1/* 2 * Copyright (C) 2014 - Linaro 3 * Author: Rob Herring <rob.herring@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19#include "qemu/osdep.h" 20#include "cpu.h" 21#include "exec/helper-proto.h" 22#include "kvm-consts.h" 23#include "qemu/main-loop.h" 24#include "sysemu/runstate.h" 25#include "internals.h" 26#include "arm-powerctl.h" 27 28bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 29{ 30 /* Return true if the r0/x0 value indicates a PSCI call and 31 * the exception type matches the configured PSCI conduit. This is 32 * called before the SMC/HVC instruction is executed, to decide whether 33 * we should treat it as a PSCI call or with the architecturally 34 * defined behaviour for an SMC or HVC (which might be UNDEF or trap 35 * to EL2 or to EL3). 36 */ 37 CPUARMState *env = &cpu->env; 38 uint64_t param = is_a64(env) ? env->xregs[0] : env->regs[0]; 39 40 switch (excp_type) { 41 case EXCP_HVC: 42 if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_HVC) { 43 return false; 44 } 45 break; 46 case EXCP_SMC: 47 if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 48 return false; 49 } 50 break; 51 default: 52 return false; 53 } 54 55 switch (param) { 56 case QEMU_PSCI_0_2_FN_PSCI_VERSION: 57 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: 58 case QEMU_PSCI_0_2_FN_AFFINITY_INFO: 59 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: 60 case QEMU_PSCI_0_2_FN_SYSTEM_RESET: 61 case QEMU_PSCI_0_2_FN_SYSTEM_OFF: 62 case QEMU_PSCI_0_1_FN_CPU_ON: 63 case QEMU_PSCI_0_2_FN_CPU_ON: 64 case QEMU_PSCI_0_2_FN64_CPU_ON: 65 case QEMU_PSCI_0_1_FN_CPU_OFF: 66 case QEMU_PSCI_0_2_FN_CPU_OFF: 67 case QEMU_PSCI_0_1_FN_CPU_SUSPEND: 68 case QEMU_PSCI_0_2_FN_CPU_SUSPEND: 69 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: 70 case QEMU_PSCI_0_1_FN_MIGRATE: 71 case QEMU_PSCI_0_2_FN_MIGRATE: 72 return true; 73 default: 74 return false; 75 } 76} 77 78void arm_handle_psci_call(ARMCPU *cpu) 79{ 80 /* 81 * This function partially implements the logic for dispatching Power State 82 * Coordination Interface (PSCI) calls (as described in ARM DEN 0022B.b), 83 * to the extent required for bringing up and taking down secondary cores, 84 * and for handling reset and poweroff requests. 85 * Additional information about the calling convention used is available in 86 * the document 'SMC Calling Convention' (ARM DEN 0028) 87 */ 88 CPUARMState *env = &cpu->env; 89 uint64_t param[4]; 90 uint64_t context_id, mpidr; 91 target_ulong entry; 92 int32_t ret = 0; 93 int i; 94 95 for (i = 0; i < 4; i++) { 96 /* 97 * All PSCI functions take explicit 32-bit or native int sized 98 * arguments so we can simply zero-extend all arguments regardless 99 * of which exact function we are about to call. 100 */ 101 param[i] = is_a64(env) ? env->xregs[i] : env->regs[i]; 102 } 103 104 if ((param[0] & QEMU_PSCI_0_2_64BIT) && !is_a64(env)) { 105 ret = QEMU_PSCI_RET_INVALID_PARAMS; 106 goto err; 107 } 108 109 switch (param[0]) { 110 CPUState *target_cpu_state; 111 ARMCPU *target_cpu; 112 113 case QEMU_PSCI_0_2_FN_PSCI_VERSION: 114 ret = QEMU_PSCI_0_2_RET_VERSION_0_2; 115 break; 116 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: 117 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */ 118 break; 119 case QEMU_PSCI_0_2_FN_AFFINITY_INFO: 120 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: 121 mpidr = param[1]; 122 123 switch (param[2]) { 124 case 0: 125 target_cpu_state = arm_get_cpu_by_id(mpidr); 126 if (!target_cpu_state) { 127 ret = QEMU_PSCI_RET_INVALID_PARAMS; 128 break; 129 } 130 target_cpu = ARM_CPU(target_cpu_state); 131 132 g_assert(qemu_mutex_iothread_locked()); 133 ret = target_cpu->power_state; 134 break; 135 default: 136 /* Everything above affinity level 0 is always on. */ 137 ret = 0; 138 } 139 break; 140 case QEMU_PSCI_0_2_FN_SYSTEM_RESET: 141 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 142 /* QEMU reset and shutdown are async requests, but PSCI 143 * mandates that we never return from the reset/shutdown 144 * call, so power the CPU off now so it doesn't execute 145 * anything further. 146 */ 147 goto cpu_off; 148 case QEMU_PSCI_0_2_FN_SYSTEM_OFF: 149 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 150 goto cpu_off; 151 case QEMU_PSCI_0_1_FN_CPU_ON: 152 case QEMU_PSCI_0_2_FN_CPU_ON: 153 case QEMU_PSCI_0_2_FN64_CPU_ON: 154 { 155 /* The PSCI spec mandates that newly brought up CPUs start 156 * in the highest exception level which exists and is enabled 157 * on the calling CPU. Since the QEMU PSCI implementation is 158 * acting as a "fake EL3" or "fake EL2" firmware, this for us 159 * means that we want to start at the highest NS exception level 160 * that we are providing to the guest. 161 * The execution mode should be that which is currently in use 162 * by the same exception level on the calling CPU. 163 * The CPU should be started with the context_id value 164 * in x0 (if AArch64) or r0 (if AArch32). 165 */ 166 int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1; 167 bool target_aarch64 = arm_el_is_aa64(env, target_el); 168 169 mpidr = param[1]; 170 entry = param[2]; 171 context_id = param[3]; 172 ret = arm_set_cpu_on(mpidr, entry, context_id, 173 target_el, target_aarch64); 174 break; 175 } 176 case QEMU_PSCI_0_1_FN_CPU_OFF: 177 case QEMU_PSCI_0_2_FN_CPU_OFF: 178 goto cpu_off; 179 case QEMU_PSCI_0_1_FN_CPU_SUSPEND: 180 case QEMU_PSCI_0_2_FN_CPU_SUSPEND: 181 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: 182 /* Affinity levels are not supported in QEMU */ 183 if (param[1] & 0xfffe0000) { 184 ret = QEMU_PSCI_RET_INVALID_PARAMS; 185 break; 186 } 187 /* Powerdown is not supported, we always go into WFI */ 188 if (is_a64(env)) { 189 env->xregs[0] = 0; 190 } else { 191 env->regs[0] = 0; 192 } 193 helper_wfi(env, 4); 194 break; 195 case QEMU_PSCI_0_1_FN_MIGRATE: 196 case QEMU_PSCI_0_2_FN_MIGRATE: 197 ret = QEMU_PSCI_RET_NOT_SUPPORTED; 198 break; 199 default: 200 g_assert_not_reached(); 201 } 202 203err: 204 if (is_a64(env)) { 205 env->xregs[0] = ret; 206 } else { 207 env->regs[0] = ret; 208 } 209 return; 210 211cpu_off: 212 ret = arm_set_cpu_off(cpu->mp_affinity); 213 /* notreached */ 214 /* sanity check in case something failed */ 215 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS); 216} 217