qemu/target/ppc/machine.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "cpu.h"
   3#include "exec/exec-all.h"
   4#include "sysemu/kvm.h"
   5#include "helper_regs.h"
   6#include "mmu-hash64.h"
   7#include "migration/cpu.h"
   8#include "qapi/error.h"
   9#include "qemu/main-loop.h"
  10#include "kvm_ppc.h"
  11#include "exec/helper-proto.h"
  12
  13static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
  14{
  15    PowerPCCPU *cpu = opaque;
  16    CPUPPCState *env = &cpu->env;
  17    unsigned int i, j;
  18    target_ulong sdr1;
  19    uint32_t fpscr, vscr;
  20#if defined(TARGET_PPC64)
  21    int32_t slb_nr;
  22#endif
  23    target_ulong xer;
  24
  25    for (i = 0; i < 32; i++) {
  26        qemu_get_betls(f, &env->gpr[i]);
  27    }
  28#if !defined(TARGET_PPC64)
  29    for (i = 0; i < 32; i++) {
  30        qemu_get_betls(f, &env->gprh[i]);
  31    }
  32#endif
  33    qemu_get_betls(f, &env->lr);
  34    qemu_get_betls(f, &env->ctr);
  35    for (i = 0; i < 8; i++) {
  36        qemu_get_be32s(f, &env->crf[i]);
  37    }
  38    qemu_get_betls(f, &xer);
  39    cpu_write_xer(env, xer);
  40    qemu_get_betls(f, &env->reserve_addr);
  41    qemu_get_betls(f, &env->msr);
  42    for (i = 0; i < 4; i++) {
  43        qemu_get_betls(f, &env->tgpr[i]);
  44    }
  45    for (i = 0; i < 32; i++) {
  46        union {
  47            float64 d;
  48            uint64_t l;
  49        } u;
  50        u.l = qemu_get_be64(f);
  51        *cpu_fpr_ptr(env, i) = u.d;
  52    }
  53    qemu_get_be32s(f, &fpscr);
  54    env->fpscr = fpscr;
  55    qemu_get_sbe32s(f, &env->access_type);
  56#if defined(TARGET_PPC64)
  57    qemu_get_betls(f, &env->spr[SPR_ASR]);
  58    qemu_get_sbe32s(f, &slb_nr);
  59#endif
  60    qemu_get_betls(f, &sdr1);
  61    for (i = 0; i < 32; i++) {
  62        qemu_get_betls(f, &env->sr[i]);
  63    }
  64    for (i = 0; i < 2; i++) {
  65        for (j = 0; j < 8; j++) {
  66            qemu_get_betls(f, &env->DBAT[i][j]);
  67        }
  68    }
  69    for (i = 0; i < 2; i++) {
  70        for (j = 0; j < 8; j++) {
  71            qemu_get_betls(f, &env->IBAT[i][j]);
  72        }
  73    }
  74    qemu_get_sbe32s(f, &env->nb_tlb);
  75    qemu_get_sbe32s(f, &env->tlb_per_way);
  76    qemu_get_sbe32s(f, &env->nb_ways);
  77    qemu_get_sbe32s(f, &env->last_way);
  78    qemu_get_sbe32s(f, &env->id_tlbs);
  79    qemu_get_sbe32s(f, &env->nb_pids);
  80    if (env->tlb.tlb6) {
  81        /* XXX assumes 6xx */
  82        for (i = 0; i < env->nb_tlb; i++) {
  83            qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
  84            qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
  85            qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
  86        }
  87    }
  88    for (i = 0; i < 4; i++) {
  89        qemu_get_betls(f, &env->pb[i]);
  90    }
  91    for (i = 0; i < 1024; i++) {
  92        qemu_get_betls(f, &env->spr[i]);
  93    }
  94    if (!cpu->vhyp) {
  95        ppc_store_sdr1(env, sdr1);
  96    }
  97    qemu_get_be32s(f, &vscr);
  98    helper_mtvscr(env, vscr);
  99    qemu_get_be64s(f, &env->spe_acc);
 100    qemu_get_be32s(f, &env->spe_fscr);
 101    qemu_get_betls(f, &env->msr_mask);
 102    qemu_get_be32s(f, &env->flags);
 103    qemu_get_sbe32s(f, &env->error_code);
 104    qemu_get_be32s(f, &env->pending_interrupts);
 105    qemu_get_be32s(f, &env->irq_input_state);
 106    for (i = 0; i < POWERPC_EXCP_NB; i++) {
 107        qemu_get_betls(f, &env->excp_vectors[i]);
 108    }
 109    qemu_get_betls(f, &env->excp_prefix);
 110    qemu_get_betls(f, &env->ivor_mask);
 111    qemu_get_betls(f, &env->ivpr_mask);
 112    qemu_get_betls(f, &env->hreset_vector);
 113    qemu_get_betls(f, &env->nip);
 114    qemu_get_betls(f, &env->hflags);
 115    qemu_get_betls(f, &env->hflags_nmsr);
 116    qemu_get_sbe32(f); /* Discard unused mmu_idx */
 117    qemu_get_sbe32(f); /* Discard unused power_mode */
 118
 119    /* Recompute mmu indices */
 120    hreg_compute_mem_idx(env);
 121
 122    return 0;
 123}
 124
 125static int get_avr(QEMUFile *f, void *pv, size_t size,
 126                   const VMStateField *field)
 127{
 128    ppc_avr_t *v = pv;
 129
 130    v->u64[0] = qemu_get_be64(f);
 131    v->u64[1] = qemu_get_be64(f);
 132
 133    return 0;
 134}
 135
 136static int put_avr(QEMUFile *f, void *pv, size_t size,
 137                   const VMStateField *field, JSONWriter *vmdesc)
 138{
 139    ppc_avr_t *v = pv;
 140
 141    qemu_put_be64(f, v->u64[0]);
 142    qemu_put_be64(f, v->u64[1]);
 143    return 0;
 144}
 145
 146static const VMStateInfo vmstate_info_avr = {
 147    .name = "avr",
 148    .get  = get_avr,
 149    .put  = put_avr,
 150};
 151
 152#define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
 153    VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
 154
 155#define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
 156    VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
 157
 158static int get_fpr(QEMUFile *f, void *pv, size_t size,
 159                   const VMStateField *field)
 160{
 161    ppc_vsr_t *v = pv;
 162
 163    v->VsrD(0) = qemu_get_be64(f);
 164
 165    return 0;
 166}
 167
 168static int put_fpr(QEMUFile *f, void *pv, size_t size,
 169                   const VMStateField *field, JSONWriter *vmdesc)
 170{
 171    ppc_vsr_t *v = pv;
 172
 173    qemu_put_be64(f, v->VsrD(0));
 174    return 0;
 175}
 176
 177static const VMStateInfo vmstate_info_fpr = {
 178    .name = "fpr",
 179    .get  = get_fpr,
 180    .put  = put_fpr,
 181};
 182
 183#define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
 184    VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
 185
 186#define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
 187    VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
 188
 189static int get_vsr(QEMUFile *f, void *pv, size_t size,
 190                   const VMStateField *field)
 191{
 192    ppc_vsr_t *v = pv;
 193
 194    v->VsrD(1) = qemu_get_be64(f);
 195
 196    return 0;
 197}
 198
 199static int put_vsr(QEMUFile *f, void *pv, size_t size,
 200                   const VMStateField *field, JSONWriter *vmdesc)
 201{
 202    ppc_vsr_t *v = pv;
 203
 204    qemu_put_be64(f, v->VsrD(1));
 205    return 0;
 206}
 207
 208static const VMStateInfo vmstate_info_vsr = {
 209    .name = "vsr",
 210    .get  = get_vsr,
 211    .put  = put_vsr,
 212};
 213
 214#define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
 215    VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
 216
 217#define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
 218    VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
 219
 220static bool cpu_pre_2_8_migration(void *opaque, int version_id)
 221{
 222    PowerPCCPU *cpu = opaque;
 223
 224    return cpu->pre_2_8_migration;
 225}
 226
 227#if defined(TARGET_PPC64)
 228static bool cpu_pre_3_0_migration(void *opaque, int version_id)
 229{
 230    PowerPCCPU *cpu = opaque;
 231
 232    return cpu->pre_3_0_migration;
 233}
 234#endif
 235
 236static int cpu_pre_save(void *opaque)
 237{
 238    PowerPCCPU *cpu = opaque;
 239    CPUPPCState *env = &cpu->env;
 240    int i;
 241    uint64_t insns_compat_mask =
 242        PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
 243        | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
 244        | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
 245        | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
 246        | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
 247        | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
 248        | PPC_64B | PPC_64BX | PPC_ALTIVEC
 249        | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
 250    uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
 251        | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
 252        | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
 253        | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
 254        | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
 255        | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
 256
 257    env->spr[SPR_LR] = env->lr;
 258    env->spr[SPR_CTR] = env->ctr;
 259    env->spr[SPR_XER] = cpu_read_xer(env);
 260#if defined(TARGET_PPC64)
 261    env->spr[SPR_CFAR] = env->cfar;
 262#endif
 263    env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
 264
 265    for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
 266        env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
 267        env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
 268        env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
 269        env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
 270    }
 271    for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
 272        env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
 273        env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
 274        env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
 275        env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
 276    }
 277
 278    /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
 279    if (cpu->pre_2_8_migration) {
 280        /*
 281         * Mask out bits that got added to msr_mask since the versions
 282         * which stupidly included it in the migration stream.
 283         */
 284        target_ulong metamask = 0
 285#if defined(TARGET_PPC64)
 286            | (1ULL << MSR_TS0)
 287            | (1ULL << MSR_TS1)
 288#endif
 289            ;
 290        cpu->mig_msr_mask = env->msr_mask & ~metamask;
 291        cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
 292        /*
 293         * CPU models supported by old machines all have
 294         * PPC_MEM_TLBIE, so we set it unconditionally to allow
 295         * backward migration from a POWER9 host to a POWER8 host.
 296         */
 297        cpu->mig_insns_flags |= PPC_MEM_TLBIE;
 298        cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
 299        cpu->mig_nb_BATs = env->nb_BATs;
 300    }
 301    if (cpu->pre_3_0_migration) {
 302        if (cpu->hash64_opts) {
 303            cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
 304        }
 305    }
 306
 307    return 0;
 308}
 309
 310/*
 311 * Determine if a given PVR is a "close enough" match to the CPU
 312 * object.  For TCG and KVM PR it would probably be sufficient to
 313 * require an exact PVR match.  However for KVM HV the user is
 314 * restricted to a PVR exactly matching the host CPU.  The correct way
 315 * to handle this is to put the guest into an architected
 316 * compatibility mode.  However, to allow a more forgiving transition
 317 * and migration from before this was widely done, we allow migration
 318 * between sufficiently similar PVRs, as determined by the CPU class's
 319 * pvr_match() hook.
 320 */
 321static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
 322{
 323    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 324
 325    if (pvr == pcc->pvr) {
 326        return true;
 327    }
 328    return pcc->pvr_match(pcc, pvr);
 329}
 330
 331static int cpu_post_load(void *opaque, int version_id)
 332{
 333    PowerPCCPU *cpu = opaque;
 334    CPUPPCState *env = &cpu->env;
 335    int i;
 336    target_ulong msr;
 337
 338    /*
 339     * If we're operating in compat mode, we should be ok as long as
 340     * the destination supports the same compatibility mode.
 341     *
 342     * Otherwise, however, we require that the destination has exactly
 343     * the same CPU model as the source.
 344     */
 345
 346#if defined(TARGET_PPC64)
 347    if (cpu->compat_pvr) {
 348        uint32_t compat_pvr = cpu->compat_pvr;
 349        Error *local_err = NULL;
 350        int ret;
 351
 352        cpu->compat_pvr = 0;
 353        ret = ppc_set_compat(cpu, compat_pvr, &local_err);
 354        if (ret < 0) {
 355            error_report_err(local_err);
 356            return ret;
 357        }
 358    } else
 359#endif
 360    {
 361        if (!pvr_match(cpu, env->spr[SPR_PVR])) {
 362            return -EINVAL;
 363        }
 364    }
 365
 366    /*
 367     * If we're running with KVM HV, there is a chance that the guest
 368     * is running with KVM HV and its kernel does not have the
 369     * capability of dealing with a different PVR other than this
 370     * exact host PVR in KVM_SET_SREGS. If that happens, the
 371     * guest freezes after migration.
 372     *
 373     * The function kvmppc_pvr_workaround_required does this verification
 374     * by first checking if the kernel has the cap, returning true immediately
 375     * if that is the case. Otherwise, it checks if we're running in KVM PR.
 376     * If the guest kernel does not have the cap and we're not running KVM-PR
 377     * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
 378     * receive the PVR it expects as a workaround.
 379     *
 380     */
 381    if (kvmppc_pvr_workaround_required(cpu)) {
 382        env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
 383    }
 384
 385    env->lr = env->spr[SPR_LR];
 386    env->ctr = env->spr[SPR_CTR];
 387    cpu_write_xer(env, env->spr[SPR_XER]);
 388#if defined(TARGET_PPC64)
 389    env->cfar = env->spr[SPR_CFAR];
 390#endif
 391    env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
 392
 393    for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
 394        env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
 395        env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
 396        env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
 397        env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
 398    }
 399    for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
 400        env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
 401        env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
 402        env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
 403        env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
 404    }
 405
 406    if (!cpu->vhyp) {
 407        ppc_store_sdr1(env, env->spr[SPR_SDR1]);
 408    }
 409
 410    /*
 411     * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
 412     * before restoring
 413     */
 414    msr = env->msr;
 415    env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
 416    ppc_store_msr(env, msr);
 417
 418    hreg_compute_mem_idx(env);
 419
 420    return 0;
 421}
 422
 423static bool fpu_needed(void *opaque)
 424{
 425    PowerPCCPU *cpu = opaque;
 426
 427    return cpu->env.insns_flags & PPC_FLOAT;
 428}
 429
 430static const VMStateDescription vmstate_fpu = {
 431    .name = "cpu/fpu",
 432    .version_id = 1,
 433    .minimum_version_id = 1,
 434    .needed = fpu_needed,
 435    .fields = (VMStateField[]) {
 436        VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
 437        VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
 438        VMSTATE_END_OF_LIST()
 439    },
 440};
 441
 442static bool altivec_needed(void *opaque)
 443{
 444    PowerPCCPU *cpu = opaque;
 445
 446    return cpu->env.insns_flags & PPC_ALTIVEC;
 447}
 448
 449static int get_vscr(QEMUFile *f, void *opaque, size_t size,
 450                    const VMStateField *field)
 451{
 452    PowerPCCPU *cpu = opaque;
 453    helper_mtvscr(&cpu->env, qemu_get_be32(f));
 454    return 0;
 455}
 456
 457static int put_vscr(QEMUFile *f, void *opaque, size_t size,
 458                    const VMStateField *field, JSONWriter *vmdesc)
 459{
 460    PowerPCCPU *cpu = opaque;
 461    qemu_put_be32(f, helper_mfvscr(&cpu->env));
 462    return 0;
 463}
 464
 465static const VMStateInfo vmstate_vscr = {
 466    .name = "cpu/altivec/vscr",
 467    .get = get_vscr,
 468    .put = put_vscr,
 469};
 470
 471static const VMStateDescription vmstate_altivec = {
 472    .name = "cpu/altivec",
 473    .version_id = 1,
 474    .minimum_version_id = 1,
 475    .needed = altivec_needed,
 476    .fields = (VMStateField[]) {
 477        VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
 478        /*
 479         * Save the architecture value of the vscr, not the internally
 480         * expanded version.  Since this architecture value does not
 481         * exist in memory to be stored, this requires a but of hoop
 482         * jumping.  We want OFFSET=0 so that we effectively pass CPU
 483         * to the helper functions.
 484         */
 485        {
 486            .name = "vscr",
 487            .version_id = 0,
 488            .size = sizeof(uint32_t),
 489            .info = &vmstate_vscr,
 490            .flags = VMS_SINGLE,
 491            .offset = 0
 492        },
 493        VMSTATE_END_OF_LIST()
 494    },
 495};
 496
 497static bool vsx_needed(void *opaque)
 498{
 499    PowerPCCPU *cpu = opaque;
 500
 501    return cpu->env.insns_flags2 & PPC2_VSX;
 502}
 503
 504static const VMStateDescription vmstate_vsx = {
 505    .name = "cpu/vsx",
 506    .version_id = 1,
 507    .minimum_version_id = 1,
 508    .needed = vsx_needed,
 509    .fields = (VMStateField[]) {
 510        VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
 511        VMSTATE_END_OF_LIST()
 512    },
 513};
 514
 515#ifdef TARGET_PPC64
 516/* Transactional memory state */
 517static bool tm_needed(void *opaque)
 518{
 519    PowerPCCPU *cpu = opaque;
 520    CPUPPCState *env = &cpu->env;
 521    return msr_ts;
 522}
 523
 524static const VMStateDescription vmstate_tm = {
 525    .name = "cpu/tm",
 526    .version_id = 1,
 527    .minimum_version_id = 1,
 528    .minimum_version_id_old = 1,
 529    .needed = tm_needed,
 530    .fields      = (VMStateField []) {
 531        VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
 532        VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
 533        VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
 534        VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
 535        VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
 536        VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
 537        VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
 538        VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
 539        VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
 540        VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
 541        VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
 542        VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
 543        VMSTATE_END_OF_LIST()
 544    },
 545};
 546#endif
 547
 548static bool sr_needed(void *opaque)
 549{
 550#ifdef TARGET_PPC64
 551    PowerPCCPU *cpu = opaque;
 552
 553    return !mmu_is_64bit(cpu->env.mmu_model);
 554#else
 555    return true;
 556#endif
 557}
 558
 559static const VMStateDescription vmstate_sr = {
 560    .name = "cpu/sr",
 561    .version_id = 1,
 562    .minimum_version_id = 1,
 563    .needed = sr_needed,
 564    .fields = (VMStateField[]) {
 565        VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
 566        VMSTATE_END_OF_LIST()
 567    },
 568};
 569
 570#ifdef TARGET_PPC64
 571static int get_slbe(QEMUFile *f, void *pv, size_t size,
 572                    const VMStateField *field)
 573{
 574    ppc_slb_t *v = pv;
 575
 576    v->esid = qemu_get_be64(f);
 577    v->vsid = qemu_get_be64(f);
 578
 579    return 0;
 580}
 581
 582static int put_slbe(QEMUFile *f, void *pv, size_t size,
 583                    const VMStateField *field, JSONWriter *vmdesc)
 584{
 585    ppc_slb_t *v = pv;
 586
 587    qemu_put_be64(f, v->esid);
 588    qemu_put_be64(f, v->vsid);
 589    return 0;
 590}
 591
 592static const VMStateInfo vmstate_info_slbe = {
 593    .name = "slbe",
 594    .get  = get_slbe,
 595    .put  = put_slbe,
 596};
 597
 598#define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
 599    VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
 600
 601#define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
 602    VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
 603
 604static bool slb_needed(void *opaque)
 605{
 606    PowerPCCPU *cpu = opaque;
 607
 608    /* We don't support any of the old segment table based 64-bit CPUs */
 609    return mmu_is_64bit(cpu->env.mmu_model);
 610}
 611
 612static int slb_post_load(void *opaque, int version_id)
 613{
 614    PowerPCCPU *cpu = opaque;
 615    CPUPPCState *env = &cpu->env;
 616    int i;
 617
 618    /*
 619     * We've pulled in the raw esid and vsid values from the migration
 620     * stream, but we need to recompute the page size pointers
 621     */
 622    for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
 623        if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
 624            /* Migration source had bad values in its SLB */
 625            return -1;
 626        }
 627    }
 628
 629    return 0;
 630}
 631
 632static const VMStateDescription vmstate_slb = {
 633    .name = "cpu/slb",
 634    .version_id = 1,
 635    .minimum_version_id = 1,
 636    .needed = slb_needed,
 637    .post_load = slb_post_load,
 638    .fields = (VMStateField[]) {
 639        VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
 640        VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
 641        VMSTATE_END_OF_LIST()
 642    }
 643};
 644#endif /* TARGET_PPC64 */
 645
 646static const VMStateDescription vmstate_tlb6xx_entry = {
 647    .name = "cpu/tlb6xx_entry",
 648    .version_id = 1,
 649    .minimum_version_id = 1,
 650    .fields = (VMStateField[]) {
 651        VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
 652        VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
 653        VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
 654        VMSTATE_END_OF_LIST()
 655    },
 656};
 657
 658static bool tlb6xx_needed(void *opaque)
 659{
 660    PowerPCCPU *cpu = opaque;
 661    CPUPPCState *env = &cpu->env;
 662
 663    return env->nb_tlb && (env->tlb_type == TLB_6XX);
 664}
 665
 666static const VMStateDescription vmstate_tlb6xx = {
 667    .name = "cpu/tlb6xx",
 668    .version_id = 1,
 669    .minimum_version_id = 1,
 670    .needed = tlb6xx_needed,
 671    .fields = (VMStateField[]) {
 672        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
 673        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
 674                                            env.nb_tlb,
 675                                            vmstate_tlb6xx_entry,
 676                                            ppc6xx_tlb_t),
 677        VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
 678        VMSTATE_END_OF_LIST()
 679    }
 680};
 681
 682static const VMStateDescription vmstate_tlbemb_entry = {
 683    .name = "cpu/tlbemb_entry",
 684    .version_id = 1,
 685    .minimum_version_id = 1,
 686    .fields = (VMStateField[]) {
 687        VMSTATE_UINT64(RPN, ppcemb_tlb_t),
 688        VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
 689        VMSTATE_UINTTL(PID, ppcemb_tlb_t),
 690        VMSTATE_UINTTL(size, ppcemb_tlb_t),
 691        VMSTATE_UINT32(prot, ppcemb_tlb_t),
 692        VMSTATE_UINT32(attr, ppcemb_tlb_t),
 693        VMSTATE_END_OF_LIST()
 694    },
 695};
 696
 697static bool tlbemb_needed(void *opaque)
 698{
 699    PowerPCCPU *cpu = opaque;
 700    CPUPPCState *env = &cpu->env;
 701
 702    return env->nb_tlb && (env->tlb_type == TLB_EMB);
 703}
 704
 705static bool pbr403_needed(void *opaque)
 706{
 707    PowerPCCPU *cpu = opaque;
 708    uint32_t pvr = cpu->env.spr[SPR_PVR];
 709
 710    return (pvr & 0xffff0000) == 0x00200000;
 711}
 712
 713static const VMStateDescription vmstate_pbr403 = {
 714    .name = "cpu/pbr403",
 715    .version_id = 1,
 716    .minimum_version_id = 1,
 717    .needed = pbr403_needed,
 718    .fields = (VMStateField[]) {
 719        VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
 720        VMSTATE_END_OF_LIST()
 721    },
 722};
 723
 724static const VMStateDescription vmstate_tlbemb = {
 725    .name = "cpu/tlb6xx",
 726    .version_id = 1,
 727    .minimum_version_id = 1,
 728    .needed = tlbemb_needed,
 729    .fields = (VMStateField[]) {
 730        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
 731        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
 732                                            env.nb_tlb,
 733                                            vmstate_tlbemb_entry,
 734                                            ppcemb_tlb_t),
 735        /* 403 protection registers */
 736        VMSTATE_END_OF_LIST()
 737    },
 738    .subsections = (const VMStateDescription*[]) {
 739        &vmstate_pbr403,
 740        NULL
 741    }
 742};
 743
 744static const VMStateDescription vmstate_tlbmas_entry = {
 745    .name = "cpu/tlbmas_entry",
 746    .version_id = 1,
 747    .minimum_version_id = 1,
 748    .fields = (VMStateField[]) {
 749        VMSTATE_UINT32(mas8, ppcmas_tlb_t),
 750        VMSTATE_UINT32(mas1, ppcmas_tlb_t),
 751        VMSTATE_UINT64(mas2, ppcmas_tlb_t),
 752        VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
 753        VMSTATE_END_OF_LIST()
 754    },
 755};
 756
 757static bool tlbmas_needed(void *opaque)
 758{
 759    PowerPCCPU *cpu = opaque;
 760    CPUPPCState *env = &cpu->env;
 761
 762    return env->nb_tlb && (env->tlb_type == TLB_MAS);
 763}
 764
 765static const VMStateDescription vmstate_tlbmas = {
 766    .name = "cpu/tlbmas",
 767    .version_id = 1,
 768    .minimum_version_id = 1,
 769    .needed = tlbmas_needed,
 770    .fields = (VMStateField[]) {
 771        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
 772        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
 773                                            env.nb_tlb,
 774                                            vmstate_tlbmas_entry,
 775                                            ppcmas_tlb_t),
 776        VMSTATE_END_OF_LIST()
 777    }
 778};
 779
 780static bool compat_needed(void *opaque)
 781{
 782    PowerPCCPU *cpu = opaque;
 783
 784    assert(!(cpu->compat_pvr && !cpu->vhyp));
 785    return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
 786}
 787
 788static const VMStateDescription vmstate_compat = {
 789    .name = "cpu/compat",
 790    .version_id = 1,
 791    .minimum_version_id = 1,
 792    .needed = compat_needed,
 793    .fields = (VMStateField[]) {
 794        VMSTATE_UINT32(compat_pvr, PowerPCCPU),
 795        VMSTATE_END_OF_LIST()
 796    }
 797};
 798
 799const VMStateDescription vmstate_ppc_cpu = {
 800    .name = "cpu",
 801    .version_id = 5,
 802    .minimum_version_id = 5,
 803    .minimum_version_id_old = 4,
 804    .load_state_old = cpu_load_old,
 805    .pre_save = cpu_pre_save,
 806    .post_load = cpu_post_load,
 807    .fields = (VMStateField[]) {
 808        VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
 809
 810        /* User mode architected state */
 811        VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
 812#if !defined(TARGET_PPC64)
 813        VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
 814#endif
 815        VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
 816        VMSTATE_UINTTL(env.nip, PowerPCCPU),
 817
 818        /* SPRs */
 819        VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
 820        VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
 821
 822        /* Reservation */
 823        VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
 824
 825        /* Supervisor mode architected state */
 826        VMSTATE_UINTTL(env.msr, PowerPCCPU),
 827
 828        /* Internal state */
 829        VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
 830        /* FIXME: access_type? */
 831
 832        /* Sanity checking */
 833        VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
 834        VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
 835        VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
 836                            cpu_pre_2_8_migration),
 837        VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
 838        VMSTATE_END_OF_LIST()
 839    },
 840    .subsections = (const VMStateDescription*[]) {
 841        &vmstate_fpu,
 842        &vmstate_altivec,
 843        &vmstate_vsx,
 844        &vmstate_sr,
 845#ifdef TARGET_PPC64
 846        &vmstate_tm,
 847        &vmstate_slb,
 848#endif /* TARGET_PPC64 */
 849        &vmstate_tlb6xx,
 850        &vmstate_tlbemb,
 851        &vmstate_tlbmas,
 852        &vmstate_compat,
 853        NULL
 854    }
 855};
 856