qemu/target/i386/kvm/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/qapi-events-run-state.h"
  17#include "qapi/error.h"
  18#include <sys/ioctl.h>
  19#include <sys/utsname.h>
  20
  21#include <linux/kvm.h>
  22#include "standard-headers/asm-x86/kvm_para.h"
  23
  24#include "cpu.h"
  25#include "sysemu/sysemu.h"
  26#include "sysemu/hw_accel.h"
  27#include "sysemu/kvm_int.h"
  28#include "sysemu/runstate.h"
  29#include "kvm_i386.h"
  30#include "sev_i386.h"
  31#include "hyperv.h"
  32#include "hyperv-proto.h"
  33
  34#include "exec/gdbstub.h"
  35#include "qemu/host-utils.h"
  36#include "qemu/main-loop.h"
  37#include "qemu/config-file.h"
  38#include "qemu/error-report.h"
  39#include "hw/i386/x86.h"
  40#include "hw/i386/apic.h"
  41#include "hw/i386/apic_internal.h"
  42#include "hw/i386/apic-msidef.h"
  43#include "hw/i386/intel_iommu.h"
  44#include "hw/i386/x86-iommu.h"
  45#include "hw/i386/e820_memory_layout.h"
  46#include "sysemu/sev.h"
  47
  48#include "hw/pci/pci.h"
  49#include "hw/pci/msi.h"
  50#include "hw/pci/msix.h"
  51#include "migration/blocker.h"
  52#include "exec/memattrs.h"
  53#include "trace.h"
  54
  55//#define DEBUG_KVM
  56
  57#ifdef DEBUG_KVM
  58#define DPRINTF(fmt, ...) \
  59    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  60#else
  61#define DPRINTF(fmt, ...) \
  62    do { } while (0)
  63#endif
  64
  65/* From arch/x86/kvm/lapic.h */
  66#define KVM_APIC_BUS_CYCLE_NS       1
  67#define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
  68
  69#define MSR_KVM_WALL_CLOCK  0x11
  70#define MSR_KVM_SYSTEM_TIME 0x12
  71
  72/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
  73 * 255 kvm_msr_entry structs */
  74#define MSR_BUF_SIZE 4096
  75
  76static void kvm_init_msrs(X86CPU *cpu);
  77
  78const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  79    KVM_CAP_INFO(SET_TSS_ADDR),
  80    KVM_CAP_INFO(EXT_CPUID),
  81    KVM_CAP_INFO(MP_STATE),
  82    KVM_CAP_LAST_INFO
  83};
  84
  85static bool has_msr_star;
  86static bool has_msr_hsave_pa;
  87static bool has_msr_tsc_aux;
  88static bool has_msr_tsc_adjust;
  89static bool has_msr_tsc_deadline;
  90static bool has_msr_feature_control;
  91static bool has_msr_misc_enable;
  92static bool has_msr_smbase;
  93static bool has_msr_bndcfgs;
  94static int lm_capable_kernel;
  95static bool has_msr_hv_hypercall;
  96static bool has_msr_hv_crash;
  97static bool has_msr_hv_reset;
  98static bool has_msr_hv_vpindex;
  99static bool hv_vpindex_settable;
 100static bool has_msr_hv_runtime;
 101static bool has_msr_hv_synic;
 102static bool has_msr_hv_stimer;
 103static bool has_msr_hv_frequencies;
 104static bool has_msr_hv_reenlightenment;
 105static bool has_msr_xss;
 106static bool has_msr_umwait;
 107static bool has_msr_spec_ctrl;
 108static bool has_msr_tsx_ctrl;
 109static bool has_msr_virt_ssbd;
 110static bool has_msr_smi_count;
 111static bool has_msr_arch_capabs;
 112static bool has_msr_core_capabs;
 113static bool has_msr_vmx_vmfunc;
 114static bool has_msr_ucode_rev;
 115static bool has_msr_vmx_procbased_ctls2;
 116static bool has_msr_perf_capabs;
 117static bool has_msr_pkrs;
 118
 119static uint32_t has_architectural_pmu_version;
 120static uint32_t num_architectural_pmu_gp_counters;
 121static uint32_t num_architectural_pmu_fixed_counters;
 122
 123static int has_xsave;
 124static int has_xcrs;
 125static int has_pit_state2;
 126static int has_exception_payload;
 127
 128static bool has_msr_mcg_ext_ctl;
 129
 130static struct kvm_cpuid2 *cpuid_cache;
 131static struct kvm_msr_list *kvm_feature_msrs;
 132
 133int kvm_has_pit_state2(void)
 134{
 135    return has_pit_state2;
 136}
 137
 138bool kvm_has_smm(void)
 139{
 140    return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 141}
 142
 143bool kvm_has_adjust_clock_stable(void)
 144{
 145    int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 146
 147    return (ret == KVM_CLOCK_TSC_STABLE);
 148}
 149
 150bool kvm_has_adjust_clock(void)
 151{
 152    return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 153}
 154
 155bool kvm_has_exception_payload(void)
 156{
 157    return has_exception_payload;
 158}
 159
 160static bool kvm_x2apic_api_set_flags(uint64_t flags)
 161{
 162    KVMState *s = KVM_STATE(current_accel());
 163
 164    return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
 165}
 166
 167#define MEMORIZE(fn, _result) \
 168    ({ \
 169        static bool _memorized; \
 170        \
 171        if (_memorized) { \
 172            return _result; \
 173        } \
 174        _memorized = true; \
 175        _result = fn; \
 176    })
 177
 178static bool has_x2apic_api;
 179
 180bool kvm_has_x2apic_api(void)
 181{
 182    return has_x2apic_api;
 183}
 184
 185bool kvm_enable_x2apic(void)
 186{
 187    return MEMORIZE(
 188             kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
 189                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
 190             has_x2apic_api);
 191}
 192
 193bool kvm_hv_vpindex_settable(void)
 194{
 195    return hv_vpindex_settable;
 196}
 197
 198static int kvm_get_tsc(CPUState *cs)
 199{
 200    X86CPU *cpu = X86_CPU(cs);
 201    CPUX86State *env = &cpu->env;
 202    struct {
 203        struct kvm_msrs info;
 204        struct kvm_msr_entry entries[1];
 205    } msr_data = {};
 206    int ret;
 207
 208    if (env->tsc_valid) {
 209        return 0;
 210    }
 211
 212    memset(&msr_data, 0, sizeof(msr_data));
 213    msr_data.info.nmsrs = 1;
 214    msr_data.entries[0].index = MSR_IA32_TSC;
 215    env->tsc_valid = !runstate_is_running();
 216
 217    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
 218    if (ret < 0) {
 219        return ret;
 220    }
 221
 222    assert(ret == 1);
 223    env->tsc = msr_data.entries[0].data;
 224    return 0;
 225}
 226
 227static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
 228{
 229    kvm_get_tsc(cpu);
 230}
 231
 232void kvm_synchronize_all_tsc(void)
 233{
 234    CPUState *cpu;
 235
 236    if (kvm_enabled()) {
 237        CPU_FOREACH(cpu) {
 238            run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
 239        }
 240    }
 241}
 242
 243static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 244{
 245    struct kvm_cpuid2 *cpuid;
 246    int r, size;
 247
 248    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 249    cpuid = g_malloc0(size);
 250    cpuid->nent = max;
 251    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 252    if (r == 0 && cpuid->nent >= max) {
 253        r = -E2BIG;
 254    }
 255    if (r < 0) {
 256        if (r == -E2BIG) {
 257            g_free(cpuid);
 258            return NULL;
 259        } else {
 260            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 261                    strerror(-r));
 262            exit(1);
 263        }
 264    }
 265    return cpuid;
 266}
 267
 268/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 269 * for all entries.
 270 */
 271static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 272{
 273    struct kvm_cpuid2 *cpuid;
 274    int max = 1;
 275
 276    if (cpuid_cache != NULL) {
 277        return cpuid_cache;
 278    }
 279    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 280        max *= 2;
 281    }
 282    cpuid_cache = cpuid;
 283    return cpuid;
 284}
 285
 286static bool host_tsx_broken(void)
 287{
 288    int family, model, stepping;\
 289    char vendor[CPUID_VENDOR_SZ + 1];
 290
 291    host_vendor_fms(vendor, &family, &model, &stepping);
 292
 293    /* Check if we are running on a Haswell host known to have broken TSX */
 294    return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
 295           (family == 6) &&
 296           ((model == 63 && stepping < 4) ||
 297            model == 60 || model == 69 || model == 70);
 298}
 299
 300/* Returns the value for a specific register on the cpuid entry
 301 */
 302static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 303{
 304    uint32_t ret = 0;
 305    switch (reg) {
 306    case R_EAX:
 307        ret = entry->eax;
 308        break;
 309    case R_EBX:
 310        ret = entry->ebx;
 311        break;
 312    case R_ECX:
 313        ret = entry->ecx;
 314        break;
 315    case R_EDX:
 316        ret = entry->edx;
 317        break;
 318    }
 319    return ret;
 320}
 321
 322/* Find matching entry for function/index on kvm_cpuid2 struct
 323 */
 324static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 325                                                 uint32_t function,
 326                                                 uint32_t index)
 327{
 328    int i;
 329    for (i = 0; i < cpuid->nent; ++i) {
 330        if (cpuid->entries[i].function == function &&
 331            cpuid->entries[i].index == index) {
 332            return &cpuid->entries[i];
 333        }
 334    }
 335    /* not found: */
 336    return NULL;
 337}
 338
 339uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 340                                      uint32_t index, int reg)
 341{
 342    struct kvm_cpuid2 *cpuid;
 343    uint32_t ret = 0;
 344    uint32_t cpuid_1_edx;
 345
 346    cpuid = get_supported_cpuid(s);
 347
 348    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 349    if (entry) {
 350        ret = cpuid_entry_get_reg(entry, reg);
 351    }
 352
 353    /* Fixups for the data returned by KVM, below */
 354
 355    if (function == 1 && reg == R_EDX) {
 356        /* KVM before 2.6.30 misreports the following features */
 357        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 358    } else if (function == 1 && reg == R_ECX) {
 359        /* We can set the hypervisor flag, even if KVM does not return it on
 360         * GET_SUPPORTED_CPUID
 361         */
 362        ret |= CPUID_EXT_HYPERVISOR;
 363        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 364         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 365         * and the irqchip is in the kernel.
 366         */
 367        if (kvm_irqchip_in_kernel() &&
 368                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 369            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 370        }
 371
 372        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 373         * without the in-kernel irqchip
 374         */
 375        if (!kvm_irqchip_in_kernel()) {
 376            ret &= ~CPUID_EXT_X2APIC;
 377        }
 378
 379        if (enable_cpu_pm) {
 380            int disable_exits = kvm_check_extension(s,
 381                                                    KVM_CAP_X86_DISABLE_EXITS);
 382
 383            if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
 384                ret |= CPUID_EXT_MONITOR;
 385            }
 386        }
 387    } else if (function == 6 && reg == R_EAX) {
 388        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 389    } else if (function == 7 && index == 0 && reg == R_EBX) {
 390        if (host_tsx_broken()) {
 391            ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
 392        }
 393    } else if (function == 7 && index == 0 && reg == R_EDX) {
 394        /*
 395         * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
 396         * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
 397         * returned by KVM_GET_MSR_INDEX_LIST.
 398         */
 399        if (!has_msr_arch_capabs) {
 400            ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
 401        }
 402    } else if (function == 0x80000001 && reg == R_ECX) {
 403        /*
 404         * It's safe to enable TOPOEXT even if it's not returned by
 405         * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
 406         * us to keep CPU models including TOPOEXT runnable on older kernels.
 407         */
 408        ret |= CPUID_EXT3_TOPOEXT;
 409    } else if (function == 0x80000001 && reg == R_EDX) {
 410        /* On Intel, kvm returns cpuid according to the Intel spec,
 411         * so add missing bits according to the AMD spec:
 412         */
 413        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 414        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 415    } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
 416        /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
 417         * be enabled without the in-kernel irqchip
 418         */
 419        if (!kvm_irqchip_in_kernel()) {
 420            ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
 421        }
 422        if (kvm_irqchip_is_split()) {
 423            ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
 424        }
 425    } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
 426        ret |= 1U << KVM_HINTS_REALTIME;
 427    }
 428
 429    return ret;
 430}
 431
 432uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
 433{
 434    struct {
 435        struct kvm_msrs info;
 436        struct kvm_msr_entry entries[1];
 437    } msr_data = {};
 438    uint64_t value;
 439    uint32_t ret, can_be_one, must_be_one;
 440
 441    if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
 442        return 0;
 443    }
 444
 445    /* Check if requested MSR is supported feature MSR */
 446    int i;
 447    for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
 448        if (kvm_feature_msrs->indices[i] == index) {
 449            break;
 450        }
 451    if (i == kvm_feature_msrs->nmsrs) {
 452        return 0; /* if the feature MSR is not supported, simply return 0 */
 453    }
 454
 455    msr_data.info.nmsrs = 1;
 456    msr_data.entries[0].index = index;
 457
 458    ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
 459    if (ret != 1) {
 460        error_report("KVM get MSR (index=0x%x) feature failed, %s",
 461            index, strerror(-ret));
 462        exit(1);
 463    }
 464
 465    value = msr_data.entries[0].data;
 466    switch (index) {
 467    case MSR_IA32_VMX_PROCBASED_CTLS2:
 468        if (!has_msr_vmx_procbased_ctls2) {
 469            /* KVM forgot to add these bits for some time, do this ourselves. */
 470            if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
 471                CPUID_XSAVE_XSAVES) {
 472                value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
 473            }
 474            if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
 475                CPUID_EXT_RDRAND) {
 476                value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
 477            }
 478            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 479                CPUID_7_0_EBX_INVPCID) {
 480                value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
 481            }
 482            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 483                CPUID_7_0_EBX_RDSEED) {
 484                value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
 485            }
 486            if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
 487                CPUID_EXT2_RDTSCP) {
 488                value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
 489            }
 490        }
 491        /* fall through */
 492    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 493    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 494    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 495    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 496        /*
 497         * Return true for bits that can be one, but do not have to be one.
 498         * The SDM tells us which bits could have a "must be one" setting,
 499         * so we can do the opposite transformation in make_vmx_msr_value.
 500         */
 501        must_be_one = (uint32_t)value;
 502        can_be_one = (uint32_t)(value >> 32);
 503        return can_be_one & ~must_be_one;
 504
 505    default:
 506        return value;
 507    }
 508}
 509
 510static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 511                                     int *max_banks)
 512{
 513    int r;
 514
 515    r = kvm_check_extension(s, KVM_CAP_MCE);
 516    if (r > 0) {
 517        *max_banks = r;
 518        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 519    }
 520    return -ENOSYS;
 521}
 522
 523static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 524{
 525    CPUState *cs = CPU(cpu);
 526    CPUX86State *env = &cpu->env;
 527    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 528                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 529    uint64_t mcg_status = MCG_STATUS_MCIP;
 530    int flags = 0;
 531
 532    if (code == BUS_MCEERR_AR) {
 533        status |= MCI_STATUS_AR | 0x134;
 534        mcg_status |= MCG_STATUS_EIPV;
 535    } else {
 536        status |= 0xc0;
 537        mcg_status |= MCG_STATUS_RIPV;
 538    }
 539
 540    flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
 541    /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
 542     * guest kernel back into env->mcg_ext_ctl.
 543     */
 544    cpu_synchronize_state(cs);
 545    if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
 546        mcg_status |= MCG_STATUS_LMCE;
 547        flags = 0;
 548    }
 549
 550    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 551                       (MCM_ADDR_PHYS << 6) | 0xc, flags);
 552}
 553
 554static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
 555{
 556    MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
 557
 558    qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
 559                                   &mff);
 560}
 561
 562static void hardware_memory_error(void *host_addr)
 563{
 564    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
 565    error_report("QEMU got Hardware memory error at addr %p", host_addr);
 566    exit(1);
 567}
 568
 569void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 570{
 571    X86CPU *cpu = X86_CPU(c);
 572    CPUX86State *env = &cpu->env;
 573    ram_addr_t ram_addr;
 574    hwaddr paddr;
 575
 576    /* If we get an action required MCE, it has been injected by KVM
 577     * while the VM was running.  An action optional MCE instead should
 578     * be coming from the main thread, which qemu_init_sigbus identifies
 579     * as the "early kill" thread.
 580     */
 581    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
 582
 583    if ((env->mcg_cap & MCG_SER_P) && addr) {
 584        ram_addr = qemu_ram_addr_from_host(addr);
 585        if (ram_addr != RAM_ADDR_INVALID &&
 586            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 587            kvm_hwpoison_page_add(ram_addr);
 588            kvm_mce_inject(cpu, paddr, code);
 589
 590            /*
 591             * Use different logging severity based on error type.
 592             * If there is additional MCE reporting on the hypervisor, QEMU VA
 593             * could be another source to identify the PA and MCE details.
 594             */
 595            if (code == BUS_MCEERR_AR) {
 596                error_report("Guest MCE Memory Error at QEMU addr %p and "
 597                    "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 598                    addr, paddr, "BUS_MCEERR_AR");
 599            } else {
 600                 warn_report("Guest MCE Memory Error at QEMU addr %p and "
 601                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 602                     addr, paddr, "BUS_MCEERR_AO");
 603            }
 604
 605            return;
 606        }
 607
 608        if (code == BUS_MCEERR_AO) {
 609            warn_report("Hardware memory error at addr %p of type %s "
 610                "for memory used by QEMU itself instead of guest system!",
 611                 addr, "BUS_MCEERR_AO");
 612        }
 613    }
 614
 615    if (code == BUS_MCEERR_AR) {
 616        hardware_memory_error(addr);
 617    }
 618
 619    /* Hope we are lucky for AO MCE, just notify a event */
 620    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
 621}
 622
 623static void kvm_reset_exception(CPUX86State *env)
 624{
 625    env->exception_nr = -1;
 626    env->exception_pending = 0;
 627    env->exception_injected = 0;
 628    env->exception_has_payload = false;
 629    env->exception_payload = 0;
 630}
 631
 632static void kvm_queue_exception(CPUX86State *env,
 633                                int32_t exception_nr,
 634                                uint8_t exception_has_payload,
 635                                uint64_t exception_payload)
 636{
 637    assert(env->exception_nr == -1);
 638    assert(!env->exception_pending);
 639    assert(!env->exception_injected);
 640    assert(!env->exception_has_payload);
 641
 642    env->exception_nr = exception_nr;
 643
 644    if (has_exception_payload) {
 645        env->exception_pending = 1;
 646
 647        env->exception_has_payload = exception_has_payload;
 648        env->exception_payload = exception_payload;
 649    } else {
 650        env->exception_injected = 1;
 651
 652        if (exception_nr == EXCP01_DB) {
 653            assert(exception_has_payload);
 654            env->dr[6] = exception_payload;
 655        } else if (exception_nr == EXCP0E_PAGE) {
 656            assert(exception_has_payload);
 657            env->cr[2] = exception_payload;
 658        } else {
 659            assert(!exception_has_payload);
 660        }
 661    }
 662}
 663
 664static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 665{
 666    CPUX86State *env = &cpu->env;
 667
 668    if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
 669        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 670        struct kvm_x86_mce mce;
 671
 672        kvm_reset_exception(env);
 673
 674        /*
 675         * There must be at least one bank in use if an MCE is pending.
 676         * Find it and use its values for the event injection.
 677         */
 678        for (bank = 0; bank < bank_num; bank++) {
 679            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 680                break;
 681            }
 682        }
 683        assert(bank < bank_num);
 684
 685        mce.bank = bank;
 686        mce.status = env->mce_banks[bank * 4 + 1];
 687        mce.mcg_status = env->mcg_status;
 688        mce.addr = env->mce_banks[bank * 4 + 2];
 689        mce.misc = env->mce_banks[bank * 4 + 3];
 690
 691        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 692    }
 693    return 0;
 694}
 695
 696static void cpu_update_state(void *opaque, bool running, RunState state)
 697{
 698    CPUX86State *env = opaque;
 699
 700    if (running) {
 701        env->tsc_valid = false;
 702    }
 703}
 704
 705unsigned long kvm_arch_vcpu_id(CPUState *cs)
 706{
 707    X86CPU *cpu = X86_CPU(cs);
 708    return cpu->apic_id;
 709}
 710
 711#ifndef KVM_CPUID_SIGNATURE_NEXT
 712#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 713#endif
 714
 715static bool hyperv_enabled(X86CPU *cpu)
 716{
 717    CPUState *cs = CPU(cpu);
 718    return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
 719        ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
 720         cpu->hyperv_features || cpu->hyperv_passthrough);
 721}
 722
 723/*
 724 * Check whether target_freq is within conservative
 725 * ntp correctable bounds (250ppm) of freq
 726 */
 727static inline bool freq_within_bounds(int freq, int target_freq)
 728{
 729        int max_freq = freq + (freq * 250 / 1000000);
 730        int min_freq = freq - (freq * 250 / 1000000);
 731
 732        if (target_freq >= min_freq && target_freq <= max_freq) {
 733                return true;
 734        }
 735
 736        return false;
 737}
 738
 739static int kvm_arch_set_tsc_khz(CPUState *cs)
 740{
 741    X86CPU *cpu = X86_CPU(cs);
 742    CPUX86State *env = &cpu->env;
 743    int r, cur_freq;
 744    bool set_ioctl = false;
 745
 746    if (!env->tsc_khz) {
 747        return 0;
 748    }
 749
 750    cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 751               kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
 752
 753    /*
 754     * If TSC scaling is supported, attempt to set TSC frequency.
 755     */
 756    if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
 757        set_ioctl = true;
 758    }
 759
 760    /*
 761     * If desired TSC frequency is within bounds of NTP correction,
 762     * attempt to set TSC frequency.
 763     */
 764    if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
 765        set_ioctl = true;
 766    }
 767
 768    r = set_ioctl ?
 769        kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
 770        -ENOTSUP;
 771
 772    if (r < 0) {
 773        /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
 774         * TSC frequency doesn't match the one we want.
 775         */
 776        cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 777                   kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 778                   -ENOTSUP;
 779        if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
 780            warn_report("TSC frequency mismatch between "
 781                        "VM (%" PRId64 " kHz) and host (%d kHz), "
 782                        "and TSC scaling unavailable",
 783                        env->tsc_khz, cur_freq);
 784            return r;
 785        }
 786    }
 787
 788    return 0;
 789}
 790
 791static bool tsc_is_stable_and_known(CPUX86State *env)
 792{
 793    if (!env->tsc_khz) {
 794        return false;
 795    }
 796    return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
 797        || env->user_tsc_khz;
 798}
 799
 800static struct {
 801    const char *desc;
 802    struct {
 803        uint32_t fw;
 804        uint32_t bits;
 805    } flags[2];
 806    uint64_t dependencies;
 807} kvm_hyperv_properties[] = {
 808    [HYPERV_FEAT_RELAXED] = {
 809        .desc = "relaxed timing (hv-relaxed)",
 810        .flags = {
 811            {.fw = FEAT_HYPERV_EAX,
 812             .bits = HV_HYPERCALL_AVAILABLE},
 813            {.fw = FEAT_HV_RECOMM_EAX,
 814             .bits = HV_RELAXED_TIMING_RECOMMENDED}
 815        }
 816    },
 817    [HYPERV_FEAT_VAPIC] = {
 818        .desc = "virtual APIC (hv-vapic)",
 819        .flags = {
 820            {.fw = FEAT_HYPERV_EAX,
 821             .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
 822            {.fw = FEAT_HV_RECOMM_EAX,
 823             .bits = HV_APIC_ACCESS_RECOMMENDED}
 824        }
 825    },
 826    [HYPERV_FEAT_TIME] = {
 827        .desc = "clocksources (hv-time)",
 828        .flags = {
 829            {.fw = FEAT_HYPERV_EAX,
 830             .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
 831             HV_REFERENCE_TSC_AVAILABLE}
 832        }
 833    },
 834    [HYPERV_FEAT_CRASH] = {
 835        .desc = "crash MSRs (hv-crash)",
 836        .flags = {
 837            {.fw = FEAT_HYPERV_EDX,
 838             .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
 839        }
 840    },
 841    [HYPERV_FEAT_RESET] = {
 842        .desc = "reset MSR (hv-reset)",
 843        .flags = {
 844            {.fw = FEAT_HYPERV_EAX,
 845             .bits = HV_RESET_AVAILABLE}
 846        }
 847    },
 848    [HYPERV_FEAT_VPINDEX] = {
 849        .desc = "VP_INDEX MSR (hv-vpindex)",
 850        .flags = {
 851            {.fw = FEAT_HYPERV_EAX,
 852             .bits = HV_VP_INDEX_AVAILABLE}
 853        }
 854    },
 855    [HYPERV_FEAT_RUNTIME] = {
 856        .desc = "VP_RUNTIME MSR (hv-runtime)",
 857        .flags = {
 858            {.fw = FEAT_HYPERV_EAX,
 859             .bits = HV_VP_RUNTIME_AVAILABLE}
 860        }
 861    },
 862    [HYPERV_FEAT_SYNIC] = {
 863        .desc = "synthetic interrupt controller (hv-synic)",
 864        .flags = {
 865            {.fw = FEAT_HYPERV_EAX,
 866             .bits = HV_SYNIC_AVAILABLE}
 867        }
 868    },
 869    [HYPERV_FEAT_STIMER] = {
 870        .desc = "synthetic timers (hv-stimer)",
 871        .flags = {
 872            {.fw = FEAT_HYPERV_EAX,
 873             .bits = HV_SYNTIMERS_AVAILABLE}
 874        },
 875        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
 876    },
 877    [HYPERV_FEAT_FREQUENCIES] = {
 878        .desc = "frequency MSRs (hv-frequencies)",
 879        .flags = {
 880            {.fw = FEAT_HYPERV_EAX,
 881             .bits = HV_ACCESS_FREQUENCY_MSRS},
 882            {.fw = FEAT_HYPERV_EDX,
 883             .bits = HV_FREQUENCY_MSRS_AVAILABLE}
 884        }
 885    },
 886    [HYPERV_FEAT_REENLIGHTENMENT] = {
 887        .desc = "reenlightenment MSRs (hv-reenlightenment)",
 888        .flags = {
 889            {.fw = FEAT_HYPERV_EAX,
 890             .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
 891        }
 892    },
 893    [HYPERV_FEAT_TLBFLUSH] = {
 894        .desc = "paravirtualized TLB flush (hv-tlbflush)",
 895        .flags = {
 896            {.fw = FEAT_HV_RECOMM_EAX,
 897             .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
 898             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 899        },
 900        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 901    },
 902    [HYPERV_FEAT_EVMCS] = {
 903        .desc = "enlightened VMCS (hv-evmcs)",
 904        .flags = {
 905            {.fw = FEAT_HV_RECOMM_EAX,
 906             .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
 907        },
 908        .dependencies = BIT(HYPERV_FEAT_VAPIC)
 909    },
 910    [HYPERV_FEAT_IPI] = {
 911        .desc = "paravirtualized IPI (hv-ipi)",
 912        .flags = {
 913            {.fw = FEAT_HV_RECOMM_EAX,
 914             .bits = HV_CLUSTER_IPI_RECOMMENDED |
 915             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 916        },
 917        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 918    },
 919    [HYPERV_FEAT_STIMER_DIRECT] = {
 920        .desc = "direct mode synthetic timers (hv-stimer-direct)",
 921        .flags = {
 922            {.fw = FEAT_HYPERV_EDX,
 923             .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
 924        },
 925        .dependencies = BIT(HYPERV_FEAT_STIMER)
 926    },
 927};
 928
 929static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
 930{
 931    struct kvm_cpuid2 *cpuid;
 932    int r, size;
 933
 934    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 935    cpuid = g_malloc0(size);
 936    cpuid->nent = max;
 937
 938    r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
 939    if (r == 0 && cpuid->nent >= max) {
 940        r = -E2BIG;
 941    }
 942    if (r < 0) {
 943        if (r == -E2BIG) {
 944            g_free(cpuid);
 945            return NULL;
 946        } else {
 947            fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
 948                    strerror(-r));
 949            exit(1);
 950        }
 951    }
 952    return cpuid;
 953}
 954
 955/*
 956 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
 957 * for all entries.
 958 */
 959static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
 960{
 961    struct kvm_cpuid2 *cpuid;
 962    int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
 963
 964    /*
 965     * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
 966     * -E2BIG, however, it doesn't report back the right size. Keep increasing
 967     * it and re-trying until we succeed.
 968     */
 969    while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
 970        max++;
 971    }
 972    return cpuid;
 973}
 974
 975/*
 976 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
 977 * leaves from KVM_CAP_HYPERV* and present MSRs data.
 978 */
 979static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
 980{
 981    X86CPU *cpu = X86_CPU(cs);
 982    struct kvm_cpuid2 *cpuid;
 983    struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
 984
 985    /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
 986    cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
 987    cpuid->nent = 2;
 988
 989    /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
 990    entry_feat = &cpuid->entries[0];
 991    entry_feat->function = HV_CPUID_FEATURES;
 992
 993    entry_recomm = &cpuid->entries[1];
 994    entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
 995    entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
 996
 997    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
 998        entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
 999        entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1000        entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1001        entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1002        entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1003    }
1004
1005    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1006        entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1007        entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1008    }
1009
1010    if (has_msr_hv_frequencies) {
1011        entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1012        entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1013    }
1014
1015    if (has_msr_hv_crash) {
1016        entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1017    }
1018
1019    if (has_msr_hv_reenlightenment) {
1020        entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1021    }
1022
1023    if (has_msr_hv_reset) {
1024        entry_feat->eax |= HV_RESET_AVAILABLE;
1025    }
1026
1027    if (has_msr_hv_vpindex) {
1028        entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1029    }
1030
1031    if (has_msr_hv_runtime) {
1032        entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1033    }
1034
1035    if (has_msr_hv_synic) {
1036        unsigned int cap = cpu->hyperv_synic_kvm_only ?
1037            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1038
1039        if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1040            entry_feat->eax |= HV_SYNIC_AVAILABLE;
1041        }
1042    }
1043
1044    if (has_msr_hv_stimer) {
1045        entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1046    }
1047
1048    if (kvm_check_extension(cs->kvm_state,
1049                            KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1050        entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1051        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1052    }
1053
1054    if (kvm_check_extension(cs->kvm_state,
1055                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1056        entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1057    }
1058
1059    if (kvm_check_extension(cs->kvm_state,
1060                            KVM_CAP_HYPERV_SEND_IPI) > 0) {
1061        entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1062        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1063    }
1064
1065    return cpuid;
1066}
1067
1068static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1069{
1070    struct kvm_cpuid_entry2 *entry;
1071    uint32_t func;
1072    int reg;
1073
1074    switch (fw) {
1075    case FEAT_HYPERV_EAX:
1076        reg = R_EAX;
1077        func = HV_CPUID_FEATURES;
1078        break;
1079    case FEAT_HYPERV_EDX:
1080        reg = R_EDX;
1081        func = HV_CPUID_FEATURES;
1082        break;
1083    case FEAT_HV_RECOMM_EAX:
1084        reg = R_EAX;
1085        func = HV_CPUID_ENLIGHTMENT_INFO;
1086        break;
1087    default:
1088        return -EINVAL;
1089    }
1090
1091    entry = cpuid_find_entry(cpuid, func, 0);
1092    if (!entry) {
1093        return -ENOENT;
1094    }
1095
1096    switch (reg) {
1097    case R_EAX:
1098        *r = entry->eax;
1099        break;
1100    case R_EDX:
1101        *r = entry->edx;
1102        break;
1103    default:
1104        return -EINVAL;
1105    }
1106
1107    return 0;
1108}
1109
1110static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1111                                  int feature)
1112{
1113    X86CPU *cpu = X86_CPU(cs);
1114    CPUX86State *env = &cpu->env;
1115    uint32_t r, fw, bits;
1116    uint64_t deps;
1117    int i, dep_feat;
1118
1119    if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1120        return 0;
1121    }
1122
1123    deps = kvm_hyperv_properties[feature].dependencies;
1124    while (deps) {
1125        dep_feat = ctz64(deps);
1126        if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1127                fprintf(stderr,
1128                        "Hyper-V %s requires Hyper-V %s\n",
1129                        kvm_hyperv_properties[feature].desc,
1130                        kvm_hyperv_properties[dep_feat].desc);
1131                return 1;
1132        }
1133        deps &= ~(1ull << dep_feat);
1134    }
1135
1136    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1137        fw = kvm_hyperv_properties[feature].flags[i].fw;
1138        bits = kvm_hyperv_properties[feature].flags[i].bits;
1139
1140        if (!fw) {
1141            continue;
1142        }
1143
1144        if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1145            if (hyperv_feat_enabled(cpu, feature)) {
1146                fprintf(stderr,
1147                        "Hyper-V %s is not supported by kernel\n",
1148                        kvm_hyperv_properties[feature].desc);
1149                return 1;
1150            } else {
1151                return 0;
1152            }
1153        }
1154
1155        env->features[fw] |= bits;
1156    }
1157
1158    if (cpu->hyperv_passthrough) {
1159        cpu->hyperv_features |= BIT(feature);
1160    }
1161
1162    return 0;
1163}
1164
1165/*
1166 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1167 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1168 * extentions are enabled.
1169 */
1170static int hyperv_handle_properties(CPUState *cs,
1171                                    struct kvm_cpuid_entry2 *cpuid_ent)
1172{
1173    X86CPU *cpu = X86_CPU(cs);
1174    CPUX86State *env = &cpu->env;
1175    struct kvm_cpuid2 *cpuid;
1176    struct kvm_cpuid_entry2 *c;
1177    uint32_t cpuid_i = 0;
1178    int r;
1179
1180    if (!hyperv_enabled(cpu))
1181        return 0;
1182
1183    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1184        cpu->hyperv_passthrough) {
1185        uint16_t evmcs_version;
1186
1187        r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1188                                (uintptr_t)&evmcs_version);
1189
1190        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1191            fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1192                    kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1193            return -ENOSYS;
1194        }
1195
1196        if (!r) {
1197            env->features[FEAT_HV_RECOMM_EAX] |=
1198                HV_ENLIGHTENED_VMCS_RECOMMENDED;
1199            env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1200        }
1201    }
1202
1203    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1204        cpuid = get_supported_hv_cpuid(cs);
1205    } else {
1206        cpuid = get_supported_hv_cpuid_legacy(cs);
1207    }
1208
1209    if (cpu->hyperv_passthrough) {
1210        memcpy(cpuid_ent, &cpuid->entries[0],
1211               cpuid->nent * sizeof(cpuid->entries[0]));
1212
1213        c = cpuid_find_entry(cpuid, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, 0);
1214        if (c) {
1215            cpu->hyperv_vendor_id[0] = c->ebx;
1216            cpu->hyperv_vendor_id[1] = c->ecx;
1217            cpu->hyperv_vendor_id[2] = c->edx;
1218        }
1219
1220        c = cpuid_find_entry(cpuid, HV_CPUID_INTERFACE, 0);
1221        if (c) {
1222            cpu->hyperv_interface_id[0] = c->eax;
1223            cpu->hyperv_interface_id[1] = c->ebx;
1224            cpu->hyperv_interface_id[2] = c->ecx;
1225            cpu->hyperv_interface_id[3] = c->edx;
1226        }
1227
1228        c = cpuid_find_entry(cpuid, HV_CPUID_VERSION, 0);
1229        if (c) {
1230            cpu->hyperv_version_id[0] = c->eax;
1231            cpu->hyperv_version_id[1] = c->ebx;
1232            cpu->hyperv_version_id[2] = c->ecx;
1233            cpu->hyperv_version_id[3] = c->edx;
1234        }
1235
1236        c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1237        if (c) {
1238            env->features[FEAT_HYPERV_EAX] = c->eax;
1239            env->features[FEAT_HYPERV_EBX] = c->ebx;
1240            env->features[FEAT_HYPERV_EDX] = c->edx;
1241        }
1242
1243        c = cpuid_find_entry(cpuid, HV_CPUID_IMPLEMENT_LIMITS, 0);
1244        if (c) {
1245            cpu->hv_max_vps = c->eax;
1246            cpu->hyperv_limits[0] = c->ebx;
1247            cpu->hyperv_limits[1] = c->ecx;
1248            cpu->hyperv_limits[2] = c->edx;
1249        }
1250
1251        c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1252        if (c) {
1253            env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1254
1255            /* hv-spinlocks may have been overriden */
1256            if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) {
1257                c->ebx = cpu->hyperv_spinlock_attempts;
1258            }
1259        }
1260        c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1261        if (c) {
1262            env->features[FEAT_HV_NESTED_EAX] = c->eax;
1263        }
1264    }
1265
1266    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1267        env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1268    } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1269        c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1270        if (c) {
1271            env->features[FEAT_HV_RECOMM_EAX] |=
1272                c->eax & HV_NO_NONARCH_CORESHARING;
1273        }
1274    }
1275
1276    /* Features */
1277    r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1278    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1279    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1280    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1281    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1282    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1283    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1284    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1285    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1286    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1287    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1288    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1289    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1290    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1291    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1292
1293    /* Additional dependencies not covered by kvm_hyperv_properties[] */
1294    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1295        !cpu->hyperv_synic_kvm_only &&
1296        !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1297        fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1298                kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1299                kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1300        r |= 1;
1301    }
1302
1303    /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1304    env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1305
1306    if (r) {
1307        r = -ENOSYS;
1308        goto free;
1309    }
1310
1311    if (cpu->hyperv_passthrough) {
1312        /* We already copied all feature words from KVM as is */
1313        r = cpuid->nent;
1314        goto free;
1315    }
1316
1317    c = &cpuid_ent[cpuid_i++];
1318    c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1319    c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1320        HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1321    c->ebx = cpu->hyperv_vendor_id[0];
1322    c->ecx = cpu->hyperv_vendor_id[1];
1323    c->edx = cpu->hyperv_vendor_id[2];
1324
1325    c = &cpuid_ent[cpuid_i++];
1326    c->function = HV_CPUID_INTERFACE;
1327    c->eax = cpu->hyperv_interface_id[0];
1328    c->ebx = cpu->hyperv_interface_id[1];
1329    c->ecx = cpu->hyperv_interface_id[2];
1330    c->edx = cpu->hyperv_interface_id[3];
1331
1332    c = &cpuid_ent[cpuid_i++];
1333    c->function = HV_CPUID_VERSION;
1334    c->eax = cpu->hyperv_version_id[0];
1335    c->ebx = cpu->hyperv_version_id[1];
1336    c->ecx = cpu->hyperv_version_id[2];
1337    c->edx = cpu->hyperv_version_id[3];
1338
1339    c = &cpuid_ent[cpuid_i++];
1340    c->function = HV_CPUID_FEATURES;
1341    c->eax = env->features[FEAT_HYPERV_EAX];
1342    c->ebx = env->features[FEAT_HYPERV_EBX];
1343    c->edx = env->features[FEAT_HYPERV_EDX];
1344
1345    c = &cpuid_ent[cpuid_i++];
1346    c->function = HV_CPUID_ENLIGHTMENT_INFO;
1347    c->eax = env->features[FEAT_HV_RECOMM_EAX];
1348    c->ebx = cpu->hyperv_spinlock_attempts;
1349
1350    c = &cpuid_ent[cpuid_i++];
1351    c->function = HV_CPUID_IMPLEMENT_LIMITS;
1352    c->eax = cpu->hv_max_vps;
1353    c->ebx = cpu->hyperv_limits[0];
1354    c->ecx = cpu->hyperv_limits[1];
1355    c->edx = cpu->hyperv_limits[2];
1356
1357    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1358        __u32 function;
1359
1360        /* Create zeroed 0x40000006..0x40000009 leaves */
1361        for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1362             function < HV_CPUID_NESTED_FEATURES; function++) {
1363            c = &cpuid_ent[cpuid_i++];
1364            c->function = function;
1365        }
1366
1367        c = &cpuid_ent[cpuid_i++];
1368        c->function = HV_CPUID_NESTED_FEATURES;
1369        c->eax = env->features[FEAT_HV_NESTED_EAX];
1370    }
1371    r = cpuid_i;
1372
1373free:
1374    g_free(cpuid);
1375
1376    return r;
1377}
1378
1379static Error *hv_passthrough_mig_blocker;
1380static Error *hv_no_nonarch_cs_mig_blocker;
1381
1382static int hyperv_init_vcpu(X86CPU *cpu)
1383{
1384    CPUState *cs = CPU(cpu);
1385    Error *local_err = NULL;
1386    int ret;
1387
1388    if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1389        error_setg(&hv_passthrough_mig_blocker,
1390                   "'hv-passthrough' CPU flag prevents migration, use explicit"
1391                   " set of hv-* flags instead");
1392        ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1393        if (local_err) {
1394            error_report_err(local_err);
1395            error_free(hv_passthrough_mig_blocker);
1396            return ret;
1397        }
1398    }
1399
1400    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1401        hv_no_nonarch_cs_mig_blocker == NULL) {
1402        error_setg(&hv_no_nonarch_cs_mig_blocker,
1403                   "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1404                   " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1405                   " make sure SMT is disabled and/or that vCPUs are properly"
1406                   " pinned)");
1407        ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1408        if (local_err) {
1409            error_report_err(local_err);
1410            error_free(hv_no_nonarch_cs_mig_blocker);
1411            return ret;
1412        }
1413    }
1414
1415    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1416        /*
1417         * the kernel doesn't support setting vp_index; assert that its value
1418         * is in sync
1419         */
1420        struct {
1421            struct kvm_msrs info;
1422            struct kvm_msr_entry entries[1];
1423        } msr_data = {
1424            .info.nmsrs = 1,
1425            .entries[0].index = HV_X64_MSR_VP_INDEX,
1426        };
1427
1428        ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1429        if (ret < 0) {
1430            return ret;
1431        }
1432        assert(ret == 1);
1433
1434        if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1435            error_report("kernel's vp_index != QEMU's vp_index");
1436            return -ENXIO;
1437        }
1438    }
1439
1440    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1441        uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1442            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1443        ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1444        if (ret < 0) {
1445            error_report("failed to turn on HyperV SynIC in KVM: %s",
1446                         strerror(-ret));
1447            return ret;
1448        }
1449
1450        if (!cpu->hyperv_synic_kvm_only) {
1451            ret = hyperv_x86_synic_add(cpu);
1452            if (ret < 0) {
1453                error_report("failed to create HyperV SynIC: %s",
1454                             strerror(-ret));
1455                return ret;
1456            }
1457        }
1458    }
1459
1460    return 0;
1461}
1462
1463static Error *invtsc_mig_blocker;
1464
1465#define KVM_MAX_CPUID_ENTRIES  100
1466
1467int kvm_arch_init_vcpu(CPUState *cs)
1468{
1469    struct {
1470        struct kvm_cpuid2 cpuid;
1471        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1472    } cpuid_data;
1473    /*
1474     * The kernel defines these structs with padding fields so there
1475     * should be no extra padding in our cpuid_data struct.
1476     */
1477    QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1478                      sizeof(struct kvm_cpuid2) +
1479                      sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1480
1481    X86CPU *cpu = X86_CPU(cs);
1482    CPUX86State *env = &cpu->env;
1483    uint32_t limit, i, j, cpuid_i;
1484    uint32_t unused;
1485    struct kvm_cpuid_entry2 *c;
1486    uint32_t signature[3];
1487    int kvm_base = KVM_CPUID_SIGNATURE;
1488    int max_nested_state_len;
1489    int r;
1490    Error *local_err = NULL;
1491
1492    memset(&cpuid_data, 0, sizeof(cpuid_data));
1493
1494    cpuid_i = 0;
1495
1496    r = kvm_arch_set_tsc_khz(cs);
1497    if (r < 0) {
1498        return r;
1499    }
1500
1501    /* vcpu's TSC frequency is either specified by user, or following
1502     * the value used by KVM if the former is not present. In the
1503     * latter case, we query it from KVM and record in env->tsc_khz,
1504     * so that vcpu's TSC frequency can be migrated later via this field.
1505     */
1506    if (!env->tsc_khz) {
1507        r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1508            kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1509            -ENOTSUP;
1510        if (r > 0) {
1511            env->tsc_khz = r;
1512        }
1513    }
1514
1515    env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1516
1517    /* Paravirtualization CPUIDs */
1518    r = hyperv_handle_properties(cs, cpuid_data.entries);
1519    if (r < 0) {
1520        return r;
1521    } else if (r > 0) {
1522        cpuid_i = r;
1523        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1524        has_msr_hv_hypercall = true;
1525    }
1526
1527    if (cpu->expose_kvm) {
1528        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1529        c = &cpuid_data.entries[cpuid_i++];
1530        c->function = KVM_CPUID_SIGNATURE | kvm_base;
1531        c->eax = KVM_CPUID_FEATURES | kvm_base;
1532        c->ebx = signature[0];
1533        c->ecx = signature[1];
1534        c->edx = signature[2];
1535
1536        c = &cpuid_data.entries[cpuid_i++];
1537        c->function = KVM_CPUID_FEATURES | kvm_base;
1538        c->eax = env->features[FEAT_KVM];
1539        c->edx = env->features[FEAT_KVM_HINTS];
1540    }
1541
1542    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1543
1544    for (i = 0; i <= limit; i++) {
1545        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1546            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1547            abort();
1548        }
1549        c = &cpuid_data.entries[cpuid_i++];
1550
1551        switch (i) {
1552        case 2: {
1553            /* Keep reading function 2 till all the input is received */
1554            int times;
1555
1556            c->function = i;
1557            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1558                       KVM_CPUID_FLAG_STATE_READ_NEXT;
1559            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1560            times = c->eax & 0xff;
1561
1562            for (j = 1; j < times; ++j) {
1563                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1564                    fprintf(stderr, "cpuid_data is full, no space for "
1565                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1566                    abort();
1567                }
1568                c = &cpuid_data.entries[cpuid_i++];
1569                c->function = i;
1570                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1571                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1572            }
1573            break;
1574        }
1575        case 0x1f:
1576            if (env->nr_dies < 2) {
1577                break;
1578            }
1579            /* fallthrough */
1580        case 4:
1581        case 0xb:
1582        case 0xd:
1583            for (j = 0; ; j++) {
1584                if (i == 0xd && j == 64) {
1585                    break;
1586                }
1587
1588                if (i == 0x1f && j == 64) {
1589                    break;
1590                }
1591
1592                c->function = i;
1593                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1594                c->index = j;
1595                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1596
1597                if (i == 4 && c->eax == 0) {
1598                    break;
1599                }
1600                if (i == 0xb && !(c->ecx & 0xff00)) {
1601                    break;
1602                }
1603                if (i == 0x1f && !(c->ecx & 0xff00)) {
1604                    break;
1605                }
1606                if (i == 0xd && c->eax == 0) {
1607                    continue;
1608                }
1609                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1610                    fprintf(stderr, "cpuid_data is full, no space for "
1611                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1612                    abort();
1613                }
1614                c = &cpuid_data.entries[cpuid_i++];
1615            }
1616            break;
1617        case 0x7:
1618        case 0x14: {
1619            uint32_t times;
1620
1621            c->function = i;
1622            c->index = 0;
1623            c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1624            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1625            times = c->eax;
1626
1627            for (j = 1; j <= times; ++j) {
1628                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1629                    fprintf(stderr, "cpuid_data is full, no space for "
1630                                "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1631                    abort();
1632                }
1633                c = &cpuid_data.entries[cpuid_i++];
1634                c->function = i;
1635                c->index = j;
1636                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1637                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1638            }
1639            break;
1640        }
1641        default:
1642            c->function = i;
1643            c->flags = 0;
1644            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1645            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1646                /*
1647                 * KVM already returns all zeroes if a CPUID entry is missing,
1648                 * so we can omit it and avoid hitting KVM's 80-entry limit.
1649                 */
1650                cpuid_i--;
1651            }
1652            break;
1653        }
1654    }
1655
1656    if (limit >= 0x0a) {
1657        uint32_t eax, edx;
1658
1659        cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1660
1661        has_architectural_pmu_version = eax & 0xff;
1662        if (has_architectural_pmu_version > 0) {
1663            num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1664
1665            /* Shouldn't be more than 32, since that's the number of bits
1666             * available in EBX to tell us _which_ counters are available.
1667             * Play it safe.
1668             */
1669            if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1670                num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1671            }
1672
1673            if (has_architectural_pmu_version > 1) {
1674                num_architectural_pmu_fixed_counters = edx & 0x1f;
1675
1676                if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1677                    num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1678                }
1679            }
1680        }
1681    }
1682
1683    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1684
1685    for (i = 0x80000000; i <= limit; i++) {
1686        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1687            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1688            abort();
1689        }
1690        c = &cpuid_data.entries[cpuid_i++];
1691
1692        switch (i) {
1693        case 0x8000001d:
1694            /* Query for all AMD cache information leaves */
1695            for (j = 0; ; j++) {
1696                c->function = i;
1697                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1698                c->index = j;
1699                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1700
1701                if (c->eax == 0) {
1702                    break;
1703                }
1704                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1705                    fprintf(stderr, "cpuid_data is full, no space for "
1706                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1707                    abort();
1708                }
1709                c = &cpuid_data.entries[cpuid_i++];
1710            }
1711            break;
1712        default:
1713            c->function = i;
1714            c->flags = 0;
1715            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1716            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1717                /*
1718                 * KVM already returns all zeroes if a CPUID entry is missing,
1719                 * so we can omit it and avoid hitting KVM's 80-entry limit.
1720                 */
1721                cpuid_i--;
1722            }
1723            break;
1724        }
1725    }
1726
1727    /* Call Centaur's CPUID instructions they are supported. */
1728    if (env->cpuid_xlevel2 > 0) {
1729        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1730
1731        for (i = 0xC0000000; i <= limit; i++) {
1732            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1733                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1734                abort();
1735            }
1736            c = &cpuid_data.entries[cpuid_i++];
1737
1738            c->function = i;
1739            c->flags = 0;
1740            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1741        }
1742    }
1743
1744    cpuid_data.cpuid.nent = cpuid_i;
1745
1746    if (((env->cpuid_version >> 8)&0xF) >= 6
1747        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1748           (CPUID_MCE | CPUID_MCA)
1749        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1750        uint64_t mcg_cap, unsupported_caps;
1751        int banks;
1752        int ret;
1753
1754        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1755        if (ret < 0) {
1756            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1757            return ret;
1758        }
1759
1760        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1761            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1762                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1763            return -ENOTSUP;
1764        }
1765
1766        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1767        if (unsupported_caps) {
1768            if (unsupported_caps & MCG_LMCE_P) {
1769                error_report("kvm: LMCE not supported");
1770                return -ENOTSUP;
1771            }
1772            warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1773                        unsupported_caps);
1774        }
1775
1776        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1777        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1778        if (ret < 0) {
1779            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1780            return ret;
1781        }
1782    }
1783
1784    cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1785
1786    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1787    if (c) {
1788        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1789                                  !!(c->ecx & CPUID_EXT_SMX);
1790    }
1791
1792    if (env->mcg_cap & MCG_LMCE_P) {
1793        has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1794    }
1795
1796    if (!env->user_tsc_khz) {
1797        if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1798            invtsc_mig_blocker == NULL) {
1799            error_setg(&invtsc_mig_blocker,
1800                       "State blocked by non-migratable CPU device"
1801                       " (invtsc flag)");
1802            r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1803            if (local_err) {
1804                error_report_err(local_err);
1805                error_free(invtsc_mig_blocker);
1806                return r;
1807            }
1808        }
1809    }
1810
1811    if (cpu->vmware_cpuid_freq
1812        /* Guests depend on 0x40000000 to detect this feature, so only expose
1813         * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1814        && cpu->expose_kvm
1815        && kvm_base == KVM_CPUID_SIGNATURE
1816        /* TSC clock must be stable and known for this feature. */
1817        && tsc_is_stable_and_known(env)) {
1818
1819        c = &cpuid_data.entries[cpuid_i++];
1820        c->function = KVM_CPUID_SIGNATURE | 0x10;
1821        c->eax = env->tsc_khz;
1822        c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
1823        c->ecx = c->edx = 0;
1824
1825        c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1826        c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1827    }
1828
1829    cpuid_data.cpuid.nent = cpuid_i;
1830
1831    cpuid_data.cpuid.padding = 0;
1832    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1833    if (r) {
1834        goto fail;
1835    }
1836
1837    if (has_xsave) {
1838        env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1839        memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1840    }
1841
1842    max_nested_state_len = kvm_max_nested_state_length();
1843    if (max_nested_state_len > 0) {
1844        assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1845
1846        if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1847            struct kvm_vmx_nested_state_hdr *vmx_hdr;
1848
1849            env->nested_state = g_malloc0(max_nested_state_len);
1850            env->nested_state->size = max_nested_state_len;
1851
1852            if (cpu_has_vmx(env)) {
1853                env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1854                vmx_hdr = &env->nested_state->hdr.vmx;
1855                vmx_hdr->vmxon_pa = -1ull;
1856                vmx_hdr->vmcs12_pa = -1ull;
1857            } else {
1858                env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1859            }
1860        }
1861    }
1862
1863    cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1864
1865    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1866        has_msr_tsc_aux = false;
1867    }
1868
1869    kvm_init_msrs(cpu);
1870
1871    r = hyperv_init_vcpu(cpu);
1872    if (r) {
1873        goto fail;
1874    }
1875
1876    return 0;
1877
1878 fail:
1879    migrate_del_blocker(invtsc_mig_blocker);
1880
1881    return r;
1882}
1883
1884int kvm_arch_destroy_vcpu(CPUState *cs)
1885{
1886    X86CPU *cpu = X86_CPU(cs);
1887    CPUX86State *env = &cpu->env;
1888
1889    if (cpu->kvm_msr_buf) {
1890        g_free(cpu->kvm_msr_buf);
1891        cpu->kvm_msr_buf = NULL;
1892    }
1893
1894    if (env->nested_state) {
1895        g_free(env->nested_state);
1896        env->nested_state = NULL;
1897    }
1898
1899    qemu_del_vm_change_state_handler(cpu->vmsentry);
1900
1901    return 0;
1902}
1903
1904void kvm_arch_reset_vcpu(X86CPU *cpu)
1905{
1906    CPUX86State *env = &cpu->env;
1907
1908    env->xcr0 = 1;
1909    if (kvm_irqchip_in_kernel()) {
1910        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1911                                          KVM_MP_STATE_UNINITIALIZED;
1912    } else {
1913        env->mp_state = KVM_MP_STATE_RUNNABLE;
1914    }
1915
1916    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1917        int i;
1918        for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1919            env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1920        }
1921
1922        hyperv_x86_synic_reset(cpu);
1923    }
1924    /* enabled by default */
1925    env->poll_control_msr = 1;
1926
1927    sev_es_set_reset_vector(CPU(cpu));
1928}
1929
1930void kvm_arch_do_init_vcpu(X86CPU *cpu)
1931{
1932    CPUX86State *env = &cpu->env;
1933
1934    /* APs get directly into wait-for-SIPI state.  */
1935    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1936        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1937    }
1938}
1939
1940static int kvm_get_supported_feature_msrs(KVMState *s)
1941{
1942    int ret = 0;
1943
1944    if (kvm_feature_msrs != NULL) {
1945        return 0;
1946    }
1947
1948    if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1949        return 0;
1950    }
1951
1952    struct kvm_msr_list msr_list;
1953
1954    msr_list.nmsrs = 0;
1955    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1956    if (ret < 0 && ret != -E2BIG) {
1957        error_report("Fetch KVM feature MSR list failed: %s",
1958            strerror(-ret));
1959        return ret;
1960    }
1961
1962    assert(msr_list.nmsrs > 0);
1963    kvm_feature_msrs = (struct kvm_msr_list *) \
1964        g_malloc0(sizeof(msr_list) +
1965                 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1966
1967    kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1968    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1969
1970    if (ret < 0) {
1971        error_report("Fetch KVM feature MSR list failed: %s",
1972            strerror(-ret));
1973        g_free(kvm_feature_msrs);
1974        kvm_feature_msrs = NULL;
1975        return ret;
1976    }
1977
1978    return 0;
1979}
1980
1981static int kvm_get_supported_msrs(KVMState *s)
1982{
1983    int ret = 0;
1984    struct kvm_msr_list msr_list, *kvm_msr_list;
1985
1986    /*
1987     *  Obtain MSR list from KVM.  These are the MSRs that we must
1988     *  save/restore.
1989     */
1990    msr_list.nmsrs = 0;
1991    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1992    if (ret < 0 && ret != -E2BIG) {
1993        return ret;
1994    }
1995    /*
1996     * Old kernel modules had a bug and could write beyond the provided
1997     * memory. Allocate at least a safe amount of 1K.
1998     */
1999    kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2000                                          msr_list.nmsrs *
2001                                          sizeof(msr_list.indices[0])));
2002
2003    kvm_msr_list->nmsrs = msr_list.nmsrs;
2004    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2005    if (ret >= 0) {
2006        int i;
2007
2008        for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2009            switch (kvm_msr_list->indices[i]) {
2010            case MSR_STAR:
2011                has_msr_star = true;
2012                break;
2013            case MSR_VM_HSAVE_PA:
2014                has_msr_hsave_pa = true;
2015                break;
2016            case MSR_TSC_AUX:
2017                has_msr_tsc_aux = true;
2018                break;
2019            case MSR_TSC_ADJUST:
2020                has_msr_tsc_adjust = true;
2021                break;
2022            case MSR_IA32_TSCDEADLINE:
2023                has_msr_tsc_deadline = true;
2024                break;
2025            case MSR_IA32_SMBASE:
2026                has_msr_smbase = true;
2027                break;
2028            case MSR_SMI_COUNT:
2029                has_msr_smi_count = true;
2030                break;
2031            case MSR_IA32_MISC_ENABLE:
2032                has_msr_misc_enable = true;
2033                break;
2034            case MSR_IA32_BNDCFGS:
2035                has_msr_bndcfgs = true;
2036                break;
2037            case MSR_IA32_XSS:
2038                has_msr_xss = true;
2039                break;
2040            case MSR_IA32_UMWAIT_CONTROL:
2041                has_msr_umwait = true;
2042                break;
2043            case HV_X64_MSR_CRASH_CTL:
2044                has_msr_hv_crash = true;
2045                break;
2046            case HV_X64_MSR_RESET:
2047                has_msr_hv_reset = true;
2048                break;
2049            case HV_X64_MSR_VP_INDEX:
2050                has_msr_hv_vpindex = true;
2051                break;
2052            case HV_X64_MSR_VP_RUNTIME:
2053                has_msr_hv_runtime = true;
2054                break;
2055            case HV_X64_MSR_SCONTROL:
2056                has_msr_hv_synic = true;
2057                break;
2058            case HV_X64_MSR_STIMER0_CONFIG:
2059                has_msr_hv_stimer = true;
2060                break;
2061            case HV_X64_MSR_TSC_FREQUENCY:
2062                has_msr_hv_frequencies = true;
2063                break;
2064            case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2065                has_msr_hv_reenlightenment = true;
2066                break;
2067            case MSR_IA32_SPEC_CTRL:
2068                has_msr_spec_ctrl = true;
2069                break;
2070            case MSR_IA32_TSX_CTRL:
2071                has_msr_tsx_ctrl = true;
2072                break;
2073            case MSR_VIRT_SSBD:
2074                has_msr_virt_ssbd = true;
2075                break;
2076            case MSR_IA32_ARCH_CAPABILITIES:
2077                has_msr_arch_capabs = true;
2078                break;
2079            case MSR_IA32_CORE_CAPABILITY:
2080                has_msr_core_capabs = true;
2081                break;
2082            case MSR_IA32_PERF_CAPABILITIES:
2083                has_msr_perf_capabs = true;
2084                break;
2085            case MSR_IA32_VMX_VMFUNC:
2086                has_msr_vmx_vmfunc = true;
2087                break;
2088            case MSR_IA32_UCODE_REV:
2089                has_msr_ucode_rev = true;
2090                break;
2091            case MSR_IA32_VMX_PROCBASED_CTLS2:
2092                has_msr_vmx_procbased_ctls2 = true;
2093                break;
2094            case MSR_IA32_PKRS:
2095                has_msr_pkrs = true;
2096                break;
2097            }
2098        }
2099    }
2100
2101    g_free(kvm_msr_list);
2102
2103    return ret;
2104}
2105
2106static Notifier smram_machine_done;
2107static KVMMemoryListener smram_listener;
2108static AddressSpace smram_address_space;
2109static MemoryRegion smram_as_root;
2110static MemoryRegion smram_as_mem;
2111
2112static void register_smram_listener(Notifier *n, void *unused)
2113{
2114    MemoryRegion *smram =
2115        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2116
2117    /* Outer container... */
2118    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2119    memory_region_set_enabled(&smram_as_root, true);
2120
2121    /* ... with two regions inside: normal system memory with low
2122     * priority, and...
2123     */
2124    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2125                             get_system_memory(), 0, ~0ull);
2126    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2127    memory_region_set_enabled(&smram_as_mem, true);
2128
2129    if (smram) {
2130        /* ... SMRAM with higher priority */
2131        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2132        memory_region_set_enabled(smram, true);
2133    }
2134
2135    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2136    kvm_memory_listener_register(kvm_state, &smram_listener,
2137                                 &smram_address_space, 1);
2138}
2139
2140int kvm_arch_init(MachineState *ms, KVMState *s)
2141{
2142    uint64_t identity_base = 0xfffbc000;
2143    uint64_t shadow_mem;
2144    int ret;
2145    struct utsname utsname;
2146    Error *local_err = NULL;
2147
2148    /*
2149     * Initialize SEV context, if required
2150     *
2151     * If no memory encryption is requested (ms->cgs == NULL) this is
2152     * a no-op.
2153     *
2154     * It's also a no-op if a non-SEV confidential guest support
2155     * mechanism is selected.  SEV is the only mechanism available to
2156     * select on x86 at present, so this doesn't arise, but if new
2157     * mechanisms are supported in future (e.g. TDX), they'll need
2158     * their own initialization either here or elsewhere.
2159     */
2160    ret = sev_kvm_init(ms->cgs, &local_err);
2161    if (ret < 0) {
2162        error_report_err(local_err);
2163        return ret;
2164    }
2165
2166    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2167        error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2168        return -ENOTSUP;
2169    }
2170
2171    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2172    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2173    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2174
2175    hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2176
2177    has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2178    if (has_exception_payload) {
2179        ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2180        if (ret < 0) {
2181            error_report("kvm: Failed to enable exception payload cap: %s",
2182                         strerror(-ret));
2183            return ret;
2184        }
2185    }
2186
2187    ret = kvm_get_supported_msrs(s);
2188    if (ret < 0) {
2189        return ret;
2190    }
2191
2192    kvm_get_supported_feature_msrs(s);
2193
2194    uname(&utsname);
2195    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2196
2197    /*
2198     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2199     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2200     * Since these must be part of guest physical memory, we need to allocate
2201     * them, both by setting their start addresses in the kernel and by
2202     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2203     *
2204     * Older KVM versions may not support setting the identity map base. In
2205     * that case we need to stick with the default, i.e. a 256K maximum BIOS
2206     * size.
2207     */
2208    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2209        /* Allows up to 16M BIOSes. */
2210        identity_base = 0xfeffc000;
2211
2212        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2213        if (ret < 0) {
2214            return ret;
2215        }
2216    }
2217
2218    /* Set TSS base one page after EPT identity map. */
2219    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2220    if (ret < 0) {
2221        return ret;
2222    }
2223
2224    /* Tell fw_cfg to notify the BIOS to reserve the range. */
2225    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2226    if (ret < 0) {
2227        fprintf(stderr, "e820_add_entry() table is full\n");
2228        return ret;
2229    }
2230
2231    shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2232    if (shadow_mem != -1) {
2233        shadow_mem /= 4096;
2234        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2235        if (ret < 0) {
2236            return ret;
2237        }
2238    }
2239
2240    if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2241        object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2242        x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2243        smram_machine_done.notify = register_smram_listener;
2244        qemu_add_machine_init_done_notifier(&smram_machine_done);
2245    }
2246
2247    if (enable_cpu_pm) {
2248        int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2249        int ret;
2250
2251/* Work around for kernel header with a typo. TODO: fix header and drop. */
2252#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2253#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2254#endif
2255        if (disable_exits) {
2256            disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2257                              KVM_X86_DISABLE_EXITS_HLT |
2258                              KVM_X86_DISABLE_EXITS_PAUSE |
2259                              KVM_X86_DISABLE_EXITS_CSTATE);
2260        }
2261
2262        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2263                                disable_exits);
2264        if (ret < 0) {
2265            error_report("kvm: guest stopping CPU not supported: %s",
2266                         strerror(-ret));
2267        }
2268    }
2269
2270    return 0;
2271}
2272
2273static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2274{
2275    lhs->selector = rhs->selector;
2276    lhs->base = rhs->base;
2277    lhs->limit = rhs->limit;
2278    lhs->type = 3;
2279    lhs->present = 1;
2280    lhs->dpl = 3;
2281    lhs->db = 0;
2282    lhs->s = 1;
2283    lhs->l = 0;
2284    lhs->g = 0;
2285    lhs->avl = 0;
2286    lhs->unusable = 0;
2287}
2288
2289static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2290{
2291    unsigned flags = rhs->flags;
2292    lhs->selector = rhs->selector;
2293    lhs->base = rhs->base;
2294    lhs->limit = rhs->limit;
2295    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2296    lhs->present = (flags & DESC_P_MASK) != 0;
2297    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2298    lhs->db = (flags >> DESC_B_SHIFT) & 1;
2299    lhs->s = (flags & DESC_S_MASK) != 0;
2300    lhs->l = (flags >> DESC_L_SHIFT) & 1;
2301    lhs->g = (flags & DESC_G_MASK) != 0;
2302    lhs->avl = (flags & DESC_AVL_MASK) != 0;
2303    lhs->unusable = !lhs->present;
2304    lhs->padding = 0;
2305}
2306
2307static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2308{
2309    lhs->selector = rhs->selector;
2310    lhs->base = rhs->base;
2311    lhs->limit = rhs->limit;
2312    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2313                 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2314                 (rhs->dpl << DESC_DPL_SHIFT) |
2315                 (rhs->db << DESC_B_SHIFT) |
2316                 (rhs->s * DESC_S_MASK) |
2317                 (rhs->l << DESC_L_SHIFT) |
2318                 (rhs->g * DESC_G_MASK) |
2319                 (rhs->avl * DESC_AVL_MASK);
2320}
2321
2322static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2323{
2324    if (set) {
2325        *kvm_reg = *qemu_reg;
2326    } else {
2327        *qemu_reg = *kvm_reg;
2328    }
2329}
2330
2331static int kvm_getput_regs(X86CPU *cpu, int set)
2332{
2333    CPUX86State *env = &cpu->env;
2334    struct kvm_regs regs;
2335    int ret = 0;
2336
2337    if (!set) {
2338        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2339        if (ret < 0) {
2340            return ret;
2341        }
2342    }
2343
2344    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2345    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2346    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2347    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2348    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2349    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2350    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2351    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2352#ifdef TARGET_X86_64
2353    kvm_getput_reg(&regs.r8, &env->regs[8], set);
2354    kvm_getput_reg(&regs.r9, &env->regs[9], set);
2355    kvm_getput_reg(&regs.r10, &env->regs[10], set);
2356    kvm_getput_reg(&regs.r11, &env->regs[11], set);
2357    kvm_getput_reg(&regs.r12, &env->regs[12], set);
2358    kvm_getput_reg(&regs.r13, &env->regs[13], set);
2359    kvm_getput_reg(&regs.r14, &env->regs[14], set);
2360    kvm_getput_reg(&regs.r15, &env->regs[15], set);
2361#endif
2362
2363    kvm_getput_reg(&regs.rflags, &env->eflags, set);
2364    kvm_getput_reg(&regs.rip, &env->eip, set);
2365
2366    if (set) {
2367        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2368    }
2369
2370    return ret;
2371}
2372
2373static int kvm_put_fpu(X86CPU *cpu)
2374{
2375    CPUX86State *env = &cpu->env;
2376    struct kvm_fpu fpu;
2377    int i;
2378
2379    memset(&fpu, 0, sizeof fpu);
2380    fpu.fsw = env->fpus & ~(7 << 11);
2381    fpu.fsw |= (env->fpstt & 7) << 11;
2382    fpu.fcw = env->fpuc;
2383    fpu.last_opcode = env->fpop;
2384    fpu.last_ip = env->fpip;
2385    fpu.last_dp = env->fpdp;
2386    for (i = 0; i < 8; ++i) {
2387        fpu.ftwx |= (!env->fptags[i]) << i;
2388    }
2389    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2390    for (i = 0; i < CPU_NB_REGS; i++) {
2391        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2392        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2393    }
2394    fpu.mxcsr = env->mxcsr;
2395
2396    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2397}
2398
2399#define XSAVE_FCW_FSW     0
2400#define XSAVE_FTW_FOP     1
2401#define XSAVE_CWD_RIP     2
2402#define XSAVE_CWD_RDP     4
2403#define XSAVE_MXCSR       6
2404#define XSAVE_ST_SPACE    8
2405#define XSAVE_XMM_SPACE   40
2406#define XSAVE_XSTATE_BV   128
2407#define XSAVE_YMMH_SPACE  144
2408#define XSAVE_BNDREGS     240
2409#define XSAVE_BNDCSR      256
2410#define XSAVE_OPMASK      272
2411#define XSAVE_ZMM_Hi256   288
2412#define XSAVE_Hi16_ZMM    416
2413#define XSAVE_PKRU        672
2414
2415#define XSAVE_BYTE_OFFSET(word_offset) \
2416    ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2417
2418#define ASSERT_OFFSET(word_offset, field) \
2419    QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2420                      offsetof(X86XSaveArea, field))
2421
2422ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2423ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2424ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2425ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2426ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2427ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2428ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2429ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2430ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2431ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2432ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2433ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2434ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2435ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2436ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2437
2438static int kvm_put_xsave(X86CPU *cpu)
2439{
2440    CPUX86State *env = &cpu->env;
2441    X86XSaveArea *xsave = env->xsave_buf;
2442
2443    if (!has_xsave) {
2444        return kvm_put_fpu(cpu);
2445    }
2446    x86_cpu_xsave_all_areas(cpu, xsave);
2447
2448    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2449}
2450
2451static int kvm_put_xcrs(X86CPU *cpu)
2452{
2453    CPUX86State *env = &cpu->env;
2454    struct kvm_xcrs xcrs = {};
2455
2456    if (!has_xcrs) {
2457        return 0;
2458    }
2459
2460    xcrs.nr_xcrs = 1;
2461    xcrs.flags = 0;
2462    xcrs.xcrs[0].xcr = 0;
2463    xcrs.xcrs[0].value = env->xcr0;
2464    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2465}
2466
2467static int kvm_put_sregs(X86CPU *cpu)
2468{
2469    CPUX86State *env = &cpu->env;
2470    struct kvm_sregs sregs;
2471
2472    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2473    if (env->interrupt_injected >= 0) {
2474        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2475                (uint64_t)1 << (env->interrupt_injected % 64);
2476    }
2477
2478    if ((env->eflags & VM_MASK)) {
2479        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2480        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2481        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2482        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2483        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2484        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2485    } else {
2486        set_seg(&sregs.cs, &env->segs[R_CS]);
2487        set_seg(&sregs.ds, &env->segs[R_DS]);
2488        set_seg(&sregs.es, &env->segs[R_ES]);
2489        set_seg(&sregs.fs, &env->segs[R_FS]);
2490        set_seg(&sregs.gs, &env->segs[R_GS]);
2491        set_seg(&sregs.ss, &env->segs[R_SS]);
2492    }
2493
2494    set_seg(&sregs.tr, &env->tr);
2495    set_seg(&sregs.ldt, &env->ldt);
2496
2497    sregs.idt.limit = env->idt.limit;
2498    sregs.idt.base = env->idt.base;
2499    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2500    sregs.gdt.limit = env->gdt.limit;
2501    sregs.gdt.base = env->gdt.base;
2502    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2503
2504    sregs.cr0 = env->cr[0];
2505    sregs.cr2 = env->cr[2];
2506    sregs.cr3 = env->cr[3];
2507    sregs.cr4 = env->cr[4];
2508
2509    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2510    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2511
2512    sregs.efer = env->efer;
2513
2514    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2515}
2516
2517static void kvm_msr_buf_reset(X86CPU *cpu)
2518{
2519    memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2520}
2521
2522static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2523{
2524    struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2525    void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2526    struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2527
2528    assert((void *)(entry + 1) <= limit);
2529
2530    entry->index = index;
2531    entry->reserved = 0;
2532    entry->data = value;
2533    msrs->nmsrs++;
2534}
2535
2536static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2537{
2538    kvm_msr_buf_reset(cpu);
2539    kvm_msr_entry_add(cpu, index, value);
2540
2541    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2542}
2543
2544void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2545{
2546    int ret;
2547
2548    ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2549    assert(ret == 1);
2550}
2551
2552static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2553{
2554    CPUX86State *env = &cpu->env;
2555    int ret;
2556
2557    if (!has_msr_tsc_deadline) {
2558        return 0;
2559    }
2560
2561    ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2562    if (ret < 0) {
2563        return ret;
2564    }
2565
2566    assert(ret == 1);
2567    return 0;
2568}
2569
2570/*
2571 * Provide a separate write service for the feature control MSR in order to
2572 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2573 * before writing any other state because forcibly leaving nested mode
2574 * invalidates the VCPU state.
2575 */
2576static int kvm_put_msr_feature_control(X86CPU *cpu)
2577{
2578    int ret;
2579
2580    if (!has_msr_feature_control) {
2581        return 0;
2582    }
2583
2584    ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2585                          cpu->env.msr_ia32_feature_control);
2586    if (ret < 0) {
2587        return ret;
2588    }
2589
2590    assert(ret == 1);
2591    return 0;
2592}
2593
2594static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2595{
2596    uint32_t default1, can_be_one, can_be_zero;
2597    uint32_t must_be_one;
2598
2599    switch (index) {
2600    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2601        default1 = 0x00000016;
2602        break;
2603    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2604        default1 = 0x0401e172;
2605        break;
2606    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2607        default1 = 0x000011ff;
2608        break;
2609    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2610        default1 = 0x00036dff;
2611        break;
2612    case MSR_IA32_VMX_PROCBASED_CTLS2:
2613        default1 = 0;
2614        break;
2615    default:
2616        abort();
2617    }
2618
2619    /* If a feature bit is set, the control can be either set or clear.
2620     * Otherwise the value is limited to either 0 or 1 by default1.
2621     */
2622    can_be_one = features | default1;
2623    can_be_zero = features | ~default1;
2624    must_be_one = ~can_be_zero;
2625
2626    /*
2627     * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2628     * Bit 32:63 -> 1 if the control bit can be one.
2629     */
2630    return must_be_one | (((uint64_t)can_be_one) << 32);
2631}
2632
2633#define VMCS12_MAX_FIELD_INDEX (0x17)
2634
2635static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2636{
2637    uint64_t kvm_vmx_basic =
2638        kvm_arch_get_supported_msr_feature(kvm_state,
2639                                           MSR_IA32_VMX_BASIC);
2640
2641    if (!kvm_vmx_basic) {
2642        /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2643         * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2644         */
2645        return;
2646    }
2647
2648    uint64_t kvm_vmx_misc =
2649        kvm_arch_get_supported_msr_feature(kvm_state,
2650                                           MSR_IA32_VMX_MISC);
2651    uint64_t kvm_vmx_ept_vpid =
2652        kvm_arch_get_supported_msr_feature(kvm_state,
2653                                           MSR_IA32_VMX_EPT_VPID_CAP);
2654
2655    /*
2656     * If the guest is 64-bit, a value of 1 is allowed for the host address
2657     * space size vmexit control.
2658     */
2659    uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2660        ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2661
2662    /*
2663     * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
2664     * not change them for backwards compatibility.
2665     */
2666    uint64_t fixed_vmx_basic = kvm_vmx_basic &
2667        (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2668         MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2669         MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2670
2671    /*
2672     * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
2673     * change in the future but are always zero for now, clear them to be
2674     * future proof.  Bits 32-63 in theory could change, though KVM does
2675     * not support dual-monitor treatment and probably never will; mask
2676     * them out as well.
2677     */
2678    uint64_t fixed_vmx_misc = kvm_vmx_misc &
2679        (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2680         MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2681
2682    /*
2683     * EPT memory types should not change either, so we do not bother
2684     * adding features for them.
2685     */
2686    uint64_t fixed_vmx_ept_mask =
2687            (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2688             MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2689    uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2690
2691    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2692                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2693                                         f[FEAT_VMX_PROCBASED_CTLS]));
2694    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2695                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2696                                         f[FEAT_VMX_PINBASED_CTLS]));
2697    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2698                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2699                                         f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2700    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2701                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2702                                         f[FEAT_VMX_ENTRY_CTLS]));
2703    kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2704                      make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2705                                         f[FEAT_VMX_SECONDARY_CTLS]));
2706    kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2707                      f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2708    kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2709                      f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2710    kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2711                      f[FEAT_VMX_MISC] | fixed_vmx_misc);
2712    if (has_msr_vmx_vmfunc) {
2713        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2714    }
2715
2716    /*
2717     * Just to be safe, write these with constant values.  The CRn_FIXED1
2718     * MSRs are generated by KVM based on the vCPU's CPUID.
2719     */
2720    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2721                      CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2722    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2723                      CR4_VMXE_MASK);
2724    kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2725                      VMCS12_MAX_FIELD_INDEX << 1);
2726}
2727
2728static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2729{
2730    uint64_t kvm_perf_cap =
2731        kvm_arch_get_supported_msr_feature(kvm_state,
2732                                           MSR_IA32_PERF_CAPABILITIES);
2733
2734    if (kvm_perf_cap) {
2735        kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2736                        kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2737    }
2738}
2739
2740static int kvm_buf_set_msrs(X86CPU *cpu)
2741{
2742    int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2743    if (ret < 0) {
2744        return ret;
2745    }
2746
2747    if (ret < cpu->kvm_msr_buf->nmsrs) {
2748        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2749        error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2750                     (uint32_t)e->index, (uint64_t)e->data);
2751    }
2752
2753    assert(ret == cpu->kvm_msr_buf->nmsrs);
2754    return 0;
2755}
2756
2757static void kvm_init_msrs(X86CPU *cpu)
2758{
2759    CPUX86State *env = &cpu->env;
2760
2761    kvm_msr_buf_reset(cpu);
2762    if (has_msr_arch_capabs) {
2763        kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2764                          env->features[FEAT_ARCH_CAPABILITIES]);
2765    }
2766
2767    if (has_msr_core_capabs) {
2768        kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2769                          env->features[FEAT_CORE_CAPABILITY]);
2770    }
2771
2772    if (has_msr_perf_capabs && cpu->enable_pmu) {
2773        kvm_msr_entry_add_perf(cpu, env->features);
2774    }
2775
2776    if (has_msr_ucode_rev) {
2777        kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2778    }
2779
2780    /*
2781     * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2782     * all kernels with MSR features should have them.
2783     */
2784    if (kvm_feature_msrs && cpu_has_vmx(env)) {
2785        kvm_msr_entry_add_vmx(cpu, env->features);
2786    }
2787
2788    assert(kvm_buf_set_msrs(cpu) == 0);
2789}
2790
2791static int kvm_put_msrs(X86CPU *cpu, int level)
2792{
2793    CPUX86State *env = &cpu->env;
2794    int i;
2795
2796    kvm_msr_buf_reset(cpu);
2797
2798    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2799    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2800    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2801    kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2802    if (has_msr_star) {
2803        kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2804    }
2805    if (has_msr_hsave_pa) {
2806        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2807    }
2808    if (has_msr_tsc_aux) {
2809        kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2810    }
2811    if (has_msr_tsc_adjust) {
2812        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2813    }
2814    if (has_msr_misc_enable) {
2815        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2816                          env->msr_ia32_misc_enable);
2817    }
2818    if (has_msr_smbase) {
2819        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2820    }
2821    if (has_msr_smi_count) {
2822        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2823    }
2824    if (has_msr_pkrs) {
2825        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
2826    }
2827    if (has_msr_bndcfgs) {
2828        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2829    }
2830    if (has_msr_xss) {
2831        kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2832    }
2833    if (has_msr_umwait) {
2834        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2835    }
2836    if (has_msr_spec_ctrl) {
2837        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2838    }
2839    if (has_msr_tsx_ctrl) {
2840        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2841    }
2842    if (has_msr_virt_ssbd) {
2843        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2844    }
2845
2846#ifdef TARGET_X86_64
2847    if (lm_capable_kernel) {
2848        kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2849        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2850        kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2851        kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2852    }
2853#endif
2854
2855    /*
2856     * The following MSRs have side effects on the guest or are too heavy
2857     * for normal writeback. Limit them to reset or full state updates.
2858     */
2859    if (level >= KVM_PUT_RESET_STATE) {
2860        kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2861        kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2862        kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2863        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
2864            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
2865        }
2866        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2867            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2868        }
2869        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2870            kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2871        }
2872        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2873            kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2874        }
2875
2876        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2877            kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2878        }
2879
2880        if (has_architectural_pmu_version > 0) {
2881            if (has_architectural_pmu_version > 1) {
2882                /* Stop the counter.  */
2883                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2884                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2885            }
2886
2887            /* Set the counter values.  */
2888            for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2889                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2890                                  env->msr_fixed_counters[i]);
2891            }
2892            for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2893                kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2894                                  env->msr_gp_counters[i]);
2895                kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2896                                  env->msr_gp_evtsel[i]);
2897            }
2898            if (has_architectural_pmu_version > 1) {
2899                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2900                                  env->msr_global_status);
2901                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2902                                  env->msr_global_ovf_ctrl);
2903
2904                /* Now start the PMU.  */
2905                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2906                                  env->msr_fixed_ctr_ctrl);
2907                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2908                                  env->msr_global_ctrl);
2909            }
2910        }
2911        /*
2912         * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2913         * only sync them to KVM on the first cpu
2914         */
2915        if (current_cpu == first_cpu) {
2916            if (has_msr_hv_hypercall) {
2917                kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2918                                  env->msr_hv_guest_os_id);
2919                kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2920                                  env->msr_hv_hypercall);
2921            }
2922            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2923                kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2924                                  env->msr_hv_tsc);
2925            }
2926            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2927                kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2928                                  env->msr_hv_reenlightenment_control);
2929                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2930                                  env->msr_hv_tsc_emulation_control);
2931                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2932                                  env->msr_hv_tsc_emulation_status);
2933            }
2934        }
2935        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2936            kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2937                              env->msr_hv_vapic);
2938        }
2939        if (has_msr_hv_crash) {
2940            int j;
2941
2942            for (j = 0; j < HV_CRASH_PARAMS; j++)
2943                kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2944                                  env->msr_hv_crash_params[j]);
2945
2946            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2947        }
2948        if (has_msr_hv_runtime) {
2949            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2950        }
2951        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2952            && hv_vpindex_settable) {
2953            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2954                              hyperv_vp_index(CPU(cpu)));
2955        }
2956        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2957            int j;
2958
2959            kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2960
2961            kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2962                              env->msr_hv_synic_control);
2963            kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2964                              env->msr_hv_synic_evt_page);
2965            kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2966                              env->msr_hv_synic_msg_page);
2967
2968            for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2969                kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2970                                  env->msr_hv_synic_sint[j]);
2971            }
2972        }
2973        if (has_msr_hv_stimer) {
2974            int j;
2975
2976            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2977                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2978                                env->msr_hv_stimer_config[j]);
2979            }
2980
2981            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2982                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2983                                env->msr_hv_stimer_count[j]);
2984            }
2985        }
2986        if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2987            uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2988
2989            kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2990            kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2991            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2992            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2993            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2994            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2995            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2996            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2997            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2998            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2999            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3000            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3001            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3002                /* The CPU GPs if we write to a bit above the physical limit of
3003                 * the host CPU (and KVM emulates that)
3004                 */
3005                uint64_t mask = env->mtrr_var[i].mask;
3006                mask &= phys_mask;
3007
3008                kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3009                                  env->mtrr_var[i].base);
3010                kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3011            }
3012        }
3013        if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3014            int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3015                                                    0x14, 1, R_EAX) & 0x7;
3016
3017            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3018                            env->msr_rtit_ctrl);
3019            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3020                            env->msr_rtit_status);
3021            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3022                            env->msr_rtit_output_base);
3023            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3024                            env->msr_rtit_output_mask);
3025            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3026                            env->msr_rtit_cr3_match);
3027            for (i = 0; i < addr_num; i++) {
3028                kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3029                            env->msr_rtit_addrs[i]);
3030            }
3031        }
3032
3033        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3034         *       kvm_put_msr_feature_control. */
3035    }
3036
3037    if (env->mcg_cap) {
3038        int i;
3039
3040        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3041        kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3042        if (has_msr_mcg_ext_ctl) {
3043            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3044        }
3045        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3046            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3047        }
3048    }
3049
3050    return kvm_buf_set_msrs(cpu);
3051}
3052
3053
3054static int kvm_get_fpu(X86CPU *cpu)
3055{
3056    CPUX86State *env = &cpu->env;
3057    struct kvm_fpu fpu;
3058    int i, ret;
3059
3060    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3061    if (ret < 0) {
3062        return ret;
3063    }
3064
3065    env->fpstt = (fpu.fsw >> 11) & 7;
3066    env->fpus = fpu.fsw;
3067    env->fpuc = fpu.fcw;
3068    env->fpop = fpu.last_opcode;
3069    env->fpip = fpu.last_ip;
3070    env->fpdp = fpu.last_dp;
3071    for (i = 0; i < 8; ++i) {
3072        env->fptags[i] = !((fpu.ftwx >> i) & 1);
3073    }
3074    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3075    for (i = 0; i < CPU_NB_REGS; i++) {
3076        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3077        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3078    }
3079    env->mxcsr = fpu.mxcsr;
3080
3081    return 0;
3082}
3083
3084static int kvm_get_xsave(X86CPU *cpu)
3085{
3086    CPUX86State *env = &cpu->env;
3087    X86XSaveArea *xsave = env->xsave_buf;
3088    int ret;
3089
3090    if (!has_xsave) {
3091        return kvm_get_fpu(cpu);
3092    }
3093
3094    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3095    if (ret < 0) {
3096        return ret;
3097    }
3098    x86_cpu_xrstor_all_areas(cpu, xsave);
3099
3100    return 0;
3101}
3102
3103static int kvm_get_xcrs(X86CPU *cpu)
3104{
3105    CPUX86State *env = &cpu->env;
3106    int i, ret;
3107    struct kvm_xcrs xcrs;
3108
3109    if (!has_xcrs) {
3110        return 0;
3111    }
3112
3113    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3114    if (ret < 0) {
3115        return ret;
3116    }
3117
3118    for (i = 0; i < xcrs.nr_xcrs; i++) {
3119        /* Only support xcr0 now */
3120        if (xcrs.xcrs[i].xcr == 0) {
3121            env->xcr0 = xcrs.xcrs[i].value;
3122            break;
3123        }
3124    }
3125    return 0;
3126}
3127
3128static int kvm_get_sregs(X86CPU *cpu)
3129{
3130    CPUX86State *env = &cpu->env;
3131    struct kvm_sregs sregs;
3132    int bit, i, ret;
3133
3134    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3135    if (ret < 0) {
3136        return ret;
3137    }
3138
3139    /* There can only be one pending IRQ set in the bitmap at a time, so try
3140       to find it and save its number instead (-1 for none). */
3141    env->interrupt_injected = -1;
3142    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3143        if (sregs.interrupt_bitmap[i]) {
3144            bit = ctz64(sregs.interrupt_bitmap[i]);
3145            env->interrupt_injected = i * 64 + bit;
3146            break;
3147        }
3148    }
3149
3150    get_seg(&env->segs[R_CS], &sregs.cs);
3151    get_seg(&env->segs[R_DS], &sregs.ds);
3152    get_seg(&env->segs[R_ES], &sregs.es);
3153    get_seg(&env->segs[R_FS], &sregs.fs);
3154    get_seg(&env->segs[R_GS], &sregs.gs);
3155    get_seg(&env->segs[R_SS], &sregs.ss);
3156
3157    get_seg(&env->tr, &sregs.tr);
3158    get_seg(&env->ldt, &sregs.ldt);
3159
3160    env->idt.limit = sregs.idt.limit;
3161    env->idt.base = sregs.idt.base;
3162    env->gdt.limit = sregs.gdt.limit;
3163    env->gdt.base = sregs.gdt.base;
3164
3165    env->cr[0] = sregs.cr0;
3166    env->cr[2] = sregs.cr2;
3167    env->cr[3] = sregs.cr3;
3168    env->cr[4] = sregs.cr4;
3169
3170    env->efer = sregs.efer;
3171
3172    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3173    x86_update_hflags(env);
3174
3175    return 0;
3176}
3177
3178static int kvm_get_msrs(X86CPU *cpu)
3179{
3180    CPUX86State *env = &cpu->env;
3181    struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3182    int ret, i;
3183    uint64_t mtrr_top_bits;
3184
3185    kvm_msr_buf_reset(cpu);
3186
3187    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3188    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3189    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3190    kvm_msr_entry_add(cpu, MSR_PAT, 0);
3191    if (has_msr_star) {
3192        kvm_msr_entry_add(cpu, MSR_STAR, 0);
3193    }
3194    if (has_msr_hsave_pa) {
3195        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3196    }
3197    if (has_msr_tsc_aux) {
3198        kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3199    }
3200    if (has_msr_tsc_adjust) {
3201        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3202    }
3203    if (has_msr_tsc_deadline) {
3204        kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3205    }
3206    if (has_msr_misc_enable) {
3207        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3208    }
3209    if (has_msr_smbase) {
3210        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3211    }
3212    if (has_msr_smi_count) {
3213        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3214    }
3215    if (has_msr_feature_control) {
3216        kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3217    }
3218    if (has_msr_pkrs) {
3219        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3220    }
3221    if (has_msr_bndcfgs) {
3222        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3223    }
3224    if (has_msr_xss) {
3225        kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3226    }
3227    if (has_msr_umwait) {
3228        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3229    }
3230    if (has_msr_spec_ctrl) {
3231        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3232    }
3233    if (has_msr_tsx_ctrl) {
3234        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3235    }
3236    if (has_msr_virt_ssbd) {
3237        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3238    }
3239    if (!env->tsc_valid) {
3240        kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3241        env->tsc_valid = !runstate_is_running();
3242    }
3243
3244#ifdef TARGET_X86_64
3245    if (lm_capable_kernel) {
3246        kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3247        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3248        kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3249        kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3250    }
3251#endif
3252    kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3253    kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3254    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3255        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3256    }
3257    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3258        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3259    }
3260    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3261        kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3262    }
3263    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3264        kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3265    }
3266    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3267        kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3268    }
3269    if (has_architectural_pmu_version > 0) {
3270        if (has_architectural_pmu_version > 1) {
3271            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3272            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3273            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3274            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3275        }
3276        for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3277            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3278        }
3279        for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3280            kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3281            kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3282        }
3283    }
3284
3285    if (env->mcg_cap) {
3286        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3287        kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3288        if (has_msr_mcg_ext_ctl) {
3289            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3290        }
3291        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3292            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3293        }
3294    }
3295
3296    if (has_msr_hv_hypercall) {
3297        kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3298        kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3299    }
3300    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3301        kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3302    }
3303    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3304        kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3305    }
3306    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3307        kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3308        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3309        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3310    }
3311    if (has_msr_hv_crash) {
3312        int j;
3313
3314        for (j = 0; j < HV_CRASH_PARAMS; j++) {
3315            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3316        }
3317    }
3318    if (has_msr_hv_runtime) {
3319        kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3320    }
3321    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3322        uint32_t msr;
3323
3324        kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3325        kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3326        kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3327        for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3328            kvm_msr_entry_add(cpu, msr, 0);
3329        }
3330    }
3331    if (has_msr_hv_stimer) {
3332        uint32_t msr;
3333
3334        for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3335             msr++) {
3336            kvm_msr_entry_add(cpu, msr, 0);
3337        }
3338    }
3339    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3340        kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3341        kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3342        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3343        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3344        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3345        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3346        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3347        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3348        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3349        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3350        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3351        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3352        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3353            kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3354            kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3355        }
3356    }
3357
3358    if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3359        int addr_num =
3360            kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3361
3362        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3363        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3364        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3365        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3366        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3367        for (i = 0; i < addr_num; i++) {
3368            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3369        }
3370    }
3371
3372    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3373    if (ret < 0) {
3374        return ret;
3375    }
3376
3377    if (ret < cpu->kvm_msr_buf->nmsrs) {
3378        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3379        error_report("error: failed to get MSR 0x%" PRIx32,
3380                     (uint32_t)e->index);
3381    }
3382
3383    assert(ret == cpu->kvm_msr_buf->nmsrs);
3384    /*
3385     * MTRR masks: Each mask consists of 5 parts
3386     * a  10..0: must be zero
3387     * b  11   : valid bit
3388     * c n-1.12: actual mask bits
3389     * d  51..n: reserved must be zero
3390     * e  63.52: reserved must be zero
3391     *
3392     * 'n' is the number of physical bits supported by the CPU and is
3393     * apparently always <= 52.   We know our 'n' but don't know what
3394     * the destinations 'n' is; it might be smaller, in which case
3395     * it masks (c) on loading. It might be larger, in which case
3396     * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3397     * we're migrating to.
3398     */
3399
3400    if (cpu->fill_mtrr_mask) {
3401        QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3402        assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3403        mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3404    } else {
3405        mtrr_top_bits = 0;
3406    }
3407
3408    for (i = 0; i < ret; i++) {
3409        uint32_t index = msrs[i].index;
3410        switch (index) {
3411        case MSR_IA32_SYSENTER_CS:
3412            env->sysenter_cs = msrs[i].data;
3413            break;
3414        case MSR_IA32_SYSENTER_ESP:
3415            env->sysenter_esp = msrs[i].data;
3416            break;
3417        case MSR_IA32_SYSENTER_EIP:
3418            env->sysenter_eip = msrs[i].data;
3419            break;
3420        case MSR_PAT:
3421            env->pat = msrs[i].data;
3422            break;
3423        case MSR_STAR:
3424            env->star = msrs[i].data;
3425            break;
3426#ifdef TARGET_X86_64
3427        case MSR_CSTAR:
3428            env->cstar = msrs[i].data;
3429            break;
3430        case MSR_KERNELGSBASE:
3431            env->kernelgsbase = msrs[i].data;
3432            break;
3433        case MSR_FMASK:
3434            env->fmask = msrs[i].data;
3435            break;
3436        case MSR_LSTAR:
3437            env->lstar = msrs[i].data;
3438            break;
3439#endif
3440        case MSR_IA32_TSC:
3441            env->tsc = msrs[i].data;
3442            break;
3443        case MSR_TSC_AUX:
3444            env->tsc_aux = msrs[i].data;
3445            break;
3446        case MSR_TSC_ADJUST:
3447            env->tsc_adjust = msrs[i].data;
3448            break;
3449        case MSR_IA32_TSCDEADLINE:
3450            env->tsc_deadline = msrs[i].data;
3451            break;
3452        case MSR_VM_HSAVE_PA:
3453            env->vm_hsave = msrs[i].data;
3454            break;
3455        case MSR_KVM_SYSTEM_TIME:
3456            env->system_time_msr = msrs[i].data;
3457            break;
3458        case MSR_KVM_WALL_CLOCK:
3459            env->wall_clock_msr = msrs[i].data;
3460            break;
3461        case MSR_MCG_STATUS:
3462            env->mcg_status = msrs[i].data;
3463            break;
3464        case MSR_MCG_CTL:
3465            env->mcg_ctl = msrs[i].data;
3466            break;
3467        case MSR_MCG_EXT_CTL:
3468            env->mcg_ext_ctl = msrs[i].data;
3469            break;
3470        case MSR_IA32_MISC_ENABLE:
3471            env->msr_ia32_misc_enable = msrs[i].data;
3472            break;
3473        case MSR_IA32_SMBASE:
3474            env->smbase = msrs[i].data;
3475            break;
3476        case MSR_SMI_COUNT:
3477            env->msr_smi_count = msrs[i].data;
3478            break;
3479        case MSR_IA32_FEATURE_CONTROL:
3480            env->msr_ia32_feature_control = msrs[i].data;
3481            break;
3482        case MSR_IA32_BNDCFGS:
3483            env->msr_bndcfgs = msrs[i].data;
3484            break;
3485        case MSR_IA32_XSS:
3486            env->xss = msrs[i].data;
3487            break;
3488        case MSR_IA32_UMWAIT_CONTROL:
3489            env->umwait = msrs[i].data;
3490            break;
3491        case MSR_IA32_PKRS:
3492            env->pkrs = msrs[i].data;
3493            break;
3494        default:
3495            if (msrs[i].index >= MSR_MC0_CTL &&
3496                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3497                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3498            }
3499            break;
3500        case MSR_KVM_ASYNC_PF_EN:
3501            env->async_pf_en_msr = msrs[i].data;
3502            break;
3503        case MSR_KVM_ASYNC_PF_INT:
3504            env->async_pf_int_msr = msrs[i].data;
3505            break;
3506        case MSR_KVM_PV_EOI_EN:
3507            env->pv_eoi_en_msr = msrs[i].data;
3508            break;
3509        case MSR_KVM_STEAL_TIME:
3510            env->steal_time_msr = msrs[i].data;
3511            break;
3512        case MSR_KVM_POLL_CONTROL: {
3513            env->poll_control_msr = msrs[i].data;
3514            break;
3515        }
3516        case MSR_CORE_PERF_FIXED_CTR_CTRL:
3517            env->msr_fixed_ctr_ctrl = msrs[i].data;
3518            break;
3519        case MSR_CORE_PERF_GLOBAL_CTRL:
3520            env->msr_global_ctrl = msrs[i].data;
3521            break;
3522        case MSR_CORE_PERF_GLOBAL_STATUS:
3523            env->msr_global_status = msrs[i].data;
3524            break;
3525        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3526            env->msr_global_ovf_ctrl = msrs[i].data;
3527            break;
3528        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3529            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3530            break;
3531        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3532            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3533            break;
3534        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3535            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3536            break;
3537        case HV_X64_MSR_HYPERCALL:
3538            env->msr_hv_hypercall = msrs[i].data;
3539            break;
3540        case HV_X64_MSR_GUEST_OS_ID:
3541            env->msr_hv_guest_os_id = msrs[i].data;
3542            break;
3543        case HV_X64_MSR_APIC_ASSIST_PAGE:
3544            env->msr_hv_vapic = msrs[i].data;
3545            break;
3546        case HV_X64_MSR_REFERENCE_TSC:
3547            env->msr_hv_tsc = msrs[i].data;
3548            break;
3549        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3550            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3551            break;
3552        case HV_X64_MSR_VP_RUNTIME:
3553            env->msr_hv_runtime = msrs[i].data;
3554            break;
3555        case HV_X64_MSR_SCONTROL:
3556            env->msr_hv_synic_control = msrs[i].data;
3557            break;
3558        case HV_X64_MSR_SIEFP:
3559            env->msr_hv_synic_evt_page = msrs[i].data;
3560            break;
3561        case HV_X64_MSR_SIMP:
3562            env->msr_hv_synic_msg_page = msrs[i].data;
3563            break;
3564        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3565            env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3566            break;
3567        case HV_X64_MSR_STIMER0_CONFIG:
3568        case HV_X64_MSR_STIMER1_CONFIG:
3569        case HV_X64_MSR_STIMER2_CONFIG:
3570        case HV_X64_MSR_STIMER3_CONFIG:
3571            env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3572                                msrs[i].data;
3573            break;
3574        case HV_X64_MSR_STIMER0_COUNT:
3575        case HV_X64_MSR_STIMER1_COUNT:
3576        case HV_X64_MSR_STIMER2_COUNT:
3577        case HV_X64_MSR_STIMER3_COUNT:
3578            env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3579                                msrs[i].data;
3580            break;
3581        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3582            env->msr_hv_reenlightenment_control = msrs[i].data;
3583            break;
3584        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3585            env->msr_hv_tsc_emulation_control = msrs[i].data;
3586            break;
3587        case HV_X64_MSR_TSC_EMULATION_STATUS:
3588            env->msr_hv_tsc_emulation_status = msrs[i].data;
3589            break;
3590        case MSR_MTRRdefType:
3591            env->mtrr_deftype = msrs[i].data;
3592            break;
3593        case MSR_MTRRfix64K_00000:
3594            env->mtrr_fixed[0] = msrs[i].data;
3595            break;
3596        case MSR_MTRRfix16K_80000:
3597            env->mtrr_fixed[1] = msrs[i].data;
3598            break;
3599        case MSR_MTRRfix16K_A0000:
3600            env->mtrr_fixed[2] = msrs[i].data;
3601            break;
3602        case MSR_MTRRfix4K_C0000:
3603            env->mtrr_fixed[3] = msrs[i].data;
3604            break;
3605        case MSR_MTRRfix4K_C8000:
3606            env->mtrr_fixed[4] = msrs[i].data;
3607            break;
3608        case MSR_MTRRfix4K_D0000:
3609            env->mtrr_fixed[5] = msrs[i].data;
3610            break;
3611        case MSR_MTRRfix4K_D8000:
3612            env->mtrr_fixed[6] = msrs[i].data;
3613            break;
3614        case MSR_MTRRfix4K_E0000:
3615            env->mtrr_fixed[7] = msrs[i].data;
3616            break;
3617        case MSR_MTRRfix4K_E8000:
3618            env->mtrr_fixed[8] = msrs[i].data;
3619            break;
3620        case MSR_MTRRfix4K_F0000:
3621            env->mtrr_fixed[9] = msrs[i].data;
3622            break;
3623        case MSR_MTRRfix4K_F8000:
3624            env->mtrr_fixed[10] = msrs[i].data;
3625            break;
3626        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3627            if (index & 1) {
3628                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3629                                                               mtrr_top_bits;
3630            } else {
3631                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3632            }
3633            break;
3634        case MSR_IA32_SPEC_CTRL:
3635            env->spec_ctrl = msrs[i].data;
3636            break;
3637        case MSR_IA32_TSX_CTRL:
3638            env->tsx_ctrl = msrs[i].data;
3639            break;
3640        case MSR_VIRT_SSBD:
3641            env->virt_ssbd = msrs[i].data;
3642            break;
3643        case MSR_IA32_RTIT_CTL:
3644            env->msr_rtit_ctrl = msrs[i].data;
3645            break;
3646        case MSR_IA32_RTIT_STATUS:
3647            env->msr_rtit_status = msrs[i].data;
3648            break;
3649        case MSR_IA32_RTIT_OUTPUT_BASE:
3650            env->msr_rtit_output_base = msrs[i].data;
3651            break;
3652        case MSR_IA32_RTIT_OUTPUT_MASK:
3653            env->msr_rtit_output_mask = msrs[i].data;
3654            break;
3655        case MSR_IA32_RTIT_CR3_MATCH:
3656            env->msr_rtit_cr3_match = msrs[i].data;
3657            break;
3658        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3659            env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3660            break;
3661        }
3662    }
3663
3664    return 0;
3665}
3666
3667static int kvm_put_mp_state(X86CPU *cpu)
3668{
3669    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3670
3671    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3672}
3673
3674static int kvm_get_mp_state(X86CPU *cpu)
3675{
3676    CPUState *cs = CPU(cpu);
3677    CPUX86State *env = &cpu->env;
3678    struct kvm_mp_state mp_state;
3679    int ret;
3680
3681    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3682    if (ret < 0) {
3683        return ret;
3684    }
3685    env->mp_state = mp_state.mp_state;
3686    if (kvm_irqchip_in_kernel()) {
3687        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3688    }
3689    return 0;
3690}
3691
3692static int kvm_get_apic(X86CPU *cpu)
3693{
3694    DeviceState *apic = cpu->apic_state;
3695    struct kvm_lapic_state kapic;
3696    int ret;
3697
3698    if (apic && kvm_irqchip_in_kernel()) {
3699        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3700        if (ret < 0) {
3701            return ret;
3702        }
3703
3704        kvm_get_apic_state(apic, &kapic);
3705    }
3706    return 0;
3707}
3708
3709static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3710{
3711    CPUState *cs = CPU(cpu);
3712    CPUX86State *env = &cpu->env;
3713    struct kvm_vcpu_events events = {};
3714
3715    if (!kvm_has_vcpu_events()) {
3716        return 0;
3717    }
3718
3719    events.flags = 0;
3720
3721    if (has_exception_payload) {
3722        events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3723        events.exception.pending = env->exception_pending;
3724        events.exception_has_payload = env->exception_has_payload;
3725        events.exception_payload = env->exception_payload;
3726    }
3727    events.exception.nr = env->exception_nr;
3728    events.exception.injected = env->exception_injected;
3729    events.exception.has_error_code = env->has_error_code;
3730    events.exception.error_code = env->error_code;
3731
3732    events.interrupt.injected = (env->interrupt_injected >= 0);
3733    events.interrupt.nr = env->interrupt_injected;
3734    events.interrupt.soft = env->soft_interrupt;
3735
3736    events.nmi.injected = env->nmi_injected;
3737    events.nmi.pending = env->nmi_pending;
3738    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3739
3740    events.sipi_vector = env->sipi_vector;
3741
3742    if (has_msr_smbase) {
3743        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3744        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3745        if (kvm_irqchip_in_kernel()) {
3746            /* As soon as these are moved to the kernel, remove them
3747             * from cs->interrupt_request.
3748             */
3749            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3750            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3751            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3752        } else {
3753            /* Keep these in cs->interrupt_request.  */
3754            events.smi.pending = 0;
3755            events.smi.latched_init = 0;
3756        }
3757        /* Stop SMI delivery on old machine types to avoid a reboot
3758         * on an inward migration of an old VM.
3759         */
3760        if (!cpu->kvm_no_smi_migration) {
3761            events.flags |= KVM_VCPUEVENT_VALID_SMM;
3762        }
3763    }
3764
3765    if (level >= KVM_PUT_RESET_STATE) {
3766        events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3767        if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3768            events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3769        }
3770    }
3771
3772    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3773}
3774
3775static int kvm_get_vcpu_events(X86CPU *cpu)
3776{
3777    CPUX86State *env = &cpu->env;
3778    struct kvm_vcpu_events events;
3779    int ret;
3780
3781    if (!kvm_has_vcpu_events()) {
3782        return 0;
3783    }
3784
3785    memset(&events, 0, sizeof(events));
3786    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3787    if (ret < 0) {
3788       return ret;
3789    }
3790
3791    if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3792        env->exception_pending = events.exception.pending;
3793        env->exception_has_payload = events.exception_has_payload;
3794        env->exception_payload = events.exception_payload;
3795    } else {
3796        env->exception_pending = 0;
3797        env->exception_has_payload = false;
3798    }
3799    env->exception_injected = events.exception.injected;
3800    env->exception_nr =
3801        (env->exception_pending || env->exception_injected) ?
3802        events.exception.nr : -1;
3803    env->has_error_code = events.exception.has_error_code;
3804    env->error_code = events.exception.error_code;
3805
3806    env->interrupt_injected =
3807        events.interrupt.injected ? events.interrupt.nr : -1;
3808    env->soft_interrupt = events.interrupt.soft;
3809
3810    env->nmi_injected = events.nmi.injected;
3811    env->nmi_pending = events.nmi.pending;
3812    if (events.nmi.masked) {
3813        env->hflags2 |= HF2_NMI_MASK;
3814    } else {
3815        env->hflags2 &= ~HF2_NMI_MASK;
3816    }
3817
3818    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3819        if (events.smi.smm) {
3820            env->hflags |= HF_SMM_MASK;
3821        } else {
3822            env->hflags &= ~HF_SMM_MASK;
3823        }
3824        if (events.smi.pending) {
3825            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3826        } else {
3827            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3828        }
3829        if (events.smi.smm_inside_nmi) {
3830            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3831        } else {
3832            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3833        }
3834        if (events.smi.latched_init) {
3835            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3836        } else {
3837            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3838        }
3839    }
3840
3841    env->sipi_vector = events.sipi_vector;
3842
3843    return 0;
3844}
3845
3846static int kvm_guest_debug_workarounds(X86CPU *cpu)
3847{
3848    CPUState *cs = CPU(cpu);
3849    CPUX86State *env = &cpu->env;
3850    int ret = 0;
3851    unsigned long reinject_trap = 0;
3852
3853    if (!kvm_has_vcpu_events()) {
3854        if (env->exception_nr == EXCP01_DB) {
3855            reinject_trap = KVM_GUESTDBG_INJECT_DB;
3856        } else if (env->exception_injected == EXCP03_INT3) {
3857            reinject_trap = KVM_GUESTDBG_INJECT_BP;
3858        }
3859        kvm_reset_exception(env);
3860    }
3861
3862    /*
3863     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3864     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3865     * by updating the debug state once again if single-stepping is on.
3866     * Another reason to call kvm_update_guest_debug here is a pending debug
3867     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3868     * reinject them via SET_GUEST_DEBUG.
3869     */
3870    if (reinject_trap ||
3871        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3872        ret = kvm_update_guest_debug(cs, reinject_trap);
3873    }
3874    return ret;
3875}
3876
3877static int kvm_put_debugregs(X86CPU *cpu)
3878{
3879    CPUX86State *env = &cpu->env;
3880    struct kvm_debugregs dbgregs;
3881    int i;
3882
3883    if (!kvm_has_debugregs()) {
3884        return 0;
3885    }
3886
3887    memset(&dbgregs, 0, sizeof(dbgregs));
3888    for (i = 0; i < 4; i++) {
3889        dbgregs.db[i] = env->dr[i];
3890    }
3891    dbgregs.dr6 = env->dr[6];
3892    dbgregs.dr7 = env->dr[7];
3893    dbgregs.flags = 0;
3894
3895    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3896}
3897
3898static int kvm_get_debugregs(X86CPU *cpu)
3899{
3900    CPUX86State *env = &cpu->env;
3901    struct kvm_debugregs dbgregs;
3902    int i, ret;
3903
3904    if (!kvm_has_debugregs()) {
3905        return 0;
3906    }
3907
3908    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3909    if (ret < 0) {
3910        return ret;
3911    }
3912    for (i = 0; i < 4; i++) {
3913        env->dr[i] = dbgregs.db[i];
3914    }
3915    env->dr[4] = env->dr[6] = dbgregs.dr6;
3916    env->dr[5] = env->dr[7] = dbgregs.dr7;
3917
3918    return 0;
3919}
3920
3921static int kvm_put_nested_state(X86CPU *cpu)
3922{
3923    CPUX86State *env = &cpu->env;
3924    int max_nested_state_len = kvm_max_nested_state_length();
3925
3926    if (!env->nested_state) {
3927        return 0;
3928    }
3929
3930    /*
3931     * Copy flags that are affected by reset from env->hflags and env->hflags2.
3932     */
3933    if (env->hflags & HF_GUEST_MASK) {
3934        env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
3935    } else {
3936        env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
3937    }
3938
3939    /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
3940    if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
3941        env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
3942    } else {
3943        env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
3944    }
3945
3946    assert(env->nested_state->size <= max_nested_state_len);
3947    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3948}
3949
3950static int kvm_get_nested_state(X86CPU *cpu)
3951{
3952    CPUX86State *env = &cpu->env;
3953    int max_nested_state_len = kvm_max_nested_state_length();
3954    int ret;
3955
3956    if (!env->nested_state) {
3957        return 0;
3958    }
3959
3960    /*
3961     * It is possible that migration restored a smaller size into
3962     * nested_state->hdr.size than what our kernel support.
3963     * We preserve migration origin nested_state->hdr.size for
3964     * call to KVM_SET_NESTED_STATE but wish that our next call
3965     * to KVM_GET_NESTED_STATE will use max size our kernel support.
3966     */
3967    env->nested_state->size = max_nested_state_len;
3968
3969    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3970    if (ret < 0) {
3971        return ret;
3972    }
3973
3974    /*
3975     * Copy flags that are affected by reset to env->hflags and env->hflags2.
3976     */
3977    if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3978        env->hflags |= HF_GUEST_MASK;
3979    } else {
3980        env->hflags &= ~HF_GUEST_MASK;
3981    }
3982
3983    /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
3984    if (cpu_has_svm(env)) {
3985        if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
3986            env->hflags2 |= HF2_GIF_MASK;
3987        } else {
3988            env->hflags2 &= ~HF2_GIF_MASK;
3989        }
3990    }
3991
3992    return ret;
3993}
3994
3995int kvm_arch_put_registers(CPUState *cpu, int level)
3996{
3997    X86CPU *x86_cpu = X86_CPU(cpu);
3998    int ret;
3999
4000    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4001
4002    /* must be before kvm_put_nested_state so that EFER.SVME is set */
4003    ret = kvm_put_sregs(x86_cpu);
4004    if (ret < 0) {
4005        return ret;
4006    }
4007
4008    if (level >= KVM_PUT_RESET_STATE) {
4009        ret = kvm_put_nested_state(x86_cpu);
4010        if (ret < 0) {
4011            return ret;
4012        }
4013
4014        ret = kvm_put_msr_feature_control(x86_cpu);
4015        if (ret < 0) {
4016            return ret;
4017        }
4018    }
4019
4020    if (level == KVM_PUT_FULL_STATE) {
4021        /* We don't check for kvm_arch_set_tsc_khz() errors here,
4022         * because TSC frequency mismatch shouldn't abort migration,
4023         * unless the user explicitly asked for a more strict TSC
4024         * setting (e.g. using an explicit "tsc-freq" option).
4025         */
4026        kvm_arch_set_tsc_khz(cpu);
4027    }
4028
4029    ret = kvm_getput_regs(x86_cpu, 1);
4030    if (ret < 0) {
4031        return ret;
4032    }
4033    ret = kvm_put_xsave(x86_cpu);
4034    if (ret < 0) {
4035        return ret;
4036    }
4037    ret = kvm_put_xcrs(x86_cpu);
4038    if (ret < 0) {
4039        return ret;
4040    }
4041    /* must be before kvm_put_msrs */
4042    ret = kvm_inject_mce_oldstyle(x86_cpu);
4043    if (ret < 0) {
4044        return ret;
4045    }
4046    ret = kvm_put_msrs(x86_cpu, level);
4047    if (ret < 0) {
4048        return ret;
4049    }
4050    ret = kvm_put_vcpu_events(x86_cpu, level);
4051    if (ret < 0) {
4052        return ret;
4053    }
4054    if (level >= KVM_PUT_RESET_STATE) {
4055        ret = kvm_put_mp_state(x86_cpu);
4056        if (ret < 0) {
4057            return ret;
4058        }
4059    }
4060
4061    ret = kvm_put_tscdeadline_msr(x86_cpu);
4062    if (ret < 0) {
4063        return ret;
4064    }
4065    ret = kvm_put_debugregs(x86_cpu);
4066    if (ret < 0) {
4067        return ret;
4068    }
4069    /* must be last */
4070    ret = kvm_guest_debug_workarounds(x86_cpu);
4071    if (ret < 0) {
4072        return ret;
4073    }
4074    return 0;
4075}
4076
4077int kvm_arch_get_registers(CPUState *cs)
4078{
4079    X86CPU *cpu = X86_CPU(cs);
4080    int ret;
4081
4082    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4083
4084    ret = kvm_get_vcpu_events(cpu);
4085    if (ret < 0) {
4086        goto out;
4087    }
4088    /*
4089     * KVM_GET_MPSTATE can modify CS and RIP, call it before
4090     * KVM_GET_REGS and KVM_GET_SREGS.
4091     */
4092    ret = kvm_get_mp_state(cpu);
4093    if (ret < 0) {
4094        goto out;
4095    }
4096    ret = kvm_getput_regs(cpu, 0);
4097    if (ret < 0) {
4098        goto out;
4099    }
4100    ret = kvm_get_xsave(cpu);
4101    if (ret < 0) {
4102        goto out;
4103    }
4104    ret = kvm_get_xcrs(cpu);
4105    if (ret < 0) {
4106        goto out;
4107    }
4108    ret = kvm_get_sregs(cpu);
4109    if (ret < 0) {
4110        goto out;
4111    }
4112    ret = kvm_get_msrs(cpu);
4113    if (ret < 0) {
4114        goto out;
4115    }
4116    ret = kvm_get_apic(cpu);
4117    if (ret < 0) {
4118        goto out;
4119    }
4120    ret = kvm_get_debugregs(cpu);
4121    if (ret < 0) {
4122        goto out;
4123    }
4124    ret = kvm_get_nested_state(cpu);
4125    if (ret < 0) {
4126        goto out;
4127    }
4128    ret = 0;
4129 out:
4130    cpu_sync_bndcs_hflags(&cpu->env);
4131    return ret;
4132}
4133
4134void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4135{
4136    X86CPU *x86_cpu = X86_CPU(cpu);
4137    CPUX86State *env = &x86_cpu->env;
4138    int ret;
4139
4140    /* Inject NMI */
4141    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4142        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4143            qemu_mutex_lock_iothread();
4144            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4145            qemu_mutex_unlock_iothread();
4146            DPRINTF("injected NMI\n");
4147            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4148            if (ret < 0) {
4149                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4150                        strerror(-ret));
4151            }
4152        }
4153        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4154            qemu_mutex_lock_iothread();
4155            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4156            qemu_mutex_unlock_iothread();
4157            DPRINTF("injected SMI\n");
4158            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4159            if (ret < 0) {
4160                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4161                        strerror(-ret));
4162            }
4163        }
4164    }
4165
4166    if (!kvm_pic_in_kernel()) {
4167        qemu_mutex_lock_iothread();
4168    }
4169
4170    /* Force the VCPU out of its inner loop to process any INIT requests
4171     * or (for userspace APIC, but it is cheap to combine the checks here)
4172     * pending TPR access reports.
4173     */
4174    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4175        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4176            !(env->hflags & HF_SMM_MASK)) {
4177            cpu->exit_request = 1;
4178        }
4179        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4180            cpu->exit_request = 1;
4181        }
4182    }
4183
4184    if (!kvm_pic_in_kernel()) {
4185        /* Try to inject an interrupt if the guest can accept it */
4186        if (run->ready_for_interrupt_injection &&
4187            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4188            (env->eflags & IF_MASK)) {
4189            int irq;
4190
4191            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4192            irq = cpu_get_pic_interrupt(env);
4193            if (irq >= 0) {
4194                struct kvm_interrupt intr;
4195
4196                intr.irq = irq;
4197                DPRINTF("injected interrupt %d\n", irq);
4198                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4199                if (ret < 0) {
4200                    fprintf(stderr,
4201                            "KVM: injection failed, interrupt lost (%s)\n",
4202                            strerror(-ret));
4203                }
4204            }
4205        }
4206
4207        /* If we have an interrupt but the guest is not ready to receive an
4208         * interrupt, request an interrupt window exit.  This will
4209         * cause a return to userspace as soon as the guest is ready to
4210         * receive interrupts. */
4211        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4212            run->request_interrupt_window = 1;
4213        } else {
4214            run->request_interrupt_window = 0;
4215        }
4216
4217        DPRINTF("setting tpr\n");
4218        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4219
4220        qemu_mutex_unlock_iothread();
4221    }
4222}
4223
4224MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4225{
4226    X86CPU *x86_cpu = X86_CPU(cpu);
4227    CPUX86State *env = &x86_cpu->env;
4228
4229    if (run->flags & KVM_RUN_X86_SMM) {
4230        env->hflags |= HF_SMM_MASK;
4231    } else {
4232        env->hflags &= ~HF_SMM_MASK;
4233    }
4234    if (run->if_flag) {
4235        env->eflags |= IF_MASK;
4236    } else {
4237        env->eflags &= ~IF_MASK;
4238    }
4239
4240    /* We need to protect the apic state against concurrent accesses from
4241     * different threads in case the userspace irqchip is used. */
4242    if (!kvm_irqchip_in_kernel()) {
4243        qemu_mutex_lock_iothread();
4244    }
4245    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4246    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4247    if (!kvm_irqchip_in_kernel()) {
4248        qemu_mutex_unlock_iothread();
4249    }
4250    return cpu_get_mem_attrs(env);
4251}
4252
4253int kvm_arch_process_async_events(CPUState *cs)
4254{
4255    X86CPU *cpu = X86_CPU(cs);
4256    CPUX86State *env = &cpu->env;
4257
4258    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4259        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4260        assert(env->mcg_cap);
4261
4262        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4263
4264        kvm_cpu_synchronize_state(cs);
4265
4266        if (env->exception_nr == EXCP08_DBLE) {
4267            /* this means triple fault */
4268            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4269            cs->exit_request = 1;
4270            return 0;
4271        }
4272        kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4273        env->has_error_code = 0;
4274
4275        cs->halted = 0;
4276        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4277            env->mp_state = KVM_MP_STATE_RUNNABLE;
4278        }
4279    }
4280
4281    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4282        !(env->hflags & HF_SMM_MASK)) {
4283        kvm_cpu_synchronize_state(cs);
4284        do_cpu_init(cpu);
4285    }
4286
4287    if (kvm_irqchip_in_kernel()) {
4288        return 0;
4289    }
4290
4291    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4292        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4293        apic_poll_irq(cpu->apic_state);
4294    }
4295    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4296         (env->eflags & IF_MASK)) ||
4297        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4298        cs->halted = 0;
4299    }
4300    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4301        kvm_cpu_synchronize_state(cs);
4302        do_cpu_sipi(cpu);
4303    }
4304    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4305        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4306        kvm_cpu_synchronize_state(cs);
4307        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4308                                      env->tpr_access_type);
4309    }
4310
4311    return cs->halted;
4312}
4313
4314static int kvm_handle_halt(X86CPU *cpu)
4315{
4316    CPUState *cs = CPU(cpu);
4317    CPUX86State *env = &cpu->env;
4318
4319    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4320          (env->eflags & IF_MASK)) &&
4321        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4322        cs->halted = 1;
4323        return EXCP_HLT;
4324    }
4325
4326    return 0;
4327}
4328
4329static int kvm_handle_tpr_access(X86CPU *cpu)
4330{
4331    CPUState *cs = CPU(cpu);
4332    struct kvm_run *run = cs->kvm_run;
4333
4334    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4335                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
4336                                                           : TPR_ACCESS_READ);
4337    return 1;
4338}
4339
4340int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4341{
4342    static const uint8_t int3 = 0xcc;
4343
4344    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4345        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4346        return -EINVAL;
4347    }
4348    return 0;
4349}
4350
4351int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4352{
4353    uint8_t int3;
4354
4355    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4356        return -EINVAL;
4357    }
4358    if (int3 != 0xcc) {
4359        return 0;
4360    }
4361    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4362        return -EINVAL;
4363    }
4364    return 0;
4365}
4366
4367static struct {
4368    target_ulong addr;
4369    int len;
4370    int type;
4371} hw_breakpoint[4];
4372
4373static int nb_hw_breakpoint;
4374
4375static int find_hw_breakpoint(target_ulong addr, int len, int type)
4376{
4377    int n;
4378
4379    for (n = 0; n < nb_hw_breakpoint; n++) {
4380        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4381            (hw_breakpoint[n].len == len || len == -1)) {
4382            return n;
4383        }
4384    }
4385    return -1;
4386}
4387
4388int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4389                                  target_ulong len, int type)
4390{
4391    switch (type) {
4392    case GDB_BREAKPOINT_HW:
4393        len = 1;
4394        break;
4395    case GDB_WATCHPOINT_WRITE:
4396    case GDB_WATCHPOINT_ACCESS:
4397        switch (len) {
4398        case 1:
4399            break;
4400        case 2:
4401        case 4:
4402        case 8:
4403            if (addr & (len - 1)) {
4404                return -EINVAL;
4405            }
4406            break;
4407        default:
4408            return -EINVAL;
4409        }
4410        break;
4411    default:
4412        return -ENOSYS;
4413    }
4414
4415    if (nb_hw_breakpoint == 4) {
4416        return -ENOBUFS;
4417    }
4418    if (find_hw_breakpoint(addr, len, type) >= 0) {
4419        return -EEXIST;
4420    }
4421    hw_breakpoint[nb_hw_breakpoint].addr = addr;
4422    hw_breakpoint[nb_hw_breakpoint].len = len;
4423    hw_breakpoint[nb_hw_breakpoint].type = type;
4424    nb_hw_breakpoint++;
4425
4426    return 0;
4427}
4428
4429int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4430                                  target_ulong len, int type)
4431{
4432    int n;
4433
4434    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4435    if (n < 0) {
4436        return -ENOENT;
4437    }
4438    nb_hw_breakpoint--;
4439    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4440
4441    return 0;
4442}
4443
4444void kvm_arch_remove_all_hw_breakpoints(void)
4445{
4446    nb_hw_breakpoint = 0;
4447}
4448
4449static CPUWatchpoint hw_watchpoint;
4450
4451static int kvm_handle_debug(X86CPU *cpu,
4452                            struct kvm_debug_exit_arch *arch_info)
4453{
4454    CPUState *cs = CPU(cpu);
4455    CPUX86State *env = &cpu->env;
4456    int ret = 0;
4457    int n;
4458
4459    if (arch_info->exception == EXCP01_DB) {
4460        if (arch_info->dr6 & DR6_BS) {
4461            if (cs->singlestep_enabled) {
4462                ret = EXCP_DEBUG;
4463            }
4464        } else {
4465            for (n = 0; n < 4; n++) {
4466                if (arch_info->dr6 & (1 << n)) {
4467                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4468                    case 0x0:
4469                        ret = EXCP_DEBUG;
4470                        break;
4471                    case 0x1:
4472                        ret = EXCP_DEBUG;
4473                        cs->watchpoint_hit = &hw_watchpoint;
4474                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4475                        hw_watchpoint.flags = BP_MEM_WRITE;
4476                        break;
4477                    case 0x3:
4478                        ret = EXCP_DEBUG;
4479                        cs->watchpoint_hit = &hw_watchpoint;
4480                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4481                        hw_watchpoint.flags = BP_MEM_ACCESS;
4482                        break;
4483                    }
4484                }
4485            }
4486        }
4487    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4488        ret = EXCP_DEBUG;
4489    }
4490    if (ret == 0) {
4491        cpu_synchronize_state(cs);
4492        assert(env->exception_nr == -1);
4493
4494        /* pass to guest */
4495        kvm_queue_exception(env, arch_info->exception,
4496                            arch_info->exception == EXCP01_DB,
4497                            arch_info->dr6);
4498        env->has_error_code = 0;
4499    }
4500
4501    return ret;
4502}
4503
4504void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4505{
4506    const uint8_t type_code[] = {
4507        [GDB_BREAKPOINT_HW] = 0x0,
4508        [GDB_WATCHPOINT_WRITE] = 0x1,
4509        [GDB_WATCHPOINT_ACCESS] = 0x3
4510    };
4511    const uint8_t len_code[] = {
4512        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4513    };
4514    int n;
4515
4516    if (kvm_sw_breakpoints_active(cpu)) {
4517        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4518    }
4519    if (nb_hw_breakpoint > 0) {
4520        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4521        dbg->arch.debugreg[7] = 0x0600;
4522        for (n = 0; n < nb_hw_breakpoint; n++) {
4523            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4524            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4525                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4526                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4527        }
4528    }
4529}
4530
4531static bool host_supports_vmx(void)
4532{
4533    uint32_t ecx, unused;
4534
4535    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4536    return ecx & CPUID_EXT_VMX;
4537}
4538
4539#define VMX_INVALID_GUEST_STATE 0x80000021
4540
4541int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4542{
4543    X86CPU *cpu = X86_CPU(cs);
4544    uint64_t code;
4545    int ret;
4546
4547    switch (run->exit_reason) {
4548    case KVM_EXIT_HLT:
4549        DPRINTF("handle_hlt\n");
4550        qemu_mutex_lock_iothread();
4551        ret = kvm_handle_halt(cpu);
4552        qemu_mutex_unlock_iothread();
4553        break;
4554    case KVM_EXIT_SET_TPR:
4555        ret = 0;
4556        break;
4557    case KVM_EXIT_TPR_ACCESS:
4558        qemu_mutex_lock_iothread();
4559        ret = kvm_handle_tpr_access(cpu);
4560        qemu_mutex_unlock_iothread();
4561        break;
4562    case KVM_EXIT_FAIL_ENTRY:
4563        code = run->fail_entry.hardware_entry_failure_reason;
4564        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4565                code);
4566        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4567            fprintf(stderr,
4568                    "\nIf you're running a guest on an Intel machine without "
4569                        "unrestricted mode\n"
4570                    "support, the failure can be most likely due to the guest "
4571                        "entering an invalid\n"
4572                    "state for Intel VT. For example, the guest maybe running "
4573                        "in big real mode\n"
4574                    "which is not supported on less recent Intel processors."
4575                        "\n\n");
4576        }
4577        ret = -1;
4578        break;
4579    case KVM_EXIT_EXCEPTION:
4580        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4581                run->ex.exception, run->ex.error_code);
4582        ret = -1;
4583        break;
4584    case KVM_EXIT_DEBUG:
4585        DPRINTF("kvm_exit_debug\n");
4586        qemu_mutex_lock_iothread();
4587        ret = kvm_handle_debug(cpu, &run->debug.arch);
4588        qemu_mutex_unlock_iothread();
4589        break;
4590    case KVM_EXIT_HYPERV:
4591        ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4592        break;
4593    case KVM_EXIT_IOAPIC_EOI:
4594        ioapic_eoi_broadcast(run->eoi.vector);
4595        ret = 0;
4596        break;
4597    default:
4598        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4599        ret = -1;
4600        break;
4601    }
4602
4603    return ret;
4604}
4605
4606bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4607{
4608    X86CPU *cpu = X86_CPU(cs);
4609    CPUX86State *env = &cpu->env;
4610
4611    kvm_cpu_synchronize_state(cs);
4612    return !(env->cr[0] & CR0_PE_MASK) ||
4613           ((env->segs[R_CS].selector  & 3) != 3);
4614}
4615
4616void kvm_arch_init_irq_routing(KVMState *s)
4617{
4618    /* We know at this point that we're using the in-kernel
4619     * irqchip, so we can use irqfds, and on x86 we know
4620     * we can use msi via irqfd and GSI routing.
4621     */
4622    kvm_msi_via_irqfd_allowed = true;
4623    kvm_gsi_routing_allowed = true;
4624
4625    if (kvm_irqchip_is_split()) {
4626        int i;
4627
4628        /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4629           MSI routes for signaling interrupts to the local apics. */
4630        for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4631            if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4632                error_report("Could not enable split IRQ mode.");
4633                exit(1);
4634            }
4635        }
4636    }
4637}
4638
4639int kvm_arch_irqchip_create(KVMState *s)
4640{
4641    int ret;
4642    if (kvm_kernel_irqchip_split()) {
4643        ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4644        if (ret) {
4645            error_report("Could not enable split irqchip mode: %s",
4646                         strerror(-ret));
4647            exit(1);
4648        } else {
4649            DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4650            kvm_split_irqchip = true;
4651            return 1;
4652        }
4653    } else {
4654        return 0;
4655    }
4656}
4657
4658uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
4659{
4660    CPUX86State *env;
4661    uint64_t ext_id;
4662
4663    if (!first_cpu) {
4664        return address;
4665    }
4666    env = &X86_CPU(first_cpu)->env;
4667    if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
4668        return address;
4669    }
4670
4671    /*
4672     * If the remappable format bit is set, or the upper bits are
4673     * already set in address_hi, or the low extended bits aren't
4674     * there anyway, do nothing.
4675     */
4676    ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
4677    if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
4678        return address;
4679    }
4680
4681    address &= ~ext_id;
4682    address |= ext_id << 35;
4683    return address;
4684}
4685
4686int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4687                             uint64_t address, uint32_t data, PCIDevice *dev)
4688{
4689    X86IOMMUState *iommu = x86_iommu_get_default();
4690
4691    if (iommu) {
4692        X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
4693
4694        if (class->int_remap) {
4695            int ret;
4696            MSIMessage src, dst;
4697
4698            src.address = route->u.msi.address_hi;
4699            src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4700            src.address |= route->u.msi.address_lo;
4701            src.data = route->u.msi.data;
4702
4703            ret = class->int_remap(iommu, &src, &dst, dev ?     \
4704                                   pci_requester_id(dev) :      \
4705                                   X86_IOMMU_SID_INVALID);
4706            if (ret) {
4707                trace_kvm_x86_fixup_msi_error(route->gsi);
4708                return 1;
4709            }
4710
4711            /*
4712             * Handled untranslated compatibilty format interrupt with
4713             * extended destination ID in the low bits 11-5. */
4714            dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
4715
4716            route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4717            route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4718            route->u.msi.data = dst.data;
4719            return 0;
4720        }
4721    }
4722
4723    address = kvm_swizzle_msi_ext_dest_id(address);
4724    route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
4725    route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
4726    return 0;
4727}
4728
4729typedef struct MSIRouteEntry MSIRouteEntry;
4730
4731struct MSIRouteEntry {
4732    PCIDevice *dev;             /* Device pointer */
4733    int vector;                 /* MSI/MSIX vector index */
4734    int virq;                   /* Virtual IRQ index */
4735    QLIST_ENTRY(MSIRouteEntry) list;
4736};
4737
4738/* List of used GSI routes */
4739static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4740    QLIST_HEAD_INITIALIZER(msi_route_list);
4741
4742static void kvm_update_msi_routes_all(void *private, bool global,
4743                                      uint32_t index, uint32_t mask)
4744{
4745    int cnt = 0, vector;
4746    MSIRouteEntry *entry;
4747    MSIMessage msg;
4748    PCIDevice *dev;
4749
4750    /* TODO: explicit route update */
4751    QLIST_FOREACH(entry, &msi_route_list, list) {
4752        cnt++;
4753        vector = entry->vector;
4754        dev = entry->dev;
4755        if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4756            msg = msix_get_message(dev, vector);
4757        } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4758            msg = msi_get_message(dev, vector);
4759        } else {
4760            /*
4761             * Either MSI/MSIX is disabled for the device, or the
4762             * specific message was masked out.  Skip this one.
4763             */
4764            continue;
4765        }
4766        kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4767    }
4768    kvm_irqchip_commit_routes(kvm_state);
4769    trace_kvm_x86_update_msi_routes(cnt);
4770}
4771
4772int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4773                                int vector, PCIDevice *dev)
4774{
4775    static bool notify_list_inited = false;
4776    MSIRouteEntry *entry;
4777
4778    if (!dev) {
4779        /* These are (possibly) IOAPIC routes only used for split
4780         * kernel irqchip mode, while what we are housekeeping are
4781         * PCI devices only. */
4782        return 0;
4783    }
4784
4785    entry = g_new0(MSIRouteEntry, 1);
4786    entry->dev = dev;
4787    entry->vector = vector;
4788    entry->virq = route->gsi;
4789    QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4790
4791    trace_kvm_x86_add_msi_route(route->gsi);
4792
4793    if (!notify_list_inited) {
4794        /* For the first time we do add route, add ourselves into
4795         * IOMMU's IEC notify list if needed. */
4796        X86IOMMUState *iommu = x86_iommu_get_default();
4797        if (iommu) {
4798            x86_iommu_iec_register_notifier(iommu,
4799                                            kvm_update_msi_routes_all,
4800                                            NULL);
4801        }
4802        notify_list_inited = true;
4803    }
4804    return 0;
4805}
4806
4807int kvm_arch_release_virq_post(int virq)
4808{
4809    MSIRouteEntry *entry, *next;
4810    QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4811        if (entry->virq == virq) {
4812            trace_kvm_x86_remove_msi_route(virq);
4813            QLIST_REMOVE(entry, list);
4814            g_free(entry);
4815            break;
4816        }
4817    }
4818    return 0;
4819}
4820
4821int kvm_arch_msi_data_to_gsi(uint32_t data)
4822{
4823    abort();
4824}
4825
4826bool kvm_has_waitpkg(void)
4827{
4828    return has_msr_umwait;
4829}
4830
4831bool kvm_arch_cpu_check_are_resettable(void)
4832{
4833    return !sev_es_enabled();
4834}
4835