qemu/target/mips/tlb_helper.c
<<
>>
Prefs
   1/*
   2 * MIPS TLB (Translation lookaside buffer) helpers.
   3 *
   4 *  Copyright (c) 2004-2005 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20
  21#include "cpu.h"
  22#include "internal.h"
  23#include "exec/exec-all.h"
  24#include "exec/cpu_ldst.h"
  25#include "exec/log.h"
  26#include "hw/mips/cpudevs.h"
  27
  28enum {
  29    TLBRET_XI = -6,
  30    TLBRET_RI = -5,
  31    TLBRET_DIRTY = -4,
  32    TLBRET_INVALID = -3,
  33    TLBRET_NOMATCH = -2,
  34    TLBRET_BADADDR = -1,
  35    TLBRET_MATCH = 0
  36};
  37
  38#if !defined(CONFIG_USER_ONLY)
  39
  40/* no MMU emulation */
  41int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
  42                       target_ulong address, MMUAccessType access_type)
  43{
  44    *physical = address;
  45    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
  46    return TLBRET_MATCH;
  47}
  48
  49/* fixed mapping MMU emulation */
  50int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
  51                          target_ulong address, MMUAccessType access_type)
  52{
  53    if (address <= (int32_t)0x7FFFFFFFUL) {
  54        if (!(env->CP0_Status & (1 << CP0St_ERL))) {
  55            *physical = address + 0x40000000UL;
  56        } else {
  57            *physical = address;
  58        }
  59    } else if (address <= (int32_t)0xBFFFFFFFUL) {
  60        *physical = address & 0x1FFFFFFF;
  61    } else {
  62        *physical = address;
  63    }
  64
  65    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
  66    return TLBRET_MATCH;
  67}
  68
  69/* MIPS32/MIPS64 R4000-style MMU emulation */
  70int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
  71                    target_ulong address, MMUAccessType access_type)
  72{
  73    uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
  74    uint32_t MMID = env->CP0_MemoryMapID;
  75    bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
  76    uint32_t tlb_mmid;
  77    int i;
  78
  79    MMID = mi ? MMID : (uint32_t) ASID;
  80
  81    for (i = 0; i < env->tlb->tlb_in_use; i++) {
  82        r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
  83        /* 1k pages are not supported. */
  84        target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
  85        target_ulong tag = address & ~mask;
  86        target_ulong VPN = tlb->VPN & ~mask;
  87#if defined(TARGET_MIPS64)
  88        tag &= env->SEGMask;
  89#endif
  90
  91        /* Check ASID/MMID, virtual page number & size */
  92        tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
  93        if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
  94            /* TLB match */
  95            int n = !!(address & mask & ~(mask >> 1));
  96            /* Check access rights */
  97            if (!(n ? tlb->V1 : tlb->V0)) {
  98                return TLBRET_INVALID;
  99            }
 100            if (access_type == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
 101                return TLBRET_XI;
 102            }
 103            if (access_type == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
 104                return TLBRET_RI;
 105            }
 106            if (access_type != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
 107                *physical = tlb->PFN[n] | (address & (mask >> 1));
 108                *prot = PAGE_READ;
 109                if (n ? tlb->D1 : tlb->D0) {
 110                    *prot |= PAGE_WRITE;
 111                }
 112                if (!(n ? tlb->XI1 : tlb->XI0)) {
 113                    *prot |= PAGE_EXEC;
 114                }
 115                return TLBRET_MATCH;
 116            }
 117            return TLBRET_DIRTY;
 118        }
 119    }
 120    return TLBRET_NOMATCH;
 121}
 122
 123static void no_mmu_init(CPUMIPSState *env, const mips_def_t *def)
 124{
 125    env->tlb->nb_tlb = 1;
 126    env->tlb->map_address = &no_mmu_map_address;
 127}
 128
 129static void fixed_mmu_init(CPUMIPSState *env, const mips_def_t *def)
 130{
 131    env->tlb->nb_tlb = 1;
 132    env->tlb->map_address = &fixed_mmu_map_address;
 133}
 134
 135static void r4k_mmu_init(CPUMIPSState *env, const mips_def_t *def)
 136{
 137    env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
 138    env->tlb->map_address = &r4k_map_address;
 139    env->tlb->helper_tlbwi = r4k_helper_tlbwi;
 140    env->tlb->helper_tlbwr = r4k_helper_tlbwr;
 141    env->tlb->helper_tlbp = r4k_helper_tlbp;
 142    env->tlb->helper_tlbr = r4k_helper_tlbr;
 143    env->tlb->helper_tlbinv = r4k_helper_tlbinv;
 144    env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
 145}
 146
 147void mmu_init(CPUMIPSState *env, const mips_def_t *def)
 148{
 149    env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
 150
 151    switch (def->mmu_type) {
 152    case MMU_TYPE_NONE:
 153        no_mmu_init(env, def);
 154        break;
 155    case MMU_TYPE_R4000:
 156        r4k_mmu_init(env, def);
 157        break;
 158    case MMU_TYPE_FMT:
 159        fixed_mmu_init(env, def);
 160        break;
 161    case MMU_TYPE_R3000:
 162    case MMU_TYPE_R6000:
 163    case MMU_TYPE_R8000:
 164    default:
 165        cpu_abort(env_cpu(env), "MMU type not supported\n");
 166    }
 167}
 168
 169static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx)
 170{
 171    /*
 172     * Interpret access control mode and mmu_idx.
 173     *           AdE?     TLB?
 174     *      AM  K S U E  K S U E
 175     * UK    0  0 1 1 0  0 - - 0
 176     * MK    1  0 1 1 0  1 - - !eu
 177     * MSK   2  0 0 1 0  1 1 - !eu
 178     * MUSK  3  0 0 0 0  1 1 1 !eu
 179     * MUSUK 4  0 0 0 0  0 1 1 0
 180     * USK   5  0 0 1 0  0 0 - 0
 181     * -     6  - - - -  - - - -
 182     * UUSK  7  0 0 0 0  0 0 0 0
 183     */
 184    int32_t adetlb_mask;
 185
 186    switch (mmu_idx) {
 187    case 3: /* ERL */
 188        /* If EU is set, always unmapped */
 189        if (eu) {
 190            return 0;
 191        }
 192        /* fall through */
 193    case MIPS_HFLAG_KM:
 194        /* Never AdE, TLB mapped if AM={1,2,3} */
 195        adetlb_mask = 0x70000000;
 196        goto check_tlb;
 197
 198    case MIPS_HFLAG_SM:
 199        /* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */
 200        adetlb_mask = 0xc0380000;
 201        goto check_ade;
 202
 203    case MIPS_HFLAG_UM:
 204        /* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */
 205        adetlb_mask = 0xe4180000;
 206        /* fall through */
 207    check_ade:
 208        /* does this AM cause AdE in current execution mode */
 209        if ((adetlb_mask << am) < 0) {
 210            return TLBRET_BADADDR;
 211        }
 212        adetlb_mask <<= 8;
 213        /* fall through */
 214    check_tlb:
 215        /* is this AM mapped in current execution mode */
 216        return ((adetlb_mask << am) < 0);
 217    default:
 218        assert(0);
 219        return TLBRET_BADADDR;
 220    };
 221}
 222
 223static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical,
 224                                    int *prot, target_ulong real_address,
 225                                    MMUAccessType access_type, int mmu_idx,
 226                                    unsigned int am, bool eu,
 227                                    target_ulong segmask,
 228                                    hwaddr physical_base)
 229{
 230    int mapped = is_seg_am_mapped(am, eu, mmu_idx);
 231
 232    if (mapped < 0) {
 233        /* is_seg_am_mapped can report TLBRET_BADADDR */
 234        return mapped;
 235    } else if (mapped) {
 236        /* The segment is TLB mapped */
 237        return env->tlb->map_address(env, physical, prot, real_address,
 238                                     access_type);
 239    } else {
 240        /* The segment is unmapped */
 241        *physical = physical_base | (real_address & segmask);
 242        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 243        return TLBRET_MATCH;
 244    }
 245}
 246
 247static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical,
 248                                       int *prot, target_ulong real_address,
 249                                       MMUAccessType access_type, int mmu_idx,
 250                                       uint16_t segctl, target_ulong segmask)
 251{
 252    unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM;
 253    bool eu = (segctl >> CP0SC_EU) & 1;
 254    hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20;
 255
 256    return get_seg_physical_address(env, physical, prot, real_address,
 257                                    access_type, mmu_idx, am, eu, segmask,
 258                                    pa & ~(hwaddr)segmask);
 259}
 260
 261static int get_physical_address(CPUMIPSState *env, hwaddr *physical,
 262                                int *prot, target_ulong real_address,
 263                                MMUAccessType access_type, int mmu_idx)
 264{
 265    /* User mode can only access useg/xuseg */
 266#if defined(TARGET_MIPS64)
 267    int user_mode = mmu_idx == MIPS_HFLAG_UM;
 268    int supervisor_mode = mmu_idx == MIPS_HFLAG_SM;
 269    int kernel_mode = !user_mode && !supervisor_mode;
 270    int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
 271    int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0;
 272    int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
 273#endif
 274    int ret = TLBRET_MATCH;
 275    /* effective address (modified for KVM T&E kernel segments) */
 276    target_ulong address = real_address;
 277
 278#define USEG_LIMIT      ((target_ulong)(int32_t)0x7FFFFFFFUL)
 279#define KSEG0_BASE      ((target_ulong)(int32_t)0x80000000UL)
 280#define KSEG1_BASE      ((target_ulong)(int32_t)0xA0000000UL)
 281#define KSEG2_BASE      ((target_ulong)(int32_t)0xC0000000UL)
 282#define KSEG3_BASE      ((target_ulong)(int32_t)0xE0000000UL)
 283
 284#define KVM_KSEG0_BASE  ((target_ulong)(int32_t)0x40000000UL)
 285#define KVM_KSEG2_BASE  ((target_ulong)(int32_t)0x60000000UL)
 286
 287    if (mips_um_ksegs_enabled()) {
 288        /* KVM T&E adds guest kernel segments in useg */
 289        if (real_address >= KVM_KSEG0_BASE) {
 290            if (real_address < KVM_KSEG2_BASE) {
 291                /* kseg0 */
 292                address += KSEG0_BASE - KVM_KSEG0_BASE;
 293            } else if (real_address <= USEG_LIMIT) {
 294                /* kseg2/3 */
 295                address += KSEG2_BASE - KVM_KSEG2_BASE;
 296            }
 297        }
 298    }
 299
 300    if (address <= USEG_LIMIT) {
 301        /* useg */
 302        uint16_t segctl;
 303
 304        if (address >= 0x40000000UL) {
 305            segctl = env->CP0_SegCtl2;
 306        } else {
 307            segctl = env->CP0_SegCtl2 >> 16;
 308        }
 309        ret = get_segctl_physical_address(env, physical, prot,
 310                                          real_address, access_type,
 311                                          mmu_idx, segctl, 0x3FFFFFFF);
 312#if defined(TARGET_MIPS64)
 313    } else if (address < 0x4000000000000000ULL) {
 314        /* xuseg */
 315        if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) {
 316            ret = env->tlb->map_address(env, physical, prot,
 317                                        real_address, access_type);
 318        } else {
 319            ret = TLBRET_BADADDR;
 320        }
 321    } else if (address < 0x8000000000000000ULL) {
 322        /* xsseg */
 323        if ((supervisor_mode || kernel_mode) &&
 324            SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) {
 325            ret = env->tlb->map_address(env, physical, prot,
 326                                        real_address, access_type);
 327        } else {
 328            ret = TLBRET_BADADDR;
 329        }
 330    } else if (address < 0xC000000000000000ULL) {
 331        /* xkphys */
 332        if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) {
 333            /* KX/SX/UX bit to check for each xkphys EVA access mode */
 334            static const uint8_t am_ksux[8] = {
 335                [CP0SC_AM_UK]    = (1u << CP0St_KX),
 336                [CP0SC_AM_MK]    = (1u << CP0St_KX),
 337                [CP0SC_AM_MSK]   = (1u << CP0St_SX),
 338                [CP0SC_AM_MUSK]  = (1u << CP0St_UX),
 339                [CP0SC_AM_MUSUK] = (1u << CP0St_UX),
 340                [CP0SC_AM_USK]   = (1u << CP0St_SX),
 341                [6]              = (1u << CP0St_KX),
 342                [CP0SC_AM_UUSK]  = (1u << CP0St_UX),
 343            };
 344            unsigned int am = CP0SC_AM_UK;
 345            unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR;
 346
 347            if (xr & (1 << ((address >> 59) & 0x7))) {
 348                am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM;
 349            }
 350            /* Does CP0_Status.KX/SX/UX permit the access mode (am) */
 351            if (env->CP0_Status & am_ksux[am]) {
 352                ret = get_seg_physical_address(env, physical, prot,
 353                                               real_address, access_type,
 354                                               mmu_idx, am, false, env->PAMask,
 355                                               0);
 356            } else {
 357                ret = TLBRET_BADADDR;
 358            }
 359        } else {
 360            ret = TLBRET_BADADDR;
 361        }
 362    } else if (address < 0xFFFFFFFF80000000ULL) {
 363        /* xkseg */
 364        if (kernel_mode && KX &&
 365            address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) {
 366            ret = env->tlb->map_address(env, physical, prot,
 367                                        real_address, access_type);
 368        } else {
 369            ret = TLBRET_BADADDR;
 370        }
 371#endif
 372    } else if (address < KSEG1_BASE) {
 373        /* kseg0 */
 374        ret = get_segctl_physical_address(env, physical, prot, real_address,
 375                                          access_type, mmu_idx,
 376                                          env->CP0_SegCtl1 >> 16, 0x1FFFFFFF);
 377    } else if (address < KSEG2_BASE) {
 378        /* kseg1 */
 379        ret = get_segctl_physical_address(env, physical, prot, real_address,
 380                                          access_type, mmu_idx,
 381                                          env->CP0_SegCtl1, 0x1FFFFFFF);
 382    } else if (address < KSEG3_BASE) {
 383        /* sseg (kseg2) */
 384        ret = get_segctl_physical_address(env, physical, prot, real_address,
 385                                          access_type, mmu_idx,
 386                                          env->CP0_SegCtl0 >> 16, 0x1FFFFFFF);
 387    } else {
 388        /*
 389         * kseg3
 390         * XXX: debug segment is not emulated
 391         */
 392        ret = get_segctl_physical_address(env, physical, prot, real_address,
 393                                          access_type, mmu_idx,
 394                                          env->CP0_SegCtl0, 0x1FFFFFFF);
 395    }
 396    return ret;
 397}
 398
 399void cpu_mips_tlb_flush(CPUMIPSState *env)
 400{
 401    /* Flush qemu's TLB and discard all shadowed entries.  */
 402    tlb_flush(env_cpu(env));
 403    env->tlb->tlb_in_use = env->tlb->nb_tlb;
 404}
 405
 406#endif /* !CONFIG_USER_ONLY */
 407
 408static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
 409                                MMUAccessType access_type, int tlb_error)
 410{
 411    CPUState *cs = env_cpu(env);
 412    int exception = 0, error_code = 0;
 413
 414    if (access_type == MMU_INST_FETCH) {
 415        error_code |= EXCP_INST_NOTAVAIL;
 416    }
 417
 418    switch (tlb_error) {
 419    default:
 420    case TLBRET_BADADDR:
 421        /* Reference to kernel address from user mode or supervisor mode */
 422        /* Reference to supervisor address from user mode */
 423        if (access_type == MMU_DATA_STORE) {
 424            exception = EXCP_AdES;
 425        } else {
 426            exception = EXCP_AdEL;
 427        }
 428        break;
 429    case TLBRET_NOMATCH:
 430        /* No TLB match for a mapped address */
 431        if (access_type == MMU_DATA_STORE) {
 432            exception = EXCP_TLBS;
 433        } else {
 434            exception = EXCP_TLBL;
 435        }
 436        error_code |= EXCP_TLB_NOMATCH;
 437        break;
 438    case TLBRET_INVALID:
 439        /* TLB match with no valid bit */
 440        if (access_type == MMU_DATA_STORE) {
 441            exception = EXCP_TLBS;
 442        } else {
 443            exception = EXCP_TLBL;
 444        }
 445        break;
 446    case TLBRET_DIRTY:
 447        /* TLB match but 'D' bit is cleared */
 448        exception = EXCP_LTLBL;
 449        break;
 450    case TLBRET_XI:
 451        /* Execute-Inhibit Exception */
 452        if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
 453            exception = EXCP_TLBXI;
 454        } else {
 455            exception = EXCP_TLBL;
 456        }
 457        break;
 458    case TLBRET_RI:
 459        /* Read-Inhibit Exception */
 460        if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
 461            exception = EXCP_TLBRI;
 462        } else {
 463            exception = EXCP_TLBL;
 464        }
 465        break;
 466    }
 467    /* Raise exception */
 468    if (!(env->hflags & MIPS_HFLAG_DM)) {
 469        env->CP0_BadVAddr = address;
 470    }
 471    env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
 472                       ((address >> 9) & 0x007ffff0);
 473    env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
 474                       (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
 475                       (address & (TARGET_PAGE_MASK << 1));
 476#if defined(TARGET_MIPS64)
 477    env->CP0_EntryHi &= env->SEGMask;
 478    env->CP0_XContext =
 479        (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
 480        (extract64(address, 62, 2) << (env->SEGBITS - 9)) |     /* R       */
 481        (extract64(address, 13, env->SEGBITS - 13) << 4);       /* BadVPN2 */
 482#endif
 483    cs->exception_index = exception;
 484    env->error_code = error_code;
 485}
 486
 487#if !defined(CONFIG_USER_ONLY)
 488
 489hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 490{
 491    MIPSCPU *cpu = MIPS_CPU(cs);
 492    CPUMIPSState *env = &cpu->env;
 493    hwaddr phys_addr;
 494    int prot;
 495
 496    if (get_physical_address(env, &phys_addr, &prot, addr, MMU_DATA_LOAD,
 497                             cpu_mmu_index(env, false)) != 0) {
 498        return -1;
 499    }
 500    return phys_addr;
 501}
 502
 503#if !defined(TARGET_MIPS64)
 504
 505/*
 506 * Perform hardware page table walk
 507 *
 508 * Memory accesses are performed using the KERNEL privilege level.
 509 * Synchronous exceptions detected on memory accesses cause a silent exit
 510 * from page table walking, resulting in a TLB or XTLB Refill exception.
 511 *
 512 * Implementations are not required to support page table walk memory
 513 * accesses from mapped memory regions. When an unsupported access is
 514 * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
 515 * exception.
 516 *
 517 * Note that if an exception is caused by AddressTranslation or LoadMemory
 518 * functions, the exception is not taken, a silent exit is taken,
 519 * resulting in a TLB or XTLB Refill exception.
 520 */
 521
 522static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
 523        uint64_t *pte)
 524{
 525    if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
 526        return false;
 527    }
 528    if (entry_size == 64) {
 529        *pte = cpu_ldq_code(env, vaddr);
 530    } else {
 531        *pte = cpu_ldl_code(env, vaddr);
 532    }
 533    return true;
 534}
 535
 536static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
 537        int entry_size, int ptei)
 538{
 539    uint64_t result = entry;
 540    uint64_t rixi;
 541    if (ptei > entry_size) {
 542        ptei -= 32;
 543    }
 544    result >>= (ptei - 2);
 545    rixi = result & 3;
 546    result >>= 2;
 547    result |= rixi << CP0EnLo_XI;
 548    return result;
 549}
 550
 551static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
 552        int directory_index, bool *huge_page, bool *hgpg_directory_hit,
 553        uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
 554{
 555    int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
 556    int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
 557    int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
 558    int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
 559    int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
 560    int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
 561    int directory_shift = (ptew > 1) ? -1 :
 562            (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
 563    int leaf_shift = (ptew > 1) ? -1 :
 564            (ptew == 1) ? native_shift + 1 : native_shift;
 565    uint32_t direntry_size = 1 << (directory_shift + 3);
 566    uint32_t leafentry_size = 1 << (leaf_shift + 3);
 567    uint64_t entry;
 568    uint64_t paddr;
 569    int prot;
 570    uint64_t lsb = 0;
 571    uint64_t w = 0;
 572
 573    if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
 574                             cpu_mmu_index(env, false)) !=
 575                             TLBRET_MATCH) {
 576        /* wrong base address */
 577        return 0;
 578    }
 579    if (!get_pte(env, *vaddr, direntry_size, &entry)) {
 580        return 0;
 581    }
 582
 583    if ((entry & (1 << psn)) && hugepg) {
 584        *huge_page = true;
 585        *hgpg_directory_hit = true;
 586        entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
 587        w = directory_index - 1;
 588        if (directory_index & 0x1) {
 589            /* Generate adjacent page from same PTE for odd TLB page */
 590            lsb = (1 << w) >> 6;
 591            *pw_entrylo0 = entry & ~lsb; /* even page */
 592            *pw_entrylo1 = entry | lsb; /* odd page */
 593        } else if (dph) {
 594            int oddpagebit = 1 << leaf_shift;
 595            uint64_t vaddr2 = *vaddr ^ oddpagebit;
 596            if (*vaddr & oddpagebit) {
 597                *pw_entrylo1 = entry;
 598            } else {
 599                *pw_entrylo0 = entry;
 600            }
 601            if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
 602                                     cpu_mmu_index(env, false)) !=
 603                                     TLBRET_MATCH) {
 604                return 0;
 605            }
 606            if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
 607                return 0;
 608            }
 609            entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
 610            if (*vaddr & oddpagebit) {
 611                *pw_entrylo0 = entry;
 612            } else {
 613                *pw_entrylo1 = entry;
 614            }
 615        } else {
 616            return 0;
 617        }
 618        return 1;
 619    } else {
 620        *vaddr = entry;
 621        return 2;
 622    }
 623}
 624
 625static bool page_table_walk_refill(CPUMIPSState *env, vaddr address,
 626                                   int mmu_idx)
 627{
 628    int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
 629    int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
 630    int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
 631    int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
 632    int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
 633
 634    /* Initial values */
 635    bool huge_page = false;
 636    bool hgpg_bdhit = false;
 637    bool hgpg_gdhit = false;
 638    bool hgpg_udhit = false;
 639    bool hgpg_mdhit = false;
 640
 641    int32_t pw_pagemask = 0;
 642    target_ulong pw_entryhi = 0;
 643    uint64_t pw_entrylo0 = 0;
 644    uint64_t pw_entrylo1 = 0;
 645
 646    /* Native pointer size */
 647    /*For the 32-bit architectures, this bit is fixed to 0.*/
 648    int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
 649
 650    /* Indices from PWField */
 651    int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
 652    int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
 653    int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
 654    int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
 655    int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
 656
 657    /* Indices computed from faulting address */
 658    int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
 659    int uindex = (address >> pf_udw) & ((1 << udw) - 1);
 660    int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
 661    int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
 662
 663    /* Other HTW configs */
 664    int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
 665
 666    /* HTW Shift values (depend on entry size) */
 667    int directory_shift = (ptew > 1) ? -1 :
 668            (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
 669    int leaf_shift = (ptew > 1) ? -1 :
 670            (ptew == 1) ? native_shift + 1 : native_shift;
 671
 672    /* Offsets into tables */
 673    int goffset = gindex << directory_shift;
 674    int uoffset = uindex << directory_shift;
 675    int moffset = mindex << directory_shift;
 676    int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
 677    int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
 678
 679    uint32_t leafentry_size = 1 << (leaf_shift + 3);
 680
 681    /* Starting address - Page Table Base */
 682    uint64_t vaddr = env->CP0_PWBase;
 683
 684    uint64_t dir_entry;
 685    uint64_t paddr;
 686    int prot;
 687    int m;
 688
 689    if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
 690        /* walker is unimplemented */
 691        return false;
 692    }
 693    if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
 694        /* walker is disabled */
 695        return false;
 696    }
 697    if (!(gdw > 0 || udw > 0 || mdw > 0)) {
 698        /* no structure to walk */
 699        return false;
 700    }
 701    if ((directory_shift == -1) || (leaf_shift == -1)) {
 702        return false;
 703    }
 704
 705    /* Global Directory */
 706    if (gdw > 0) {
 707        vaddr |= goffset;
 708        switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
 709                               &pw_entrylo0, &pw_entrylo1))
 710        {
 711        case 0:
 712            return false;
 713        case 1:
 714            goto refill;
 715        case 2:
 716        default:
 717            break;
 718        }
 719    }
 720
 721    /* Upper directory */
 722    if (udw > 0) {
 723        vaddr |= uoffset;
 724        switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
 725                               &pw_entrylo0, &pw_entrylo1))
 726        {
 727        case 0:
 728            return false;
 729        case 1:
 730            goto refill;
 731        case 2:
 732        default:
 733            break;
 734        }
 735    }
 736
 737    /* Middle directory */
 738    if (mdw > 0) {
 739        vaddr |= moffset;
 740        switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
 741                               &pw_entrylo0, &pw_entrylo1))
 742        {
 743        case 0:
 744            return false;
 745        case 1:
 746            goto refill;
 747        case 2:
 748        default:
 749            break;
 750        }
 751    }
 752
 753    /* Leaf Level Page Table - First half of PTE pair */
 754    vaddr |= ptoffset0;
 755    if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
 756                             cpu_mmu_index(env, false)) !=
 757                             TLBRET_MATCH) {
 758        return false;
 759    }
 760    if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
 761        return false;
 762    }
 763    dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
 764    pw_entrylo0 = dir_entry;
 765
 766    /* Leaf Level Page Table - Second half of PTE pair */
 767    vaddr |= ptoffset1;
 768    if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
 769                             cpu_mmu_index(env, false)) !=
 770                             TLBRET_MATCH) {
 771        return false;
 772    }
 773    if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
 774        return false;
 775    }
 776    dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
 777    pw_entrylo1 = dir_entry;
 778
 779refill:
 780
 781    m = (1 << pf_ptw) - 1;
 782
 783    if (huge_page) {
 784        switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
 785                hgpg_mdhit)
 786        {
 787        case 4:
 788            m = (1 << pf_gdw) - 1;
 789            if (pf_gdw & 1) {
 790                m >>= 1;
 791            }
 792            break;
 793        case 2:
 794            m = (1 << pf_udw) - 1;
 795            if (pf_udw & 1) {
 796                m >>= 1;
 797            }
 798            break;
 799        case 1:
 800            m = (1 << pf_mdw) - 1;
 801            if (pf_mdw & 1) {
 802                m >>= 1;
 803            }
 804            break;
 805        }
 806    }
 807    pw_pagemask = m >> TARGET_PAGE_BITS_MIN;
 808    update_pagemask(env, pw_pagemask << CP0PM_MASK, &pw_pagemask);
 809    pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
 810    {
 811        target_ulong tmp_entryhi = env->CP0_EntryHi;
 812        int32_t tmp_pagemask = env->CP0_PageMask;
 813        uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
 814        uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
 815
 816        env->CP0_EntryHi = pw_entryhi;
 817        env->CP0_PageMask = pw_pagemask;
 818        env->CP0_EntryLo0 = pw_entrylo0;
 819        env->CP0_EntryLo1 = pw_entrylo1;
 820
 821        /*
 822         * The hardware page walker inserts a page into the TLB in a manner
 823         * identical to a TLBWR instruction as executed by the software refill
 824         * handler.
 825         */
 826        r4k_helper_tlbwr(env);
 827
 828        env->CP0_EntryHi = tmp_entryhi;
 829        env->CP0_PageMask = tmp_pagemask;
 830        env->CP0_EntryLo0 = tmp_entrylo0;
 831        env->CP0_EntryLo1 = tmp_entrylo1;
 832    }
 833    return true;
 834}
 835#endif
 836#endif /* !CONFIG_USER_ONLY */
 837
 838bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 839                       MMUAccessType access_type, int mmu_idx,
 840                       bool probe, uintptr_t retaddr)
 841{
 842    MIPSCPU *cpu = MIPS_CPU(cs);
 843    CPUMIPSState *env = &cpu->env;
 844#if !defined(CONFIG_USER_ONLY)
 845    hwaddr physical;
 846    int prot;
 847#endif
 848    int ret = TLBRET_BADADDR;
 849
 850    /* data access */
 851#if !defined(CONFIG_USER_ONLY)
 852    /* XXX: put correct access by using cpu_restore_state() correctly */
 853    ret = get_physical_address(env, &physical, &prot, address,
 854                               access_type, mmu_idx);
 855    switch (ret) {
 856    case TLBRET_MATCH:
 857        qemu_log_mask(CPU_LOG_MMU,
 858                      "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
 859                      " prot %d\n", __func__, address, physical, prot);
 860        break;
 861    default:
 862        qemu_log_mask(CPU_LOG_MMU,
 863                      "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
 864                      ret);
 865        break;
 866    }
 867    if (ret == TLBRET_MATCH) {
 868        tlb_set_page(cs, address & TARGET_PAGE_MASK,
 869                     physical & TARGET_PAGE_MASK, prot,
 870                     mmu_idx, TARGET_PAGE_SIZE);
 871        return true;
 872    }
 873#if !defined(TARGET_MIPS64)
 874    if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
 875        /*
 876         * Memory reads during hardware page table walking are performed
 877         * as if they were kernel-mode load instructions.
 878         */
 879        int mode = (env->hflags & MIPS_HFLAG_KSU);
 880        bool ret_walker;
 881        env->hflags &= ~MIPS_HFLAG_KSU;
 882        ret_walker = page_table_walk_refill(env, address, mmu_idx);
 883        env->hflags |= mode;
 884        if (ret_walker) {
 885            ret = get_physical_address(env, &physical, &prot, address,
 886                                       access_type, mmu_idx);
 887            if (ret == TLBRET_MATCH) {
 888                tlb_set_page(cs, address & TARGET_PAGE_MASK,
 889                             physical & TARGET_PAGE_MASK, prot,
 890                             mmu_idx, TARGET_PAGE_SIZE);
 891                return true;
 892            }
 893        }
 894    }
 895#endif
 896    if (probe) {
 897        return false;
 898    }
 899#endif
 900
 901    raise_mmu_exception(env, address, access_type, ret);
 902    do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
 903}
 904
 905#ifndef CONFIG_USER_ONLY
 906hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
 907                                  MMUAccessType access_type)
 908{
 909    hwaddr physical;
 910    int prot;
 911    int ret = 0;
 912
 913    /* data access */
 914    ret = get_physical_address(env, &physical, &prot, address, access_type,
 915                               cpu_mmu_index(env, false));
 916    if (ret != TLBRET_MATCH) {
 917        raise_mmu_exception(env, address, access_type, ret);
 918        return -1LL;
 919    } else {
 920        return physical;
 921    }
 922}
 923
 924static void set_hflags_for_handler(CPUMIPSState *env)
 925{
 926    /* Exception handlers are entered in 32-bit mode.  */
 927    env->hflags &= ~(MIPS_HFLAG_M16);
 928    /* ...except that microMIPS lets you choose.  */
 929    if (env->insn_flags & ASE_MICROMIPS) {
 930        env->hflags |= (!!(env->CP0_Config3 &
 931                           (1 << CP0C3_ISA_ON_EXC))
 932                        << MIPS_HFLAG_M16_SHIFT);
 933    }
 934}
 935
 936static inline void set_badinstr_registers(CPUMIPSState *env)
 937{
 938    if (env->insn_flags & ISA_NANOMIPS32) {
 939        if (env->CP0_Config3 & (1 << CP0C3_BI)) {
 940            uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
 941            if ((instr & 0x10000000) == 0) {
 942                instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
 943            }
 944            env->CP0_BadInstr = instr;
 945
 946            if ((instr & 0xFC000000) == 0x60000000) {
 947                instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
 948                env->CP0_BadInstrX = instr;
 949            }
 950        }
 951        return;
 952    }
 953
 954    if (env->hflags & MIPS_HFLAG_M16) {
 955        /* TODO: add BadInstr support for microMIPS */
 956        return;
 957    }
 958    if (env->CP0_Config3 & (1 << CP0C3_BI)) {
 959        env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
 960    }
 961    if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
 962        (env->hflags & MIPS_HFLAG_BMASK)) {
 963        env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
 964    }
 965}
 966
 967#endif /* !CONFIG_USER_ONLY */
 968
 969void mips_cpu_do_interrupt(CPUState *cs)
 970{
 971#if !defined(CONFIG_USER_ONLY)
 972    MIPSCPU *cpu = MIPS_CPU(cs);
 973    CPUMIPSState *env = &cpu->env;
 974    bool update_badinstr = 0;
 975    target_ulong offset;
 976    int cause = -1;
 977
 978    if (qemu_loglevel_mask(CPU_LOG_INT)
 979        && cs->exception_index != EXCP_EXT_INTERRUPT) {
 980        qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
 981                 " %s exception\n",
 982                 __func__, env->active_tc.PC, env->CP0_EPC,
 983                 mips_exception_name(cs->exception_index));
 984    }
 985    if (cs->exception_index == EXCP_EXT_INTERRUPT &&
 986        (env->hflags & MIPS_HFLAG_DM)) {
 987        cs->exception_index = EXCP_DINT;
 988    }
 989    offset = 0x180;
 990    switch (cs->exception_index) {
 991    case EXCP_DSS:
 992        env->CP0_Debug |= 1 << CP0DB_DSS;
 993        /*
 994         * Debug single step cannot be raised inside a delay slot and
 995         * resume will always occur on the next instruction
 996         * (but we assume the pc has always been updated during
 997         * code translation).
 998         */
 999        env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1000        goto enter_debug_mode;
1001    case EXCP_DINT:
1002        env->CP0_Debug |= 1 << CP0DB_DINT;
1003        goto set_DEPC;
1004    case EXCP_DIB:
1005        env->CP0_Debug |= 1 << CP0DB_DIB;
1006        goto set_DEPC;
1007    case EXCP_DBp:
1008        env->CP0_Debug |= 1 << CP0DB_DBp;
1009        /* Setup DExcCode - SDBBP instruction */
1010        env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
1011                         (9 << CP0DB_DEC);
1012        goto set_DEPC;
1013    case EXCP_DDBS:
1014        env->CP0_Debug |= 1 << CP0DB_DDBS;
1015        goto set_DEPC;
1016    case EXCP_DDBL:
1017        env->CP0_Debug |= 1 << CP0DB_DDBL;
1018    set_DEPC:
1019        env->CP0_DEPC = exception_resume_pc(env);
1020        env->hflags &= ~MIPS_HFLAG_BMASK;
1021 enter_debug_mode:
1022        if (env->insn_flags & ISA_MIPS3) {
1023            env->hflags |= MIPS_HFLAG_64;
1024            if (!(env->insn_flags & ISA_MIPS_R6) ||
1025                env->CP0_Status & (1 << CP0St_KX)) {
1026                env->hflags &= ~MIPS_HFLAG_AWRAP;
1027            }
1028        }
1029        env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1030        env->hflags &= ~(MIPS_HFLAG_KSU);
1031        /* EJTAG probe trap enable is not implemented... */
1032        if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1033            env->CP0_Cause &= ~(1U << CP0Ca_BD);
1034        }
1035        env->active_tc.PC = env->exception_base + 0x480;
1036        set_hflags_for_handler(env);
1037        break;
1038    case EXCP_RESET:
1039        cpu_reset(CPU(cpu));
1040        break;
1041    case EXCP_SRESET:
1042        env->CP0_Status |= (1 << CP0St_SR);
1043        memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1044        goto set_error_EPC;
1045    case EXCP_NMI:
1046        env->CP0_Status |= (1 << CP0St_NMI);
1047 set_error_EPC:
1048        env->CP0_ErrorEPC = exception_resume_pc(env);
1049        env->hflags &= ~MIPS_HFLAG_BMASK;
1050        env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1051        if (env->insn_flags & ISA_MIPS3) {
1052            env->hflags |= MIPS_HFLAG_64;
1053            if (!(env->insn_flags & ISA_MIPS_R6) ||
1054                env->CP0_Status & (1 << CP0St_KX)) {
1055                env->hflags &= ~MIPS_HFLAG_AWRAP;
1056            }
1057        }
1058        env->hflags |= MIPS_HFLAG_CP0;
1059        env->hflags &= ~(MIPS_HFLAG_KSU);
1060        if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1061            env->CP0_Cause &= ~(1U << CP0Ca_BD);
1062        }
1063        env->active_tc.PC = env->exception_base;
1064        set_hflags_for_handler(env);
1065        break;
1066    case EXCP_EXT_INTERRUPT:
1067        cause = 0;
1068        if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1069            uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1070
1071            if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1072                offset = 0x200;
1073            } else {
1074                uint32_t vector = 0;
1075                uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1076
1077                if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1078                    /*
1079                     * For VEIC mode, the external interrupt controller feeds
1080                     * the vector through the CP0Cause IP lines.
1081                     */
1082                    vector = pending;
1083                } else {
1084                    /*
1085                     * Vectored Interrupts
1086                     * Mask with Status.IM7-IM0 to get enabled interrupts.
1087                     */
1088                    pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1089                    /* Find the highest-priority interrupt. */
1090                    while (pending >>= 1) {
1091                        vector++;
1092                    }
1093                }
1094                offset = 0x200 + (vector * (spacing << 5));
1095            }
1096        }
1097        goto set_EPC;
1098    case EXCP_LTLBL:
1099        cause = 1;
1100        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1101        goto set_EPC;
1102    case EXCP_TLBL:
1103        cause = 2;
1104        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1105        if ((env->error_code & EXCP_TLB_NOMATCH) &&
1106            !(env->CP0_Status & (1 << CP0St_EXL))) {
1107#if defined(TARGET_MIPS64)
1108            int R = env->CP0_BadVAddr >> 62;
1109            int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1110            int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1111
1112            if ((R != 0 || UX) && (R != 3 || KX) &&
1113                (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1114                offset = 0x080;
1115            } else {
1116#endif
1117                offset = 0x000;
1118#if defined(TARGET_MIPS64)
1119            }
1120#endif
1121        }
1122        goto set_EPC;
1123    case EXCP_TLBS:
1124        cause = 3;
1125        update_badinstr = 1;
1126        if ((env->error_code & EXCP_TLB_NOMATCH) &&
1127            !(env->CP0_Status & (1 << CP0St_EXL))) {
1128#if defined(TARGET_MIPS64)
1129            int R = env->CP0_BadVAddr >> 62;
1130            int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1131            int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1132
1133            if ((R != 0 || UX) && (R != 3 || KX) &&
1134                (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1135                offset = 0x080;
1136            } else {
1137#endif
1138                offset = 0x000;
1139#if defined(TARGET_MIPS64)
1140            }
1141#endif
1142        }
1143        goto set_EPC;
1144    case EXCP_AdEL:
1145        cause = 4;
1146        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1147        goto set_EPC;
1148    case EXCP_AdES:
1149        cause = 5;
1150        update_badinstr = 1;
1151        goto set_EPC;
1152    case EXCP_IBE:
1153        cause = 6;
1154        goto set_EPC;
1155    case EXCP_DBE:
1156        cause = 7;
1157        goto set_EPC;
1158    case EXCP_SYSCALL:
1159        cause = 8;
1160        update_badinstr = 1;
1161        goto set_EPC;
1162    case EXCP_BREAK:
1163        cause = 9;
1164        update_badinstr = 1;
1165        goto set_EPC;
1166    case EXCP_RI:
1167        cause = 10;
1168        update_badinstr = 1;
1169        goto set_EPC;
1170    case EXCP_CpU:
1171        cause = 11;
1172        update_badinstr = 1;
1173        env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1174                         (env->error_code << CP0Ca_CE);
1175        goto set_EPC;
1176    case EXCP_OVERFLOW:
1177        cause = 12;
1178        update_badinstr = 1;
1179        goto set_EPC;
1180    case EXCP_TRAP:
1181        cause = 13;
1182        update_badinstr = 1;
1183        goto set_EPC;
1184    case EXCP_MSAFPE:
1185        cause = 14;
1186        update_badinstr = 1;
1187        goto set_EPC;
1188    case EXCP_FPE:
1189        cause = 15;
1190        update_badinstr = 1;
1191        goto set_EPC;
1192    case EXCP_C2E:
1193        cause = 18;
1194        goto set_EPC;
1195    case EXCP_TLBRI:
1196        cause = 19;
1197        update_badinstr = 1;
1198        goto set_EPC;
1199    case EXCP_TLBXI:
1200        cause = 20;
1201        goto set_EPC;
1202    case EXCP_MSADIS:
1203        cause = 21;
1204        update_badinstr = 1;
1205        goto set_EPC;
1206    case EXCP_MDMX:
1207        cause = 22;
1208        goto set_EPC;
1209    case EXCP_DWATCH:
1210        cause = 23;
1211        /* XXX: TODO: manage deferred watch exceptions */
1212        goto set_EPC;
1213    case EXCP_MCHECK:
1214        cause = 24;
1215        goto set_EPC;
1216    case EXCP_THREAD:
1217        cause = 25;
1218        goto set_EPC;
1219    case EXCP_DSPDIS:
1220        cause = 26;
1221        goto set_EPC;
1222    case EXCP_CACHE:
1223        cause = 30;
1224        offset = 0x100;
1225 set_EPC:
1226        if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1227            env->CP0_EPC = exception_resume_pc(env);
1228            if (update_badinstr) {
1229                set_badinstr_registers(env);
1230            }
1231            if (env->hflags & MIPS_HFLAG_BMASK) {
1232                env->CP0_Cause |= (1U << CP0Ca_BD);
1233            } else {
1234                env->CP0_Cause &= ~(1U << CP0Ca_BD);
1235            }
1236            env->CP0_Status |= (1 << CP0St_EXL);
1237            if (env->insn_flags & ISA_MIPS3) {
1238                env->hflags |= MIPS_HFLAG_64;
1239                if (!(env->insn_flags & ISA_MIPS_R6) ||
1240                    env->CP0_Status & (1 << CP0St_KX)) {
1241                    env->hflags &= ~MIPS_HFLAG_AWRAP;
1242                }
1243            }
1244            env->hflags |= MIPS_HFLAG_CP0;
1245            env->hflags &= ~(MIPS_HFLAG_KSU);
1246        }
1247        env->hflags &= ~MIPS_HFLAG_BMASK;
1248        if (env->CP0_Status & (1 << CP0St_BEV)) {
1249            env->active_tc.PC = env->exception_base + 0x200;
1250        } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1251                                    env->CP0_Config5 & (1 << CP0C5_CV))) {
1252            /* Force KSeg1 for cache errors */
1253            env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1254        } else {
1255            env->active_tc.PC = env->CP0_EBase & ~0xfff;
1256        }
1257
1258        env->active_tc.PC += offset;
1259        set_hflags_for_handler(env);
1260        env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
1261                         (cause << CP0Ca_EC);
1262        break;
1263    default:
1264        abort();
1265    }
1266    if (qemu_loglevel_mask(CPU_LOG_INT)
1267        && cs->exception_index != EXCP_EXT_INTERRUPT) {
1268        qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1269                 "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1270                 __func__, env->active_tc.PC, env->CP0_EPC, cause,
1271                 env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1272                 env->CP0_DEPC);
1273    }
1274#endif
1275    cs->exception_index = EXCP_NONE;
1276}
1277
1278#if !defined(CONFIG_USER_ONLY)
1279void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
1280{
1281    CPUState *cs = env_cpu(env);
1282    r4k_tlb_t *tlb;
1283    target_ulong addr;
1284    target_ulong end;
1285    uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1286    uint32_t MMID = env->CP0_MemoryMapID;
1287    bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
1288    uint32_t tlb_mmid;
1289    target_ulong mask;
1290
1291    MMID = mi ? MMID : (uint32_t) ASID;
1292
1293    tlb = &env->tlb->mmu.r4k.tlb[idx];
1294    /*
1295     * The qemu TLB is flushed when the ASID/MMID changes, so no need to
1296     * flush these entries again.
1297     */
1298    tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
1299    if (tlb->G == 0 && tlb_mmid != MMID) {
1300        return;
1301    }
1302
1303    if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1304        /*
1305         * For tlbwr, we can shadow the discarded entry into
1306         * a new (fake) TLB entry, as long as the guest can not
1307         * tell that it's there.
1308         */
1309        env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1310        env->tlb->tlb_in_use++;
1311        return;
1312    }
1313
1314    /* 1k pages are not supported. */
1315    mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1316    if (tlb->V0) {
1317        addr = tlb->VPN & ~mask;
1318#if defined(TARGET_MIPS64)
1319        if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1320            addr |= 0x3FFFFF0000000000ULL;
1321        }
1322#endif
1323        end = addr | (mask >> 1);
1324        while (addr < end) {
1325            tlb_flush_page(cs, addr);
1326            addr += TARGET_PAGE_SIZE;
1327        }
1328    }
1329    if (tlb->V1) {
1330        addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1331#if defined(TARGET_MIPS64)
1332        if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1333            addr |= 0x3FFFFF0000000000ULL;
1334        }
1335#endif
1336        end = addr | mask;
1337        while (addr - 1 < end) {
1338            tlb_flush_page(cs, addr);
1339            addr += TARGET_PAGE_SIZE;
1340        }
1341    }
1342}
1343#endif /* !CONFIG_USER_ONLY */
1344