qemu/target/ppc/kvm.c
<<
>>
Prefs
   1/*
   2 * PowerPC implementation of KVM hooks
   3 *
   4 * Copyright IBM Corp. 2007
   5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
   6 *
   7 * Authors:
   8 *  Jerone Young <jyoung5@us.ibm.com>
   9 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
  10 *  Hollis Blanchard <hollisb@us.ibm.com>
  11 *
  12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  13 * See the COPYING file in the top-level directory.
  14 *
  15 */
  16
  17#include "qemu/osdep.h"
  18#include <dirent.h>
  19#include <sys/ioctl.h>
  20#include <sys/vfs.h>
  21
  22#include <linux/kvm.h>
  23
  24#include "qemu-common.h"
  25#include "qapi/error.h"
  26#include "qemu/error-report.h"
  27#include "cpu.h"
  28#include "cpu-models.h"
  29#include "qemu/timer.h"
  30#include "sysemu/hw_accel.h"
  31#include "kvm_ppc.h"
  32#include "sysemu/cpus.h"
  33#include "sysemu/device_tree.h"
  34#include "mmu-hash64.h"
  35
  36#include "hw/sysbus.h"
  37#include "hw/ppc/spapr.h"
  38#include "hw/ppc/spapr_cpu_core.h"
  39#include "hw/hw.h"
  40#include "hw/ppc/ppc.h"
  41#include "migration/qemu-file-types.h"
  42#include "sysemu/watchdog.h"
  43#include "trace.h"
  44#include "exec/gdbstub.h"
  45#include "exec/memattrs.h"
  46#include "exec/ram_addr.h"
  47#include "sysemu/hostmem.h"
  48#include "qemu/cutils.h"
  49#include "qemu/main-loop.h"
  50#include "qemu/mmap-alloc.h"
  51#include "elf.h"
  52#include "sysemu/kvm_int.h"
  53
  54#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
  55
  56#define DEBUG_RETURN_GUEST 0
  57#define DEBUG_RETURN_GDB   1
  58
  59const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  60    KVM_CAP_LAST_INFO
  61};
  62
  63static int cap_interrupt_unset;
  64static int cap_segstate;
  65static int cap_booke_sregs;
  66static int cap_ppc_smt;
  67static int cap_ppc_smt_possible;
  68static int cap_spapr_tce;
  69static int cap_spapr_tce_64;
  70static int cap_spapr_multitce;
  71static int cap_spapr_vfio;
  72static int cap_hior;
  73static int cap_one_reg;
  74static int cap_epr;
  75static int cap_ppc_watchdog;
  76static int cap_papr;
  77static int cap_htab_fd;
  78static int cap_fixup_hcalls;
  79static int cap_htm;             /* Hardware transactional memory support */
  80static int cap_mmu_radix;
  81static int cap_mmu_hash_v3;
  82static int cap_xive;
  83static int cap_resize_hpt;
  84static int cap_ppc_pvr_compat;
  85static int cap_ppc_safe_cache;
  86static int cap_ppc_safe_bounds_check;
  87static int cap_ppc_safe_indirect_branch;
  88static int cap_ppc_count_cache_flush_assist;
  89static int cap_ppc_nested_kvm_hv;
  90static int cap_large_decr;
  91static int cap_fwnmi;
  92
  93static uint32_t debug_inst_opcode;
  94
  95/*
  96 * Check whether we are running with KVM-PR (instead of KVM-HV).  This
  97 * should only be used for fallback tests - generally we should use
  98 * explicit capabilities for the features we want, rather than
  99 * assuming what is/isn't available depending on the KVM variant.
 100 */
 101static bool kvmppc_is_pr(KVMState *ks)
 102{
 103    /* Assume KVM-PR if the GET_PVINFO capability is available */
 104    return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
 105}
 106
 107static int kvm_ppc_register_host_cpu_type(void);
 108static void kvmppc_get_cpu_characteristics(KVMState *s);
 109static int kvmppc_get_dec_bits(void);
 110
 111int kvm_arch_init(MachineState *ms, KVMState *s)
 112{
 113    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
 114    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
 115    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
 116    cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
 117    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
 118    cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
 119    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
 120    cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
 121    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
 122    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
 123    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
 124    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
 125    /*
 126     * Note: we don't set cap_papr here, because this capability is
 127     * only activated after this by kvmppc_set_papr()
 128     */
 129    cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
 130    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
 131    cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
 132    cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
 133    cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
 134    cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
 135    cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
 136    cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
 137    kvmppc_get_cpu_characteristics(s);
 138    cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
 139    cap_large_decr = kvmppc_get_dec_bits();
 140    cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
 141    /*
 142     * Note: setting it to false because there is not such capability
 143     * in KVM at this moment.
 144     *
 145     * TODO: call kvm_vm_check_extension() with the right capability
 146     * after the kernel starts implementing it.
 147     */
 148    cap_ppc_pvr_compat = false;
 149
 150    if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
 151        error_report("KVM: Host kernel doesn't have level irq capability");
 152        exit(1);
 153    }
 154
 155    kvm_ppc_register_host_cpu_type();
 156
 157    return 0;
 158}
 159
 160int kvm_arch_irqchip_create(KVMState *s)
 161{
 162    return 0;
 163}
 164
 165static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
 166{
 167    CPUPPCState *cenv = &cpu->env;
 168    CPUState *cs = CPU(cpu);
 169    struct kvm_sregs sregs;
 170    int ret;
 171
 172    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 173        /*
 174         * What we're really trying to say is "if we're on BookE, we
 175         * use the native PVR for now". This is the only sane way to
 176         * check it though, so we potentially confuse users that they
 177         * can run BookE guests on BookS. Let's hope nobody dares
 178         * enough :)
 179         */
 180        return 0;
 181    } else {
 182        if (!cap_segstate) {
 183            fprintf(stderr, "kvm error: missing PVR setting capability\n");
 184            return -ENOSYS;
 185        }
 186    }
 187
 188    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 189    if (ret) {
 190        return ret;
 191    }
 192
 193    sregs.pvr = cenv->spr[SPR_PVR];
 194    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 195}
 196
 197/* Set up a shared TLB array with KVM */
 198static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
 199{
 200    CPUPPCState *env = &cpu->env;
 201    CPUState *cs = CPU(cpu);
 202    struct kvm_book3e_206_tlb_params params = {};
 203    struct kvm_config_tlb cfg = {};
 204    unsigned int entries = 0;
 205    int ret, i;
 206
 207    if (!kvm_enabled() ||
 208        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
 209        return 0;
 210    }
 211
 212    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
 213
 214    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
 215        params.tlb_sizes[i] = booke206_tlb_size(env, i);
 216        params.tlb_ways[i] = booke206_tlb_ways(env, i);
 217        entries += params.tlb_sizes[i];
 218    }
 219
 220    assert(entries == env->nb_tlb);
 221    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
 222
 223    env->tlb_dirty = true;
 224
 225    cfg.array = (uintptr_t)env->tlb.tlbm;
 226    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
 227    cfg.params = (uintptr_t)&params;
 228    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
 229
 230    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
 231    if (ret < 0) {
 232        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
 233                __func__, strerror(-ret));
 234        return ret;
 235    }
 236
 237    env->kvm_sw_tlb = true;
 238    return 0;
 239}
 240
 241
 242#if defined(TARGET_PPC64)
 243static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
 244{
 245    int ret;
 246
 247    assert(kvm_state != NULL);
 248
 249    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
 250        error_setg(errp, "KVM doesn't expose the MMU features it supports");
 251        error_append_hint(errp, "Consider switching to a newer KVM\n");
 252        return;
 253    }
 254
 255    ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
 256    if (ret == 0) {
 257        return;
 258    }
 259
 260    error_setg_errno(errp, -ret,
 261                     "KVM failed to provide the MMU features it supports");
 262}
 263
 264struct ppc_radix_page_info *kvm_get_radix_page_info(void)
 265{
 266    KVMState *s = KVM_STATE(current_accel());
 267    struct ppc_radix_page_info *radix_page_info;
 268    struct kvm_ppc_rmmu_info rmmu_info;
 269    int i;
 270
 271    if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
 272        return NULL;
 273    }
 274    if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
 275        return NULL;
 276    }
 277    radix_page_info = g_malloc0(sizeof(*radix_page_info));
 278    radix_page_info->count = 0;
 279    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 280        if (rmmu_info.ap_encodings[i]) {
 281            radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
 282            radix_page_info->count++;
 283        }
 284    }
 285    return radix_page_info;
 286}
 287
 288target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
 289                                     bool radix, bool gtse,
 290                                     uint64_t proc_tbl)
 291{
 292    CPUState *cs = CPU(cpu);
 293    int ret;
 294    uint64_t flags = 0;
 295    struct kvm_ppc_mmuv3_cfg cfg = {
 296        .process_table = proc_tbl,
 297    };
 298
 299    if (radix) {
 300        flags |= KVM_PPC_MMUV3_RADIX;
 301    }
 302    if (gtse) {
 303        flags |= KVM_PPC_MMUV3_GTSE;
 304    }
 305    cfg.flags = flags;
 306    ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
 307    switch (ret) {
 308    case 0:
 309        return H_SUCCESS;
 310    case -EINVAL:
 311        return H_PARAMETER;
 312    case -ENODEV:
 313        return H_NOT_AVAILABLE;
 314    default:
 315        return H_HARDWARE;
 316    }
 317}
 318
 319bool kvmppc_hpt_needs_host_contiguous_pages(void)
 320{
 321    static struct kvm_ppc_smmu_info smmu_info;
 322
 323    if (!kvm_enabled()) {
 324        return false;
 325    }
 326
 327    kvm_get_smmu_info(&smmu_info, &error_fatal);
 328    return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
 329}
 330
 331void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
 332{
 333    struct kvm_ppc_smmu_info smmu_info;
 334    int iq, ik, jq, jk;
 335    Error *local_err = NULL;
 336
 337    /* For now, we only have anything to check on hash64 MMUs */
 338    if (!cpu->hash64_opts || !kvm_enabled()) {
 339        return;
 340    }
 341
 342    kvm_get_smmu_info(&smmu_info, &local_err);
 343    if (local_err) {
 344        error_propagate(errp, local_err);
 345        return;
 346    }
 347
 348    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
 349        && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
 350        error_setg(errp,
 351                   "KVM does not support 1TiB segments which guest expects");
 352        return;
 353    }
 354
 355    if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
 356        error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
 357                   smmu_info.slb_size, cpu->hash64_opts->slb_size);
 358        return;
 359    }
 360
 361    /*
 362     * Verify that every pagesize supported by the cpu model is
 363     * supported by KVM with the same encodings
 364     */
 365    for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
 366        PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
 367        struct kvm_ppc_one_seg_page_size *ksps;
 368
 369        for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
 370            if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
 371                break;
 372            }
 373        }
 374        if (ik >= ARRAY_SIZE(smmu_info.sps)) {
 375            error_setg(errp, "KVM doesn't support for base page shift %u",
 376                       qsps->page_shift);
 377            return;
 378        }
 379
 380        ksps = &smmu_info.sps[ik];
 381        if (ksps->slb_enc != qsps->slb_enc) {
 382            error_setg(errp,
 383"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
 384                       ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
 385            return;
 386        }
 387
 388        for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
 389            for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
 390                if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
 391                    break;
 392                }
 393            }
 394
 395            if (jk >= ARRAY_SIZE(ksps->enc)) {
 396                error_setg(errp, "KVM doesn't support page shift %u/%u",
 397                           qsps->enc[jq].page_shift, qsps->page_shift);
 398                return;
 399            }
 400            if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
 401                error_setg(errp,
 402"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
 403                           ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
 404                           qsps->page_shift, qsps->enc[jq].pte_enc);
 405                return;
 406            }
 407        }
 408    }
 409
 410    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 411        /*
 412         * Mostly what guest pagesizes we can use are related to the
 413         * host pages used to map guest RAM, which is handled in the
 414         * platform code. Cache-Inhibited largepages (64k) however are
 415         * used for I/O, so if they're mapped to the host at all it
 416         * will be a normal mapping, not a special hugepage one used
 417         * for RAM.
 418         */
 419        if (qemu_real_host_page_size < 0x10000) {
 420            error_setg(errp,
 421                       "KVM can't supply 64kiB CI pages, which guest expects");
 422        }
 423    }
 424}
 425#endif /* !defined (TARGET_PPC64) */
 426
 427unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 428{
 429    return POWERPC_CPU(cpu)->vcpu_id;
 430}
 431
 432/*
 433 * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
 434 * only 1 watchpoint, so array size of 4 is sufficient for now.
 435 */
 436#define MAX_HW_BKPTS 4
 437
 438static struct HWBreakpoint {
 439    target_ulong addr;
 440    int type;
 441} hw_debug_points[MAX_HW_BKPTS];
 442
 443static CPUWatchpoint hw_watchpoint;
 444
 445/* Default there is no breakpoint and watchpoint supported */
 446static int max_hw_breakpoint;
 447static int max_hw_watchpoint;
 448static int nb_hw_breakpoint;
 449static int nb_hw_watchpoint;
 450
 451static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
 452{
 453    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 454        max_hw_breakpoint = 2;
 455        max_hw_watchpoint = 2;
 456    }
 457
 458    if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
 459        fprintf(stderr, "Error initializing h/w breakpoints\n");
 460        return;
 461    }
 462}
 463
 464int kvm_arch_init_vcpu(CPUState *cs)
 465{
 466    PowerPCCPU *cpu = POWERPC_CPU(cs);
 467    CPUPPCState *cenv = &cpu->env;
 468    int ret;
 469
 470    /* Synchronize sregs with kvm */
 471    ret = kvm_arch_sync_sregs(cpu);
 472    if (ret) {
 473        if (ret == -EINVAL) {
 474            error_report("Register sync failed... If you're using kvm-hv.ko,"
 475                         " only \"-cpu host\" is possible");
 476        }
 477        return ret;
 478    }
 479
 480    switch (cenv->mmu_model) {
 481    case POWERPC_MMU_BOOKE206:
 482        /* This target supports access to KVM's guest TLB */
 483        ret = kvm_booke206_tlb_init(cpu);
 484        break;
 485    case POWERPC_MMU_2_07:
 486        if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
 487            /*
 488             * KVM-HV has transactional memory on POWER8 also without
 489             * the KVM_CAP_PPC_HTM extension, so enable it here
 490             * instead as long as it's available to userspace on the
 491             * host.
 492             */
 493            if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
 494                cap_htm = true;
 495            }
 496        }
 497        break;
 498    default:
 499        break;
 500    }
 501
 502    kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
 503    kvmppc_hw_debug_points_init(cenv);
 504
 505    return ret;
 506}
 507
 508int kvm_arch_destroy_vcpu(CPUState *cs)
 509{
 510    return 0;
 511}
 512
 513static void kvm_sw_tlb_put(PowerPCCPU *cpu)
 514{
 515    CPUPPCState *env = &cpu->env;
 516    CPUState *cs = CPU(cpu);
 517    struct kvm_dirty_tlb dirty_tlb;
 518    unsigned char *bitmap;
 519    int ret;
 520
 521    if (!env->kvm_sw_tlb) {
 522        return;
 523    }
 524
 525    bitmap = g_malloc((env->nb_tlb + 7) / 8);
 526    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
 527
 528    dirty_tlb.bitmap = (uintptr_t)bitmap;
 529    dirty_tlb.num_dirty = env->nb_tlb;
 530
 531    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
 532    if (ret) {
 533        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
 534                __func__, strerror(-ret));
 535    }
 536
 537    g_free(bitmap);
 538}
 539
 540static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
 541{
 542    PowerPCCPU *cpu = POWERPC_CPU(cs);
 543    CPUPPCState *env = &cpu->env;
 544    union {
 545        uint32_t u32;
 546        uint64_t u64;
 547    } val;
 548    struct kvm_one_reg reg = {
 549        .id = id,
 550        .addr = (uintptr_t) &val,
 551    };
 552    int ret;
 553
 554    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 555    if (ret != 0) {
 556        trace_kvm_failed_spr_get(spr, strerror(errno));
 557    } else {
 558        switch (id & KVM_REG_SIZE_MASK) {
 559        case KVM_REG_SIZE_U32:
 560            env->spr[spr] = val.u32;
 561            break;
 562
 563        case KVM_REG_SIZE_U64:
 564            env->spr[spr] = val.u64;
 565            break;
 566
 567        default:
 568            /* Don't handle this size yet */
 569            abort();
 570        }
 571    }
 572}
 573
 574static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
 575{
 576    PowerPCCPU *cpu = POWERPC_CPU(cs);
 577    CPUPPCState *env = &cpu->env;
 578    union {
 579        uint32_t u32;
 580        uint64_t u64;
 581    } val;
 582    struct kvm_one_reg reg = {
 583        .id = id,
 584        .addr = (uintptr_t) &val,
 585    };
 586    int ret;
 587
 588    switch (id & KVM_REG_SIZE_MASK) {
 589    case KVM_REG_SIZE_U32:
 590        val.u32 = env->spr[spr];
 591        break;
 592
 593    case KVM_REG_SIZE_U64:
 594        val.u64 = env->spr[spr];
 595        break;
 596
 597    default:
 598        /* Don't handle this size yet */
 599        abort();
 600    }
 601
 602    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 603    if (ret != 0) {
 604        trace_kvm_failed_spr_set(spr, strerror(errno));
 605    }
 606}
 607
 608static int kvm_put_fp(CPUState *cs)
 609{
 610    PowerPCCPU *cpu = POWERPC_CPU(cs);
 611    CPUPPCState *env = &cpu->env;
 612    struct kvm_one_reg reg;
 613    int i;
 614    int ret;
 615
 616    if (env->insns_flags & PPC_FLOAT) {
 617        uint64_t fpscr = env->fpscr;
 618        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
 619
 620        reg.id = KVM_REG_PPC_FPSCR;
 621        reg.addr = (uintptr_t)&fpscr;
 622        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 623        if (ret < 0) {
 624            trace_kvm_failed_fpscr_set(strerror(errno));
 625            return ret;
 626        }
 627
 628        for (i = 0; i < 32; i++) {
 629            uint64_t vsr[2];
 630            uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
 631            uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
 632
 633#ifdef HOST_WORDS_BIGENDIAN
 634            vsr[0] = float64_val(*fpr);
 635            vsr[1] = *vsrl;
 636#else
 637            vsr[0] = *vsrl;
 638            vsr[1] = float64_val(*fpr);
 639#endif
 640            reg.addr = (uintptr_t) &vsr;
 641            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
 642
 643            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 644            if (ret < 0) {
 645                trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
 646                                        strerror(errno));
 647                return ret;
 648            }
 649        }
 650    }
 651
 652    if (env->insns_flags & PPC_ALTIVEC) {
 653        reg.id = KVM_REG_PPC_VSCR;
 654        reg.addr = (uintptr_t)&env->vscr;
 655        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 656        if (ret < 0) {
 657            trace_kvm_failed_vscr_set(strerror(errno));
 658            return ret;
 659        }
 660
 661        for (i = 0; i < 32; i++) {
 662            reg.id = KVM_REG_PPC_VR(i);
 663            reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
 664            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 665            if (ret < 0) {
 666                trace_kvm_failed_vr_set(i, strerror(errno));
 667                return ret;
 668            }
 669        }
 670    }
 671
 672    return 0;
 673}
 674
 675static int kvm_get_fp(CPUState *cs)
 676{
 677    PowerPCCPU *cpu = POWERPC_CPU(cs);
 678    CPUPPCState *env = &cpu->env;
 679    struct kvm_one_reg reg;
 680    int i;
 681    int ret;
 682
 683    if (env->insns_flags & PPC_FLOAT) {
 684        uint64_t fpscr;
 685        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
 686
 687        reg.id = KVM_REG_PPC_FPSCR;
 688        reg.addr = (uintptr_t)&fpscr;
 689        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 690        if (ret < 0) {
 691            trace_kvm_failed_fpscr_get(strerror(errno));
 692            return ret;
 693        } else {
 694            env->fpscr = fpscr;
 695        }
 696
 697        for (i = 0; i < 32; i++) {
 698            uint64_t vsr[2];
 699            uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
 700            uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
 701
 702            reg.addr = (uintptr_t) &vsr;
 703            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
 704
 705            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 706            if (ret < 0) {
 707                trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
 708                                        strerror(errno));
 709                return ret;
 710            } else {
 711#ifdef HOST_WORDS_BIGENDIAN
 712                *fpr = vsr[0];
 713                if (vsx) {
 714                    *vsrl = vsr[1];
 715                }
 716#else
 717                *fpr = vsr[1];
 718                if (vsx) {
 719                    *vsrl = vsr[0];
 720                }
 721#endif
 722            }
 723        }
 724    }
 725
 726    if (env->insns_flags & PPC_ALTIVEC) {
 727        reg.id = KVM_REG_PPC_VSCR;
 728        reg.addr = (uintptr_t)&env->vscr;
 729        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 730        if (ret < 0) {
 731            trace_kvm_failed_vscr_get(strerror(errno));
 732            return ret;
 733        }
 734
 735        for (i = 0; i < 32; i++) {
 736            reg.id = KVM_REG_PPC_VR(i);
 737            reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
 738            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 739            if (ret < 0) {
 740                trace_kvm_failed_vr_get(i, strerror(errno));
 741                return ret;
 742            }
 743        }
 744    }
 745
 746    return 0;
 747}
 748
 749#if defined(TARGET_PPC64)
 750static int kvm_get_vpa(CPUState *cs)
 751{
 752    PowerPCCPU *cpu = POWERPC_CPU(cs);
 753    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 754    struct kvm_one_reg reg;
 755    int ret;
 756
 757    reg.id = KVM_REG_PPC_VPA_ADDR;
 758    reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 759    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 760    if (ret < 0) {
 761        trace_kvm_failed_vpa_addr_get(strerror(errno));
 762        return ret;
 763    }
 764
 765    assert((uintptr_t)&spapr_cpu->slb_shadow_size
 766           == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
 767    reg.id = KVM_REG_PPC_VPA_SLB;
 768    reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
 769    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 770    if (ret < 0) {
 771        trace_kvm_failed_slb_get(strerror(errno));
 772        return ret;
 773    }
 774
 775    assert((uintptr_t)&spapr_cpu->dtl_size
 776           == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
 777    reg.id = KVM_REG_PPC_VPA_DTL;
 778    reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
 779    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 780    if (ret < 0) {
 781        trace_kvm_failed_dtl_get(strerror(errno));
 782        return ret;
 783    }
 784
 785    return 0;
 786}
 787
 788static int kvm_put_vpa(CPUState *cs)
 789{
 790    PowerPCCPU *cpu = POWERPC_CPU(cs);
 791    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 792    struct kvm_one_reg reg;
 793    int ret;
 794
 795    /*
 796     * SLB shadow or DTL can't be registered unless a master VPA is
 797     * registered.  That means when restoring state, if a VPA *is*
 798     * registered, we need to set that up first.  If not, we need to
 799     * deregister the others before deregistering the master VPA
 800     */
 801    assert(spapr_cpu->vpa_addr
 802           || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
 803
 804    if (spapr_cpu->vpa_addr) {
 805        reg.id = KVM_REG_PPC_VPA_ADDR;
 806        reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 807        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 808        if (ret < 0) {
 809            trace_kvm_failed_vpa_addr_set(strerror(errno));
 810            return ret;
 811        }
 812    }
 813
 814    assert((uintptr_t)&spapr_cpu->slb_shadow_size
 815           == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
 816    reg.id = KVM_REG_PPC_VPA_SLB;
 817    reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
 818    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 819    if (ret < 0) {
 820        trace_kvm_failed_slb_set(strerror(errno));
 821        return ret;
 822    }
 823
 824    assert((uintptr_t)&spapr_cpu->dtl_size
 825           == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
 826    reg.id = KVM_REG_PPC_VPA_DTL;
 827    reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
 828    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 829    if (ret < 0) {
 830        trace_kvm_failed_dtl_set(strerror(errno));
 831        return ret;
 832    }
 833
 834    if (!spapr_cpu->vpa_addr) {
 835        reg.id = KVM_REG_PPC_VPA_ADDR;
 836        reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 837        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 838        if (ret < 0) {
 839            trace_kvm_failed_null_vpa_addr_set(strerror(errno));
 840            return ret;
 841        }
 842    }
 843
 844    return 0;
 845}
 846#endif /* TARGET_PPC64 */
 847
 848int kvmppc_put_books_sregs(PowerPCCPU *cpu)
 849{
 850    CPUPPCState *env = &cpu->env;
 851    struct kvm_sregs sregs;
 852    int i;
 853
 854    sregs.pvr = env->spr[SPR_PVR];
 855
 856    if (cpu->vhyp) {
 857        PPCVirtualHypervisorClass *vhc =
 858            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 859        sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
 860    } else {
 861        sregs.u.s.sdr1 = env->spr[SPR_SDR1];
 862    }
 863
 864    /* Sync SLB */
 865#ifdef TARGET_PPC64
 866    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
 867        sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
 868        if (env->slb[i].esid & SLB_ESID_V) {
 869            sregs.u.s.ppc64.slb[i].slbe |= i;
 870        }
 871        sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
 872    }
 873#endif
 874
 875    /* Sync SRs */
 876    for (i = 0; i < 16; i++) {
 877        sregs.u.s.ppc32.sr[i] = env->sr[i];
 878    }
 879
 880    /* Sync BATs */
 881    for (i = 0; i < 8; i++) {
 882        /* Beware. We have to swap upper and lower bits here */
 883        sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
 884            | env->DBAT[1][i];
 885        sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
 886            | env->IBAT[1][i];
 887    }
 888
 889    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
 890}
 891
 892int kvm_arch_put_registers(CPUState *cs, int level)
 893{
 894    PowerPCCPU *cpu = POWERPC_CPU(cs);
 895    CPUPPCState *env = &cpu->env;
 896    struct kvm_regs regs;
 897    int ret;
 898    int i;
 899
 900    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
 901    if (ret < 0) {
 902        return ret;
 903    }
 904
 905    regs.ctr = env->ctr;
 906    regs.lr  = env->lr;
 907    regs.xer = cpu_read_xer(env);
 908    regs.msr = env->msr;
 909    regs.pc = env->nip;
 910
 911    regs.srr0 = env->spr[SPR_SRR0];
 912    regs.srr1 = env->spr[SPR_SRR1];
 913
 914    regs.sprg0 = env->spr[SPR_SPRG0];
 915    regs.sprg1 = env->spr[SPR_SPRG1];
 916    regs.sprg2 = env->spr[SPR_SPRG2];
 917    regs.sprg3 = env->spr[SPR_SPRG3];
 918    regs.sprg4 = env->spr[SPR_SPRG4];
 919    regs.sprg5 = env->spr[SPR_SPRG5];
 920    regs.sprg6 = env->spr[SPR_SPRG6];
 921    regs.sprg7 = env->spr[SPR_SPRG7];
 922
 923    regs.pid = env->spr[SPR_BOOKE_PID];
 924
 925    for (i = 0; i < 32; i++) {
 926        regs.gpr[i] = env->gpr[i];
 927    }
 928
 929    regs.cr = 0;
 930    for (i = 0; i < 8; i++) {
 931        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
 932    }
 933
 934    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
 935    if (ret < 0) {
 936        return ret;
 937    }
 938
 939    kvm_put_fp(cs);
 940
 941    if (env->tlb_dirty) {
 942        kvm_sw_tlb_put(cpu);
 943        env->tlb_dirty = false;
 944    }
 945
 946    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
 947        ret = kvmppc_put_books_sregs(cpu);
 948        if (ret < 0) {
 949            return ret;
 950        }
 951    }
 952
 953    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
 954        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
 955    }
 956
 957    if (cap_one_reg) {
 958        int i;
 959
 960        /*
 961         * We deliberately ignore errors here, for kernels which have
 962         * the ONE_REG calls, but don't support the specific
 963         * registers, there's a reasonable chance things will still
 964         * work, at least until we try to migrate.
 965         */
 966        for (i = 0; i < 1024; i++) {
 967            uint64_t id = env->spr_cb[i].one_reg_id;
 968
 969            if (id != 0) {
 970                kvm_put_one_spr(cs, id, i);
 971            }
 972        }
 973
 974#ifdef TARGET_PPC64
 975        if (msr_ts) {
 976            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
 977                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
 978            }
 979            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
 980                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
 981            }
 982            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
 983            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
 984            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
 985            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
 986            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
 987            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
 988            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
 989            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
 990            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
 991            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
 992        }
 993
 994        if (cap_papr) {
 995            if (kvm_put_vpa(cs) < 0) {
 996                trace_kvm_failed_put_vpa();
 997            }
 998        }
 999
1000        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1001
1002        if (level > KVM_PUT_RUNTIME_STATE) {
1003            kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1004        }
1005#endif /* TARGET_PPC64 */
1006    }
1007
1008    return ret;
1009}
1010
1011static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1012{
1013     env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1014}
1015
1016static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1017{
1018    CPUPPCState *env = &cpu->env;
1019    struct kvm_sregs sregs;
1020    int ret;
1021
1022    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1023    if (ret < 0) {
1024        return ret;
1025    }
1026
1027    if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1028        env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1029        env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1030        env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1031        env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1032        env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1033        env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1034        env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1035        env->spr[SPR_DECR] = sregs.u.e.dec;
1036        env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1037        env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1038        env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1039    }
1040
1041    if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1042        env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1043        env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1044        env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1045        env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1046        env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1047    }
1048
1049    if (sregs.u.e.features & KVM_SREGS_E_64) {
1050        env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1051    }
1052
1053    if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1054        env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1055    }
1056
1057    if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1058        env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1059        kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1060        env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1061        kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1062        env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1063        kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1064        env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1065        kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1066        env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1067        kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1068        env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1069        kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1070        env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1071        kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1072        env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1073        kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1074        env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1075        kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1076        env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1077        kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1078        env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1079        kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1080        env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1081        kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1082        env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1083        kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1084        env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1085        kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1086        env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1087        kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1088        env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1089        kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1090
1091        if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1092            env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1093            kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1094            env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1095            kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1096            env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1097            kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1098        }
1099
1100        if (sregs.u.e.features & KVM_SREGS_E_PM) {
1101            env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1102            kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1103        }
1104
1105        if (sregs.u.e.features & KVM_SREGS_E_PC) {
1106            env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1107            kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1108            env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1109            kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1110        }
1111    }
1112
1113    if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1114        env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1115        env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1116        env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1117        env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1118        env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1119        env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1120        env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1121        env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1122        env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1123        env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1124    }
1125
1126    if (sregs.u.e.features & KVM_SREGS_EXP) {
1127        env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1128    }
1129
1130    if (sregs.u.e.features & KVM_SREGS_E_PD) {
1131        env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1132        env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1133    }
1134
1135    if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1136        env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1137        env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1138        env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1139
1140        if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1141            env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1142            env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1143        }
1144    }
1145
1146    return 0;
1147}
1148
1149static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1150{
1151    CPUPPCState *env = &cpu->env;
1152    struct kvm_sregs sregs;
1153    int ret;
1154    int i;
1155
1156    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1157    if (ret < 0) {
1158        return ret;
1159    }
1160
1161    if (!cpu->vhyp) {
1162        ppc_store_sdr1(env, sregs.u.s.sdr1);
1163    }
1164
1165    /* Sync SLB */
1166#ifdef TARGET_PPC64
1167    /*
1168     * The packed SLB array we get from KVM_GET_SREGS only contains
1169     * information about valid entries. So we flush our internal copy
1170     * to get rid of stale ones, then put all valid SLB entries back
1171     * in.
1172     */
1173    memset(env->slb, 0, sizeof(env->slb));
1174    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1175        target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1176        target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1177        /*
1178         * Only restore valid entries
1179         */
1180        if (rb & SLB_ESID_V) {
1181            ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1182        }
1183    }
1184#endif
1185
1186    /* Sync SRs */
1187    for (i = 0; i < 16; i++) {
1188        env->sr[i] = sregs.u.s.ppc32.sr[i];
1189    }
1190
1191    /* Sync BATs */
1192    for (i = 0; i < 8; i++) {
1193        env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1194        env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1195        env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1196        env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1197    }
1198
1199    return 0;
1200}
1201
1202int kvm_arch_get_registers(CPUState *cs)
1203{
1204    PowerPCCPU *cpu = POWERPC_CPU(cs);
1205    CPUPPCState *env = &cpu->env;
1206    struct kvm_regs regs;
1207    uint32_t cr;
1208    int i, ret;
1209
1210    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1211    if (ret < 0) {
1212        return ret;
1213    }
1214
1215    cr = regs.cr;
1216    for (i = 7; i >= 0; i--) {
1217        env->crf[i] = cr & 15;
1218        cr >>= 4;
1219    }
1220
1221    env->ctr = regs.ctr;
1222    env->lr = regs.lr;
1223    cpu_write_xer(env, regs.xer);
1224    env->msr = regs.msr;
1225    env->nip = regs.pc;
1226
1227    env->spr[SPR_SRR0] = regs.srr0;
1228    env->spr[SPR_SRR1] = regs.srr1;
1229
1230    env->spr[SPR_SPRG0] = regs.sprg0;
1231    env->spr[SPR_SPRG1] = regs.sprg1;
1232    env->spr[SPR_SPRG2] = regs.sprg2;
1233    env->spr[SPR_SPRG3] = regs.sprg3;
1234    env->spr[SPR_SPRG4] = regs.sprg4;
1235    env->spr[SPR_SPRG5] = regs.sprg5;
1236    env->spr[SPR_SPRG6] = regs.sprg6;
1237    env->spr[SPR_SPRG7] = regs.sprg7;
1238
1239    env->spr[SPR_BOOKE_PID] = regs.pid;
1240
1241    for (i = 0; i < 32; i++) {
1242        env->gpr[i] = regs.gpr[i];
1243    }
1244
1245    kvm_get_fp(cs);
1246
1247    if (cap_booke_sregs) {
1248        ret = kvmppc_get_booke_sregs(cpu);
1249        if (ret < 0) {
1250            return ret;
1251        }
1252    }
1253
1254    if (cap_segstate) {
1255        ret = kvmppc_get_books_sregs(cpu);
1256        if (ret < 0) {
1257            return ret;
1258        }
1259    }
1260
1261    if (cap_hior) {
1262        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1263    }
1264
1265    if (cap_one_reg) {
1266        int i;
1267
1268        /*
1269         * We deliberately ignore errors here, for kernels which have
1270         * the ONE_REG calls, but don't support the specific
1271         * registers, there's a reasonable chance things will still
1272         * work, at least until we try to migrate.
1273         */
1274        for (i = 0; i < 1024; i++) {
1275            uint64_t id = env->spr_cb[i].one_reg_id;
1276
1277            if (id != 0) {
1278                kvm_get_one_spr(cs, id, i);
1279            }
1280        }
1281
1282#ifdef TARGET_PPC64
1283        if (msr_ts) {
1284            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1285                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1286            }
1287            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1288                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1289            }
1290            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1291            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1292            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1293            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1294            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1295            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1296            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1297            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1298            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1299            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1300        }
1301
1302        if (cap_papr) {
1303            if (kvm_get_vpa(cs) < 0) {
1304                trace_kvm_failed_get_vpa();
1305            }
1306        }
1307
1308        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1309        kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1310#endif
1311    }
1312
1313    return 0;
1314}
1315
1316int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1317{
1318    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1319
1320    if (irq != PPC_INTERRUPT_EXT) {
1321        return 0;
1322    }
1323
1324    if (!kvm_enabled() || !cap_interrupt_unset) {
1325        return 0;
1326    }
1327
1328    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1329
1330    return 0;
1331}
1332
1333void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1334{
1335    return;
1336}
1337
1338MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1339{
1340    return MEMTXATTRS_UNSPECIFIED;
1341}
1342
1343int kvm_arch_process_async_events(CPUState *cs)
1344{
1345    return cs->halted;
1346}
1347
1348static int kvmppc_handle_halt(PowerPCCPU *cpu)
1349{
1350    CPUState *cs = CPU(cpu);
1351    CPUPPCState *env = &cpu->env;
1352
1353    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1354        cs->halted = 1;
1355        cs->exception_index = EXCP_HLT;
1356    }
1357
1358    return 0;
1359}
1360
1361/* map dcr access to existing qemu dcr emulation */
1362static int kvmppc_handle_dcr_read(CPUPPCState *env,
1363                                  uint32_t dcrn, uint32_t *data)
1364{
1365    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1366        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1367    }
1368
1369    return 0;
1370}
1371
1372static int kvmppc_handle_dcr_write(CPUPPCState *env,
1373                                   uint32_t dcrn, uint32_t data)
1374{
1375    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1376        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1377    }
1378
1379    return 0;
1380}
1381
1382int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1383{
1384    /* Mixed endian case is not handled */
1385    uint32_t sc = debug_inst_opcode;
1386
1387    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1388                            sizeof(sc), 0) ||
1389        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1390        return -EINVAL;
1391    }
1392
1393    return 0;
1394}
1395
1396int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1397{
1398    uint32_t sc;
1399
1400    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1401        sc != debug_inst_opcode ||
1402        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1403                            sizeof(sc), 1)) {
1404        return -EINVAL;
1405    }
1406
1407    return 0;
1408}
1409
1410static int find_hw_breakpoint(target_ulong addr, int type)
1411{
1412    int n;
1413
1414    assert((nb_hw_breakpoint + nb_hw_watchpoint)
1415           <= ARRAY_SIZE(hw_debug_points));
1416
1417    for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1418        if (hw_debug_points[n].addr == addr &&
1419             hw_debug_points[n].type == type) {
1420            return n;
1421        }
1422    }
1423
1424    return -1;
1425}
1426
1427static int find_hw_watchpoint(target_ulong addr, int *flag)
1428{
1429    int n;
1430
1431    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1432    if (n >= 0) {
1433        *flag = BP_MEM_ACCESS;
1434        return n;
1435    }
1436
1437    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1438    if (n >= 0) {
1439        *flag = BP_MEM_WRITE;
1440        return n;
1441    }
1442
1443    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1444    if (n >= 0) {
1445        *flag = BP_MEM_READ;
1446        return n;
1447    }
1448
1449    return -1;
1450}
1451
1452int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1453                                  target_ulong len, int type)
1454{
1455    if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1456        return -ENOBUFS;
1457    }
1458
1459    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1460    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1461
1462    switch (type) {
1463    case GDB_BREAKPOINT_HW:
1464        if (nb_hw_breakpoint >= max_hw_breakpoint) {
1465            return -ENOBUFS;
1466        }
1467
1468        if (find_hw_breakpoint(addr, type) >= 0) {
1469            return -EEXIST;
1470        }
1471
1472        nb_hw_breakpoint++;
1473        break;
1474
1475    case GDB_WATCHPOINT_WRITE:
1476    case GDB_WATCHPOINT_READ:
1477    case GDB_WATCHPOINT_ACCESS:
1478        if (nb_hw_watchpoint >= max_hw_watchpoint) {
1479            return -ENOBUFS;
1480        }
1481
1482        if (find_hw_breakpoint(addr, type) >= 0) {
1483            return -EEXIST;
1484        }
1485
1486        nb_hw_watchpoint++;
1487        break;
1488
1489    default:
1490        return -ENOSYS;
1491    }
1492
1493    return 0;
1494}
1495
1496int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1497                                  target_ulong len, int type)
1498{
1499    int n;
1500
1501    n = find_hw_breakpoint(addr, type);
1502    if (n < 0) {
1503        return -ENOENT;
1504    }
1505
1506    switch (type) {
1507    case GDB_BREAKPOINT_HW:
1508        nb_hw_breakpoint--;
1509        break;
1510
1511    case GDB_WATCHPOINT_WRITE:
1512    case GDB_WATCHPOINT_READ:
1513    case GDB_WATCHPOINT_ACCESS:
1514        nb_hw_watchpoint--;
1515        break;
1516
1517    default:
1518        return -ENOSYS;
1519    }
1520    hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1521
1522    return 0;
1523}
1524
1525void kvm_arch_remove_all_hw_breakpoints(void)
1526{
1527    nb_hw_breakpoint = nb_hw_watchpoint = 0;
1528}
1529
1530void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1531{
1532    int n;
1533
1534    /* Software Breakpoint updates */
1535    if (kvm_sw_breakpoints_active(cs)) {
1536        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1537    }
1538
1539    assert((nb_hw_breakpoint + nb_hw_watchpoint)
1540           <= ARRAY_SIZE(hw_debug_points));
1541    assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1542
1543    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1544        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1545        memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1546        for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1547            switch (hw_debug_points[n].type) {
1548            case GDB_BREAKPOINT_HW:
1549                dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1550                break;
1551            case GDB_WATCHPOINT_WRITE:
1552                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1553                break;
1554            case GDB_WATCHPOINT_READ:
1555                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1556                break;
1557            case GDB_WATCHPOINT_ACCESS:
1558                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1559                                        KVMPPC_DEBUG_WATCH_READ;
1560                break;
1561            default:
1562                cpu_abort(cs, "Unsupported breakpoint type\n");
1563            }
1564            dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1565        }
1566    }
1567}
1568
1569static int kvm_handle_hw_breakpoint(CPUState *cs,
1570                                    struct kvm_debug_exit_arch *arch_info)
1571{
1572    int handle = DEBUG_RETURN_GUEST;
1573    int n;
1574    int flag = 0;
1575
1576    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1577        if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1578            n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1579            if (n >= 0) {
1580                handle = DEBUG_RETURN_GDB;
1581            }
1582        } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1583                                        KVMPPC_DEBUG_WATCH_WRITE)) {
1584            n = find_hw_watchpoint(arch_info->address,  &flag);
1585            if (n >= 0) {
1586                handle = DEBUG_RETURN_GDB;
1587                cs->watchpoint_hit = &hw_watchpoint;
1588                hw_watchpoint.vaddr = hw_debug_points[n].addr;
1589                hw_watchpoint.flags = flag;
1590            }
1591        }
1592    }
1593    return handle;
1594}
1595
1596static int kvm_handle_singlestep(void)
1597{
1598    return DEBUG_RETURN_GDB;
1599}
1600
1601static int kvm_handle_sw_breakpoint(void)
1602{
1603    return DEBUG_RETURN_GDB;
1604}
1605
1606static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1607{
1608    CPUState *cs = CPU(cpu);
1609    CPUPPCState *env = &cpu->env;
1610    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1611
1612    if (cs->singlestep_enabled) {
1613        return kvm_handle_singlestep();
1614    }
1615
1616    if (arch_info->status) {
1617        return kvm_handle_hw_breakpoint(cs, arch_info);
1618    }
1619
1620    if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1621        return kvm_handle_sw_breakpoint();
1622    }
1623
1624    /*
1625     * QEMU is not able to handle debug exception, so inject
1626     * program exception to guest;
1627     * Yes program exception NOT debug exception !!
1628     * When QEMU is using debug resources then debug exception must
1629     * be always set. To achieve this we set MSR_DE and also set
1630     * MSRP_DEP so guest cannot change MSR_DE.
1631     * When emulating debug resource for guest we want guest
1632     * to control MSR_DE (enable/disable debug interrupt on need).
1633     * Supporting both configurations are NOT possible.
1634     * So the result is that we cannot share debug resources
1635     * between QEMU and Guest on BOOKE architecture.
1636     * In the current design QEMU gets the priority over guest,
1637     * this means that if QEMU is using debug resources then guest
1638     * cannot use them;
1639     * For software breakpoint QEMU uses a privileged instruction;
1640     * So there cannot be any reason that we are here for guest
1641     * set debug exception, only possibility is guest executed a
1642     * privileged / illegal instruction and that's why we are
1643     * injecting a program interrupt.
1644     */
1645    cpu_synchronize_state(cs);
1646    /*
1647     * env->nip is PC, so increment this by 4 to use
1648     * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1649     */
1650    env->nip += 4;
1651    cs->exception_index = POWERPC_EXCP_PROGRAM;
1652    env->error_code = POWERPC_EXCP_INVAL;
1653    ppc_cpu_do_interrupt(cs);
1654
1655    return DEBUG_RETURN_GUEST;
1656}
1657
1658int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1659{
1660    PowerPCCPU *cpu = POWERPC_CPU(cs);
1661    CPUPPCState *env = &cpu->env;
1662    int ret;
1663
1664    qemu_mutex_lock_iothread();
1665
1666    switch (run->exit_reason) {
1667    case KVM_EXIT_DCR:
1668        if (run->dcr.is_write) {
1669            trace_kvm_handle_dcr_write();
1670            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1671        } else {
1672            trace_kvm_handle_dcr_read();
1673            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1674        }
1675        break;
1676    case KVM_EXIT_HLT:
1677        trace_kvm_handle_halt();
1678        ret = kvmppc_handle_halt(cpu);
1679        break;
1680#if defined(TARGET_PPC64)
1681    case KVM_EXIT_PAPR_HCALL:
1682        trace_kvm_handle_papr_hcall();
1683        run->papr_hcall.ret = spapr_hypercall(cpu,
1684                                              run->papr_hcall.nr,
1685                                              run->papr_hcall.args);
1686        ret = 0;
1687        break;
1688#endif
1689    case KVM_EXIT_EPR:
1690        trace_kvm_handle_epr();
1691        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1692        ret = 0;
1693        break;
1694    case KVM_EXIT_WATCHDOG:
1695        trace_kvm_handle_watchdog_expiry();
1696        watchdog_perform_action();
1697        ret = 0;
1698        break;
1699
1700    case KVM_EXIT_DEBUG:
1701        trace_kvm_handle_debug_exception();
1702        if (kvm_handle_debug(cpu, run)) {
1703            ret = EXCP_DEBUG;
1704            break;
1705        }
1706        /* re-enter, this exception was guest-internal */
1707        ret = 0;
1708        break;
1709
1710#if defined(TARGET_PPC64)
1711    case KVM_EXIT_NMI:
1712        trace_kvm_handle_nmi_exception();
1713        ret = kvm_handle_nmi(cpu, run);
1714        break;
1715#endif
1716
1717    default:
1718        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1719        ret = -1;
1720        break;
1721    }
1722
1723    qemu_mutex_unlock_iothread();
1724    return ret;
1725}
1726
1727int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1728{
1729    CPUState *cs = CPU(cpu);
1730    uint32_t bits = tsr_bits;
1731    struct kvm_one_reg reg = {
1732        .id = KVM_REG_PPC_OR_TSR,
1733        .addr = (uintptr_t) &bits,
1734    };
1735
1736    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1737}
1738
1739int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1740{
1741
1742    CPUState *cs = CPU(cpu);
1743    uint32_t bits = tsr_bits;
1744    struct kvm_one_reg reg = {
1745        .id = KVM_REG_PPC_CLEAR_TSR,
1746        .addr = (uintptr_t) &bits,
1747    };
1748
1749    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1750}
1751
1752int kvmppc_set_tcr(PowerPCCPU *cpu)
1753{
1754    CPUState *cs = CPU(cpu);
1755    CPUPPCState *env = &cpu->env;
1756    uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1757
1758    struct kvm_one_reg reg = {
1759        .id = KVM_REG_PPC_TCR,
1760        .addr = (uintptr_t) &tcr,
1761    };
1762
1763    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1764}
1765
1766int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1767{
1768    CPUState *cs = CPU(cpu);
1769    int ret;
1770
1771    if (!kvm_enabled()) {
1772        return -1;
1773    }
1774
1775    if (!cap_ppc_watchdog) {
1776        printf("warning: KVM does not support watchdog");
1777        return -1;
1778    }
1779
1780    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1781    if (ret < 0) {
1782        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1783                __func__, strerror(-ret));
1784        return ret;
1785    }
1786
1787    return ret;
1788}
1789
1790static int read_cpuinfo(const char *field, char *value, int len)
1791{
1792    FILE *f;
1793    int ret = -1;
1794    int field_len = strlen(field);
1795    char line[512];
1796
1797    f = fopen("/proc/cpuinfo", "r");
1798    if (!f) {
1799        return -1;
1800    }
1801
1802    do {
1803        if (!fgets(line, sizeof(line), f)) {
1804            break;
1805        }
1806        if (!strncmp(line, field, field_len)) {
1807            pstrcpy(value, len, line);
1808            ret = 0;
1809            break;
1810        }
1811    } while (*line);
1812
1813    fclose(f);
1814
1815    return ret;
1816}
1817
1818static uint32_t kvmppc_get_tbfreq_procfs(void)
1819{
1820    char line[512];
1821    char *ns;
1822    uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1823    uint32_t tbfreq_procfs;
1824
1825    if (read_cpuinfo("timebase", line, sizeof(line))) {
1826        return tbfreq_fallback;
1827    }
1828
1829    ns = strchr(line, ':');
1830    if (!ns) {
1831        return tbfreq_fallback;
1832    }
1833
1834    tbfreq_procfs = atoi(++ns);
1835
1836    /* 0 is certainly not acceptable by the guest, return fallback value */
1837    return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1838}
1839
1840uint32_t kvmppc_get_tbfreq(void)
1841{
1842    static uint32_t cached_tbfreq;
1843
1844    if (!cached_tbfreq) {
1845        cached_tbfreq = kvmppc_get_tbfreq_procfs();
1846    }
1847
1848    return cached_tbfreq;
1849}
1850
1851bool kvmppc_get_host_serial(char **value)
1852{
1853    return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1854                               NULL);
1855}
1856
1857bool kvmppc_get_host_model(char **value)
1858{
1859    return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1860}
1861
1862/* Try to find a device tree node for a CPU with clock-frequency property */
1863static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1864{
1865    struct dirent *dirp;
1866    DIR *dp;
1867
1868    dp = opendir(PROC_DEVTREE_CPU);
1869    if (!dp) {
1870        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1871        return -1;
1872    }
1873
1874    buf[0] = '\0';
1875    while ((dirp = readdir(dp)) != NULL) {
1876        FILE *f;
1877        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1878                 dirp->d_name);
1879        f = fopen(buf, "r");
1880        if (f) {
1881            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1882            fclose(f);
1883            break;
1884        }
1885        buf[0] = '\0';
1886    }
1887    closedir(dp);
1888    if (buf[0] == '\0') {
1889        printf("Unknown host!\n");
1890        return -1;
1891    }
1892
1893    return 0;
1894}
1895
1896static uint64_t kvmppc_read_int_dt(const char *filename)
1897{
1898    union {
1899        uint32_t v32;
1900        uint64_t v64;
1901    } u;
1902    FILE *f;
1903    int len;
1904
1905    f = fopen(filename, "rb");
1906    if (!f) {
1907        return -1;
1908    }
1909
1910    len = fread(&u, 1, sizeof(u), f);
1911    fclose(f);
1912    switch (len) {
1913    case 4:
1914        /* property is a 32-bit quantity */
1915        return be32_to_cpu(u.v32);
1916    case 8:
1917        return be64_to_cpu(u.v64);
1918    }
1919
1920    return 0;
1921}
1922
1923/*
1924 * Read a CPU node property from the host device tree that's a single
1925 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1926 * (can't find or open the property, or doesn't understand the format)
1927 */
1928static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1929{
1930    char buf[PATH_MAX], *tmp;
1931    uint64_t val;
1932
1933    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1934        return -1;
1935    }
1936
1937    tmp = g_strdup_printf("%s/%s", buf, propname);
1938    val = kvmppc_read_int_dt(tmp);
1939    g_free(tmp);
1940
1941    return val;
1942}
1943
1944uint64_t kvmppc_get_clockfreq(void)
1945{
1946    return kvmppc_read_int_cpu_dt("clock-frequency");
1947}
1948
1949static int kvmppc_get_dec_bits(void)
1950{
1951    int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1952
1953    if (nr_bits > 0) {
1954        return nr_bits;
1955    }
1956    return 0;
1957}
1958
1959static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1960{
1961    CPUState *cs = env_cpu(env);
1962
1963    if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1964        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1965        return 0;
1966    }
1967
1968    return 1;
1969}
1970
1971int kvmppc_get_hasidle(CPUPPCState *env)
1972{
1973    struct kvm_ppc_pvinfo pvinfo;
1974
1975    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1976        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1977        return 1;
1978    }
1979
1980    return 0;
1981}
1982
1983int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1984{
1985    uint32_t *hc = (uint32_t *)buf;
1986    struct kvm_ppc_pvinfo pvinfo;
1987
1988    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1989        memcpy(buf, pvinfo.hcall, buf_len);
1990        return 0;
1991    }
1992
1993    /*
1994     * Fallback to always fail hypercalls regardless of endianness:
1995     *
1996     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
1997     *     li r3, -1
1998     *     b .+8       (becomes nop in wrong endian)
1999     *     bswap32(li r3, -1)
2000     */
2001
2002    hc[0] = cpu_to_be32(0x08000048);
2003    hc[1] = cpu_to_be32(0x3860ffff);
2004    hc[2] = cpu_to_be32(0x48000008);
2005    hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2006
2007    return 1;
2008}
2009
2010static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2011{
2012    return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2013}
2014
2015void kvmppc_enable_logical_ci_hcalls(void)
2016{
2017    /*
2018     * FIXME: it would be nice if we could detect the cases where
2019     * we're using a device which requires the in kernel
2020     * implementation of these hcalls, but the kernel lacks them and
2021     * produce a warning.
2022     */
2023    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2024    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2025}
2026
2027void kvmppc_enable_set_mode_hcall(void)
2028{
2029    kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2030}
2031
2032void kvmppc_enable_clear_ref_mod_hcalls(void)
2033{
2034    kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2035    kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2036}
2037
2038void kvmppc_enable_h_page_init(void)
2039{
2040    kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2041}
2042
2043void kvmppc_set_papr(PowerPCCPU *cpu)
2044{
2045    CPUState *cs = CPU(cpu);
2046    int ret;
2047
2048    if (!kvm_enabled()) {
2049        return;
2050    }
2051
2052    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2053    if (ret) {
2054        error_report("This vCPU type or KVM version does not support PAPR");
2055        exit(1);
2056    }
2057
2058    /*
2059     * Update the capability flag so we sync the right information
2060     * with kvm
2061     */
2062    cap_papr = 1;
2063}
2064
2065int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2066{
2067    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2068}
2069
2070void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2071{
2072    CPUState *cs = CPU(cpu);
2073    int ret;
2074
2075    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2076    if (ret && mpic_proxy) {
2077        error_report("This KVM version does not support EPR");
2078        exit(1);
2079    }
2080}
2081
2082bool kvmppc_get_fwnmi(void)
2083{
2084    return cap_fwnmi;
2085}
2086
2087int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2088{
2089    CPUState *cs = CPU(cpu);
2090
2091    return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2092}
2093
2094int kvmppc_smt_threads(void)
2095{
2096    return cap_ppc_smt ? cap_ppc_smt : 1;
2097}
2098
2099int kvmppc_set_smt_threads(int smt)
2100{
2101    int ret;
2102
2103    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2104    if (!ret) {
2105        cap_ppc_smt = smt;
2106    }
2107    return ret;
2108}
2109
2110void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2111{
2112    int i;
2113    GString *g;
2114    char *s;
2115
2116    assert(kvm_enabled());
2117    if (cap_ppc_smt_possible) {
2118        g = g_string_new("Available VSMT modes:");
2119        for (i = 63; i >= 0; i--) {
2120            if ((1UL << i) & cap_ppc_smt_possible) {
2121                g_string_append_printf(g, " %lu", (1UL << i));
2122            }
2123        }
2124        s = g_string_free(g, false);
2125        error_append_hint(errp, "%s.\n", s);
2126        g_free(s);
2127    } else {
2128        error_append_hint(errp,
2129                          "This KVM seems to be too old to support VSMT.\n");
2130    }
2131}
2132
2133
2134#ifdef TARGET_PPC64
2135uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2136{
2137    struct kvm_ppc_smmu_info info;
2138    long rampagesize, best_page_shift;
2139    int i;
2140
2141    /*
2142     * Find the largest hardware supported page size that's less than
2143     * or equal to the (logical) backing page size of guest RAM
2144     */
2145    kvm_get_smmu_info(&info, &error_fatal);
2146    rampagesize = qemu_minrampagesize();
2147    best_page_shift = 0;
2148
2149    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2150        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2151
2152        if (!sps->page_shift) {
2153            continue;
2154        }
2155
2156        if ((sps->page_shift > best_page_shift)
2157            && ((1UL << sps->page_shift) <= rampagesize)) {
2158            best_page_shift = sps->page_shift;
2159        }
2160    }
2161
2162    return 1ULL << (best_page_shift + hash_shift - 7);
2163}
2164#endif
2165
2166bool kvmppc_spapr_use_multitce(void)
2167{
2168    return cap_spapr_multitce;
2169}
2170
2171int kvmppc_spapr_enable_inkernel_multitce(void)
2172{
2173    int ret;
2174
2175    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2176                            H_PUT_TCE_INDIRECT, 1);
2177    if (!ret) {
2178        ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2179                                H_STUFF_TCE, 1);
2180    }
2181
2182    return ret;
2183}
2184
2185void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2186                              uint64_t bus_offset, uint32_t nb_table,
2187                              int *pfd, bool need_vfio)
2188{
2189    long len;
2190    int fd;
2191    void *table;
2192
2193    /*
2194     * Must set fd to -1 so we don't try to munmap when called for
2195     * destroying the table, which the upper layers -will- do
2196     */
2197    *pfd = -1;
2198    if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2199        return NULL;
2200    }
2201
2202    if (cap_spapr_tce_64) {
2203        struct kvm_create_spapr_tce_64 args = {
2204            .liobn = liobn,
2205            .page_shift = page_shift,
2206            .offset = bus_offset >> page_shift,
2207            .size = nb_table,
2208            .flags = 0
2209        };
2210        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2211        if (fd < 0) {
2212            fprintf(stderr,
2213                    "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2214                    liobn);
2215            return NULL;
2216        }
2217    } else if (cap_spapr_tce) {
2218        uint64_t window_size = (uint64_t) nb_table << page_shift;
2219        struct kvm_create_spapr_tce args = {
2220            .liobn = liobn,
2221            .window_size = window_size,
2222        };
2223        if ((window_size != args.window_size) || bus_offset) {
2224            return NULL;
2225        }
2226        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2227        if (fd < 0) {
2228            fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2229                    liobn);
2230            return NULL;
2231        }
2232    } else {
2233        return NULL;
2234    }
2235
2236    len = nb_table * sizeof(uint64_t);
2237    /* FIXME: round this up to page size */
2238
2239    table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2240    if (table == MAP_FAILED) {
2241        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2242                liobn);
2243        close(fd);
2244        return NULL;
2245    }
2246
2247    *pfd = fd;
2248    return table;
2249}
2250
2251int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2252{
2253    long len;
2254
2255    if (fd < 0) {
2256        return -1;
2257    }
2258
2259    len = nb_table * sizeof(uint64_t);
2260    if ((munmap(table, len) < 0) ||
2261        (close(fd) < 0)) {
2262        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2263                strerror(errno));
2264        /* Leak the table */
2265    }
2266
2267    return 0;
2268}
2269
2270int kvmppc_reset_htab(int shift_hint)
2271{
2272    uint32_t shift = shift_hint;
2273
2274    if (!kvm_enabled()) {
2275        /* Full emulation, tell caller to allocate htab itself */
2276        return 0;
2277    }
2278    if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2279        int ret;
2280        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2281        if (ret == -ENOTTY) {
2282            /*
2283             * At least some versions of PR KVM advertise the
2284             * capability, but don't implement the ioctl().  Oops.
2285             * Return 0 so that we allocate the htab in qemu, as is
2286             * correct for PR.
2287             */
2288            return 0;
2289        } else if (ret < 0) {
2290            return ret;
2291        }
2292        return shift;
2293    }
2294
2295    /*
2296     * We have a kernel that predates the htab reset calls.  For PR
2297     * KVM, we need to allocate the htab ourselves, for an HV KVM of
2298     * this era, it has allocated a 16MB fixed size hash table
2299     * already.
2300     */
2301    if (kvmppc_is_pr(kvm_state)) {
2302        /* PR - tell caller to allocate htab */
2303        return 0;
2304    } else {
2305        /* HV - assume 16MB kernel allocated htab */
2306        return 24;
2307    }
2308}
2309
2310static inline uint32_t mfpvr(void)
2311{
2312    uint32_t pvr;
2313
2314    asm ("mfpvr %0"
2315         : "=r"(pvr));
2316    return pvr;
2317}
2318
2319static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2320{
2321    if (on) {
2322        *word |= flags;
2323    } else {
2324        *word &= ~flags;
2325    }
2326}
2327
2328static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2329{
2330    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2331    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2332    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2333
2334    /* Now fix up the class with information we can query from the host */
2335    pcc->pvr = mfpvr();
2336
2337    alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2338                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2339    alter_insns(&pcc->insns_flags2, PPC2_VSX,
2340                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2341    alter_insns(&pcc->insns_flags2, PPC2_DFP,
2342                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2343
2344    if (dcache_size != -1) {
2345        pcc->l1_dcache_size = dcache_size;
2346    }
2347
2348    if (icache_size != -1) {
2349        pcc->l1_icache_size = icache_size;
2350    }
2351
2352#if defined(TARGET_PPC64)
2353    pcc->radix_page_info = kvm_get_radix_page_info();
2354
2355    if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2356        /*
2357         * POWER9 DD1 has some bugs which make it not really ISA 3.00
2358         * compliant.  More importantly, advertising ISA 3.00
2359         * architected mode may prevent guests from activating
2360         * necessary DD1 workarounds.
2361         */
2362        pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2363                                | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2364    }
2365#endif /* defined(TARGET_PPC64) */
2366}
2367
2368bool kvmppc_has_cap_epr(void)
2369{
2370    return cap_epr;
2371}
2372
2373bool kvmppc_has_cap_fixup_hcalls(void)
2374{
2375    return cap_fixup_hcalls;
2376}
2377
2378bool kvmppc_has_cap_htm(void)
2379{
2380    return cap_htm;
2381}
2382
2383bool kvmppc_has_cap_mmu_radix(void)
2384{
2385    return cap_mmu_radix;
2386}
2387
2388bool kvmppc_has_cap_mmu_hash_v3(void)
2389{
2390    return cap_mmu_hash_v3;
2391}
2392
2393static bool kvmppc_power8_host(void)
2394{
2395    bool ret = false;
2396#ifdef TARGET_PPC64
2397    {
2398        uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2399        ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2400              (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2401              (base_pvr == CPU_POWERPC_POWER8_BASE);
2402    }
2403#endif /* TARGET_PPC64 */
2404    return ret;
2405}
2406
2407static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2408{
2409    bool l1d_thread_priv_req = !kvmppc_power8_host();
2410
2411    if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2412        return 2;
2413    } else if ((!l1d_thread_priv_req ||
2414                c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2415               (c.character & c.character_mask
2416                & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2417        return 1;
2418    }
2419
2420    return 0;
2421}
2422
2423static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2424{
2425    if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2426        return 2;
2427    } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2428        return 1;
2429    }
2430
2431    return 0;
2432}
2433
2434static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2435{
2436    if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2437        (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2438        (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2439        return SPAPR_CAP_FIXED_NA;
2440    } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2441        return SPAPR_CAP_WORKAROUND;
2442    } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2443        return  SPAPR_CAP_FIXED_CCD;
2444    } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2445        return SPAPR_CAP_FIXED_IBS;
2446    }
2447
2448    return 0;
2449}
2450
2451static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2452{
2453    if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2454        return 1;
2455    }
2456    return 0;
2457}
2458
2459bool kvmppc_has_cap_xive(void)
2460{
2461    return cap_xive;
2462}
2463
2464static void kvmppc_get_cpu_characteristics(KVMState *s)
2465{
2466    struct kvm_ppc_cpu_char c;
2467    int ret;
2468
2469    /* Assume broken */
2470    cap_ppc_safe_cache = 0;
2471    cap_ppc_safe_bounds_check = 0;
2472    cap_ppc_safe_indirect_branch = 0;
2473
2474    ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2475    if (!ret) {
2476        return;
2477    }
2478    ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2479    if (ret < 0) {
2480        return;
2481    }
2482
2483    cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2484    cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2485    cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2486    cap_ppc_count_cache_flush_assist =
2487        parse_cap_ppc_count_cache_flush_assist(c);
2488}
2489
2490int kvmppc_get_cap_safe_cache(void)
2491{
2492    return cap_ppc_safe_cache;
2493}
2494
2495int kvmppc_get_cap_safe_bounds_check(void)
2496{
2497    return cap_ppc_safe_bounds_check;
2498}
2499
2500int kvmppc_get_cap_safe_indirect_branch(void)
2501{
2502    return cap_ppc_safe_indirect_branch;
2503}
2504
2505int kvmppc_get_cap_count_cache_flush_assist(void)
2506{
2507    return cap_ppc_count_cache_flush_assist;
2508}
2509
2510bool kvmppc_has_cap_nested_kvm_hv(void)
2511{
2512    return !!cap_ppc_nested_kvm_hv;
2513}
2514
2515int kvmppc_set_cap_nested_kvm_hv(int enable)
2516{
2517    return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2518}
2519
2520bool kvmppc_has_cap_spapr_vfio(void)
2521{
2522    return cap_spapr_vfio;
2523}
2524
2525int kvmppc_get_cap_large_decr(void)
2526{
2527    return cap_large_decr;
2528}
2529
2530int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2531{
2532    CPUState *cs = CPU(cpu);
2533    uint64_t lpcr;
2534
2535    kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2536    /* Do we need to modify the LPCR? */
2537    if (!!(lpcr & LPCR_LD) != !!enable) {
2538        if (enable) {
2539            lpcr |= LPCR_LD;
2540        } else {
2541            lpcr &= ~LPCR_LD;
2542        }
2543        kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2544        kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2545
2546        if (!!(lpcr & LPCR_LD) != !!enable) {
2547            return -1;
2548        }
2549    }
2550
2551    return 0;
2552}
2553
2554PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2555{
2556    uint32_t host_pvr = mfpvr();
2557    PowerPCCPUClass *pvr_pcc;
2558
2559    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2560    if (pvr_pcc == NULL) {
2561        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2562    }
2563
2564    return pvr_pcc;
2565}
2566
2567static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2568{
2569    MachineClass *mc = MACHINE_CLASS(oc);
2570
2571    mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2572}
2573
2574static int kvm_ppc_register_host_cpu_type(void)
2575{
2576    TypeInfo type_info = {
2577        .name = TYPE_HOST_POWERPC_CPU,
2578        .class_init = kvmppc_host_cpu_class_init,
2579    };
2580    PowerPCCPUClass *pvr_pcc;
2581    ObjectClass *oc;
2582    DeviceClass *dc;
2583    int i;
2584
2585    pvr_pcc = kvm_ppc_get_host_cpu_class();
2586    if (pvr_pcc == NULL) {
2587        return -1;
2588    }
2589    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2590    type_register(&type_info);
2591    /* override TCG default cpu type with 'host' cpu model */
2592    object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2593                         false, NULL);
2594
2595    oc = object_class_by_name(type_info.name);
2596    g_assert(oc);
2597
2598    /*
2599     * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2600     * we want "POWER8" to be a "family" alias that points to the current
2601     * host CPU type, too)
2602     */
2603    dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2604    for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2605        if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2606            char *suffix;
2607
2608            ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2609            suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2610            if (suffix) {
2611                *suffix = 0;
2612            }
2613            break;
2614        }
2615    }
2616
2617    return 0;
2618}
2619
2620int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2621{
2622    struct kvm_rtas_token_args args = {
2623        .token = token,
2624    };
2625
2626    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2627        return -ENOENT;
2628    }
2629
2630    strncpy(args.name, function, sizeof(args.name) - 1);
2631
2632    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2633}
2634
2635int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2636{
2637    struct kvm_get_htab_fd s = {
2638        .flags = write ? KVM_GET_HTAB_WRITE : 0,
2639        .start_index = index,
2640    };
2641    int ret;
2642
2643    if (!cap_htab_fd) {
2644        error_setg(errp, "KVM version doesn't support %s the HPT",
2645                   write ? "writing" : "reading");
2646        return -ENOTSUP;
2647    }
2648
2649    ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2650    if (ret < 0) {
2651        error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2652                   write ? "writing" : "reading", write ? "to" : "from",
2653                   strerror(errno));
2654        return -errno;
2655    }
2656
2657    return ret;
2658}
2659
2660int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2661{
2662    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2663    uint8_t buf[bufsize];
2664    ssize_t rc;
2665
2666    do {
2667        rc = read(fd, buf, bufsize);
2668        if (rc < 0) {
2669            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2670                    strerror(errno));
2671            return rc;
2672        } else if (rc) {
2673            uint8_t *buffer = buf;
2674            ssize_t n = rc;
2675            while (n) {
2676                struct kvm_get_htab_header *head =
2677                    (struct kvm_get_htab_header *) buffer;
2678                size_t chunksize = sizeof(*head) +
2679                     HASH_PTE_SIZE_64 * head->n_valid;
2680
2681                qemu_put_be32(f, head->index);
2682                qemu_put_be16(f, head->n_valid);
2683                qemu_put_be16(f, head->n_invalid);
2684                qemu_put_buffer(f, (void *)(head + 1),
2685                                HASH_PTE_SIZE_64 * head->n_valid);
2686
2687                buffer += chunksize;
2688                n -= chunksize;
2689            }
2690        }
2691    } while ((rc != 0)
2692             && ((max_ns < 0) ||
2693                 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2694
2695    return (rc == 0) ? 1 : 0;
2696}
2697
2698int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2699                           uint16_t n_valid, uint16_t n_invalid, Error **errp)
2700{
2701    struct kvm_get_htab_header *buf;
2702    size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2703    ssize_t rc;
2704
2705    buf = alloca(chunksize);
2706    buf->index = index;
2707    buf->n_valid = n_valid;
2708    buf->n_invalid = n_invalid;
2709
2710    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2711
2712    rc = write(fd, buf, chunksize);
2713    if (rc < 0) {
2714        error_setg_errno(errp, errno, "Error writing the KVM hash table");
2715        return -errno;
2716    }
2717    if (rc != chunksize) {
2718        /* We should never get a short write on a single chunk */
2719        error_setg(errp, "Short write while restoring the KVM hash table");
2720        return -ENOSPC;
2721    }
2722    return 0;
2723}
2724
2725bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2726{
2727    return true;
2728}
2729
2730void kvm_arch_init_irq_routing(KVMState *s)
2731{
2732}
2733
2734void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2735{
2736    int fd, rc;
2737    int i;
2738
2739    fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2740
2741    i = 0;
2742    while (i < n) {
2743        struct kvm_get_htab_header *hdr;
2744        int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2745        char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2746
2747        rc = read(fd, buf, sizeof(buf));
2748        if (rc < 0) {
2749            hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2750        }
2751
2752        hdr = (struct kvm_get_htab_header *)buf;
2753        while ((i < n) && ((char *)hdr < (buf + rc))) {
2754            int invalid = hdr->n_invalid, valid = hdr->n_valid;
2755
2756            if (hdr->index != (ptex + i)) {
2757                hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2758                         " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2759            }
2760
2761            if (n - i < valid) {
2762                valid = n - i;
2763            }
2764            memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2765            i += valid;
2766
2767            if ((n - i) < invalid) {
2768                invalid = n - i;
2769            }
2770            memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2771            i += invalid;
2772
2773            hdr = (struct kvm_get_htab_header *)
2774                ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2775        }
2776    }
2777
2778    close(fd);
2779}
2780
2781void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2782{
2783    int fd, rc;
2784    struct {
2785        struct kvm_get_htab_header hdr;
2786        uint64_t pte0;
2787        uint64_t pte1;
2788    } buf;
2789
2790    fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2791
2792    buf.hdr.n_valid = 1;
2793    buf.hdr.n_invalid = 0;
2794    buf.hdr.index = ptex;
2795    buf.pte0 = cpu_to_be64(pte0);
2796    buf.pte1 = cpu_to_be64(pte1);
2797
2798    rc = write(fd, &buf, sizeof(buf));
2799    if (rc != sizeof(buf)) {
2800        hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2801    }
2802    close(fd);
2803}
2804
2805int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2806                             uint64_t address, uint32_t data, PCIDevice *dev)
2807{
2808    return 0;
2809}
2810
2811int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2812                                int vector, PCIDevice *dev)
2813{
2814    return 0;
2815}
2816
2817int kvm_arch_release_virq_post(int virq)
2818{
2819    return 0;
2820}
2821
2822int kvm_arch_msi_data_to_gsi(uint32_t data)
2823{
2824    return data & 0xffff;
2825}
2826
2827#if defined(TARGET_PPC64)
2828int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2829{
2830    uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2831
2832    cpu_synchronize_state(CPU(cpu));
2833
2834    spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2835
2836    return 0;
2837}
2838#endif
2839
2840int kvmppc_enable_hwrng(void)
2841{
2842    if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2843        return -1;
2844    }
2845
2846    return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2847}
2848
2849void kvmppc_check_papr_resize_hpt(Error **errp)
2850{
2851    if (!kvm_enabled()) {
2852        return; /* No KVM, we're good */
2853    }
2854
2855    if (cap_resize_hpt) {
2856        return; /* Kernel has explicit support, we're good */
2857    }
2858
2859    /* Otherwise fallback on looking for PR KVM */
2860    if (kvmppc_is_pr(kvm_state)) {
2861        return;
2862    }
2863
2864    error_setg(errp,
2865               "Hash page table resizing not available with this KVM version");
2866}
2867
2868int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2869{
2870    CPUState *cs = CPU(cpu);
2871    struct kvm_ppc_resize_hpt rhpt = {
2872        .flags = flags,
2873        .shift = shift,
2874    };
2875
2876    if (!cap_resize_hpt) {
2877        return -ENOSYS;
2878    }
2879
2880    return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2881}
2882
2883int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2884{
2885    CPUState *cs = CPU(cpu);
2886    struct kvm_ppc_resize_hpt rhpt = {
2887        .flags = flags,
2888        .shift = shift,
2889    };
2890
2891    if (!cap_resize_hpt) {
2892        return -ENOSYS;
2893    }
2894
2895    return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2896}
2897
2898/*
2899 * This is a helper function to detect a post migration scenario
2900 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2901 * the guest kernel can't handle a PVR value other than the actual host
2902 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2903 *
2904 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2905 * (so, we're HV), return true. The workaround itself is done in
2906 * cpu_post_load.
2907 *
2908 * The order here is important: we'll only check for KVM PR as a
2909 * fallback if the guest kernel can't handle the situation itself.
2910 * We need to avoid as much as possible querying the running KVM type
2911 * in QEMU level.
2912 */
2913bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2914{
2915    CPUState *cs = CPU(cpu);
2916
2917    if (!kvm_enabled()) {
2918        return false;
2919    }
2920
2921    if (cap_ppc_pvr_compat) {
2922        return false;
2923    }
2924
2925    return !kvmppc_is_pr(cs->kvm_state);
2926}
2927
2928void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2929{
2930    CPUState *cs = CPU(cpu);
2931
2932    if (kvm_enabled()) {
2933        kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2934    }
2935}
2936
2937void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2938{
2939    CPUState *cs = CPU(cpu);
2940
2941    if (kvm_enabled()) {
2942        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2943    }
2944}
2945
2946bool kvm_arch_cpu_check_are_resettable(void)
2947{
2948    return true;
2949}
2950