, address)) {
11900        hit = true;
11901    } else {
11902        if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11903            hit = true;
11904        }
11905
11906        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11907            /* region search */
11908            /* Note that the base address is bits [31:5] from the register
11909             * with bits [4:0] all zeroes, but the limit address is bits
11910             * [31:5] from the register with bits [4:0] all ones.
11911             */
11912            uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11913            uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11914
11915            if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11916                /* Region disabled */
11917                continue;
11918            }
11919
11920            if (address < base || address > limit) {
11921                /*
11922                 * Address not in this region. We must check whether the
11923                 * region covers addresses in the same page as our address.
11924                 * In that case we must not report a size that covers the
11925                 * whole page for a subsequent hit against a different MPU
11926                 * region or the background region, because it would result in
11927                 * incorrect TLB hits for subsequent accesses to addresses that
11928                 * are in this MPU region.
11929                 */
11930                if (limit >= base &&
11931                    ranges_overlap(base, limit - base + 1,
11932                                   addr_page_base,
11933                                   TARGET_PAGE_SIZE)) {
11934                    *is_subpage = true;
11935                }
11936                continue;
11937            }
11938
11939            if (base > addr_page_base || limit < addr_page_limit) {
11940                *is_subpage = true;
11941            }
11942
11943            if (matchregion != -1) {
11944                /* Multiple regions match -- always a failure (unlike
11945                 * PMSAv7 where highest-numbered-region wins)
11946                 */
11947                fi->type = ARMFault_Permission;
11948                fi->level = 1;
11949                return true;
11950            }
11951
11952            matchregion = n;
11953            hit = true;
11954        }
11955    }
11956
11957    if (!hit) {
11958        /* background fault */
11959        fi->type = ARMFault_Background;
11960        return true;
11961    }
11962
11963    if (matchregion == -1) {
11964        /* hit using the background region */
11965        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11966    } else {
11967        uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11968        uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11969        bool pxn = false;
11970
11971        if (arm_feature(env, ARM_FEATURE_V8_1M)) {
11972            pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
11973        }
11974
11975        if (m_is_system_region(env, address)) {
11976            /* System space is always execute never */
11977            xn = 1;
11978        }
11979
11980        *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11981        if (*prot && !xn && !(pxn && !is_user)) {
11982            *prot |= PAGE_EXEC;
11983        }
11984        /* We don't need to look the attribute up in the MAIR0/MAIR1
11985         * registers because that only tells us about cacheability.
11986         */
11987        if (mregion) {
11988            *mregion = matchregion;
11989        }
11990    }
11991
11992    fi->type = ARMFault_Permission;
11993    fi->level = 1;
11994    return !(*prot & (1 << access_type));
11995}
11996
11997
11998static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11999                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12000                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12001                                 int *prot, target_ulong *page_size,
12002                                 ARMMMUFaultInfo *fi)
12003{
12004    uint32_t secure = regime_is_secure(env, mmu_idx);
12005    V8M_SAttributes sattrs = {};
12006    bool ret;
12007    bool mpu_is_subpage;
12008
12009    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12010        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12011        if (access_type == MMU_INST_FETCH) {
12012            /* Instruction fetches always use the MMU bank and the
12013             * transaction attribute determined by the fetch address,
12014             * regardless of CPU state. This is painful for QEMU
12015             * to handle, because it would mean we need to encode
12016             * into the mmu_idx not just the (user, negpri) information
12017             * for the current security state but also that for the
12018             * other security state, which would balloon the number
12019             * of mmu_idx values needed alarmingly.
12020             * Fortunately we can avoid this because it's not actually
12021             * possible to arbitrarily execute code from memory with
12022             * the wrong security attribute: it will always generate
12023             * an exception of some kind or another, apart from the
12024             * special case of an NS CPU executing an SG instruction
12025             * in S&NSC memory. So we always just fail the translation
12026             * here and sort things out in the exception handler
12027             * (including possibly emulating an SG instruction).
12028             */
12029            if (sattrs.ns != !secure) {
12030                if (sattrs.nsc) {
12031                    fi->type = ARMFault_QEMU_NSCExec;
12032                } else {
12033                    fi->type = ARMFault_QEMU_SFault;
12034                }
12035                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12036                *phys_ptr = address;
12037                *prot = 0;
12038                return true;
12039            }
12040        } else {
12041            /* For data accesses we always use the MMU bank indicated
12042             * by the current CPU state, but the security attributes
12043             * might downgrade a secure access to nonsecure.
12044             */
12045            if (sattrs.ns) {
12046                txattrs->secure = false;
12047            } else if (!secure) {
12048                /* NS access to S memory must fault.
12049                 * Architecturally we should first check whether the
12050                 * MPU information for this address indicates that we
12051                 * are doing an unaligned access to Device memory, which
12052                 * should generate a UsageFault instead. QEMU does not
12053                 * currently check for that kind of unaligned access though.
12054                 * If we added it we would need to do so as a special case
12055                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12056                 */
12057                fi->type = ARMFault_QEMU_SFault;
12058                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12059                *phys_ptr = address;
12060                *prot = 0;
12061                return true;
12062            }
12063        }
12064    }
12065
12066    ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12067                            txattrs, prot, &mpu_is_subpage, fi, NULL);
12068    *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12069    return ret;
12070}
12071
12072static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12073                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12074                                 hwaddr *phys_ptr, int *prot,
12075                                 ARMMMUFaultInfo *fi)
12076{
12077    int n;
12078    uint32_t mask;
12079    uint32_t base;
12080    bool is_user = regime_is_user(env, mmu_idx);
12081
12082    if (regime_translation_disabled(env, mmu_idx)) {
12083        /* MPU disabled.  */
12084        *phys_ptr = address;
12085        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12086        return false;
12087    }
12088
12089    *phys_ptr = address;
12090    for (n = 7; n >= 0; n--) {
12091        base = env->cp15.c6_region[n];
12092        if ((base & 1) == 0) {
12093            continue;
12094        }
12095        mask = 1 << ((base >> 1) & 0x1f);
12096        /* Keep this shift separate from the above to avoid an
12097           (undefined) << 32.  */
12098        mask = (mask << 1) - 1;
12099        if (((base ^ address) & ~mask) == 0) {
12100            break;
12101        }
12102    }
12103    if (n < 0) {
12104        fi->type = ARMFault_Background;
12105        return true;
12106    }
12107
12108    if (access_type == MMU_INST_FETCH) {
12109        mask = env->cp15.pmsav5_insn_ap;
12110    } else {
12111        mask = env->cp15.pmsav5_data_ap;
12112    }
12113    mask = (mask >> (n * 4)) & 0xf;
12114    switch (mask) {
12115    case 0:
12116        fi->type = ARMFault_Permission;
12117        fi->level = 1;
12118        return true;
12119    case 1:
12120        if (is_user) {
12121            fi->type = ARMFault_Permission;
12122            fi->level = 1;
12123            return true;
12124        }
12125        *prot = PAGE_READ | PAGE_WRITE;
12126        break;
12127    case 2:
12128        *prot = PAGE_READ;
12129        if (!is_user) {
12130            *prot |= PAGE_WRITE;
12131        }
12132        break;
12133    case 3:
12134        *prot = PAGE_READ | PAGE_WRITE;
12135        break;
12136    case 5:
12137        if (is_user) {
12138            fi->type = ARMFault_Permission;
12139            fi->level = 1;
12140            return true;
12141        }
12142        *prot = PAGE_READ;
12143        break;
12144    case 6:
12145        *prot = PAGE_READ;
12146        break;
12147    default:
12148        /* Bad permission.  */
12149        fi->type = ARMFault_Permission;
12150        fi->level = 1;
12151        return true;
12152    }
12153    *prot |= PAGE_EXEC;
12154    return false;
12155}
12156
12157/* Combine either inner or outer cacheability attributes for normal
12158 * memory, according to table D4-42 and pseudocode procedure
12159 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12160 *
12161 * NB: only stage 1 includes allocation hints (RW bits), leading to
12162 * some asymmetry.
12163 */
12164static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12165{
12166    if (s1 == 4 || s2 == 4) {
12167        /* non-cacheable has precedence */
12168        return 4;
12169    } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12170        /* stage 1 write-through takes precedence */
12171        return s1;
12172    } else if (extract32(s2, 2, 2) == 2) {
12173        /* stage 2 write-through takes precedence, but the allocation hint
12174         * is still taken from stage 1
12175         */
12176        return (2 << 2) | extract32(s1, 0, 2);
12177    } else { /* write-back */
12178        return s1;
12179    }
12180}
12181
12182/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12183 * and CombineS1S2Desc()
12184 *
12185 * @s1:      Attributes from stage 1 walk
12186 * @s2:      Attributes from stage 2 walk
12187 */
12188static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12189{
12190    uint8_t s1lo, s2lo, s1hi, s2hi;
12191    ARMCacheAttrs ret;
12192    bool tagged = false;
12193
12194    if (s1.attrs == 0xf0) {
12195        tagged = true;
12196        s1.attrs = 0xff;
12197    }
12198
12199    s1lo = extract32(s1.attrs, 0, 4);
12200    s2lo = extract32(s2.attrs, 0, 4);
12201    s1hi = extract32(s1.attrs, 4, 4);
12202    s2hi = extract32(s2.attrs, 4, 4);
12203
12204    /* Combine shareability attributes (table D4-43) */
12205    if (s1.shareability == 2 || s2.shareability == 2) {
12206        /* if either are outer-shareable, the result is outer-shareable */
12207        ret.shareability = 2;
12208    } else if (s1.shareability == 3 || s2.shareability == 3) {
12209        /* if either are inner-shareable, the result is inner-shareable */
12210        ret.shareability = 3;
12211    } else {
12212        /* both non-shareable */
12213        ret.shareability = 0;
12214    }
12215
12216    /* Combine memory type and cacheability attributes */
12217    if (s1hi == 0 || s2hi == 0) {
12218        /* Device has precedence over normal */
12219        if (s1lo == 0 || s2lo == 0) {
12220            /* nGnRnE has precedence over anything */
12221            ret.attrs = 0;
12222        } else if (s1lo == 4 || s2lo == 4) {
12223            /* non-Reordering has precedence over Reordering */
12224            ret.attrs = 4;  /* nGnRE */
12225        } else if (s1lo == 8 || s2lo == 8) {
12226            /* non-Gathering has precedence over Gathering */
12227            ret.attrs = 8;  /* nGRE */
12228        } else {
12229            ret.attrs = 0xc; /* GRE */
12230        }
12231
12232        /* Any location for which the resultant memory type is any
12233         * type of Device memory is always treated as Outer Shareable.
12234         */
12235        ret.shareability = 2;
12236    } else { /* Normal memory */
12237        /* Outer/inner cacheability combine independently */
12238        ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12239                  | combine_cacheattr_nibble(s1lo, s2lo);
12240
12241        if (ret.attrs == 0x44) {
12242            /* Any location for which the resultant memory type is Normal
12243             * Inner Non-cacheable, Outer Non-cacheable is always treated
12244             * as Outer Shareable.
12245             */
12246            ret.shareability = 2;
12247        }
12248    }
12249
12250    /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12251    if (tagged && ret.attrs == 0xff) {
12252        ret.attrs = 0xf0;
12253    }
12254
12255    return ret;
12256}
12257
12258
12259/* get_phys_addr - get the physical address for this virtual address
12260 *
12261 * Find the physical address corresponding to the given virtual address,
12262 * by doing a translation table walk on MMU based systems or using the
12263 * MPU state on MPU based systems.
12264 *
12265 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12266 * prot and page_size may not be filled in, and the populated fsr value provides
12267 * information on why the translation aborted, in the format of a
12268 * DFSR/IFSR fault register, with the following caveats:
12269 *  * we honour the short vs long DFSR format differences.
12270 *  * the WnR bit is never set (the caller must do this).
12271 *  * for PSMAv5 based systems we don't bother to return a full FSR format
12272 *    value.
12273 *
12274 * @env: CPUARMState
12275 * @address: virtual address to get physical address for
12276 * @access_type: 0 for read, 1 for write, 2 for execute
12277 * @mmu_idx: MMU index indicating required translation regime
12278 * @phys_ptr: set to the physical address corresponding to the virtual address
12279 * @attrs: set to the memory transaction attributes to use
12280 * @prot: set to the permissions for the page containing phys_ptr
12281 * @page_size: set to the size of the page containing phys_ptr
12282 * @fi: set to fault info if the translation fails
12283 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12284 */
12285bool get_phys_addr(CPUARMState *env, target_ulong address,
12286                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
12287                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12288                   target_ulong *page_size,
12289                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12290{
12291    ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12292
12293    if (mmu_idx != s1_mmu_idx) {
12294        /* Call ourselves recursively to do the stage 1 and then stage 2
12295         * translations if mmu_idx is a two-stage regime.
12296         */
12297        if (arm_feature(env, ARM_FEATURE_EL2)) {
12298            hwaddr ipa;
12299            int s2_prot;
12300            int ret;
12301            ARMCacheAttrs cacheattrs2 = {};
12302            ARMMMUIdx s2_mmu_idx;
12303            bool is_el0;
12304
12305            ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12306                                attrs, prot, page_size, fi, cacheattrs);
12307
12308            /* If S1 fails or S2 is disabled, return early.  */
12309            if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12310                *phys_ptr = ipa;
12311                return ret;
12312            }
12313
12314            s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12315            is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12316
12317            /* S1 is done. Now do S2 translation.  */
12318            ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12319                                     phys_ptr, attrs, &s2_prot,
12320                                     page_size, fi, &cacheattrs2);
12321            fi->s2addr = ipa;
12322            /* Combine the S1 and S2 perms.  */
12323            *prot &= s2_prot;
12324
12325            /* If S2 fails, return early.  */
12326            if (ret) {
12327                return ret;
12328            }
12329
12330            /* Combine the S1 and S2 cache attributes. */
12331            if (arm_hcr_el2_eff(env) & HCR_DC) {
12332                /*
12333                 * HCR.DC forces the first stage attributes to
12334                 *  Normal Non-Shareable,
12335                 *  Inner Write-Back Read-Allocate Write-Allocate,
12336                 *  Outer Write-Back Read-Allocate Write-Allocate.
12337                 * Do not overwrite Tagged within attrs.
12338                 */
12339                if (cacheattrs->attrs != 0xf0) {
12340                    cacheattrs->attrs = 0xff;
12341                }
12342                cacheattrs->shareability = 0;
12343            }
12344            *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12345
12346            /* Check if IPA translates to secure or non-secure PA space. */
12347            if (arm_is_secure_below_el3(env)) {
12348                if (attrs->secure) {
12349                    attrs->secure =
12350                        !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12351                } else {
12352                    attrs->secure =
12353                        !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12354                        || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12355                }
12356            }
12357            return 0;
12358        } else {
12359            /*
12360             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12361             */
12362            mmu_idx = stage_1_mmu_idx(mmu_idx);
12363        }
12364    }
12365
12366    /* The page table entries may downgrade secure to non-secure, but
12367     * cannot upgrade an non-secure translation regime's attributes
12368     * to secure.
12369     */
12370    attrs->secure = regime_is_secure(env, mmu_idx);
12371    attrs->user = regime_is_user(env, mmu_idx);
12372
12373    /* Fast Context Switch Extension. This doesn't exist at all in v8.
12374     * In v7 and earlier it affects all stage 1 translations.
12375     */
12376    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12377        && !arm_feature(env, ARM_FEATURE_V8)) {
12378        if (regime_el(env, mmu_idx) == 3) {
12379            address += env->cp15.fcseidr_s;
12380        } else {
12381            address += env->cp15.fcseidr_ns;
12382        }
12383    }
12384
12385    if (arm_feature(env, ARM_FEATURE_PMSA)) {
12386        bool ret;
12387        *page_size = TARGET_PAGE_SIZE;
12388
12389        if (arm_feature(env, ARM_FEATURE_V8)) {
12390            /* PMSAv8 */
12391            ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12392                                       phys_ptr, attrs, prot, page_size, fi);
12393        } else if (arm_feature(env, ARM_FEATURE_V7)) {
12394            /* PMSAv7 */
12395            ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12396                                       phys_ptr, prot, page_size, fi);
12397        } else {
12398            /* Pre-v7 MPU */
12399            ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12400                                       phys_ptr, prot, fi);
12401        }
12402        qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12403                      " mmu_idx %u -> %s (prot %c%c%c)\n",
12404                      access_type == MMU_DATA_LOAD ? "reading" :
12405                      (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12406                      (uint32_t)address, mmu_idx,
12407                      ret ? "Miss" : "Hit",
12408                      *prot & PAGE_READ ? 'r' : '-',
12409                      *prot & PAGE_WRITE ? 'w' : '-',
12410                      *prot & PAGE_EXEC ? 'x' : '-');
12411
12412        return ret;
12413    }
12414
12415    /* Definitely a real MMU, not an MPU */
12416
12417    if (regime_translation_disabled(env, mmu_idx)) {
12418        uint64_t hcr;
12419        uint8_t memattr;
12420
12421        /*
12422         * MMU disabled.  S1 addresses within aa64 translation regimes are
12423         * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12424         */
12425        if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12426            int r_el = regime_el(env, mmu_idx);
12427            if (arm_el_is_aa64(env, r_el)) {
12428                int pamax = arm_pamax(env_archcpu(env));
12429                uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12430                int addrtop, tbi;
12431
12432                tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12433                if (access_type == MMU_INST_FETCH) {
12434                    tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12435                }
12436                tbi = (tbi >> extract64(address, 55, 1)) & 1;
12437                addrtop = (tbi ? 55 : 63);
12438
12439                if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12440                    fi->type = ARMFault_AddressSize;
12441                    fi->level = 0;
12442                    fi->stage2 = false;
12443                    return 1;
12444                }
12445
12446                /*
12447                 * When TBI is disabled, we've just validated that all of the
12448                 * bits above PAMax are zero, so logically we only need to
12449                 * clear the top byte for TBI.  But it's clearer to follow
12450                 * the pseudocode set of addrdesc.paddress.
12451                 */
12452                address = extract64(address, 0, 52);
12453            }
12454        }
12455        *phys_ptr = address;
12456        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12457        *page_size = TARGET_PAGE_SIZE;
12458
12459        /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12460        hcr = arm_hcr_el2_eff(env);
12461        cacheattrs->shareability = 0;
12462        if (hcr & HCR_DC) {
12463            if (hcr & HCR_DCT) {
12464                memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12465            } else {
12466                memattr = 0xff;  /* Normal, WB, RWA */
12467            }
12468        } else if (access_type == MMU_INST_FETCH) {
12469            if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12470                memattr = 0xee;  /* Normal, WT, RA, NT */
12471            } else {
12472                memattr = 0x44;  /* Normal, NC, No */
12473            }
12474            cacheattrs->shareability = 2; /* outer sharable */
12475        } else {
12476            memattr = 0x00;      /* Device, nGnRnE */
12477        }
12478        cacheattrs->attrs = memattr;
12479        return 0;
12480    }
12481
12482    if (regime_using_lpae_format(env, mmu_idx)) {
12483        return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12484                                  phys_ptr, attrs, prot, page_size,
12485                                  fi, cacheattrs);
12486    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12487        return get_phys_addr_v6(env, address, access_type, mmu_idx,
12488                                phys_ptr, attrs, prot, page_size, fi);
12489    } else {
12490        return get_phys_addr_v5(env, address, access_type, mmu_idx,
12491                                    phys_ptr, prot, page_size, fi);
12492    }
12493}
12494
12495hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12496                                         MemTxAttrs *attrs)
12497{
12498    ARMCPU *cpu = ARM_CPU(cs);
12499    CPUARMState *env = &cpu->env;
12500    hwaddr phys_addr;
12501    target_ulong page_size;
12502    int prot;
12503    bool ret;
12504    ARMMMUFaultInfo fi = {};
12505    ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12506    ARMCacheAttrs cacheattrs = {};
12507
12508    *attrs = (MemTxAttrs) {};
12509
12510    ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12511                        attrs, &prot, &page_size, &fi, &cacheattrs);
12512
12513    if (ret) {
12514        return -1;
12515    }
12516    return phys_addr;
12517}
12518
12519#endif
12520
12521/* Note that signed overflow is undefined in C.  The following routines are
12522   careful to use unsigned types where modulo arithmetic is required.
12523   Failure to do so _will_ break on newer gcc.  */
12524
12525/* Signed saturating arithmetic.  */
12526
12527/* Perform 16-bit signed saturating addition.  */
12528static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12529{
12530    uint16_t res;
12531
12532    res = a + b;
12533    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12534        if (a & 0x8000)
12535            res = 0x8000;
12536        else
12537            res = 0x7fff;
12538    }
12539    return res;
12540}
12541
12542/* Perform 8-bit signed saturating addition.  */
12543static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12544{
12545    uint8_t res;
12546
12547    res = a + b;
12548    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12549        if (a & 0x80)
12550            res = 0x80;
12551        else
12552            res = 0x7f;
12553    }
12554    return res;
12555}
12556
12557/* Perform 16-bit signed saturating subtraction.  */
12558static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12559{
12560    uint16_t res;
12561
12562    res = a - b;
12563    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12564        if (a & 0x8000)
12565            res = 0x8000;
12566        else
12567            res = 0x7fff;
12568    }
12569    return res;
12570}
12571
12572/* Perform 8-bit signed saturating subtraction.  */
12573static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12574{
12575    uint8_t res;
12576
12577    res = a - b;
12578    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12579        if (a & 0x80)
12580            res = 0x80;
12581        else
12582            res = 0x7f;
12583    }
12584    return res;
12585}
12586
12587#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12588#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12589#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12590#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12591#define PFX q
12592
12593#include "op_addsub.h"
12594
12595/* Unsigned saturating arithmetic.  */
12596static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12597{
12598    uint16_t res;
12599    res = a + b;
12600    if (res < a)
12601        res = 0xffff;
12602    return res;
12603}
12604
12605static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12606{
12607    if (a > b)
12608        return a - b;
12609    else
12610        return 0;
12611}
12612
12613static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12614{
12615    uint8_t res;
12616    res = a + b;
12617    if (res < a)
12618        res = 0xff;
12619    return res;
12620}
12621
12622static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12623{
12624    if (a > b)
12625        return a - b;
12626    else
12627        return 0;
12628}
12629
12630#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12631#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12632#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12633#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12634#define PFX uq
12635
12636#include "op_addsub.h"
12637
12638/* Signed modulo arithmetic.  */
12639#define SARITH16(a, b, n, op) do { \
12640    int32_t sum; \
12641    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12642    RESULT(sum, n, 16); \
12643    if (sum >= 0) \
12644        ge |= 3 << (n * 2); \
12645    } while(0)
12646
12647#define SARITH8(a, b, n, op) do { \
12648    int32_t sum; \
12649    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12650    RESULT(sum, n, 8); \
12651    if (sum >= 0) \
12652        ge |= 1 << n; \
12653    } while(0)
12654
12655
12656#define ADD16(a, b, n) SARITH16(a, b, n, +)
12657#define SUB16(a, b, n) SARITH16(a, b, n, -)
12658#define ADD8(a, b, n)  SARITH8(a, b, n, +)
12659#define SUB8(a, b, n)  SARITH8(a, b, n, -)
12660#define PFX s
12661#define ARITH_GE
12662
12663#include "op_addsub.h"
12664
12665/* Unsigned modulo arithmetic.  */
12666#define ADD16(a, b, n) do { \
12667    uint32_t sum; \
12668    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12669    RESULT(sum, n, 16); \
12670    if ((sum >> 16) == 1) \
12671        ge |= 3 << (n * 2); \
12672    } while(0)
12673
12674#define ADD8(a, b, n) do { \
12675    uint32_t sum; \
12676    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12677    RESULT(sum, n, 8); \
12678    if ((sum >> 8) == 1) \
12679        ge |= 1 << n; \
12680    } while(0)
12681
12682#define SUB16(a, b, n) do { \
12683    uint32_t sum; \
12684    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12685    RESULT(sum, n, 16); \
12686    if ((sum >> 16) == 0) \
12687        ge |= 3 << (n * 2); \
12688    } while(0)
12689
12690#define SUB8(a, b, n) do { \
12691    uint32_t sum; \
12692    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12693    RESULT(sum, n, 8); \
12694    if ((sum >> 8) == 0) \
12695        ge |= 1 << n; \
12696    } while(0)
12697
12698#define PFX u
12699#define ARITH_GE
12700
12701#include "op_addsub.h"
12702
12703/* Halved signed arithmetic.  */
12704#define ADD16(a, b, n) \
12705  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12706#define SUB16(a, b, n) \
12707  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12708#define ADD8(a, b, n) \
12709  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12710#define SUB8(a, b, n) \
12711  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12712#define PFX sh
12713
12714#include "op_addsub.h"
12715
12716/* Halved unsigned arithmetic.  */
12717#define ADD16(a, b, n) \
12718  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12719#define SUB16(a, b, n) \
12720  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12721#define ADD8(a, b, n) \
12722  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12723#define SUB8(a, b, n) \
12724  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12725#define PFX uh
12726
12727#include "op_addsub.h"
12728
12729static inline uint8_t do_usad(uint8_t a, uint8_t b)
12730{
12731    if (a > b)
12732        return a - b;
12733    else
12734        return b - a;
12735}
12736
12737/* Unsigned sum of absolute byte differences.  */
12738uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12739{
12740    uint32_t sum;
12741    sum = do_usad(a, b);
12742    sum += do_usad(a >> 8, b >> 8);
12743    sum += do_usad(a >> 16, b >> 16);
12744    sum += do_usad(a >> 24, b >> 24);
12745    return sum;
12746}
12747
12748/* For ARMv6 SEL instruction.  */
12749uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12750{
12751    uint32_t mask;
12752
12753    mask = 0;
12754    if (flags & 1)
12755        mask |= 0xff;
12756    if (flags & 2)
12757        mask |= 0xff00;
12758    if (flags & 4)
12759        mask |= 0xff0000;
12760    if (flags & 8)
12761        mask |= 0xff000000;
12762    return (a & mask) | (b & ~mask);
12763}
12764
12765/* CRC helpers.
12766 * The upper bytes of val (above the number specified by 'bytes') must have
12767 * been zeroed out by the caller.
12768 */
12769uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12770{
12771    uint8_t buf[4];
12772
12773    stl_le_p(buf, val);
12774
12775    /* zlib crc32 converts the accumulator and output to one's complement.  */
12776    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12777}
12778
12779uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12780{
12781    uint8_t buf[4];
12782
12783    stl_le_p(buf, val);
12784
12785    /* Linux crc32c converts the output to one's complement.  */
12786    return crc32c(acc, buf, bytes) ^ 0xffffffff;
12787}
12788
12789/* Return the exception level to which FP-disabled exceptions should
12790 * be taken, or 0 if FP is enabled.
12791 */
12792int fp_exception_el(CPUARMState *env, int cur_el)
12793{
12794#ifndef CONFIG_USER_ONLY
12795    /* CPACR and the CPTR registers don't exist before v6, so FP is
12796     * always accessible
12797     */
12798    if (!arm_feature(env, ARM_FEATURE_V6)) {
12799        return 0;
12800    }
12801
12802    if (arm_feature(env, ARM_FEATURE_M)) {
12803        /* CPACR can cause a NOCP UsageFault taken to current security state */
12804        if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12805            return 1;
12806        }
12807
12808        if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12809            if (!extract32(env->v7m.nsacr, 10, 1)) {
12810                /* FP insns cause a NOCP UsageFault taken to Secure */
12811                return 3;
12812            }
12813        }
12814
12815        return 0;
12816    }
12817
12818    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12819     * 0, 2 : trap EL0 and EL1/PL1 accesses
12820     * 1    : trap only EL0 accesses
12821     * 3    : trap no accesses
12822     * This register is ignored if E2H+TGE are both set.
12823     */
12824    if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12825        int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12826
12827        switch (fpen) {
12828        case 0:
12829        case 2:
12830            if (cur_el == 0 || cur_el == 1) {
12831                /* Trap to PL1, which might be EL1 or EL3 */
12832                if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12833                    return 3;
12834                }
12835                return 1;
12836            }
12837            if (cur_el == 3 && !is_a64(env)) {
12838                /* Secure PL1 running at EL3 */
12839                return 3;
12840            }
12841            break;
12842        case 1:
12843            if (cur_el == 0) {
12844                return 1;
12845            }
12846            break;
12847        case 3:
12848            break;
12849        }
12850    }
12851
12852    /*
12853     * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12854     * to control non-secure access to the FPU. It doesn't have any
12855     * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12856     */
12857    if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12858         cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12859        if (!extract32(env->cp15.nsacr, 10, 1)) {
12860            /* FP insns act as UNDEF */
12861            return cur_el == 2 ? 2 : 1;
12862        }
12863    }
12864
12865    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12866     * check because zero bits in the registers mean "don't trap".
12867     */
12868
12869    /* CPTR_EL2 : present in v7VE or v8 */
12870    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12871        && arm_is_el2_enabled(env)) {
12872        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12873        return 2;
12874    }
12875
12876    /* CPTR_EL3 : present in v8 */
12877    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12878        /* Trap all FP ops to EL3 */
12879        return 3;
12880    }
12881#endif
12882    return 0;
12883}
12884
12885/* Return the exception level we're running at if this is our mmu_idx */
12886int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12887{
12888    if (mmu_idx & ARM_MMU_IDX_M) {
12889        return mmu_idx & ARM_MMU_IDX_M_PRIV;
12890    }
12891
12892    switch (mmu_idx) {
12893    case ARMMMUIdx_E10_0:
12894    case ARMMMUIdx_E20_0:
12895    case ARMMMUIdx_SE10_0:
12896    case ARMMMUIdx_SE20_0:
12897        return 0;
12898    case ARMMMUIdx_E10_1:
12899    case ARMMMUIdx_E10_1_PAN:
12900    case ARMMMUIdx_SE10_1:
12901    case ARMMMUIdx_SE10_1_PAN:
12902        return 1;
12903    case ARMMMUIdx_E2:
12904    case ARMMMUIdx_E20_2:
12905    case ARMMMUIdx_E20_2_PAN:
12906    case ARMMMUIdx_SE2:
12907    case ARMMMUIdx_SE20_2:
12908    case ARMMMUIdx_SE20_2_PAN:
12909        return 2;
12910    case ARMMMUIdx_SE3:
12911        return 3;
12912    default:
12913        g_assert_not_reached();
12914    }
12915}
12916
12917#ifndef CONFIG_TCG
12918ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12919{
12920    g_assert_not_reached();
12921}
12922#endif
12923
12924ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12925{
12926    ARMMMUIdx idx;
12927    uint64_t hcr;
12928
12929    if (arm_feature(env, ARM_FEATURE_M)) {
12930        return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12931    }
12932
12933    /* See ARM pseudo-function ELIsInHost.  */
12934    switch (el) {
12935    case 0:
12936        hcr = arm_hcr_el2_eff(env);
12937        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12938            idx = ARMMMUIdx_E20_0;
12939        } else {
12940            idx = ARMMMUIdx_E10_0;
12941        }
12942        break;
12943    case 1:
12944        if (env->pstate & PSTATE_PAN) {
12945            idx = ARMMMUIdx_E10_1_PAN;
12946        } else {
12947            idx = ARMMMUIdx_E10_1;
12948        }
12949        break;
12950    case 2:
12951        /* Note that TGE does not apply at EL2.  */
12952        if (arm_hcr_el2_eff(env) & HCR_E2H) {
12953            if (env->pstate & PSTATE_PAN) {
12954                idx = ARMMMUIdx_E20_2_PAN;
12955            } else {
12956                idx = ARMMMUIdx_E20_2;
12957            }
12958        } else {
12959            idx = ARMMMUIdx_E2;
12960        }
12961        break;
12962    case 3:
12963        return ARMMMUIdx_SE3;
12964    default:
12965        g_assert_not_reached();
12966    }
12967
12968    if (arm_is_secure_below_el3(env)) {
12969        idx &= ~ARM_MMU_IDX_A_NS;
12970    }
12971
12972    return idx;
12973}
12974
12975ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12976{
12977    return arm_mmu_idx_el(env, arm_current_el(env));
12978}
12979
12980#ifndef CONFIG_USER_ONLY
12981ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12982{
12983    return stage_1_mmu_idx(arm_mmu_idx(env));
12984}
12985#endif
12986
12987static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12988                                      ARMMMUIdx mmu_idx, uint32_t flags)
12989{
12990    flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12991    flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12992                       arm_to_core_mmu_idx(mmu_idx));
12993
12994    if (arm_singlestep_active(env)) {
12995        flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12996    }
12997    return flags;
12998}
12999
13000static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13001                                         ARMMMUIdx mmu_idx, uint32_t flags)
13002{
13003    bool sctlr_b = arm_sctlr_b(env);
13004
13005    if (sctlr_b) {
13006        flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
13007    }
13008    if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13009        flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13010    }
13011    flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
13012
13013    return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13014}
13015
13016static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
13017                                   ARMMMUIdx mmu_idx)
13018{
13019    uint32_t flags = 0;
13020
13021    if (arm_v7m_is_handler_mode(env)) {
13022        flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
13023    }
13024
13025    /*
13026     * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13027     * is suppressing them because the requested execution priority
13028     * is less than 0.
13029     */
13030    if (arm_feature(env, ARM_FEATURE_V8) &&
13031        !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13032          (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13033        flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
13034    }
13035
13036    return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13037}
13038
13039static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
13040{
13041    int flags = 0;
13042
13043    flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
13044                       arm_debug_target_el(env));
13045    return flags;
13046}
13047
13048static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
13049                                   ARMMMUIdx mmu_idx)
13050{
13051    uint32_t flags = rebuild_hflags_aprofile(env);
13052
13053    if (arm_el_is_aa64(env, 1)) {
13054        flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13055    }
13056
13057    if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
13058        (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13059        flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
13060    }
13061
13062    return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13063}
13064
13065static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13066                                   ARMMMUIdx mmu_idx)
13067{
13068    uint32_t flags = rebuild_hflags_aprofile(env);
13069    ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13070    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13071    uint64_t sctlr;
13072    int tbii, tbid;
13073
13074    flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13075
13076    /* Get control bits for tagged addresses.  */
13077    tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13078    tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13079
13080    flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13081    flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13082
13083    if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13084        int sve_el = sve_exception_el(env, el);
13085        uint32_t zcr_len;
13086
13087        /*
13088         * If SVE is disabled, but FP is enabled,
13089         * then the effective len is 0.
13090         */
13091        if (sve_el != 0 && fp_el == 0) {
13092            zcr_len = 0;
13093        } else {
13094            zcr_len = sve_zcr_len_for_el(env, el);
13095        }
13096        flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13097        flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13098    }
13099
13100    sctlr = regime_sctlr(env, stage1);
13101
13102    if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13103        flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13104    }
13105
13106    if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13107        /*
13108         * In order to save space in flags, we record only whether
13109         * pauth is "inactive", meaning all insns are implemented as
13110         * a nop, or "active" when some action must be performed.
13111         * The decision of which action to take is left to a helper.
13112         */
13113        if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13114            flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13115        }
13116    }
13117
13118    if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13119        /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13120        if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13121            flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13122        }
13123    }
13124
13125    /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13126    if (!(env->pstate & PSTATE_UAO)) {
13127        switch (mmu_idx) {
13128        case ARMMMUIdx_E10_1:
13129        case ARMMMUIdx_E10_1_PAN:
13130        case ARMMMUIdx_SE10_1:
13131        case ARMMMUIdx_SE10_1_PAN:
13132            /* TODO: ARMv8.3-NV */
13133            flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
13134            break;
13135        case ARMMMUIdx_E20_2:
13136        case ARMMMUIdx_E20_2_PAN:
13137        case ARMMMUIdx_SE20_2:
13138        case ARMMMUIdx_SE20_2_PAN:
13139            /*
13140             * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13141             * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13142             */
13143            if (env->cp15.hcr_el2 & HCR_TGE) {
13144                flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
13145            }
13146            break;
13147        default:
13148            break;
13149        }
13150    }
13151
13152    if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13153        /*
13154         * Set MTE_ACTIVE if any access may be Checked, and leave clear
13155         * if all accesses must be Unchecked:
13156         * 1) If no TBI, then there are no tags in the address to check,
13157         * 2) If Tag Check Override, then all accesses are Unchecked,
13158         * 3) If Tag Check Fail == 0, then Checked access have no effect,
13159         * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13160         */
13161        if (allocation_tag_access_enabled(env, el, sctlr)) {
13162            flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
13163            if (tbid
13164                && !(env->pstate & PSTATE_TCO)
13165                && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13166                flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
13167            }
13168        }
13169        /* And again for unprivileged accesses, if required.  */
13170        if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
13171            && tbid
13172            && !(env->pstate & PSTATE_TCO)
13173            && (sctlr & SCTLR_TCF0)
13174            && allocation_tag_access_enabled(env, 0, sctlr)) {
13175            flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
13176        }
13177        /* Cache TCMA as well as TBI. */
13178        flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
13179                           aa64_va_parameter_tcma(tcr, mmu_idx));
13180    }
13181
13182    return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13183}
13184
13185static uint32_t rebuild_hflags_internal(CPUARMState *env)
13186{
13187    int el = arm_current_el(env);
13188    int fp_el = fp_exception_el(env, el);
13189    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13190
13191    if (is_a64(env)) {
13192        return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13193    } else if (arm_feature(env, ARM_FEATURE_M)) {
13194        return rebuild_hflags_m32(env, fp_el, mmu_idx);
13195    } else {
13196        return rebuild_hflags_a32(env, fp_el, mmu_idx);
13197    }
13198}
13199
13200void arm_rebuild_hflags(CPUARMState *env)
13201{
13202    env->hflags = rebuild_hflags_internal(env);
13203}
13204
13205/*
13206 * If we have triggered a EL state change we can't rely on the
13207 * translator having passed it to us, we need to recompute.
13208 */
13209void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13210{
13211    int el = arm_current_el(env);
13212    int fp_el = fp_exception_el(env, el);
13213    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13214    env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13215}
13216
13217void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13218{
13219    int fp_el = fp_exception_el(env, el);
13220    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13221
13222    env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13223}
13224
13225/*
13226 * If we have triggered a EL state change we can't rely on the
13227 * translator having passed it to us, we need to recompute.
13228 */
13229void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13230{
13231    int el = arm_current_el(env);
13232    int fp_el = fp_exception_el(env, el);
13233    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13234    env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13235}
13236
13237void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13238{
13239    int fp_el = fp_exception_el(env, el);
13240    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13241
13242    env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13243}
13244
13245void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13246{
13247    int fp_el = fp_exception_el(env, el);
13248    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13249
13250    env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13251}
13252
13253static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13254{
13255#ifdef CONFIG_DEBUG_TCG
13256    uint32_t env_flags_current = env->hflags;
13257    uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
13258
13259    if (unlikely(env_flags_current != env_flags_rebuilt)) {
13260        fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
13261                env_flags_current, env_flags_rebuilt);
13262        abort();
13263    }
13264#endif
13265}
13266
13267void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13268                          target_ulong *cs_base, uint32_t *pflags)
13269{
13270    uint32_t flags = env->hflags;
13271
13272    *cs_base = 0;
13273    assert_hflags_rebuild_correctly(env);
13274
13275    if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
13276        *pc = env->pc;
13277        if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13278            flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13279        }
13280    } else {
13281        *pc = env->regs[15];
13282
13283        if (arm_feature(env, ARM_FEATURE_M)) {
13284            if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13285                FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13286                != env->v7m.secure) {
13287                flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
13288            }
13289
13290            if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13291                (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13292                 (env->v7m.secure &&
13293                  !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13294                /*
13295                 * ASPEN is set, but FPCA/SFPA indicate that there is no
13296                 * active FP context; we must create a new FP context before
13297                 * executing any FP insn.
13298                 */
13299                flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
13300            }
13301
13302            bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13303            if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13304                flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
13305            }
13306        } else {
13307            /*
13308             * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13309             * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13310             */
13311            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13312                flags = FIELD_DP32(flags, TBFLAG_A32,
13313                                   XSCALE_CPAR, env->cp15.c15_cpar);
13314            } else {
13315                flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
13316                                   env->vfp.vec_len);
13317                flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
13318                                   env->vfp.vec_stride);
13319            }
13320            if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13321                flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13322            }
13323        }
13324
13325        flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
13326        flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
13327    }
13328
13329    /*
13330     * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13331     * states defined in the ARM ARM for software singlestep:
13332     *  SS_ACTIVE   PSTATE.SS   State
13333     *     0            x       Inactive (the TB flag for SS is always 0)
13334     *     1            0       Active-pending
13335     *     1            1       Active-not-pending
13336     * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
13337     */
13338    if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
13339        (env->pstate & PSTATE_SS)) {
13340        flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13341    }
13342
13343    *pflags = flags;
13344}
13345
13346#ifdef TARGET_AARCH64
13347/*
13348 * The manual says that when SVE is enabled and VQ is widened the
13349 * implementation is allowed to zero the previously inaccessible
13350 * portion of the registers.  The corollary to that is that when
13351 * SVE is enabled and VQ is narrowed we are also allowed to zero
13352 * the now inaccessible portion of the registers.
13353 *
13354 * The intent of this is that no predicate bit beyond VQ is ever set.
13355 * Which means that some operations on predicate registers themselves
13356 * may operate on full uint64_t or even unrolled across the maximum
13357 * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13358 * may well be cheaper than conditionals to restrict the operation
13359 * to the relevant portion of a uint16_t[16].
13360 */
13361void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13362{
13363    int i, j;
13364    uint64_t pmask;
13365
13366    assert(vq >= 1 && vq <= ARM_MAX_VQ);
13367    assert(vq <= env_archcpu(env)->sve_max_vq);
13368
13369    /* Zap the high bits of the zregs.  */
13370    for (i = 0; i < 32; i++) {
13371        memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13372    }
13373
13374    /* Zap the high bits of the pregs and ffr.  */
13375    pmask = 0;
13376    if (vq & 3) {
13377        pmask = ~(-1ULL << (16 * (vq & 3)));
13378    }
13379    for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13380        for (i = 0; i < 17; ++i) {
13381            env->vfp.pregs[i].p[j] &= pmask;
13382        }
13383        pmask = 0;
13384    }
13385}
13386
13387/*
13388 * Notice a change in SVE vector size when changing EL.
13389 */
13390void aarch64_sve_change_el(CPUARMState *env, int old_el,
13391                           int new_el, bool el0_a64)
13392{
13393    ARMCPU *cpu = env_archcpu(env);
13394    int old_len, new_len;
13395    bool old_a64, new_a64;
13396
13397    /* Nothing to do if no SVE.  */
13398    if (!cpu_isar_feature(aa64_sve, cpu)) {
13399        return;
13400    }
13401
13402    /* Nothing to do if FP is disabled in either EL.  */
13403    if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13404        return;
13405    }
13406
13407    /*
13408     * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13409     * at ELx, or not available because the EL is in AArch32 state, then
13410     * for all purposes other than a direct read, the ZCR_ELx.LEN field
13411     * has an effective value of 0".
13412     *
13413     * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13414     * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13415     * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13416     * we already have the correct register contents when encountering the
13417     * vq0->vq0 transition between EL0->EL1.
13418     */
13419    old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13420    old_len = (old_a64 && !sve_exception_el(env, old_el)
13421               ? sve_zcr_len_for_el(env, old_el) : 0);
13422    new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13423    new_len = (new_a64 && !sve_exception_el(env, new_el)
13424               ? sve_zcr_len_for_el(env, new_el) : 0);
13425
13426    /* When changing vector length, clear inaccessible state.  */
13427    if (new_len < old_len) {
13428        aarch64_sve_narrow_vq(env, new_len + 1);
13429    }
13430}
13431#endif
13432