qemu/target/arm/vfp_helper.c
<<
>>
Prefs
   1/*
   2 * ARM VFP floating-point operations
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/helper-proto.h"
  23#include "internals.h"
  24#ifdef CONFIG_TCG
  25#include "qemu/log.h"
  26#include "fpu/softfloat.h"
  27#endif
  28
  29/* VFP support.  We follow the convention used for VFP instructions:
  30   Single precision routines have a "s" suffix, double precision a
  31   "d" suffix.  */
  32
  33#ifdef CONFIG_TCG
  34
  35/* Convert host exception flags to vfp form.  */
  36static inline int vfp_exceptbits_from_host(int host_bits)
  37{
  38    int target_bits = 0;
  39
  40    if (host_bits & float_flag_invalid) {
  41        target_bits |= 1;
  42    }
  43    if (host_bits & float_flag_divbyzero) {
  44        target_bits |= 2;
  45    }
  46    if (host_bits & float_flag_overflow) {
  47        target_bits |= 4;
  48    }
  49    if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
  50        target_bits |= 8;
  51    }
  52    if (host_bits & float_flag_inexact) {
  53        target_bits |= 0x10;
  54    }
  55    if (host_bits & float_flag_input_denormal) {
  56        target_bits |= 0x80;
  57    }
  58    return target_bits;
  59}
  60
  61/* Convert vfp exception flags to target form.  */
  62static inline int vfp_exceptbits_to_host(int target_bits)
  63{
  64    int host_bits = 0;
  65
  66    if (target_bits & 1) {
  67        host_bits |= float_flag_invalid;
  68    }
  69    if (target_bits & 2) {
  70        host_bits |= float_flag_divbyzero;
  71    }
  72    if (target_bits & 4) {
  73        host_bits |= float_flag_overflow;
  74    }
  75    if (target_bits & 8) {
  76        host_bits |= float_flag_underflow;
  77    }
  78    if (target_bits & 0x10) {
  79        host_bits |= float_flag_inexact;
  80    }
  81    if (target_bits & 0x80) {
  82        host_bits |= float_flag_input_denormal;
  83    }
  84    return host_bits;
  85}
  86
  87static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
  88{
  89    uint32_t i;
  90
  91    i = get_float_exception_flags(&env->vfp.fp_status);
  92    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
  93    /* FZ16 does not generate an input denormal exception.  */
  94    i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
  95          & ~float_flag_input_denormal);
  96    i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
  97          & ~float_flag_input_denormal);
  98    return vfp_exceptbits_from_host(i);
  99}
 100
 101static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
 102{
 103    int i;
 104    uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
 105
 106    changed ^= val;
 107    if (changed & (3 << 22)) {
 108        i = (val >> 22) & 3;
 109        switch (i) {
 110        case FPROUNDING_TIEEVEN:
 111            i = float_round_nearest_even;
 112            break;
 113        case FPROUNDING_POSINF:
 114            i = float_round_up;
 115            break;
 116        case FPROUNDING_NEGINF:
 117            i = float_round_down;
 118            break;
 119        case FPROUNDING_ZERO:
 120            i = float_round_to_zero;
 121            break;
 122        }
 123        set_float_rounding_mode(i, &env->vfp.fp_status);
 124        set_float_rounding_mode(i, &env->vfp.fp_status_f16);
 125    }
 126    if (changed & FPCR_FZ16) {
 127        bool ftz_enabled = val & FPCR_FZ16;
 128        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
 129        set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
 130        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
 131        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
 132    }
 133    if (changed & FPCR_FZ) {
 134        bool ftz_enabled = val & FPCR_FZ;
 135        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
 136        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
 137    }
 138    if (changed & FPCR_DN) {
 139        bool dnan_enabled = val & FPCR_DN;
 140        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
 141        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
 142    }
 143
 144    /*
 145     * The exception flags are ORed together when we read fpscr so we
 146     * only need to preserve the current state in one of our
 147     * float_status values.
 148     */
 149    i = vfp_exceptbits_to_host(val);
 150    set_float_exception_flags(i, &env->vfp.fp_status);
 151    set_float_exception_flags(0, &env->vfp.fp_status_f16);
 152    set_float_exception_flags(0, &env->vfp.standard_fp_status);
 153    set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
 154}
 155
 156#else
 157
 158static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
 159{
 160    return 0;
 161}
 162
 163static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
 164{
 165}
 166
 167#endif
 168
 169uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
 170{
 171    uint32_t i, fpscr;
 172
 173    fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
 174            | (env->vfp.vec_len << 16)
 175            | (env->vfp.vec_stride << 20);
 176
 177    /*
 178     * M-profile LTPSIZE overlaps A-profile Stride; whichever of the
 179     * two is not applicable to this CPU will always be zero.
 180     */
 181    fpscr |= env->v7m.ltpsize << 16;
 182
 183    fpscr |= vfp_get_fpscr_from_host(env);
 184
 185    i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
 186    fpscr |= i ? FPCR_QC : 0;
 187
 188    return fpscr;
 189}
 190
 191uint32_t vfp_get_fpscr(CPUARMState *env)
 192{
 193    return HELPER(vfp_get_fpscr)(env);
 194}
 195
 196void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
 197{
 198    /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
 199    if (!cpu_isar_feature(any_fp16, env_archcpu(env))) {
 200        val &= ~FPCR_FZ16;
 201    }
 202
 203    vfp_set_fpscr_to_host(env, val);
 204
 205    if (!arm_feature(env, ARM_FEATURE_M)) {
 206        /*
 207         * Short-vector length and stride; on M-profile these bits
 208         * are used for different purposes.
 209         * We can't make this conditional be "if MVFR0.FPShVec != 0",
 210         * because in v7A no-short-vector-support cores still had to
 211         * allow Stride/Len to be written with the only effect that
 212         * some insns are required to UNDEF if the guest sets them.
 213         *
 214         * TODO: if M-profile MVE implemented, set LTPSIZE.
 215         */
 216        env->vfp.vec_len = extract32(val, 16, 3);
 217        env->vfp.vec_stride = extract32(val, 20, 2);
 218    }
 219
 220    if (arm_feature(env, ARM_FEATURE_NEON)) {
 221        /*
 222         * The bit we set within fpscr_q is arbitrary; the register as a
 223         * whole being zero/non-zero is what counts.
 224         * TODO: M-profile MVE also has a QC bit.
 225         */
 226        env->vfp.qc[0] = val & FPCR_QC;
 227        env->vfp.qc[1] = 0;
 228        env->vfp.qc[2] = 0;
 229        env->vfp.qc[3] = 0;
 230    }
 231
 232    /*
 233     * We don't implement trapped exception handling, so the
 234     * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
 235     *
 236     * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in
 237     * fp_status; QC, Len and Stride are stored separately earlier.
 238     * Clear out all of those and the RES0 bits: only NZCV, AHP, DN,
 239     * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR].
 240     */
 241    env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
 242}
 243
 244void vfp_set_fpscr(CPUARMState *env, uint32_t val)
 245{
 246    HELPER(vfp_set_fpscr)(env, val);
 247}
 248
 249#ifdef CONFIG_TCG
 250
 251#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
 252
 253#define VFP_BINOP(name) \
 254dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
 255{ \
 256    float_status *fpst = fpstp; \
 257    return float16_ ## name(a, b, fpst); \
 258} \
 259float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
 260{ \
 261    float_status *fpst = fpstp; \
 262    return float32_ ## name(a, b, fpst); \
 263} \
 264float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
 265{ \
 266    float_status *fpst = fpstp; \
 267    return float64_ ## name(a, b, fpst); \
 268}
 269VFP_BINOP(add)
 270VFP_BINOP(sub)
 271VFP_BINOP(mul)
 272VFP_BINOP(div)
 273VFP_BINOP(min)
 274VFP_BINOP(max)
 275VFP_BINOP(minnum)
 276VFP_BINOP(maxnum)
 277#undef VFP_BINOP
 278
 279dh_ctype_f16 VFP_HELPER(neg, h)(dh_ctype_f16 a)
 280{
 281    return float16_chs(a);
 282}
 283
 284float32 VFP_HELPER(neg, s)(float32 a)
 285{
 286    return float32_chs(a);
 287}
 288
 289float64 VFP_HELPER(neg, d)(float64 a)
 290{
 291    return float64_chs(a);
 292}
 293
 294dh_ctype_f16 VFP_HELPER(abs, h)(dh_ctype_f16 a)
 295{
 296    return float16_abs(a);
 297}
 298
 299float32 VFP_HELPER(abs, s)(float32 a)
 300{
 301    return float32_abs(a);
 302}
 303
 304float64 VFP_HELPER(abs, d)(float64 a)
 305{
 306    return float64_abs(a);
 307}
 308
 309dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
 310{
 311    return float16_sqrt(a, &env->vfp.fp_status_f16);
 312}
 313
 314float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
 315{
 316    return float32_sqrt(a, &env->vfp.fp_status);
 317}
 318
 319float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
 320{
 321    return float64_sqrt(a, &env->vfp.fp_status);
 322}
 323
 324static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
 325{
 326    uint32_t flags;
 327    switch (cmp) {
 328    case float_relation_equal:
 329        flags = 0x6;
 330        break;
 331    case float_relation_less:
 332        flags = 0x8;
 333        break;
 334    case float_relation_greater:
 335        flags = 0x2;
 336        break;
 337    case float_relation_unordered:
 338        flags = 0x3;
 339        break;
 340    default:
 341        g_assert_not_reached();
 342    }
 343    env->vfp.xregs[ARM_VFP_FPSCR] =
 344        deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
 345}
 346
 347/* XXX: check quiet/signaling case */
 348#define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
 349void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env)  \
 350{ \
 351    softfloat_to_vfp_compare(env, \
 352        FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
 353} \
 354void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
 355{ \
 356    softfloat_to_vfp_compare(env, \
 357        FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
 358}
 359DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
 360DO_VFP_cmp(s, float32, float32, fp_status)
 361DO_VFP_cmp(d, float64, float64, fp_status)
 362#undef DO_VFP_cmp
 363
 364/* Integer to float and float to integer conversions */
 365
 366#define CONV_ITOF(name, ftype, fsz, sign)                           \
 367ftype HELPER(name)(uint32_t x, void *fpstp)                         \
 368{                                                                   \
 369    float_status *fpst = fpstp;                                     \
 370    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
 371}
 372
 373#define CONV_FTOI(name, ftype, fsz, sign, round)                \
 374sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
 375{                                                               \
 376    float_status *fpst = fpstp;                                 \
 377    if (float##fsz##_is_any_nan(x)) {                           \
 378        float_raise(float_flag_invalid, fpst);                  \
 379        return 0;                                               \
 380    }                                                           \
 381    return float##fsz##_to_##sign##int32##round(x, fpst);       \
 382}
 383
 384#define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
 385    CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
 386    CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
 387    CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
 388
 389FLOAT_CONVS(si, h, uint32_t, 16, )
 390FLOAT_CONVS(si, s, float32, 32, )
 391FLOAT_CONVS(si, d, float64, 64, )
 392FLOAT_CONVS(ui, h, uint32_t, 16, u)
 393FLOAT_CONVS(ui, s, float32, 32, u)
 394FLOAT_CONVS(ui, d, float64, 64, u)
 395
 396#undef CONV_ITOF
 397#undef CONV_FTOI
 398#undef FLOAT_CONVS
 399
 400/* floating point conversion */
 401float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
 402{
 403    return float32_to_float64(x, &env->vfp.fp_status);
 404}
 405
 406float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
 407{
 408    return float64_to_float32(x, &env->vfp.fp_status);
 409}
 410
 411/*
 412 * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
 413 * must always round-to-nearest; the AArch64 ones honour the FPSCR
 414 * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
 415 * round-to-nearest so either helper will work.) AArch32 float-to-fix
 416 * must round-to-zero.
 417 */
 418#define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)            \
 419ftype HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift,      \
 420                                     void *fpstp) \
 421{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
 422
 423#define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)      \
 424    ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t  x, \
 425                                                     uint32_t shift,   \
 426                                                     void *fpstp)      \
 427    {                                                                  \
 428        ftype ret;                                                     \
 429        float_status *fpst = fpstp;                                    \
 430        FloatRoundMode oldmode = fpst->float_rounding_mode;            \
 431        fpst->float_rounding_mode = float_round_nearest_even;          \
 432        ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp);      \
 433        fpst->float_rounding_mode = oldmode;                           \
 434        return ret;                                                    \
 435    }
 436
 437#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
 438uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift,      \
 439                                            void *fpst)                   \
 440{                                                                         \
 441    if (unlikely(float##fsz##_is_any_nan(x))) {                           \
 442        float_raise(float_flag_invalid, fpst);                            \
 443        return 0;                                                         \
 444    }                                                                     \
 445    return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
 446}
 447
 448#define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype)            \
 449VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
 450VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)        \
 451VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
 452                         float_round_to_zero, _round_to_zero)    \
 453VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
 454                         get_float_rounding_mode(fpst), )
 455
 456#define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype)        \
 457VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
 458VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
 459                         get_float_rounding_mode(fpst), )
 460
 461VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
 462VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
 463VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
 464VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
 465VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
 466VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
 467VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
 468VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
 469VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
 470VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
 471VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
 472VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
 473VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
 474VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
 475VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
 476VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
 477VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
 478VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
 479
 480#undef VFP_CONV_FIX
 481#undef VFP_CONV_FIX_FLOAT
 482#undef VFP_CONV_FLOAT_FIX_ROUND
 483#undef VFP_CONV_FIX_A64
 484
 485/* Set the current fp rounding mode and return the old one.
 486 * The argument is a softfloat float_round_ value.
 487 */
 488uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
 489{
 490    float_status *fp_status = fpstp;
 491
 492    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
 493    set_float_rounding_mode(rmode, fp_status);
 494
 495    return prev_rmode;
 496}
 497
 498/* Half precision conversions.  */
 499float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
 500{
 501    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 502     * it would affect flushing input denormals.
 503     */
 504    float_status *fpst = fpstp;
 505    bool save = get_flush_inputs_to_zero(fpst);
 506    set_flush_inputs_to_zero(false, fpst);
 507    float32 r = float16_to_float32(a, !ahp_mode, fpst);
 508    set_flush_inputs_to_zero(save, fpst);
 509    return r;
 510}
 511
 512uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
 513{
 514    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 515     * it would affect flushing output denormals.
 516     */
 517    float_status *fpst = fpstp;
 518    bool save = get_flush_to_zero(fpst);
 519    set_flush_to_zero(false, fpst);
 520    float16 r = float32_to_float16(a, !ahp_mode, fpst);
 521    set_flush_to_zero(save, fpst);
 522    return r;
 523}
 524
 525float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
 526{
 527    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 528     * it would affect flushing input denormals.
 529     */
 530    float_status *fpst = fpstp;
 531    bool save = get_flush_inputs_to_zero(fpst);
 532    set_flush_inputs_to_zero(false, fpst);
 533    float64 r = float16_to_float64(a, !ahp_mode, fpst);
 534    set_flush_inputs_to_zero(save, fpst);
 535    return r;
 536}
 537
 538uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
 539{
 540    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 541     * it would affect flushing output denormals.
 542     */
 543    float_status *fpst = fpstp;
 544    bool save = get_flush_to_zero(fpst);
 545    set_flush_to_zero(false, fpst);
 546    float16 r = float64_to_float16(a, !ahp_mode, fpst);
 547    set_flush_to_zero(save, fpst);
 548    return r;
 549}
 550
 551/* NEON helpers.  */
 552
 553/* Constants 256 and 512 are used in some helpers; we avoid relying on
 554 * int->float conversions at run-time.  */
 555#define float64_256 make_float64(0x4070000000000000LL)
 556#define float64_512 make_float64(0x4080000000000000LL)
 557#define float16_maxnorm make_float16(0x7bff)
 558#define float32_maxnorm make_float32(0x7f7fffff)
 559#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
 560
 561/* Reciprocal functions
 562 *
 563 * The algorithm that must be used to calculate the estimate
 564 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
 565 */
 566
 567/* See RecipEstimate()
 568 *
 569 * input is a 9 bit fixed point number
 570 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
 571 * result range 256 .. 511 for a number from 1.0 to 511/256.
 572 */
 573
 574static int recip_estimate(int input)
 575{
 576    int a, b, r;
 577    assert(256 <= input && input < 512);
 578    a = (input * 2) + 1;
 579    b = (1 << 19) / a;
 580    r = (b + 1) >> 1;
 581    assert(256 <= r && r < 512);
 582    return r;
 583}
 584
 585/*
 586 * Common wrapper to call recip_estimate
 587 *
 588 * The parameters are exponent and 64 bit fraction (without implicit
 589 * bit) where the binary point is nominally at bit 52. Returns a
 590 * float64 which can then be rounded to the appropriate size by the
 591 * callee.
 592 */
 593
 594static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
 595{
 596    uint32_t scaled, estimate;
 597    uint64_t result_frac;
 598    int result_exp;
 599
 600    /* Handle sub-normals */
 601    if (*exp == 0) {
 602        if (extract64(frac, 51, 1) == 0) {
 603            *exp = -1;
 604            frac <<= 2;
 605        } else {
 606            frac <<= 1;
 607        }
 608    }
 609
 610    /* scaled = UInt('1':fraction<51:44>) */
 611    scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
 612    estimate = recip_estimate(scaled);
 613
 614    result_exp = exp_off - *exp;
 615    result_frac = deposit64(0, 44, 8, estimate);
 616    if (result_exp == 0) {
 617        result_frac = deposit64(result_frac >> 1, 51, 1, 1);
 618    } else if (result_exp == -1) {
 619        result_frac = deposit64(result_frac >> 2, 50, 2, 1);
 620        result_exp = 0;
 621    }
 622
 623    *exp = result_exp;
 624
 625    return result_frac;
 626}
 627
 628static bool round_to_inf(float_status *fpst, bool sign_bit)
 629{
 630    switch (fpst->float_rounding_mode) {
 631    case float_round_nearest_even: /* Round to Nearest */
 632        return true;
 633    case float_round_up: /* Round to +Inf */
 634        return !sign_bit;
 635    case float_round_down: /* Round to -Inf */
 636        return sign_bit;
 637    case float_round_to_zero: /* Round to Zero */
 638        return false;
 639    default:
 640        g_assert_not_reached();
 641    }
 642}
 643
 644uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
 645{
 646    float_status *fpst = fpstp;
 647    float16 f16 = float16_squash_input_denormal(input, fpst);
 648    uint32_t f16_val = float16_val(f16);
 649    uint32_t f16_sign = float16_is_neg(f16);
 650    int f16_exp = extract32(f16_val, 10, 5);
 651    uint32_t f16_frac = extract32(f16_val, 0, 10);
 652    uint64_t f64_frac;
 653
 654    if (float16_is_any_nan(f16)) {
 655        float16 nan = f16;
 656        if (float16_is_signaling_nan(f16, fpst)) {
 657            float_raise(float_flag_invalid, fpst);
 658            nan = float16_silence_nan(f16, fpst);
 659        }
 660        if (fpst->default_nan_mode) {
 661            nan =  float16_default_nan(fpst);
 662        }
 663        return nan;
 664    } else if (float16_is_infinity(f16)) {
 665        return float16_set_sign(float16_zero, float16_is_neg(f16));
 666    } else if (float16_is_zero(f16)) {
 667        float_raise(float_flag_divbyzero, fpst);
 668        return float16_set_sign(float16_infinity, float16_is_neg(f16));
 669    } else if (float16_abs(f16) < (1 << 8)) {
 670        /* Abs(value) < 2.0^-16 */
 671        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 672        if (round_to_inf(fpst, f16_sign)) {
 673            return float16_set_sign(float16_infinity, f16_sign);
 674        } else {
 675            return float16_set_sign(float16_maxnorm, f16_sign);
 676        }
 677    } else if (f16_exp >= 29 && fpst->flush_to_zero) {
 678        float_raise(float_flag_underflow, fpst);
 679        return float16_set_sign(float16_zero, float16_is_neg(f16));
 680    }
 681
 682    f64_frac = call_recip_estimate(&f16_exp, 29,
 683                                   ((uint64_t) f16_frac) << (52 - 10));
 684
 685    /* result = sign : result_exp<4:0> : fraction<51:42> */
 686    f16_val = deposit32(0, 15, 1, f16_sign);
 687    f16_val = deposit32(f16_val, 10, 5, f16_exp);
 688    f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
 689    return make_float16(f16_val);
 690}
 691
 692float32 HELPER(recpe_f32)(float32 input, void *fpstp)
 693{
 694    float_status *fpst = fpstp;
 695    float32 f32 = float32_squash_input_denormal(input, fpst);
 696    uint32_t f32_val = float32_val(f32);
 697    bool f32_sign = float32_is_neg(f32);
 698    int f32_exp = extract32(f32_val, 23, 8);
 699    uint32_t f32_frac = extract32(f32_val, 0, 23);
 700    uint64_t f64_frac;
 701
 702    if (float32_is_any_nan(f32)) {
 703        float32 nan = f32;
 704        if (float32_is_signaling_nan(f32, fpst)) {
 705            float_raise(float_flag_invalid, fpst);
 706            nan = float32_silence_nan(f32, fpst);
 707        }
 708        if (fpst->default_nan_mode) {
 709            nan =  float32_default_nan(fpst);
 710        }
 711        return nan;
 712    } else if (float32_is_infinity(f32)) {
 713        return float32_set_sign(float32_zero, float32_is_neg(f32));
 714    } else if (float32_is_zero(f32)) {
 715        float_raise(float_flag_divbyzero, fpst);
 716        return float32_set_sign(float32_infinity, float32_is_neg(f32));
 717    } else if (float32_abs(f32) < (1ULL << 21)) {
 718        /* Abs(value) < 2.0^-128 */
 719        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 720        if (round_to_inf(fpst, f32_sign)) {
 721            return float32_set_sign(float32_infinity, f32_sign);
 722        } else {
 723            return float32_set_sign(float32_maxnorm, f32_sign);
 724        }
 725    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
 726        float_raise(float_flag_underflow, fpst);
 727        return float32_set_sign(float32_zero, float32_is_neg(f32));
 728    }
 729
 730    f64_frac = call_recip_estimate(&f32_exp, 253,
 731                                   ((uint64_t) f32_frac) << (52 - 23));
 732
 733    /* result = sign : result_exp<7:0> : fraction<51:29> */
 734    f32_val = deposit32(0, 31, 1, f32_sign);
 735    f32_val = deposit32(f32_val, 23, 8, f32_exp);
 736    f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
 737    return make_float32(f32_val);
 738}
 739
 740float64 HELPER(recpe_f64)(float64 input, void *fpstp)
 741{
 742    float_status *fpst = fpstp;
 743    float64 f64 = float64_squash_input_denormal(input, fpst);
 744    uint64_t f64_val = float64_val(f64);
 745    bool f64_sign = float64_is_neg(f64);
 746    int f64_exp = extract64(f64_val, 52, 11);
 747    uint64_t f64_frac = extract64(f64_val, 0, 52);
 748
 749    /* Deal with any special cases */
 750    if (float64_is_any_nan(f64)) {
 751        float64 nan = f64;
 752        if (float64_is_signaling_nan(f64, fpst)) {
 753            float_raise(float_flag_invalid, fpst);
 754            nan = float64_silence_nan(f64, fpst);
 755        }
 756        if (fpst->default_nan_mode) {
 757            nan =  float64_default_nan(fpst);
 758        }
 759        return nan;
 760    } else if (float64_is_infinity(f64)) {
 761        return float64_set_sign(float64_zero, float64_is_neg(f64));
 762    } else if (float64_is_zero(f64)) {
 763        float_raise(float_flag_divbyzero, fpst);
 764        return float64_set_sign(float64_infinity, float64_is_neg(f64));
 765    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
 766        /* Abs(value) < 2.0^-1024 */
 767        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 768        if (round_to_inf(fpst, f64_sign)) {
 769            return float64_set_sign(float64_infinity, f64_sign);
 770        } else {
 771            return float64_set_sign(float64_maxnorm, f64_sign);
 772        }
 773    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
 774        float_raise(float_flag_underflow, fpst);
 775        return float64_set_sign(float64_zero, float64_is_neg(f64));
 776    }
 777
 778    f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
 779
 780    /* result = sign : result_exp<10:0> : fraction<51:0>; */
 781    f64_val = deposit64(0, 63, 1, f64_sign);
 782    f64_val = deposit64(f64_val, 52, 11, f64_exp);
 783    f64_val = deposit64(f64_val, 0, 52, f64_frac);
 784    return make_float64(f64_val);
 785}
 786
 787/* The algorithm that must be used to calculate the estimate
 788 * is specified by the ARM ARM.
 789 */
 790
 791static int do_recip_sqrt_estimate(int a)
 792{
 793    int b, estimate;
 794
 795    assert(128 <= a && a < 512);
 796    if (a < 256) {
 797        a = a * 2 + 1;
 798    } else {
 799        a = (a >> 1) << 1;
 800        a = (a + 1) * 2;
 801    }
 802    b = 512;
 803    while (a * (b + 1) * (b + 1) < (1 << 28)) {
 804        b += 1;
 805    }
 806    estimate = (b + 1) / 2;
 807    assert(256 <= estimate && estimate < 512);
 808
 809    return estimate;
 810}
 811
 812
 813static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
 814{
 815    int estimate;
 816    uint32_t scaled;
 817
 818    if (*exp == 0) {
 819        while (extract64(frac, 51, 1) == 0) {
 820            frac = frac << 1;
 821            *exp -= 1;
 822        }
 823        frac = extract64(frac, 0, 51) << 1;
 824    }
 825
 826    if (*exp & 1) {
 827        /* scaled = UInt('01':fraction<51:45>) */
 828        scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
 829    } else {
 830        /* scaled = UInt('1':fraction<51:44>) */
 831        scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
 832    }
 833    estimate = do_recip_sqrt_estimate(scaled);
 834
 835    *exp = (exp_off - *exp) / 2;
 836    return extract64(estimate, 0, 8) << 44;
 837}
 838
 839uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
 840{
 841    float_status *s = fpstp;
 842    float16 f16 = float16_squash_input_denormal(input, s);
 843    uint16_t val = float16_val(f16);
 844    bool f16_sign = float16_is_neg(f16);
 845    int f16_exp = extract32(val, 10, 5);
 846    uint16_t f16_frac = extract32(val, 0, 10);
 847    uint64_t f64_frac;
 848
 849    if (float16_is_any_nan(f16)) {
 850        float16 nan = f16;
 851        if (float16_is_signaling_nan(f16, s)) {
 852            float_raise(float_flag_invalid, s);
 853            nan = float16_silence_nan(f16, s);
 854        }
 855        if (s->default_nan_mode) {
 856            nan =  float16_default_nan(s);
 857        }
 858        return nan;
 859    } else if (float16_is_zero(f16)) {
 860        float_raise(float_flag_divbyzero, s);
 861        return float16_set_sign(float16_infinity, f16_sign);
 862    } else if (f16_sign) {
 863        float_raise(float_flag_invalid, s);
 864        return float16_default_nan(s);
 865    } else if (float16_is_infinity(f16)) {
 866        return float16_zero;
 867    }
 868
 869    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 870     * preserving the parity of the exponent.  */
 871
 872    f64_frac = ((uint64_t) f16_frac) << (52 - 10);
 873
 874    f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
 875
 876    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
 877    val = deposit32(0, 15, 1, f16_sign);
 878    val = deposit32(val, 10, 5, f16_exp);
 879    val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
 880    return make_float16(val);
 881}
 882
 883float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
 884{
 885    float_status *s = fpstp;
 886    float32 f32 = float32_squash_input_denormal(input, s);
 887    uint32_t val = float32_val(f32);
 888    uint32_t f32_sign = float32_is_neg(f32);
 889    int f32_exp = extract32(val, 23, 8);
 890    uint32_t f32_frac = extract32(val, 0, 23);
 891    uint64_t f64_frac;
 892
 893    if (float32_is_any_nan(f32)) {
 894        float32 nan = f32;
 895        if (float32_is_signaling_nan(f32, s)) {
 896            float_raise(float_flag_invalid, s);
 897            nan = float32_silence_nan(f32, s);
 898        }
 899        if (s->default_nan_mode) {
 900            nan =  float32_default_nan(s);
 901        }
 902        return nan;
 903    } else if (float32_is_zero(f32)) {
 904        float_raise(float_flag_divbyzero, s);
 905        return float32_set_sign(float32_infinity, float32_is_neg(f32));
 906    } else if (float32_is_neg(f32)) {
 907        float_raise(float_flag_invalid, s);
 908        return float32_default_nan(s);
 909    } else if (float32_is_infinity(f32)) {
 910        return float32_zero;
 911    }
 912
 913    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 914     * preserving the parity of the exponent.  */
 915
 916    f64_frac = ((uint64_t) f32_frac) << 29;
 917
 918    f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
 919
 920    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
 921    val = deposit32(0, 31, 1, f32_sign);
 922    val = deposit32(val, 23, 8, f32_exp);
 923    val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
 924    return make_float32(val);
 925}
 926
 927float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
 928{
 929    float_status *s = fpstp;
 930    float64 f64 = float64_squash_input_denormal(input, s);
 931    uint64_t val = float64_val(f64);
 932    bool f64_sign = float64_is_neg(f64);
 933    int f64_exp = extract64(val, 52, 11);
 934    uint64_t f64_frac = extract64(val, 0, 52);
 935
 936    if (float64_is_any_nan(f64)) {
 937        float64 nan = f64;
 938        if (float64_is_signaling_nan(f64, s)) {
 939            float_raise(float_flag_invalid, s);
 940            nan = float64_silence_nan(f64, s);
 941        }
 942        if (s->default_nan_mode) {
 943            nan =  float64_default_nan(s);
 944        }
 945        return nan;
 946    } else if (float64_is_zero(f64)) {
 947        float_raise(float_flag_divbyzero, s);
 948        return float64_set_sign(float64_infinity, float64_is_neg(f64));
 949    } else if (float64_is_neg(f64)) {
 950        float_raise(float_flag_invalid, s);
 951        return float64_default_nan(s);
 952    } else if (float64_is_infinity(f64)) {
 953        return float64_zero;
 954    }
 955
 956    f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
 957
 958    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
 959    val = deposit64(0, 61, 1, f64_sign);
 960    val = deposit64(val, 52, 11, f64_exp);
 961    val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
 962    return make_float64(val);
 963}
 964
 965uint32_t HELPER(recpe_u32)(uint32_t a)
 966{
 967    int input, estimate;
 968
 969    if ((a & 0x80000000) == 0) {
 970        return 0xffffffff;
 971    }
 972
 973    input = extract32(a, 23, 9);
 974    estimate = recip_estimate(input);
 975
 976    return deposit32(0, (32 - 9), 9, estimate);
 977}
 978
 979uint32_t HELPER(rsqrte_u32)(uint32_t a)
 980{
 981    int estimate;
 982
 983    if ((a & 0xc0000000) == 0) {
 984        return 0xffffffff;
 985    }
 986
 987    estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
 988
 989    return deposit32(0, 23, 9, estimate);
 990}
 991
 992/* VFPv4 fused multiply-accumulate */
 993dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
 994                                   dh_ctype_f16 c, void *fpstp)
 995{
 996    float_status *fpst = fpstp;
 997    return float16_muladd(a, b, c, 0, fpst);
 998}
 999
1000float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1001{
1002    float_status *fpst = fpstp;
1003    return float32_muladd(a, b, c, 0, fpst);
1004}
1005
1006float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1007{
1008    float_status *fpst = fpstp;
1009    return float64_muladd(a, b, c, 0, fpst);
1010}
1011
1012/* ARMv8 round to integral */
1013dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1014{
1015    return float16_round_to_int(x, fp_status);
1016}
1017
1018float32 HELPER(rints_exact)(float32 x, void *fp_status)
1019{
1020    return float32_round_to_int(x, fp_status);
1021}
1022
1023float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1024{
1025    return float64_round_to_int(x, fp_status);
1026}
1027
1028dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1029{
1030    int old_flags = get_float_exception_flags(fp_status), new_flags;
1031    float16 ret;
1032
1033    ret = float16_round_to_int(x, fp_status);
1034
1035    /* Suppress any inexact exceptions the conversion produced */
1036    if (!(old_flags & float_flag_inexact)) {
1037        new_flags = get_float_exception_flags(fp_status);
1038        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1039    }
1040
1041    return ret;
1042}
1043
1044float32 HELPER(rints)(float32 x, void *fp_status)
1045{
1046    int old_flags = get_float_exception_flags(fp_status), new_flags;
1047    float32 ret;
1048
1049    ret = float32_round_to_int(x, fp_status);
1050
1051    /* Suppress any inexact exceptions the conversion produced */
1052    if (!(old_flags & float_flag_inexact)) {
1053        new_flags = get_float_exception_flags(fp_status);
1054        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1055    }
1056
1057    return ret;
1058}
1059
1060float64 HELPER(rintd)(float64 x, void *fp_status)
1061{
1062    int old_flags = get_float_exception_flags(fp_status), new_flags;
1063    float64 ret;
1064
1065    ret = float64_round_to_int(x, fp_status);
1066
1067    new_flags = get_float_exception_flags(fp_status);
1068
1069    /* Suppress any inexact exceptions the conversion produced */
1070    if (!(old_flags & float_flag_inexact)) {
1071        new_flags = get_float_exception_flags(fp_status);
1072        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1073    }
1074
1075    return ret;
1076}
1077
1078/* Convert ARM rounding mode to softfloat */
1079int arm_rmode_to_sf(int rmode)
1080{
1081    switch (rmode) {
1082    case FPROUNDING_TIEAWAY:
1083        rmode = float_round_ties_away;
1084        break;
1085    case FPROUNDING_ODD:
1086        /* FIXME: add support for TIEAWAY and ODD */
1087        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
1088                      rmode);
1089        /* fall through for now */
1090    case FPROUNDING_TIEEVEN:
1091    default:
1092        rmode = float_round_nearest_even;
1093        break;
1094    case FPROUNDING_POSINF:
1095        rmode = float_round_up;
1096        break;
1097    case FPROUNDING_NEGINF:
1098        rmode = float_round_down;
1099        break;
1100    case FPROUNDING_ZERO:
1101        rmode = float_round_to_zero;
1102        break;
1103    }
1104    return rmode;
1105}
1106
1107/*
1108 * Implement float64 to int32_t conversion without saturation;
1109 * the result is supplied modulo 2^32.
1110 */
1111uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1112{
1113    float_status *status = vstatus;
1114    uint32_t exp, sign;
1115    uint64_t frac;
1116    uint32_t inexact = 1; /* !Z */
1117
1118    sign = extract64(value, 63, 1);
1119    exp = extract64(value, 52, 11);
1120    frac = extract64(value, 0, 52);
1121
1122    if (exp == 0) {
1123        /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript.  */
1124        inexact = sign;
1125        if (frac != 0) {
1126            if (status->flush_inputs_to_zero) {
1127                float_raise(float_flag_input_denormal, status);
1128            } else {
1129                float_raise(float_flag_inexact, status);
1130                inexact = 1;
1131            }
1132        }
1133        frac = 0;
1134    } else if (exp == 0x7ff) {
1135        /* This operation raises Invalid for both NaN and overflow (Inf).  */
1136        float_raise(float_flag_invalid, status);
1137        frac = 0;
1138    } else {
1139        int true_exp = exp - 1023;
1140        int shift = true_exp - 52;
1141
1142        /* Restore implicit bit.  */
1143        frac |= 1ull << 52;
1144
1145        /* Shift the fraction into place.  */
1146        if (shift >= 0) {
1147            /* The number is so large we must shift the fraction left.  */
1148            if (shift >= 64) {
1149                /* The fraction is shifted out entirely.  */
1150                frac = 0;
1151            } else {
1152                frac <<= shift;
1153            }
1154        } else if (shift > -64) {
1155            /* Normal case -- shift right and notice if bits shift out.  */
1156            inexact = (frac << (64 + shift)) != 0;
1157            frac >>= -shift;
1158        } else {
1159            /* The fraction is shifted out entirely.  */
1160            frac = 0;
1161        }
1162
1163        /* Notice overflow or inexact exceptions.  */
1164        if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
1165            /* Overflow, for which this operation raises invalid.  */
1166            float_raise(float_flag_invalid, status);
1167            inexact = 1;
1168        } else if (inexact) {
1169            float_raise(float_flag_inexact, status);
1170        }
1171
1172        /* Honor the sign.  */
1173        if (sign) {
1174            frac = -frac;
1175        }
1176    }
1177
1178    /* Pack the result and the env->ZF representation of Z together.  */
1179    return deposit64(frac, 32, 32, inexact);
1180}
1181
1182uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1183{
1184    uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1185    uint32_t result = pair;
1186    uint32_t z = (pair >> 32) == 0;
1187
1188    /* Store Z, clear NCV, in FPSCR.NZCV.  */
1189    env->vfp.xregs[ARM_VFP_FPSCR]
1190        = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1191
1192    return result;
1193}
1194
1195/* Round a float32 to an integer that fits in int32_t or int64_t.  */
1196static float32 frint_s(float32 f, float_status *fpst, int intsize)
1197{
1198    int old_flags = get_float_exception_flags(fpst);
1199    uint32_t exp = extract32(f, 23, 8);
1200
1201    if (unlikely(exp == 0xff)) {
1202        /* NaN or Inf.  */
1203        goto overflow;
1204    }
1205
1206    /* Round and re-extract the exponent.  */
1207    f = float32_round_to_int(f, fpst);
1208    exp = extract32(f, 23, 8);
1209
1210    /* Validate the range of the result.  */
1211    if (exp < 126 + intsize) {
1212        /* abs(F) <= INT{N}_MAX */
1213        return f;
1214    }
1215    if (exp == 126 + intsize) {
1216        uint32_t sign = extract32(f, 31, 1);
1217        uint32_t frac = extract32(f, 0, 23);
1218        if (sign && frac == 0) {
1219            /* F == INT{N}_MIN */
1220            return f;
1221        }
1222    }
1223
1224 overflow:
1225    /*
1226     * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1227     * inexact exception float32_round_to_int may have raised.
1228     */
1229    set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1230    return (0x100u + 126u + intsize) << 23;
1231}
1232
1233float32 HELPER(frint32_s)(float32 f, void *fpst)
1234{
1235    return frint_s(f, fpst, 32);
1236}
1237
1238float32 HELPER(frint64_s)(float32 f, void *fpst)
1239{
1240    return frint_s(f, fpst, 64);
1241}
1242
1243/* Round a float64 to an integer that fits in int32_t or int64_t.  */
1244static float64 frint_d(float64 f, float_status *fpst, int intsize)
1245{
1246    int old_flags = get_float_exception_flags(fpst);
1247    uint32_t exp = extract64(f, 52, 11);
1248
1249    if (unlikely(exp == 0x7ff)) {
1250        /* NaN or Inf.  */
1251        goto overflow;
1252    }
1253
1254    /* Round and re-extract the exponent.  */
1255    f = float64_round_to_int(f, fpst);
1256    exp = extract64(f, 52, 11);
1257
1258    /* Validate the range of the result.  */
1259    if (exp < 1022 + intsize) {
1260        /* abs(F) <= INT{N}_MAX */
1261        return f;
1262    }
1263    if (exp == 1022 + intsize) {
1264        uint64_t sign = extract64(f, 63, 1);
1265        uint64_t frac = extract64(f, 0, 52);
1266        if (sign && frac == 0) {
1267            /* F == INT{N}_MIN */
1268            return f;
1269        }
1270    }
1271
1272 overflow:
1273    /*
1274     * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1275     * inexact exception float64_round_to_int may have raised.
1276     */
1277    set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1278    return (uint64_t)(0x800 + 1022 + intsize) << 52;
1279}
1280
1281float64 HELPER(frint32_d)(float64 f, void *fpst)
1282{
1283    return frint_d(f, fpst, 32);
1284}
1285
1286float64 HELPER(frint64_d)(float64 f, void *fpst)
1287{
1288    return frint_d(f, fpst, 64);
1289}
1290
1291void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1292{
1293    uint32_t syndrome;
1294
1295    switch (reg) {
1296    case ARM_VFP_MVFR0:
1297    case ARM_VFP_MVFR1:
1298    case ARM_VFP_MVFR2:
1299        if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1300            return;
1301        }
1302        break;
1303    case ARM_VFP_FPSID:
1304        if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1305            return;
1306        }
1307        break;
1308    default:
1309        g_assert_not_reached();
1310    }
1311
1312    syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1313                | ARM_EL_IL
1314                | (1 << 24) | (0xe << 20) | (7 << 14)
1315                | (reg << 10) | (rt << 5) | 1);
1316
1317    raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1318}
1319
1320#endif
1321