qemu/target/arm/kvm.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13
  14#include <linux/kvm.h>
  15
  16#include "qemu-common.h"
  17#include "qemu/timer.h"
  18#include "qemu/error-report.h"
  19#include "qemu/main-loop.h"
  20#include "qom/object.h"
  21#include "qapi/error.h"
  22#include "sysemu/sysemu.h"
  23#include "sysemu/kvm.h"
  24#include "sysemu/kvm_int.h"
  25#include "kvm_arm.h"
  26#include "cpu.h"
  27#include "trace.h"
  28#include "internals.h"
  29#include "hw/pci/pci.h"
  30#include "exec/memattrs.h"
  31#include "exec/address-spaces.h"
  32#include "hw/boards.h"
  33#include "hw/irq.h"
  34#include "qemu/log.h"
  35
  36const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  37    KVM_CAP_LAST_INFO
  38};
  39
  40static bool cap_has_mp_state;
  41static bool cap_has_inject_serror_esr;
  42static bool cap_has_inject_ext_dabt;
  43
  44static ARMHostCPUFeatures arm_host_cpu_features;
  45
  46int kvm_arm_vcpu_init(CPUState *cs)
  47{
  48    ARMCPU *cpu = ARM_CPU(cs);
  49    struct kvm_vcpu_init init;
  50
  51    init.target = cpu->kvm_target;
  52    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
  53
  54    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
  55}
  56
  57int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
  58{
  59    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
  60}
  61
  62void kvm_arm_init_serror_injection(CPUState *cs)
  63{
  64    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
  65                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
  66}
  67
  68bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
  69                                      int *fdarray,
  70                                      struct kvm_vcpu_init *init)
  71{
  72    int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
  73
  74    kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
  75    if (kvmfd < 0) {
  76        goto err;
  77    }
  78    vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
  79    if (vmfd < 0) {
  80        goto err;
  81    }
  82    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
  83    if (cpufd < 0) {
  84        goto err;
  85    }
  86
  87    if (!init) {
  88        /* Caller doesn't want the VCPU to be initialized, so skip it */
  89        goto finish;
  90    }
  91
  92    if (init->target == -1) {
  93        struct kvm_vcpu_init preferred;
  94
  95        ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
  96        if (!ret) {
  97            init->target = preferred.target;
  98        }
  99    }
 100    if (ret >= 0) {
 101        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
 102        if (ret < 0) {
 103            goto err;
 104        }
 105    } else if (cpus_to_try) {
 106        /* Old kernel which doesn't know about the
 107         * PREFERRED_TARGET ioctl: we know it will only support
 108         * creating one kind of guest CPU which is its preferred
 109         * CPU type.
 110         */
 111        struct kvm_vcpu_init try;
 112
 113        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
 114            try.target = *cpus_to_try++;
 115            memcpy(try.features, init->features, sizeof(init->features));
 116            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
 117            if (ret >= 0) {
 118                break;
 119            }
 120        }
 121        if (ret < 0) {
 122            goto err;
 123        }
 124        init->target = try.target;
 125    } else {
 126        /* Treat a NULL cpus_to_try argument the same as an empty
 127         * list, which means we will fail the call since this must
 128         * be an old kernel which doesn't support PREFERRED_TARGET.
 129         */
 130        goto err;
 131    }
 132
 133finish:
 134    fdarray[0] = kvmfd;
 135    fdarray[1] = vmfd;
 136    fdarray[2] = cpufd;
 137
 138    return true;
 139
 140err:
 141    if (cpufd >= 0) {
 142        close(cpufd);
 143    }
 144    if (vmfd >= 0) {
 145        close(vmfd);
 146    }
 147    if (kvmfd >= 0) {
 148        close(kvmfd);
 149    }
 150
 151    return false;
 152}
 153
 154void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 155{
 156    int i;
 157
 158    for (i = 2; i >= 0; i--) {
 159        close(fdarray[i]);
 160    }
 161}
 162
 163void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 164{
 165    CPUARMState *env = &cpu->env;
 166
 167    if (!arm_host_cpu_features.dtb_compatible) {
 168        if (!kvm_enabled() ||
 169            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
 170            /* We can't report this error yet, so flag that we need to
 171             * in arm_cpu_realizefn().
 172             */
 173            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 174            cpu->host_cpu_probe_failed = true;
 175            return;
 176        }
 177    }
 178
 179    cpu->kvm_target = arm_host_cpu_features.target;
 180    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
 181    cpu->isar = arm_host_cpu_features.isar;
 182    env->features = arm_host_cpu_features.features;
 183}
 184
 185static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
 186{
 187    return !ARM_CPU(obj)->kvm_adjvtime;
 188}
 189
 190static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
 191{
 192    ARM_CPU(obj)->kvm_adjvtime = !value;
 193}
 194
 195static bool kvm_steal_time_get(Object *obj, Error **errp)
 196{
 197    return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
 198}
 199
 200static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
 201{
 202    ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
 203}
 204
 205/* KVM VCPU properties should be prefixed with "kvm-". */
 206void kvm_arm_add_vcpu_properties(Object *obj)
 207{
 208    ARMCPU *cpu = ARM_CPU(obj);
 209    CPUARMState *env = &cpu->env;
 210
 211    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
 212        cpu->kvm_adjvtime = true;
 213        object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
 214                                 kvm_no_adjvtime_set);
 215        object_property_set_description(obj, "kvm-no-adjvtime",
 216                                        "Set on to disable the adjustment of "
 217                                        "the virtual counter. VM stopped time "
 218                                        "will be counted.");
 219    }
 220
 221    cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
 222    object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
 223                             kvm_steal_time_set);
 224    object_property_set_description(obj, "kvm-steal-time",
 225                                    "Set off to disable KVM steal time.");
 226}
 227
 228bool kvm_arm_pmu_supported(void)
 229{
 230    return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
 231}
 232
 233int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
 234{
 235    KVMState *s = KVM_STATE(ms->accelerator);
 236    int ret;
 237
 238    ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
 239    *fixed_ipa = ret <= 0;
 240
 241    return ret > 0 ? ret : 40;
 242}
 243
 244int kvm_arch_init(MachineState *ms, KVMState *s)
 245{
 246    int ret = 0;
 247    /* For ARM interrupt delivery is always asynchronous,
 248     * whether we are using an in-kernel VGIC or not.
 249     */
 250    kvm_async_interrupts_allowed = true;
 251
 252    /*
 253     * PSCI wakes up secondary cores, so we always need to
 254     * have vCPUs waiting in kernel space
 255     */
 256    kvm_halt_in_kernel_allowed = true;
 257
 258    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 259
 260    if (ms->smp.cpus > 256 &&
 261        !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
 262        error_report("Using more than 256 vcpus requires a host kernel "
 263                     "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
 264        ret = -EINVAL;
 265    }
 266
 267    if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
 268        if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
 269            error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
 270        } else {
 271            /* Set status for supporting the external dabt injection */
 272            cap_has_inject_ext_dabt = kvm_check_extension(s,
 273                                    KVM_CAP_ARM_INJECT_EXT_DABT);
 274        }
 275    }
 276
 277    return ret;
 278}
 279
 280unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 281{
 282    return cpu->cpu_index;
 283}
 284
 285/* We track all the KVM devices which need their memory addresses
 286 * passing to the kernel in a list of these structures.
 287 * When board init is complete we run through the list and
 288 * tell the kernel the base addresses of the memory regions.
 289 * We use a MemoryListener to track mapping and unmapping of
 290 * the regions during board creation, so the board models don't
 291 * need to do anything special for the KVM case.
 292 *
 293 * Sometimes the address must be OR'ed with some other fields
 294 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
 295 * @kda_addr_ormask aims at storing the value of those fields.
 296 */
 297typedef struct KVMDevice {
 298    struct kvm_arm_device_addr kda;
 299    struct kvm_device_attr kdattr;
 300    uint64_t kda_addr_ormask;
 301    MemoryRegion *mr;
 302    QSLIST_ENTRY(KVMDevice) entries;
 303    int dev_fd;
 304} KVMDevice;
 305
 306static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
 307
 308static void kvm_arm_devlistener_add(MemoryListener *listener,
 309                                    MemoryRegionSection *section)
 310{
 311    KVMDevice *kd;
 312
 313    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 314        if (section->mr == kd->mr) {
 315            kd->kda.addr = section->offset_within_address_space;
 316        }
 317    }
 318}
 319
 320static void kvm_arm_devlistener_del(MemoryListener *listener,
 321                                    MemoryRegionSection *section)
 322{
 323    KVMDevice *kd;
 324
 325    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 326        if (section->mr == kd->mr) {
 327            kd->kda.addr = -1;
 328        }
 329    }
 330}
 331
 332static MemoryListener devlistener = {
 333    .region_add = kvm_arm_devlistener_add,
 334    .region_del = kvm_arm_devlistener_del,
 335};
 336
 337static void kvm_arm_set_device_addr(KVMDevice *kd)
 338{
 339    struct kvm_device_attr *attr = &kd->kdattr;
 340    int ret;
 341
 342    /* If the device control API is available and we have a device fd on the
 343     * KVMDevice struct, let's use the newer API
 344     */
 345    if (kd->dev_fd >= 0) {
 346        uint64_t addr = kd->kda.addr;
 347
 348        addr |= kd->kda_addr_ormask;
 349        attr->addr = (uintptr_t)&addr;
 350        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 351    } else {
 352        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 353    }
 354
 355    if (ret < 0) {
 356        fprintf(stderr, "Failed to set device address: %s\n",
 357                strerror(-ret));
 358        abort();
 359    }
 360}
 361
 362static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 363{
 364    KVMDevice *kd, *tkd;
 365
 366    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 367        if (kd->kda.addr != -1) {
 368            kvm_arm_set_device_addr(kd);
 369        }
 370        memory_region_unref(kd->mr);
 371        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
 372        g_free(kd);
 373    }
 374    memory_listener_unregister(&devlistener);
 375}
 376
 377static Notifier notify = {
 378    .notify = kvm_arm_machine_init_done,
 379};
 380
 381void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 382                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
 383{
 384    KVMDevice *kd;
 385
 386    if (!kvm_irqchip_in_kernel()) {
 387        return;
 388    }
 389
 390    if (QSLIST_EMPTY(&kvm_devices_head)) {
 391        memory_listener_register(&devlistener, &address_space_memory);
 392        qemu_add_machine_init_done_notifier(&notify);
 393    }
 394    kd = g_new0(KVMDevice, 1);
 395    kd->mr = mr;
 396    kd->kda.id = devid;
 397    kd->kda.addr = -1;
 398    kd->kdattr.flags = 0;
 399    kd->kdattr.group = group;
 400    kd->kdattr.attr = attr;
 401    kd->dev_fd = dev_fd;
 402    kd->kda_addr_ormask = addr_ormask;
 403    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 404    memory_region_ref(kd->mr);
 405}
 406
 407static int compare_u64(const void *a, const void *b)
 408{
 409    if (*(uint64_t *)a > *(uint64_t *)b) {
 410        return 1;
 411    }
 412    if (*(uint64_t *)a < *(uint64_t *)b) {
 413        return -1;
 414    }
 415    return 0;
 416}
 417
 418/*
 419 * cpreg_values are sorted in ascending order by KVM register ID
 420 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
 421 * the storage for a KVM register by ID with a binary search.
 422 */
 423static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
 424{
 425    uint64_t *res;
 426
 427    res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
 428                  sizeof(uint64_t), compare_u64);
 429    assert(res);
 430
 431    return &cpu->cpreg_values[res - cpu->cpreg_indexes];
 432}
 433
 434/* Initialize the ARMCPU cpreg list according to the kernel's
 435 * definition of what CPU registers it knows about (and throw away
 436 * the previous TCG-created cpreg list).
 437 */
 438int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 439{
 440    struct kvm_reg_list rl;
 441    struct kvm_reg_list *rlp;
 442    int i, ret, arraylen;
 443    CPUState *cs = CPU(cpu);
 444
 445    rl.n = 0;
 446    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 447    if (ret != -E2BIG) {
 448        return ret;
 449    }
 450    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 451    rlp->n = rl.n;
 452    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 453    if (ret) {
 454        goto out;
 455    }
 456    /* Sort the list we get back from the kernel, since cpreg_tuples
 457     * must be in strictly ascending order.
 458     */
 459    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 460
 461    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 462        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 463            continue;
 464        }
 465        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 466        case KVM_REG_SIZE_U32:
 467        case KVM_REG_SIZE_U64:
 468            break;
 469        default:
 470            fprintf(stderr, "Can't handle size of register in kernel list\n");
 471            ret = -EINVAL;
 472            goto out;
 473        }
 474
 475        arraylen++;
 476    }
 477
 478    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 479    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 480    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 481                                         arraylen);
 482    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 483                                        arraylen);
 484    cpu->cpreg_array_len = arraylen;
 485    cpu->cpreg_vmstate_array_len = arraylen;
 486
 487    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 488        uint64_t regidx = rlp->reg[i];
 489        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 490            continue;
 491        }
 492        cpu->cpreg_indexes[arraylen] = regidx;
 493        arraylen++;
 494    }
 495    assert(cpu->cpreg_array_len == arraylen);
 496
 497    if (!write_kvmstate_to_list(cpu)) {
 498        /* Shouldn't happen unless kernel is inconsistent about
 499         * what registers exist.
 500         */
 501        fprintf(stderr, "Initial read of kernel register state failed\n");
 502        ret = -EINVAL;
 503        goto out;
 504    }
 505
 506out:
 507    g_free(rlp);
 508    return ret;
 509}
 510
 511bool write_kvmstate_to_list(ARMCPU *cpu)
 512{
 513    CPUState *cs = CPU(cpu);
 514    int i;
 515    bool ok = true;
 516
 517    for (i = 0; i < cpu->cpreg_array_len; i++) {
 518        struct kvm_one_reg r;
 519        uint64_t regidx = cpu->cpreg_indexes[i];
 520        uint32_t v32;
 521        int ret;
 522
 523        r.id = regidx;
 524
 525        switch (regidx & KVM_REG_SIZE_MASK) {
 526        case KVM_REG_SIZE_U32:
 527            r.addr = (uintptr_t)&v32;
 528            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 529            if (!ret) {
 530                cpu->cpreg_values[i] = v32;
 531            }
 532            break;
 533        case KVM_REG_SIZE_U64:
 534            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 535            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 536            break;
 537        default:
 538            abort();
 539        }
 540        if (ret) {
 541            ok = false;
 542        }
 543    }
 544    return ok;
 545}
 546
 547bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 548{
 549    CPUState *cs = CPU(cpu);
 550    int i;
 551    bool ok = true;
 552
 553    for (i = 0; i < cpu->cpreg_array_len; i++) {
 554        struct kvm_one_reg r;
 555        uint64_t regidx = cpu->cpreg_indexes[i];
 556        uint32_t v32;
 557        int ret;
 558
 559        if (kvm_arm_cpreg_level(regidx) > level) {
 560            continue;
 561        }
 562
 563        r.id = regidx;
 564        switch (regidx & KVM_REG_SIZE_MASK) {
 565        case KVM_REG_SIZE_U32:
 566            v32 = cpu->cpreg_values[i];
 567            r.addr = (uintptr_t)&v32;
 568            break;
 569        case KVM_REG_SIZE_U64:
 570            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 571            break;
 572        default:
 573            abort();
 574        }
 575        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 576        if (ret) {
 577            /* We might fail for "unknown register" and also for
 578             * "you tried to set a register which is constant with
 579             * a different value from what it actually contains".
 580             */
 581            ok = false;
 582        }
 583    }
 584    return ok;
 585}
 586
 587void kvm_arm_cpu_pre_save(ARMCPU *cpu)
 588{
 589    /* KVM virtual time adjustment */
 590    if (cpu->kvm_vtime_dirty) {
 591        *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
 592    }
 593}
 594
 595void kvm_arm_cpu_post_load(ARMCPU *cpu)
 596{
 597    /* KVM virtual time adjustment */
 598    if (cpu->kvm_adjvtime) {
 599        cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
 600        cpu->kvm_vtime_dirty = true;
 601    }
 602}
 603
 604void kvm_arm_reset_vcpu(ARMCPU *cpu)
 605{
 606    int ret;
 607
 608    /* Re-init VCPU so that all registers are set to
 609     * their respective reset values.
 610     */
 611    ret = kvm_arm_vcpu_init(CPU(cpu));
 612    if (ret < 0) {
 613        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 614        abort();
 615    }
 616    if (!write_kvmstate_to_list(cpu)) {
 617        fprintf(stderr, "write_kvmstate_to_list failed\n");
 618        abort();
 619    }
 620    /*
 621     * Sync the reset values also into the CPUState. This is necessary
 622     * because the next thing we do will be a kvm_arch_put_registers()
 623     * which will update the list values from the CPUState before copying
 624     * the list values back to KVM. It's OK to ignore failure returns here
 625     * for the same reason we do so in kvm_arch_get_registers().
 626     */
 627    write_list_to_cpustate(cpu);
 628}
 629
 630/*
 631 * Update KVM's MP_STATE based on what QEMU thinks it is
 632 */
 633int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 634{
 635    if (cap_has_mp_state) {
 636        struct kvm_mp_state mp_state = {
 637            .mp_state = (cpu->power_state == PSCI_OFF) ?
 638            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 639        };
 640        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 641        if (ret) {
 642            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 643                    __func__, ret, strerror(-ret));
 644            return -1;
 645        }
 646    }
 647
 648    return 0;
 649}
 650
 651/*
 652 * Sync the KVM MP_STATE into QEMU
 653 */
 654int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 655{
 656    if (cap_has_mp_state) {
 657        struct kvm_mp_state mp_state;
 658        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 659        if (ret) {
 660            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 661                    __func__, ret, strerror(-ret));
 662            abort();
 663        }
 664        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
 665            PSCI_OFF : PSCI_ON;
 666    }
 667
 668    return 0;
 669}
 670
 671void kvm_arm_get_virtual_time(CPUState *cs)
 672{
 673    ARMCPU *cpu = ARM_CPU(cs);
 674    struct kvm_one_reg reg = {
 675        .id = KVM_REG_ARM_TIMER_CNT,
 676        .addr = (uintptr_t)&cpu->kvm_vtime,
 677    };
 678    int ret;
 679
 680    if (cpu->kvm_vtime_dirty) {
 681        return;
 682    }
 683
 684    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 685    if (ret) {
 686        error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
 687        abort();
 688    }
 689
 690    cpu->kvm_vtime_dirty = true;
 691}
 692
 693void kvm_arm_put_virtual_time(CPUState *cs)
 694{
 695    ARMCPU *cpu = ARM_CPU(cs);
 696    struct kvm_one_reg reg = {
 697        .id = KVM_REG_ARM_TIMER_CNT,
 698        .addr = (uintptr_t)&cpu->kvm_vtime,
 699    };
 700    int ret;
 701
 702    if (!cpu->kvm_vtime_dirty) {
 703        return;
 704    }
 705
 706    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 707    if (ret) {
 708        error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
 709        abort();
 710    }
 711
 712    cpu->kvm_vtime_dirty = false;
 713}
 714
 715int kvm_put_vcpu_events(ARMCPU *cpu)
 716{
 717    CPUARMState *env = &cpu->env;
 718    struct kvm_vcpu_events events;
 719    int ret;
 720
 721    if (!kvm_has_vcpu_events()) {
 722        return 0;
 723    }
 724
 725    memset(&events, 0, sizeof(events));
 726    events.exception.serror_pending = env->serror.pending;
 727
 728    /* Inject SError to guest with specified syndrome if host kernel
 729     * supports it, otherwise inject SError without syndrome.
 730     */
 731    if (cap_has_inject_serror_esr) {
 732        events.exception.serror_has_esr = env->serror.has_esr;
 733        events.exception.serror_esr = env->serror.esr;
 734    }
 735
 736    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
 737    if (ret) {
 738        error_report("failed to put vcpu events");
 739    }
 740
 741    return ret;
 742}
 743
 744int kvm_get_vcpu_events(ARMCPU *cpu)
 745{
 746    CPUARMState *env = &cpu->env;
 747    struct kvm_vcpu_events events;
 748    int ret;
 749
 750    if (!kvm_has_vcpu_events()) {
 751        return 0;
 752    }
 753
 754    memset(&events, 0, sizeof(events));
 755    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
 756    if (ret) {
 757        error_report("failed to get vcpu events");
 758        return ret;
 759    }
 760
 761    env->serror.pending = events.exception.serror_pending;
 762    env->serror.has_esr = events.exception.serror_has_esr;
 763    env->serror.esr = events.exception.serror_esr;
 764
 765    return 0;
 766}
 767
 768void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 769{
 770    ARMCPU *cpu = ARM_CPU(cs);
 771    CPUARMState *env = &cpu->env;
 772
 773    if (unlikely(env->ext_dabt_raised)) {
 774        /*
 775         * Verifying that the ext DABT has been properly injected,
 776         * otherwise risking indefinitely re-running the faulting instruction
 777         * Covering a very narrow case for kernels 5.5..5.5.4
 778         * when injected abort was misconfigured to be
 779         * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
 780         */
 781        if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
 782            unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
 783
 784            error_report("Data abort exception with no valid ISS generated by "
 785                   "guest memory access. KVM unable to emulate faulting "
 786                   "instruction. Failed to inject an external data abort "
 787                   "into the guest.");
 788            abort();
 789       }
 790       /* Clear the status */
 791       env->ext_dabt_raised = 0;
 792    }
 793}
 794
 795MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 796{
 797    ARMCPU *cpu;
 798    uint32_t switched_level;
 799
 800    if (kvm_irqchip_in_kernel()) {
 801        /*
 802         * We only need to sync timer states with user-space interrupt
 803         * controllers, so return early and save cycles if we don't.
 804         */
 805        return MEMTXATTRS_UNSPECIFIED;
 806    }
 807
 808    cpu = ARM_CPU(cs);
 809
 810    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
 811    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
 812        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 813
 814        qemu_mutex_lock_iothread();
 815
 816        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
 817            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
 818                         !!(run->s.regs.device_irq_level &
 819                            KVM_ARM_DEV_EL1_VTIMER));
 820            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
 821        }
 822
 823        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
 824            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
 825                         !!(run->s.regs.device_irq_level &
 826                            KVM_ARM_DEV_EL1_PTIMER));
 827            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
 828        }
 829
 830        if (switched_level & KVM_ARM_DEV_PMU) {
 831            qemu_set_irq(cpu->pmu_interrupt,
 832                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
 833            switched_level &= ~KVM_ARM_DEV_PMU;
 834        }
 835
 836        if (switched_level) {
 837            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
 838                          __func__, switched_level);
 839        }
 840
 841        /* We also mark unknown levels as processed to not waste cycles */
 842        cpu->device_irq_level = run->s.regs.device_irq_level;
 843        qemu_mutex_unlock_iothread();
 844    }
 845
 846    return MEMTXATTRS_UNSPECIFIED;
 847}
 848
 849void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
 850{
 851    CPUState *cs = opaque;
 852    ARMCPU *cpu = ARM_CPU(cs);
 853
 854    if (running) {
 855        if (cpu->kvm_adjvtime) {
 856            kvm_arm_put_virtual_time(cs);
 857        }
 858    } else {
 859        if (cpu->kvm_adjvtime) {
 860            kvm_arm_get_virtual_time(cs);
 861        }
 862    }
 863}
 864
 865/**
 866 * kvm_arm_handle_dabt_nisv:
 867 * @cs: CPUState
 868 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
 869 *           ISV bit set to '0b0' -> no valid instruction syndrome
 870 * @fault_ipa: faulting address for the synchronous data abort
 871 *
 872 * Returns: 0 if the exception has been handled, < 0 otherwise
 873 */
 874static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
 875                                    uint64_t fault_ipa)
 876{
 877    ARMCPU *cpu = ARM_CPU(cs);
 878    CPUARMState *env = &cpu->env;
 879    /*
 880     * Request KVM to inject the external data abort into the guest
 881     */
 882    if (cap_has_inject_ext_dabt) {
 883        struct kvm_vcpu_events events = { };
 884        /*
 885         * The external data abort event will be handled immediately by KVM
 886         * using the address fault that triggered the exit on given VCPU.
 887         * Requesting injection of the external data abort does not rely
 888         * on any other VCPU state. Therefore, in this particular case, the VCPU
 889         * synchronization can be exceptionally skipped.
 890         */
 891        events.exception.ext_dabt_pending = 1;
 892        /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
 893        if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
 894            env->ext_dabt_raised = 1;
 895            return 0;
 896        }
 897    } else {
 898        error_report("Data abort exception triggered by guest memory access "
 899                     "at physical address: 0x"  TARGET_FMT_lx,
 900                     (target_ulong)fault_ipa);
 901        error_printf("KVM unable to emulate faulting instruction.\n");
 902    }
 903    return -1;
 904}
 905
 906int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 907{
 908    int ret = 0;
 909
 910    switch (run->exit_reason) {
 911    case KVM_EXIT_DEBUG:
 912        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
 913            ret = EXCP_DEBUG;
 914        } /* otherwise return to guest */
 915        break;
 916    case KVM_EXIT_ARM_NISV:
 917        /* External DABT with no valid iss to decode */
 918        ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
 919                                       run->arm_nisv.fault_ipa);
 920        break;
 921    default:
 922        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
 923                      __func__, run->exit_reason);
 924        break;
 925    }
 926    return ret;
 927}
 928
 929bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 930{
 931    return true;
 932}
 933
 934int kvm_arch_process_async_events(CPUState *cs)
 935{
 936    return 0;
 937}
 938
 939void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 940{
 941    if (kvm_sw_breakpoints_active(cs)) {
 942        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 943    }
 944    if (kvm_arm_hw_debug_active(cs)) {
 945        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
 946        kvm_arm_copy_hw_debug_data(&dbg->arch);
 947    }
 948}
 949
 950void kvm_arch_init_irq_routing(KVMState *s)
 951{
 952}
 953
 954int kvm_arch_irqchip_create(KVMState *s)
 955{
 956    if (kvm_kernel_irqchip_split()) {
 957        perror("-machine kernel_irqchip=split is not supported on ARM.");
 958        exit(1);
 959    }
 960
 961    /* If we can create the VGIC using the newer device control API, we
 962     * let the device do this when it initializes itself, otherwise we
 963     * fall back to the old API */
 964    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 965}
 966
 967int kvm_arm_vgic_probe(void)
 968{
 969    int val = 0;
 970
 971    if (kvm_create_device(kvm_state,
 972                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 973        val |= KVM_ARM_VGIC_V3;
 974    }
 975    if (kvm_create_device(kvm_state,
 976                          KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 977        val |= KVM_ARM_VGIC_V2;
 978    }
 979    return val;
 980}
 981
 982int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
 983{
 984    int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
 985    int cpu_idx1 = cpu % 256;
 986    int cpu_idx2 = cpu / 256;
 987
 988    kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
 989               (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
 990
 991    return kvm_set_irq(kvm_state, kvm_irq, !!level);
 992}
 993
 994int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
 995                             uint64_t address, uint32_t data, PCIDevice *dev)
 996{
 997    AddressSpace *as = pci_device_iommu_address_space(dev);
 998    hwaddr xlat, len, doorbell_gpa;
 999    MemoryRegionSection mrs;
1000    MemoryRegion *mr;
1001    int ret = 1;
1002
1003    if (as == &address_space_memory) {
1004        return 0;
1005    }
1006
1007    /* MSI doorbell address is translated by an IOMMU */
1008
1009    rcu_read_lock();
1010    mr = address_space_translate(as, address, &xlat, &len, true,
1011                                 MEMTXATTRS_UNSPECIFIED);
1012    if (!mr) {
1013        goto unlock;
1014    }
1015    mrs = memory_region_find(mr, xlat, 1);
1016    if (!mrs.mr) {
1017        goto unlock;
1018    }
1019
1020    doorbell_gpa = mrs.offset_within_address_space;
1021    memory_region_unref(mrs.mr);
1022
1023    route->u.msi.address_lo = doorbell_gpa;
1024    route->u.msi.address_hi = doorbell_gpa >> 32;
1025
1026    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1027
1028    ret = 0;
1029
1030unlock:
1031    rcu_read_unlock();
1032    return ret;
1033}
1034
1035int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1036                                int vector, PCIDevice *dev)
1037{
1038    return 0;
1039}
1040
1041int kvm_arch_release_virq_post(int virq)
1042{
1043    return 0;
1044}
1045
1046int kvm_arch_msi_data_to_gsi(uint32_t data)
1047{
1048    return (data - 32) & 0xffff;
1049}
1050
1051bool kvm_arch_cpu_check_are_resettable(void)
1052{
1053    return true;
1054}
1055