qemu/target/arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target/arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28#include "hw/registerfields.h"
  29#include "syndrome.h"
  30
  31/* register banks for CPU modes */
  32#define BANK_USRSYS 0
  33#define BANK_SVC    1
  34#define BANK_ABT    2
  35#define BANK_UND    3
  36#define BANK_IRQ    4
  37#define BANK_FIQ    5
  38#define BANK_HYP    6
  39#define BANK_MON    7
  40
  41static inline bool excp_is_internal(int excp)
  42{
  43    /* Return true if this exception number represents a QEMU-internal
  44     * exception that will not be passed to the guest.
  45     */
  46    return excp == EXCP_INTERRUPT
  47        || excp == EXCP_HLT
  48        || excp == EXCP_DEBUG
  49        || excp == EXCP_HALTED
  50        || excp == EXCP_EXCEPTION_EXIT
  51        || excp == EXCP_KERNEL_TRAP
  52        || excp == EXCP_SEMIHOST;
  53}
  54
  55/* Scale factor for generic timers, ie number of ns per tick.
  56 * This gives a 62.5MHz timer.
  57 */
  58#define GTIMER_SCALE 16
  59
  60/* Bit definitions for the v7M CONTROL register */
  61FIELD(V7M_CONTROL, NPRIV, 0, 1)
  62FIELD(V7M_CONTROL, SPSEL, 1, 1)
  63FIELD(V7M_CONTROL, FPCA, 2, 1)
  64FIELD(V7M_CONTROL, SFPA, 3, 1)
  65
  66/* Bit definitions for v7M exception return payload */
  67FIELD(V7M_EXCRET, ES, 0, 1)
  68FIELD(V7M_EXCRET, RES0, 1, 1)
  69FIELD(V7M_EXCRET, SPSEL, 2, 1)
  70FIELD(V7M_EXCRET, MODE, 3, 1)
  71FIELD(V7M_EXCRET, FTYPE, 4, 1)
  72FIELD(V7M_EXCRET, DCRS, 5, 1)
  73FIELD(V7M_EXCRET, S, 6, 1)
  74FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
  75
  76/* Minimum value which is a magic number for exception return */
  77#define EXC_RETURN_MIN_MAGIC 0xff000000
  78/* Minimum number which is a magic number for function or exception return
  79 * when using v8M security extension
  80 */
  81#define FNC_RETURN_MIN_MAGIC 0xfefffffe
  82
  83/* We use a few fake FSR values for internal purposes in M profile.
  84 * M profile cores don't have A/R format FSRs, but currently our
  85 * get_phys_addr() code assumes A/R profile and reports failures via
  86 * an A/R format FSR value. We then translate that into the proper
  87 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
  88 * Mostly the FSR values we use for this are those defined for v7PMSA,
  89 * since we share some of that codepath. A few kinds of fault are
  90 * only for M profile and have no A/R equivalent, though, so we have
  91 * to pick a value from the reserved range (which we never otherwise
  92 * generate) to use for these.
  93 * These values will never be visible to the guest.
  94 */
  95#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
  96#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
  97
  98/**
  99 * raise_exception: Raise the specified exception.
 100 * Raise a guest exception with the specified value, syndrome register
 101 * and target exception level. This should be called from helper functions,
 102 * and never returns because we will longjump back up to the CPU main loop.
 103 */
 104void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
 105                                   uint32_t syndrome, uint32_t target_el);
 106
 107/*
 108 * Similarly, but also use unwinding to restore cpu state.
 109 */
 110void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
 111                                      uint32_t syndrome, uint32_t target_el,
 112                                      uintptr_t ra);
 113
 114/*
 115 * For AArch64, map a given EL to an index in the banked_spsr array.
 116 * Note that this mapping and the AArch32 mapping defined in bank_number()
 117 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 118 * mandated mapping between each other.
 119 */
 120static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 121{
 122    static const unsigned int map[4] = {
 123        [1] = BANK_SVC, /* EL1.  */
 124        [2] = BANK_HYP, /* EL2.  */
 125        [3] = BANK_MON, /* EL3.  */
 126    };
 127    assert(el >= 1 && el <= 3);
 128    return map[el];
 129}
 130
 131/* Map CPU modes onto saved register banks.  */
 132static inline int bank_number(int mode)
 133{
 134    switch (mode) {
 135    case ARM_CPU_MODE_USR:
 136    case ARM_CPU_MODE_SYS:
 137        return BANK_USRSYS;
 138    case ARM_CPU_MODE_SVC:
 139        return BANK_SVC;
 140    case ARM_CPU_MODE_ABT:
 141        return BANK_ABT;
 142    case ARM_CPU_MODE_UND:
 143        return BANK_UND;
 144    case ARM_CPU_MODE_IRQ:
 145        return BANK_IRQ;
 146    case ARM_CPU_MODE_FIQ:
 147        return BANK_FIQ;
 148    case ARM_CPU_MODE_HYP:
 149        return BANK_HYP;
 150    case ARM_CPU_MODE_MON:
 151        return BANK_MON;
 152    }
 153    g_assert_not_reached();
 154}
 155
 156/**
 157 * r14_bank_number: Map CPU mode onto register bank for r14
 158 *
 159 * Given an AArch32 CPU mode, return the index into the saved register
 160 * banks to use for the R14 (LR) in that mode. This is the same as
 161 * bank_number(), except for the special case of Hyp mode, where
 162 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
 163 * This should be used as the index into env->banked_r14[], and
 164 * bank_number() used for the index into env->banked_r13[] and
 165 * env->banked_spsr[].
 166 */
 167static inline int r14_bank_number(int mode)
 168{
 169    return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
 170}
 171
 172void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 173void arm_translate_init(void);
 174
 175#ifdef CONFIG_TCG
 176void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
 177#endif /* CONFIG_TCG */
 178
 179
 180enum arm_fprounding {
 181    FPROUNDING_TIEEVEN,
 182    FPROUNDING_POSINF,
 183    FPROUNDING_NEGINF,
 184    FPROUNDING_ZERO,
 185    FPROUNDING_TIEAWAY,
 186    FPROUNDING_ODD
 187};
 188
 189int arm_rmode_to_sf(int rmode);
 190
 191static inline void aarch64_save_sp(CPUARMState *env, int el)
 192{
 193    if (env->pstate & PSTATE_SP) {
 194        env->sp_el[el] = env->xregs[31];
 195    } else {
 196        env->sp_el[0] = env->xregs[31];
 197    }
 198}
 199
 200static inline void aarch64_restore_sp(CPUARMState *env, int el)
 201{
 202    if (env->pstate & PSTATE_SP) {
 203        env->xregs[31] = env->sp_el[el];
 204    } else {
 205        env->xregs[31] = env->sp_el[0];
 206    }
 207}
 208
 209static inline void update_spsel(CPUARMState *env, uint32_t imm)
 210{
 211    unsigned int cur_el = arm_current_el(env);
 212    /* Update PSTATE SPSel bit; this requires us to update the
 213     * working stack pointer in xregs[31].
 214     */
 215    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 216        return;
 217    }
 218    aarch64_save_sp(env, cur_el);
 219    env->pstate = deposit32(env->pstate, 0, 1, imm);
 220
 221    /* We rely on illegal updates to SPsel from EL0 to get trapped
 222     * at translation time.
 223     */
 224    assert(cur_el >= 1 && cur_el <= 3);
 225    aarch64_restore_sp(env, cur_el);
 226}
 227
 228/*
 229 * arm_pamax
 230 * @cpu: ARMCPU
 231 *
 232 * Returns the implementation defined bit-width of physical addresses.
 233 * The ARMv8 reference manuals refer to this as PAMax().
 234 */
 235static inline unsigned int arm_pamax(ARMCPU *cpu)
 236{
 237    static const unsigned int pamax_map[] = {
 238        [0] = 32,
 239        [1] = 36,
 240        [2] = 40,
 241        [3] = 42,
 242        [4] = 44,
 243        [5] = 48,
 244    };
 245    unsigned int parange =
 246        FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
 247
 248    /* id_aa64mmfr0 is a read-only register so values outside of the
 249     * supported mappings can be considered an implementation error.  */
 250    assert(parange < ARRAY_SIZE(pamax_map));
 251    return pamax_map[parange];
 252}
 253
 254/* Return true if extended addresses are enabled.
 255 * This is always the case if our translation regime is 64 bit,
 256 * but depends on TTBCR.EAE for 32 bit.
 257 */
 258static inline bool extended_addresses_enabled(CPUARMState *env)
 259{
 260    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 261    return arm_el_is_aa64(env, 1) ||
 262           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 263}
 264
 265/* Update a QEMU watchpoint based on the information the guest has set in the
 266 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 267 */
 268void hw_watchpoint_update(ARMCPU *cpu, int n);
 269/* Update the QEMU watchpoints for every guest watchpoint. This does a
 270 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 271 * suitable for use after migration or on reset.
 272 */
 273void hw_watchpoint_update_all(ARMCPU *cpu);
 274/* Update a QEMU breakpoint based on the information the guest has set in the
 275 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 276 */
 277void hw_breakpoint_update(ARMCPU *cpu, int n);
 278/* Update the QEMU breakpoints for every guest breakpoint. This does a
 279 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 280 * suitable for use after migration or on reset.
 281 */
 282void hw_breakpoint_update_all(ARMCPU *cpu);
 283
 284/* Callback function for checking if a watchpoint should trigger. */
 285bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 286
 287/* Adjust addresses (in BE32 mode) before testing against watchpoint
 288 * addresses.
 289 */
 290vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 291
 292/* Callback function for when a watchpoint or breakpoint triggers. */
 293void arm_debug_excp_handler(CPUState *cs);
 294
 295#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
 296static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 297{
 298    return false;
 299}
 300static inline void arm_handle_psci_call(ARMCPU *cpu)
 301{
 302    g_assert_not_reached();
 303}
 304#else
 305/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 306bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 307/* Actually handle a PSCI call */
 308void arm_handle_psci_call(ARMCPU *cpu);
 309#endif
 310
 311/**
 312 * arm_clear_exclusive: clear the exclusive monitor
 313 * @env: CPU env
 314 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
 315 */
 316static inline void arm_clear_exclusive(CPUARMState *env)
 317{
 318    env->exclusive_addr = -1;
 319}
 320
 321/**
 322 * ARMFaultType: type of an ARM MMU fault
 323 * This corresponds to the v8A pseudocode's Fault enumeration,
 324 * with extensions for QEMU internal conditions.
 325 */
 326typedef enum ARMFaultType {
 327    ARMFault_None,
 328    ARMFault_AccessFlag,
 329    ARMFault_Alignment,
 330    ARMFault_Background,
 331    ARMFault_Domain,
 332    ARMFault_Permission,
 333    ARMFault_Translation,
 334    ARMFault_AddressSize,
 335    ARMFault_SyncExternal,
 336    ARMFault_SyncExternalOnWalk,
 337    ARMFault_SyncParity,
 338    ARMFault_SyncParityOnWalk,
 339    ARMFault_AsyncParity,
 340    ARMFault_AsyncExternal,
 341    ARMFault_Debug,
 342    ARMFault_TLBConflict,
 343    ARMFault_Lockdown,
 344    ARMFault_Exclusive,
 345    ARMFault_ICacheMaint,
 346    ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
 347    ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
 348} ARMFaultType;
 349
 350/**
 351 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 352 * @type: Type of fault
 353 * @level: Table walk level (for translation, access flag and permission faults)
 354 * @domain: Domain of the fault address (for non-LPAE CPUs only)
 355 * @s2addr: Address that caused a fault at stage 2
 356 * @stage2: True if we faulted at stage 2
 357 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 358 * @s1ns: True if we faulted on a non-secure IPA while in secure state
 359 * @ea: True if we should set the EA (external abort type) bit in syndrome
 360 */
 361typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 362struct ARMMMUFaultInfo {
 363    ARMFaultType type;
 364    target_ulong s2addr;
 365    int level;
 366    int domain;
 367    bool stage2;
 368    bool s1ptw;
 369    bool s1ns;
 370    bool ea;
 371};
 372
 373/**
 374 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
 375 * Compare pseudocode EncodeSDFSC(), though unlike that function
 376 * we set up a whole FSR-format code including domain field and
 377 * putting the high bit of the FSC into bit 10.
 378 */
 379static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
 380{
 381    uint32_t fsc;
 382
 383    switch (fi->type) {
 384    case ARMFault_None:
 385        return 0;
 386    case ARMFault_AccessFlag:
 387        fsc = fi->level == 1 ? 0x3 : 0x6;
 388        break;
 389    case ARMFault_Alignment:
 390        fsc = 0x1;
 391        break;
 392    case ARMFault_Permission:
 393        fsc = fi->level == 1 ? 0xd : 0xf;
 394        break;
 395    case ARMFault_Domain:
 396        fsc = fi->level == 1 ? 0x9 : 0xb;
 397        break;
 398    case ARMFault_Translation:
 399        fsc = fi->level == 1 ? 0x5 : 0x7;
 400        break;
 401    case ARMFault_SyncExternal:
 402        fsc = 0x8 | (fi->ea << 12);
 403        break;
 404    case ARMFault_SyncExternalOnWalk:
 405        fsc = fi->level == 1 ? 0xc : 0xe;
 406        fsc |= (fi->ea << 12);
 407        break;
 408    case ARMFault_SyncParity:
 409        fsc = 0x409;
 410        break;
 411    case ARMFault_SyncParityOnWalk:
 412        fsc = fi->level == 1 ? 0x40c : 0x40e;
 413        break;
 414    case ARMFault_AsyncParity:
 415        fsc = 0x408;
 416        break;
 417    case ARMFault_AsyncExternal:
 418        fsc = 0x406 | (fi->ea << 12);
 419        break;
 420    case ARMFault_Debug:
 421        fsc = 0x2;
 422        break;
 423    case ARMFault_TLBConflict:
 424        fsc = 0x400;
 425        break;
 426    case ARMFault_Lockdown:
 427        fsc = 0x404;
 428        break;
 429    case ARMFault_Exclusive:
 430        fsc = 0x405;
 431        break;
 432    case ARMFault_ICacheMaint:
 433        fsc = 0x4;
 434        break;
 435    case ARMFault_Background:
 436        fsc = 0x0;
 437        break;
 438    case ARMFault_QEMU_NSCExec:
 439        fsc = M_FAKE_FSR_NSC_EXEC;
 440        break;
 441    case ARMFault_QEMU_SFault:
 442        fsc = M_FAKE_FSR_SFAULT;
 443        break;
 444    default:
 445        /* Other faults can't occur in a context that requires a
 446         * short-format status code.
 447         */
 448        g_assert_not_reached();
 449    }
 450
 451    fsc |= (fi->domain << 4);
 452    return fsc;
 453}
 454
 455/**
 456 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
 457 * Compare pseudocode EncodeLDFSC(), though unlike that function
 458 * we fill in also the LPAE bit 9 of a DFSR format.
 459 */
 460static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
 461{
 462    uint32_t fsc;
 463
 464    switch (fi->type) {
 465    case ARMFault_None:
 466        return 0;
 467    case ARMFault_AddressSize:
 468        fsc = fi->level & 3;
 469        break;
 470    case ARMFault_AccessFlag:
 471        fsc = (fi->level & 3) | (0x2 << 2);
 472        break;
 473    case ARMFault_Permission:
 474        fsc = (fi->level & 3) | (0x3 << 2);
 475        break;
 476    case ARMFault_Translation:
 477        fsc = (fi->level & 3) | (0x1 << 2);
 478        break;
 479    case ARMFault_SyncExternal:
 480        fsc = 0x10 | (fi->ea << 12);
 481        break;
 482    case ARMFault_SyncExternalOnWalk:
 483        fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
 484        break;
 485    case ARMFault_SyncParity:
 486        fsc = 0x18;
 487        break;
 488    case ARMFault_SyncParityOnWalk:
 489        fsc = (fi->level & 3) | (0x7 << 2);
 490        break;
 491    case ARMFault_AsyncParity:
 492        fsc = 0x19;
 493        break;
 494    case ARMFault_AsyncExternal:
 495        fsc = 0x11 | (fi->ea << 12);
 496        break;
 497    case ARMFault_Alignment:
 498        fsc = 0x21;
 499        break;
 500    case ARMFault_Debug:
 501        fsc = 0x22;
 502        break;
 503    case ARMFault_TLBConflict:
 504        fsc = 0x30;
 505        break;
 506    case ARMFault_Lockdown:
 507        fsc = 0x34;
 508        break;
 509    case ARMFault_Exclusive:
 510        fsc = 0x35;
 511        break;
 512    default:
 513        /* Other faults can't occur in a context that requires a
 514         * long-format status code.
 515         */
 516        g_assert_not_reached();
 517    }
 518
 519    fsc |= 1 << 9;
 520    return fsc;
 521}
 522
 523static inline bool arm_extabort_type(MemTxResult result)
 524{
 525    /* The EA bit in syndromes and fault status registers is an
 526     * IMPDEF classification of external aborts. ARM implementations
 527     * usually use this to indicate AXI bus Decode error (0) or
 528     * Slave error (1); in QEMU we follow that.
 529     */
 530    return result != MEMTX_DECODE_ERROR;
 531}
 532
 533bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 534                      MMUAccessType access_type, int mmu_idx,
 535                      bool probe, uintptr_t retaddr);
 536
 537static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
 538{
 539    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
 540}
 541
 542static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
 543{
 544    if (arm_feature(env, ARM_FEATURE_M)) {
 545        return mmu_idx | ARM_MMU_IDX_M;
 546    } else {
 547        return mmu_idx | ARM_MMU_IDX_A;
 548    }
 549}
 550
 551static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
 552{
 553    /* AArch64 is always a-profile. */
 554    return mmu_idx | ARM_MMU_IDX_A;
 555}
 556
 557int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
 558
 559/*
 560 * Return the MMU index for a v7M CPU with all relevant information
 561 * manually specified.
 562 */
 563ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
 564                              bool secstate, bool priv, bool negpri);
 565
 566/*
 567 * Return the MMU index for a v7M CPU in the specified security and
 568 * privilege state.
 569 */
 570ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
 571                                                bool secstate, bool priv);
 572
 573/* Return the MMU index for a v7M CPU in the specified security state */
 574ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
 575
 576/* Return true if the stage 1 translation regime is using LPAE format page
 577 * tables */
 578bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 579
 580/* Raise a data fault alignment exception for the specified virtual address */
 581void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 582                                 MMUAccessType access_type,
 583                                 int mmu_idx, uintptr_t retaddr);
 584
 585/* arm_cpu_do_transaction_failed: handle a memory system error response
 586 * (eg "no device/memory present at address") by raising an external abort
 587 * exception
 588 */
 589void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 590                                   vaddr addr, unsigned size,
 591                                   MMUAccessType access_type,
 592                                   int mmu_idx, MemTxAttrs attrs,
 593                                   MemTxResult response, uintptr_t retaddr);
 594
 595/* Call any registered EL change hooks */
 596static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
 597{
 598    ARMELChangeHook *hook, *next;
 599    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 600        hook->hook(cpu, hook->opaque);
 601    }
 602}
 603static inline void arm_call_el_change_hook(ARMCPU *cpu)
 604{
 605    ARMELChangeHook *hook, *next;
 606    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 607        hook->hook(cpu, hook->opaque);
 608    }
 609}
 610
 611/* Return true if this address translation regime has two ranges.  */
 612static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
 613{
 614    switch (mmu_idx) {
 615    case ARMMMUIdx_Stage1_E0:
 616    case ARMMMUIdx_Stage1_E1:
 617    case ARMMMUIdx_Stage1_E1_PAN:
 618    case ARMMMUIdx_Stage1_SE0:
 619    case ARMMMUIdx_Stage1_SE1:
 620    case ARMMMUIdx_Stage1_SE1_PAN:
 621    case ARMMMUIdx_E10_0:
 622    case ARMMMUIdx_E10_1:
 623    case ARMMMUIdx_E10_1_PAN:
 624    case ARMMMUIdx_E20_0:
 625    case ARMMMUIdx_E20_2:
 626    case ARMMMUIdx_E20_2_PAN:
 627    case ARMMMUIdx_SE10_0:
 628    case ARMMMUIdx_SE10_1:
 629    case ARMMMUIdx_SE10_1_PAN:
 630    case ARMMMUIdx_SE20_0:
 631    case ARMMMUIdx_SE20_2:
 632    case ARMMMUIdx_SE20_2_PAN:
 633        return true;
 634    default:
 635        return false;
 636    }
 637}
 638
 639/* Return true if this address translation regime is secure */
 640static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
 641{
 642    switch (mmu_idx) {
 643    case ARMMMUIdx_E10_0:
 644    case ARMMMUIdx_E10_1:
 645    case ARMMMUIdx_E10_1_PAN:
 646    case ARMMMUIdx_E20_0:
 647    case ARMMMUIdx_E20_2:
 648    case ARMMMUIdx_E20_2_PAN:
 649    case ARMMMUIdx_Stage1_E0:
 650    case ARMMMUIdx_Stage1_E1:
 651    case ARMMMUIdx_Stage1_E1_PAN:
 652    case ARMMMUIdx_E2:
 653    case ARMMMUIdx_Stage2:
 654    case ARMMMUIdx_MPrivNegPri:
 655    case ARMMMUIdx_MUserNegPri:
 656    case ARMMMUIdx_MPriv:
 657    case ARMMMUIdx_MUser:
 658        return false;
 659    case ARMMMUIdx_SE3:
 660    case ARMMMUIdx_SE10_0:
 661    case ARMMMUIdx_SE10_1:
 662    case ARMMMUIdx_SE10_1_PAN:
 663    case ARMMMUIdx_SE20_0:
 664    case ARMMMUIdx_SE20_2:
 665    case ARMMMUIdx_SE20_2_PAN:
 666    case ARMMMUIdx_Stage1_SE0:
 667    case ARMMMUIdx_Stage1_SE1:
 668    case ARMMMUIdx_Stage1_SE1_PAN:
 669    case ARMMMUIdx_SE2:
 670    case ARMMMUIdx_Stage2_S:
 671    case ARMMMUIdx_MSPrivNegPri:
 672    case ARMMMUIdx_MSUserNegPri:
 673    case ARMMMUIdx_MSPriv:
 674    case ARMMMUIdx_MSUser:
 675        return true;
 676    default:
 677        g_assert_not_reached();
 678    }
 679}
 680
 681static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
 682{
 683    switch (mmu_idx) {
 684    case ARMMMUIdx_Stage1_E1_PAN:
 685    case ARMMMUIdx_Stage1_SE1_PAN:
 686    case ARMMMUIdx_E10_1_PAN:
 687    case ARMMMUIdx_E20_2_PAN:
 688    case ARMMMUIdx_SE10_1_PAN:
 689    case ARMMMUIdx_SE20_2_PAN:
 690        return true;
 691    default:
 692        return false;
 693    }
 694}
 695
 696/* Return the exception level which controls this address translation regime */
 697static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
 698{
 699    switch (mmu_idx) {
 700    case ARMMMUIdx_SE20_0:
 701    case ARMMMUIdx_SE20_2:
 702    case ARMMMUIdx_SE20_2_PAN:
 703    case ARMMMUIdx_E20_0:
 704    case ARMMMUIdx_E20_2:
 705    case ARMMMUIdx_E20_2_PAN:
 706    case ARMMMUIdx_Stage2:
 707    case ARMMMUIdx_Stage2_S:
 708    case ARMMMUIdx_SE2:
 709    case ARMMMUIdx_E2:
 710        return 2;
 711    case ARMMMUIdx_SE3:
 712        return 3;
 713    case ARMMMUIdx_SE10_0:
 714    case ARMMMUIdx_Stage1_SE0:
 715        return arm_el_is_aa64(env, 3) ? 1 : 3;
 716    case ARMMMUIdx_SE10_1:
 717    case ARMMMUIdx_SE10_1_PAN:
 718    case ARMMMUIdx_Stage1_E0:
 719    case ARMMMUIdx_Stage1_E1:
 720    case ARMMMUIdx_Stage1_E1_PAN:
 721    case ARMMMUIdx_Stage1_SE1:
 722    case ARMMMUIdx_Stage1_SE1_PAN:
 723    case ARMMMUIdx_E10_0:
 724    case ARMMMUIdx_E10_1:
 725    case ARMMMUIdx_E10_1_PAN:
 726    case ARMMMUIdx_MPrivNegPri:
 727    case ARMMMUIdx_MUserNegPri:
 728    case ARMMMUIdx_MPriv:
 729    case ARMMMUIdx_MUser:
 730    case ARMMMUIdx_MSPrivNegPri:
 731    case ARMMMUIdx_MSUserNegPri:
 732    case ARMMMUIdx_MSPriv:
 733    case ARMMMUIdx_MSUser:
 734        return 1;
 735    default:
 736        g_assert_not_reached();
 737    }
 738}
 739
 740/* Return the TCR controlling this translation regime */
 741static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
 742{
 743    if (mmu_idx == ARMMMUIdx_Stage2) {
 744        return &env->cp15.vtcr_el2;
 745    }
 746    if (mmu_idx == ARMMMUIdx_Stage2_S) {
 747        /*
 748         * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
 749         * those are not currently used by QEMU, so just return VSTCR_EL2.
 750         */
 751        return &env->cp15.vstcr_el2;
 752    }
 753    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
 754}
 755
 756/* Return the FSR value for a debug exception (watchpoint, hardware
 757 * breakpoint or BKPT insn) targeting the specified exception level.
 758 */
 759static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
 760{
 761    ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
 762    int target_el = arm_debug_target_el(env);
 763    bool using_lpae = false;
 764
 765    if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
 766        using_lpae = true;
 767    } else {
 768        if (arm_feature(env, ARM_FEATURE_LPAE) &&
 769            (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
 770            using_lpae = true;
 771        }
 772    }
 773
 774    if (using_lpae) {
 775        return arm_fi_to_lfsc(&fi);
 776    } else {
 777        return arm_fi_to_sfsc(&fi);
 778    }
 779}
 780
 781/**
 782 * arm_num_brps: Return number of implemented breakpoints.
 783 * Note that the ID register BRPS field is "number of bps - 1",
 784 * and we return the actual number of breakpoints.
 785 */
 786static inline int arm_num_brps(ARMCPU *cpu)
 787{
 788    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 789        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
 790    } else {
 791        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
 792    }
 793}
 794
 795/**
 796 * arm_num_wrps: Return number of implemented watchpoints.
 797 * Note that the ID register WRPS field is "number of wps - 1",
 798 * and we return the actual number of watchpoints.
 799 */
 800static inline int arm_num_wrps(ARMCPU *cpu)
 801{
 802    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 803        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
 804    } else {
 805        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
 806    }
 807}
 808
 809/**
 810 * arm_num_ctx_cmps: Return number of implemented context comparators.
 811 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
 812 * and we return the actual number of comparators.
 813 */
 814static inline int arm_num_ctx_cmps(ARMCPU *cpu)
 815{
 816    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 817        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
 818    } else {
 819        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
 820    }
 821}
 822
 823/**
 824 * v7m_using_psp: Return true if using process stack pointer
 825 * Return true if the CPU is currently using the process stack
 826 * pointer, or false if it is using the main stack pointer.
 827 */
 828static inline bool v7m_using_psp(CPUARMState *env)
 829{
 830    /* Handler mode always uses the main stack; for thread mode
 831     * the CONTROL.SPSEL bit determines the answer.
 832     * Note that in v7M it is not possible to be in Handler mode with
 833     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
 834     */
 835    return !arm_v7m_is_handler_mode(env) &&
 836        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
 837}
 838
 839/**
 840 * v7m_sp_limit: Return SP limit for current CPU state
 841 * Return the SP limit value for the current CPU security state
 842 * and stack pointer.
 843 */
 844static inline uint32_t v7m_sp_limit(CPUARMState *env)
 845{
 846    if (v7m_using_psp(env)) {
 847        return env->v7m.psplim[env->v7m.secure];
 848    } else {
 849        return env->v7m.msplim[env->v7m.secure];
 850    }
 851}
 852
 853/**
 854 * v7m_cpacr_pass:
 855 * Return true if the v7M CPACR permits access to the FPU for the specified
 856 * security state and privilege level.
 857 */
 858static inline bool v7m_cpacr_pass(CPUARMState *env,
 859                                  bool is_secure, bool is_priv)
 860{
 861    switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
 862    case 0:
 863    case 2: /* UNPREDICTABLE: we treat like 0 */
 864        return false;
 865    case 1:
 866        return is_priv;
 867    case 3:
 868        return true;
 869    default:
 870        g_assert_not_reached();
 871    }
 872}
 873
 874/**
 875 * aarch32_mode_name(): Return name of the AArch32 CPU mode
 876 * @psr: Program Status Register indicating CPU mode
 877 *
 878 * Returns, for debug logging purposes, a printable representation
 879 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
 880 * the low bits of the specified PSR.
 881 */
 882static inline const char *aarch32_mode_name(uint32_t psr)
 883{
 884    static const char cpu_mode_names[16][4] = {
 885        "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
 886        "???", "???", "hyp", "und", "???", "???", "???", "sys"
 887    };
 888
 889    return cpu_mode_names[psr & 0xf];
 890}
 891
 892/**
 893 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
 894 *
 895 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
 896 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
 897 * Must be called with the iothread lock held.
 898 */
 899void arm_cpu_update_virq(ARMCPU *cpu);
 900
 901/**
 902 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
 903 *
 904 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
 905 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
 906 * Must be called with the iothread lock held.
 907 */
 908void arm_cpu_update_vfiq(ARMCPU *cpu);
 909
 910/**
 911 * arm_mmu_idx_el:
 912 * @env: The cpu environment
 913 * @el: The EL to use.
 914 *
 915 * Return the full ARMMMUIdx for the translation regime for EL.
 916 */
 917ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
 918
 919/**
 920 * arm_mmu_idx:
 921 * @env: The cpu environment
 922 *
 923 * Return the full ARMMMUIdx for the current translation regime.
 924 */
 925ARMMMUIdx arm_mmu_idx(CPUARMState *env);
 926
 927/**
 928 * arm_stage1_mmu_idx:
 929 * @env: The cpu environment
 930 *
 931 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
 932 */
 933#ifdef CONFIG_USER_ONLY
 934static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
 935{
 936    return ARMMMUIdx_Stage1_E0;
 937}
 938#else
 939ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
 940#endif
 941
 942/**
 943 * arm_mmu_idx_is_stage1_of_2:
 944 * @mmu_idx: The ARMMMUIdx to test
 945 *
 946 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
 947 * first stage of a two stage regime.
 948 */
 949static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
 950{
 951    switch (mmu_idx) {
 952    case ARMMMUIdx_Stage1_E0:
 953    case ARMMMUIdx_Stage1_E1:
 954    case ARMMMUIdx_Stage1_E1_PAN:
 955    case ARMMMUIdx_Stage1_SE0:
 956    case ARMMMUIdx_Stage1_SE1:
 957    case ARMMMUIdx_Stage1_SE1_PAN:
 958        return true;
 959    default:
 960        return false;
 961    }
 962}
 963
 964static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
 965                                               const ARMISARegisters *id)
 966{
 967    uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
 968
 969    if ((features >> ARM_FEATURE_V4T) & 1) {
 970        valid |= CPSR_T;
 971    }
 972    if ((features >> ARM_FEATURE_V5) & 1) {
 973        valid |= CPSR_Q; /* V5TE in reality*/
 974    }
 975    if ((features >> ARM_FEATURE_V6) & 1) {
 976        valid |= CPSR_E | CPSR_GE;
 977    }
 978    if ((features >> ARM_FEATURE_THUMB2) & 1) {
 979        valid |= CPSR_IT;
 980    }
 981    if (isar_feature_aa32_jazelle(id)) {
 982        valid |= CPSR_J;
 983    }
 984    if (isar_feature_aa32_pan(id)) {
 985        valid |= CPSR_PAN;
 986    }
 987    if (isar_feature_aa32_dit(id)) {
 988        valid |= CPSR_DIT;
 989    }
 990    if (isar_feature_aa32_ssbs(id)) {
 991        valid |= CPSR_SSBS;
 992    }
 993
 994    return valid;
 995}
 996
 997static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
 998{
 999    uint32_t valid;
1000
1001    valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1002    if (isar_feature_aa64_bti(id)) {
1003        valid |= PSTATE_BTYPE;
1004    }
1005    if (isar_feature_aa64_pan(id)) {
1006        valid |= PSTATE_PAN;
1007    }
1008    if (isar_feature_aa64_uao(id)) {
1009        valid |= PSTATE_UAO;
1010    }
1011    if (isar_feature_aa64_dit(id)) {
1012        valid |= PSTATE_DIT;
1013    }
1014    if (isar_feature_aa64_ssbs(id)) {
1015        valid |= PSTATE_SSBS;
1016    }
1017    if (isar_feature_aa64_mte(id)) {
1018        valid |= PSTATE_TCO;
1019    }
1020
1021    return valid;
1022}
1023
1024/*
1025 * Parameters of a given virtual address, as extracted from the
1026 * translation control register (TCR) for a given regime.
1027 */
1028typedef struct ARMVAParameters {
1029    unsigned tsz    : 8;
1030    unsigned select : 1;
1031    bool tbi        : 1;
1032    bool epd        : 1;
1033    bool hpd        : 1;
1034    bool using16k   : 1;
1035    bool using64k   : 1;
1036} ARMVAParameters;
1037
1038ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1039                                   ARMMMUIdx mmu_idx, bool data);
1040
1041static inline int exception_target_el(CPUARMState *env)
1042{
1043    int target_el = MAX(1, arm_current_el(env));
1044
1045    /*
1046     * No such thing as secure EL1 if EL3 is aarch32,
1047     * so update the target EL to EL3 in this case.
1048     */
1049    if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1050        target_el = 3;
1051    }
1052
1053    return target_el;
1054}
1055
1056/* Determine if allocation tags are available.  */
1057static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1058                                                 uint64_t sctlr)
1059{
1060    if (el < 3
1061        && arm_feature(env, ARM_FEATURE_EL3)
1062        && !(env->cp15.scr_el3 & SCR_ATA)) {
1063        return false;
1064    }
1065    if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1066        uint64_t hcr = arm_hcr_el2_eff(env);
1067        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1068            return false;
1069        }
1070    }
1071    sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1072    return sctlr != 0;
1073}
1074
1075#ifndef CONFIG_USER_ONLY
1076
1077/* Security attributes for an address, as returned by v8m_security_lookup. */
1078typedef struct V8M_SAttributes {
1079    bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1080    bool ns;
1081    bool nsc;
1082    uint8_t sregion;
1083    bool srvalid;
1084    uint8_t iregion;
1085    bool irvalid;
1086} V8M_SAttributes;
1087
1088void v8m_security_lookup(CPUARMState *env, uint32_t address,
1089                         MMUAccessType access_type, ARMMMUIdx mmu_idx,
1090                         V8M_SAttributes *sattrs);
1091
1092bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1093                       MMUAccessType access_type, ARMMMUIdx mmu_idx,
1094                       hwaddr *phys_ptr, MemTxAttrs *txattrs,
1095                       int *prot, bool *is_subpage,
1096                       ARMMMUFaultInfo *fi, uint32_t *mregion);
1097
1098/* Cacheability and shareability attributes for a memory access */
1099typedef struct ARMCacheAttrs {
1100    unsigned int attrs:8; /* as in the MAIR register encoding */
1101    unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1102} ARMCacheAttrs;
1103
1104bool get_phys_addr(CPUARMState *env, target_ulong address,
1105                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
1106                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1107                   target_ulong *page_size,
1108                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1109    __attribute__((nonnull));
1110
1111void arm_log_exception(int idx);
1112
1113#endif /* !CONFIG_USER_ONLY */
1114
1115/*
1116 * The log2 of the words in the tag block, for GMID_EL1.BS.
1117 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1118 */
1119#define GMID_EL1_BS  6
1120
1121/* We associate one allocation tag per 16 bytes, the minimum.  */
1122#define LOG2_TAG_GRANULE 4
1123#define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1124
1125/*
1126 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1127 * the same simd_desc() encoding due to restrictions on size.
1128 * Use these instead.
1129 */
1130FIELD(PREDDESC, OPRSZ, 0, 6)
1131FIELD(PREDDESC, ESZ, 6, 2)
1132FIELD(PREDDESC, DATA, 8, 24)
1133
1134/*
1135 * The SVE simd_data field, for memory ops, contains either
1136 * rd (5 bits) or a shift count (2 bits).
1137 */
1138#define SVE_MTEDESC_SHIFT 5
1139
1140/* Bits within a descriptor passed to the helper_mte_check* functions. */
1141FIELD(MTEDESC, MIDX,  0, 4)
1142FIELD(MTEDESC, TBI,   4, 2)
1143FIELD(MTEDESC, TCMA,  6, 2)
1144FIELD(MTEDESC, WRITE, 8, 1)
1145FIELD(MTEDESC, ESIZE, 9, 5)
1146FIELD(MTEDESC, TSIZE, 14, 10)  /* mte_checkN only */
1147
1148bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr);
1149uint64_t mte_check1(CPUARMState *env, uint32_t desc,
1150                    uint64_t ptr, uintptr_t ra);
1151uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
1152                    uint64_t ptr, uintptr_t ra);
1153
1154static inline int allocation_tag_from_addr(uint64_t ptr)
1155{
1156    return extract64(ptr, 56, 4);
1157}
1158
1159static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1160{
1161    return deposit64(ptr, 56, 4, rtag);
1162}
1163
1164/* Return true if tbi bits mean that the access is checked.  */
1165static inline bool tbi_check(uint32_t desc, int bit55)
1166{
1167    return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1168}
1169
1170/* Return true if tcma bits mean that the access is unchecked.  */
1171static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1172{
1173    /*
1174     * We had extracted bit55 and ptr_tag for other reasons, so fold
1175     * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1176     */
1177    bool match = ((ptr_tag + bit55) & 0xf) == 0;
1178    bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1179    return tcma && match;
1180}
1181
1182/*
1183 * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1184 * for the tag to be present in the FAR_ELx register.  But for user-only
1185 * mode, we do not have a TLB with which to implement this, so we must
1186 * remove the top byte.
1187 */
1188static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1189{
1190#ifdef CONFIG_USER_ONLY
1191    /* TBI0 is known to be enabled, while TBI1 is disabled. */
1192    ptr &= sextract64(ptr, 0, 56);
1193#endif
1194    return ptr;
1195}
1196
1197static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1198{
1199#ifdef CONFIG_USER_ONLY
1200    int64_t clean_ptr = sextract64(ptr, 0, 56);
1201    if (tbi_check(desc, clean_ptr < 0)) {
1202        ptr = clean_ptr;
1203    }
1204#endif
1205    return ptr;
1206}
1207
1208#endif
1209