qemu/target/ppc/mmu-hash64.c
<<
>>
Prefs
   1/*
   2 *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *  Copyright (c) 2013 David Gibson, IBM Corporation
   6 *
   7 * This library is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU Lesser General Public
   9 * License as published by the Free Software Foundation; either
  10 * version 2.1 of the License, or (at your option) any later version.
  11 *
  12 * This library is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * Lesser General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU Lesser General Public
  18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20#include "qemu/osdep.h"
  21#include "qemu/units.h"
  22#include "cpu.h"
  23#include "exec/exec-all.h"
  24#include "exec/helper-proto.h"
  25#include "qemu/error-report.h"
  26#include "qemu/qemu-print.h"
  27#include "sysemu/hw_accel.h"
  28#include "kvm_ppc.h"
  29#include "mmu-hash64.h"
  30#include "exec/log.h"
  31#include "hw/hw.h"
  32#include "mmu-book3s-v3.h"
  33
  34/* #define DEBUG_SLB */
  35
  36#ifdef DEBUG_SLB
  37#  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
  38#else
  39#  define LOG_SLB(...) do { } while (0)
  40#endif
  41
  42/*
  43 * SLB handling
  44 */
  45
  46static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
  47{
  48    CPUPPCState *env = &cpu->env;
  49    uint64_t esid_256M, esid_1T;
  50    int n;
  51
  52    LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
  53
  54    esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
  55    esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
  56
  57    for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
  58        ppc_slb_t *slb = &env->slb[n];
  59
  60        LOG_SLB("%s: slot %d %016" PRIx64 " %016"
  61                    PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
  62        /*
  63         * We check for 1T matches on all MMUs here - if the MMU
  64         * doesn't have 1T segment support, we will have prevented 1T
  65         * entries from being inserted in the slbmte code.
  66         */
  67        if (((slb->esid == esid_256M) &&
  68             ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
  69            || ((slb->esid == esid_1T) &&
  70                ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
  71            return slb;
  72        }
  73    }
  74
  75    return NULL;
  76}
  77
  78void dump_slb(PowerPCCPU *cpu)
  79{
  80    CPUPPCState *env = &cpu->env;
  81    int i;
  82    uint64_t slbe, slbv;
  83
  84    cpu_synchronize_state(CPU(cpu));
  85
  86    qemu_printf("SLB\tESID\t\t\tVSID\n");
  87    for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
  88        slbe = env->slb[i].esid;
  89        slbv = env->slb[i].vsid;
  90        if (slbe == 0 && slbv == 0) {
  91            continue;
  92        }
  93        qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
  94                    i, slbe, slbv);
  95    }
  96}
  97
  98void helper_slbia(CPUPPCState *env, uint32_t ih)
  99{
 100    PowerPCCPU *cpu = env_archcpu(env);
 101    int starting_entry;
 102    int n;
 103
 104    /*
 105     * slbia must always flush all TLB (which is equivalent to ERAT in ppc
 106     * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
 107     * can overwrite a valid SLB without flushing its lookaside information.
 108     *
 109     * It would be possible to keep the TLB in synch with the SLB by flushing
 110     * when a valid entry is overwritten by slbmte, and therefore slbia would
 111     * not have to flush unless it evicts a valid SLB entry. However it is
 112     * expected that slbmte is more common than slbia, and slbia is usually
 113     * going to evict valid SLB entries, so that tradeoff is unlikely to be a
 114     * good one.
 115     *
 116     * ISA v2.05 introduced IH field with values 0,1,2,6. These all invalidate
 117     * the same SLB entries (everything but entry 0), but differ in what
 118     * "lookaside information" is invalidated. TCG can ignore this and flush
 119     * everything.
 120     *
 121     * ISA v3.0 introduced additional values 3,4,7, which change what SLBs are
 122     * invalidated.
 123     */
 124
 125    env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
 126
 127    starting_entry = 1; /* default for IH=0,1,2,6 */
 128
 129    if (env->mmu_model == POWERPC_MMU_3_00) {
 130        switch (ih) {
 131        case 0x7:
 132            /* invalidate no SLBs, but all lookaside information */
 133            return;
 134
 135        case 0x3:
 136        case 0x4:
 137            /* also considers SLB entry 0 */
 138            starting_entry = 0;
 139            break;
 140
 141        case 0x5:
 142            /* treat undefined values as ih==0, and warn */
 143            qemu_log_mask(LOG_GUEST_ERROR,
 144                          "slbia undefined IH field %u.\n", ih);
 145            break;
 146
 147        default:
 148            /* 0,1,2,6 */
 149            break;
 150        }
 151    }
 152
 153    for (n = starting_entry; n < cpu->hash64_opts->slb_size; n++) {
 154        ppc_slb_t *slb = &env->slb[n];
 155
 156        if (!(slb->esid & SLB_ESID_V)) {
 157            continue;
 158        }
 159        if (env->mmu_model == POWERPC_MMU_3_00) {
 160            if (ih == 0x3 && (slb->vsid & SLB_VSID_C) == 0) {
 161                /* preserves entries with a class value of 0 */
 162                continue;
 163            }
 164        }
 165
 166        slb->esid &= ~SLB_ESID_V;
 167    }
 168}
 169
 170static void __helper_slbie(CPUPPCState *env, target_ulong addr,
 171                           target_ulong global)
 172{
 173    PowerPCCPU *cpu = env_archcpu(env);
 174    ppc_slb_t *slb;
 175
 176    slb = slb_lookup(cpu, addr);
 177    if (!slb) {
 178        return;
 179    }
 180
 181    if (slb->esid & SLB_ESID_V) {
 182        slb->esid &= ~SLB_ESID_V;
 183
 184        /*
 185         * XXX: given the fact that segment size is 256 MB or 1TB,
 186         *      and we still don't have a tlb_flush_mask(env, n, mask)
 187         *      in QEMU, we just invalidate all TLBs
 188         */
 189        env->tlb_need_flush |=
 190            (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
 191    }
 192}
 193
 194void helper_slbie(CPUPPCState *env, target_ulong addr)
 195{
 196    __helper_slbie(env, addr, false);
 197}
 198
 199void helper_slbieg(CPUPPCState *env, target_ulong addr)
 200{
 201    __helper_slbie(env, addr, true);
 202}
 203
 204int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
 205                  target_ulong esid, target_ulong vsid)
 206{
 207    CPUPPCState *env = &cpu->env;
 208    ppc_slb_t *slb = &env->slb[slot];
 209    const PPCHash64SegmentPageSizes *sps = NULL;
 210    int i;
 211
 212    if (slot >= cpu->hash64_opts->slb_size) {
 213        return -1; /* Bad slot number */
 214    }
 215    if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
 216        return -1; /* Reserved bits set */
 217    }
 218    if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
 219        return -1; /* Bad segment size */
 220    }
 221    if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
 222        return -1; /* 1T segment on MMU that doesn't support it */
 223    }
 224
 225    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 226        const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
 227
 228        if (!sps1->page_shift) {
 229            break;
 230        }
 231
 232        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
 233            sps = sps1;
 234            break;
 235        }
 236    }
 237
 238    if (!sps) {
 239        error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
 240                     " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
 241                     slot, esid, vsid);
 242        return -1;
 243    }
 244
 245    slb->esid = esid;
 246    slb->vsid = vsid;
 247    slb->sps = sps;
 248
 249    LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
 250            " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
 251            slb->esid, slb->vsid);
 252
 253    return 0;
 254}
 255
 256static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
 257                             target_ulong *rt)
 258{
 259    CPUPPCState *env = &cpu->env;
 260    int slot = rb & 0xfff;
 261    ppc_slb_t *slb = &env->slb[slot];
 262
 263    if (slot >= cpu->hash64_opts->slb_size) {
 264        return -1;
 265    }
 266
 267    *rt = slb->esid;
 268    return 0;
 269}
 270
 271static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 272                             target_ulong *rt)
 273{
 274    CPUPPCState *env = &cpu->env;
 275    int slot = rb & 0xfff;
 276    ppc_slb_t *slb = &env->slb[slot];
 277
 278    if (slot >= cpu->hash64_opts->slb_size) {
 279        return -1;
 280    }
 281
 282    *rt = slb->vsid;
 283    return 0;
 284}
 285
 286static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 287                             target_ulong *rt)
 288{
 289    CPUPPCState *env = &cpu->env;
 290    ppc_slb_t *slb;
 291
 292    if (!msr_is_64bit(env, env->msr)) {
 293        rb &= 0xffffffff;
 294    }
 295    slb = slb_lookup(cpu, rb);
 296    if (slb == NULL) {
 297        *rt = (target_ulong)-1ul;
 298    } else {
 299        *rt = slb->vsid;
 300    }
 301    return 0;
 302}
 303
 304void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
 305{
 306    PowerPCCPU *cpu = env_archcpu(env);
 307
 308    if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
 309        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 310                               POWERPC_EXCP_INVAL, GETPC());
 311    }
 312}
 313
 314target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
 315{
 316    PowerPCCPU *cpu = env_archcpu(env);
 317    target_ulong rt = 0;
 318
 319    if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
 320        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 321                               POWERPC_EXCP_INVAL, GETPC());
 322    }
 323    return rt;
 324}
 325
 326target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
 327{
 328    PowerPCCPU *cpu = env_archcpu(env);
 329    target_ulong rt = 0;
 330
 331    if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
 332        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 333                               POWERPC_EXCP_INVAL, GETPC());
 334    }
 335    return rt;
 336}
 337
 338target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
 339{
 340    PowerPCCPU *cpu = env_archcpu(env);
 341    target_ulong rt = 0;
 342
 343    if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
 344        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 345                               POWERPC_EXCP_INVAL, GETPC());
 346    }
 347    return rt;
 348}
 349
 350/* Check No-Execute or Guarded Storage */
 351static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
 352                                              ppc_hash_pte64_t pte)
 353{
 354    /* Exec permissions CANNOT take away read or write permissions */
 355    return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
 356            PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 357}
 358
 359/* Check Basic Storage Protection */
 360static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
 361                               ppc_slb_t *slb, ppc_hash_pte64_t pte)
 362{
 363    CPUPPCState *env = &cpu->env;
 364    unsigned pp, key;
 365    /*
 366     * Some pp bit combinations have undefined behaviour, so default
 367     * to no access in those cases
 368     */
 369    int prot = 0;
 370
 371    key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
 372             : (slb->vsid & SLB_VSID_KS));
 373    pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
 374
 375    if (key == 0) {
 376        switch (pp) {
 377        case 0x0:
 378        case 0x1:
 379        case 0x2:
 380            prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 381            break;
 382
 383        case 0x3:
 384        case 0x6:
 385            prot = PAGE_READ | PAGE_EXEC;
 386            break;
 387        }
 388    } else {
 389        switch (pp) {
 390        case 0x0:
 391        case 0x6:
 392            break;
 393
 394        case 0x1:
 395        case 0x3:
 396            prot = PAGE_READ | PAGE_EXEC;
 397            break;
 398
 399        case 0x2:
 400            prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 401            break;
 402        }
 403    }
 404
 405    return prot;
 406}
 407
 408/* Check the instruction access permissions specified in the IAMR */
 409static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
 410{
 411    CPUPPCState *env = &cpu->env;
 412    int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
 413
 414    /*
 415     * An instruction fetch is permitted if the IAMR bit is 0.
 416     * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
 417     * can only take away EXEC permissions not READ or WRITE permissions.
 418     * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
 419     * EXEC permissions are allowed.
 420     */
 421    return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
 422                               PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 423}
 424
 425static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
 426{
 427    CPUPPCState *env = &cpu->env;
 428    int key, amrbits;
 429    int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 430
 431    /* Only recent MMUs implement Virtual Page Class Key Protection */
 432    if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
 433        return prot;
 434    }
 435
 436    key = HPTE64_R_KEY(pte.pte1);
 437    amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3;
 438
 439    /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
 440    /*         env->spr[SPR_AMR]); */
 441
 442    /*
 443     * A store is permitted if the AMR bit is 0. Remove write
 444     * protection if it is set.
 445     */
 446    if (amrbits & 0x2) {
 447        prot &= ~PAGE_WRITE;
 448    }
 449    /*
 450     * A load is permitted if the AMR bit is 0. Remove read
 451     * protection if it is set.
 452     */
 453    if (amrbits & 0x1) {
 454        prot &= ~PAGE_READ;
 455    }
 456
 457    switch (env->mmu_model) {
 458    /*
 459     * MMU version 2.07 and later support IAMR
 460     * Check if the IAMR allows the instruction access - it will return
 461     * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
 462     * if it does (and prot will be unchanged indicating execution support).
 463     */
 464    case POWERPC_MMU_2_07:
 465    case POWERPC_MMU_3_00:
 466        prot &= ppc_hash64_iamr_prot(cpu, key);
 467        break;
 468    default:
 469        break;
 470    }
 471
 472    return prot;
 473}
 474
 475const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
 476                                             hwaddr ptex, int n)
 477{
 478    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
 479    hwaddr base;
 480    hwaddr plen = n * HASH_PTE_SIZE_64;
 481    const ppc_hash_pte64_t *hptes;
 482
 483    if (cpu->vhyp) {
 484        PPCVirtualHypervisorClass *vhc =
 485            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 486        return vhc->map_hptes(cpu->vhyp, ptex, n);
 487    }
 488    base = ppc_hash64_hpt_base(cpu);
 489
 490    if (!base) {
 491        return NULL;
 492    }
 493
 494    hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
 495                              MEMTXATTRS_UNSPECIFIED);
 496    if (plen < (n * HASH_PTE_SIZE_64)) {
 497        hw_error("%s: Unable to map all requested HPTEs\n", __func__);
 498    }
 499    return hptes;
 500}
 501
 502void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
 503                            hwaddr ptex, int n)
 504{
 505    if (cpu->vhyp) {
 506        PPCVirtualHypervisorClass *vhc =
 507            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 508        vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
 509        return;
 510    }
 511
 512    address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
 513                        false, n * HASH_PTE_SIZE_64);
 514}
 515
 516static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
 517                                uint64_t pte0, uint64_t pte1)
 518{
 519    int i;
 520
 521    if (!(pte0 & HPTE64_V_LARGE)) {
 522        if (sps->page_shift != 12) {
 523            /* 4kiB page in a non 4kiB segment */
 524            return 0;
 525        }
 526        /* Normal 4kiB page */
 527        return 12;
 528    }
 529
 530    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 531        const PPCHash64PageSize *ps = &sps->enc[i];
 532        uint64_t mask;
 533
 534        if (!ps->page_shift) {
 535            break;
 536        }
 537
 538        if (ps->page_shift == 12) {
 539            /* L bit is set so this can't be a 4kiB page */
 540            continue;
 541        }
 542
 543        mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
 544
 545        if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
 546            return ps->page_shift;
 547        }
 548    }
 549
 550    return 0; /* Bad page size encoding */
 551}
 552
 553static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
 554{
 555    /* Insert B into pte0 */
 556    *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
 557            ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
 558             (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
 559
 560    /* Remove B from pte1 */
 561    *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
 562}
 563
 564
 565static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
 566                                     const PPCHash64SegmentPageSizes *sps,
 567                                     target_ulong ptem,
 568                                     ppc_hash_pte64_t *pte, unsigned *pshift)
 569{
 570    int i;
 571    const ppc_hash_pte64_t *pteg;
 572    target_ulong pte0, pte1;
 573    target_ulong ptex;
 574
 575    ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
 576    pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 577    if (!pteg) {
 578        return -1;
 579    }
 580    for (i = 0; i < HPTES_PER_GROUP; i++) {
 581        pte0 = ppc_hash64_hpte0(cpu, pteg, i);
 582        /*
 583         * pte0 contains the valid bit and must be read before pte1,
 584         * otherwise we might see an old pte1 with a new valid bit and
 585         * thus an inconsistent hpte value
 586         */
 587        smp_rmb();
 588        pte1 = ppc_hash64_hpte1(cpu, pteg, i);
 589
 590        /* Convert format if necessary */
 591        if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
 592            ppc64_v3_new_to_old_hpte(&pte0, &pte1);
 593        }
 594
 595        /* This compares V, B, H (secondary) and the AVPN */
 596        if (HPTE64_V_COMPARE(pte0, ptem)) {
 597            *pshift = hpte_page_shift(sps, pte0, pte1);
 598            /*
 599             * If there is no match, ignore the PTE, it could simply
 600             * be for a different segment size encoding and the
 601             * architecture specifies we should not match. Linux will
 602             * potentially leave behind PTEs for the wrong base page
 603             * size when demoting segments.
 604             */
 605            if (*pshift == 0) {
 606                continue;
 607            }
 608            /*
 609             * We don't do anything with pshift yet as qemu TLB only
 610             * deals with 4K pages anyway
 611             */
 612            pte->pte0 = pte0;
 613            pte->pte1 = pte1;
 614            ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
 615            return ptex + i;
 616        }
 617    }
 618    ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
 619    /*
 620     * We didn't find a valid entry.
 621     */
 622    return -1;
 623}
 624
 625static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
 626                                     ppc_slb_t *slb, target_ulong eaddr,
 627                                     ppc_hash_pte64_t *pte, unsigned *pshift)
 628{
 629    CPUPPCState *env = &cpu->env;
 630    hwaddr hash, ptex;
 631    uint64_t vsid, epnmask, epn, ptem;
 632    const PPCHash64SegmentPageSizes *sps = slb->sps;
 633
 634    /*
 635     * The SLB store path should prevent any bad page size encodings
 636     * getting in there, so:
 637     */
 638    assert(sps);
 639
 640    /* If ISL is set in LPCR we need to clamp the page size to 4K */
 641    if (env->spr[SPR_LPCR] & LPCR_ISL) {
 642        /* We assume that when using TCG, 4k is first entry of SPS */
 643        sps = &cpu->hash64_opts->sps[0];
 644        assert(sps->page_shift == 12);
 645    }
 646
 647    epnmask = ~((1ULL << sps->page_shift) - 1);
 648
 649    if (slb->vsid & SLB_VSID_B) {
 650        /* 1TB segment */
 651        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
 652        epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
 653        hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
 654    } else {
 655        /* 256M segment */
 656        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
 657        epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
 658        hash = vsid ^ (epn >> sps->page_shift);
 659    }
 660    ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
 661    ptem |= HPTE64_V_VALID;
 662
 663    /* Page address translation */
 664    qemu_log_mask(CPU_LOG_MMU,
 665            "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
 666            " hash " TARGET_FMT_plx "\n",
 667            ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
 668
 669    /* Primary PTEG lookup */
 670    qemu_log_mask(CPU_LOG_MMU,
 671            "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 672            " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
 673            " hash=" TARGET_FMT_plx "\n",
 674            ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
 675            vsid, ptem,  hash);
 676    ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
 677
 678    if (ptex == -1) {
 679        /* Secondary PTEG lookup */
 680        ptem |= HPTE64_V_SECONDARY;
 681        qemu_log_mask(CPU_LOG_MMU,
 682                "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 683                " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
 684                " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
 685                ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
 686
 687        ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
 688    }
 689
 690    return ptex;
 691}
 692
 693unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
 694                                          uint64_t pte0, uint64_t pte1)
 695{
 696    int i;
 697
 698    if (!(pte0 & HPTE64_V_LARGE)) {
 699        return 12;
 700    }
 701
 702    /*
 703     * The encodings in env->sps need to be carefully chosen so that
 704     * this gives an unambiguous result.
 705     */
 706    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 707        const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
 708        unsigned shift;
 709
 710        if (!sps->page_shift) {
 711            break;
 712        }
 713
 714        shift = hpte_page_shift(sps, pte0, pte1);
 715        if (shift) {
 716            return shift;
 717        }
 718    }
 719
 720    return 0;
 721}
 722
 723static bool ppc_hash64_use_vrma(CPUPPCState *env)
 724{
 725    switch (env->mmu_model) {
 726    case POWERPC_MMU_3_00:
 727        /*
 728         * ISAv3.0 (POWER9) always uses VRMA, the VPM0 field and RMOR
 729         * register no longer exist
 730         */
 731        return true;
 732
 733    default:
 734        return !!(env->spr[SPR_LPCR] & LPCR_VPM0);
 735    }
 736}
 737
 738static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
 739{
 740    CPUPPCState *env = &POWERPC_CPU(cs)->env;
 741    bool vpm;
 742
 743    if (msr_ir) {
 744        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 745    } else {
 746        vpm = ppc_hash64_use_vrma(env);
 747    }
 748    if (vpm && !msr_hv) {
 749        cs->exception_index = POWERPC_EXCP_HISI;
 750    } else {
 751        cs->exception_index = POWERPC_EXCP_ISI;
 752    }
 753    env->error_code = error_code;
 754}
 755
 756static void ppc_hash64_set_dsi(CPUState *cs, uint64_t dar, uint64_t dsisr)
 757{
 758    CPUPPCState *env = &POWERPC_CPU(cs)->env;
 759    bool vpm;
 760
 761    if (msr_dr) {
 762        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 763    } else {
 764        vpm = ppc_hash64_use_vrma(env);
 765    }
 766    if (vpm && !msr_hv) {
 767        cs->exception_index = POWERPC_EXCP_HDSI;
 768        env->spr[SPR_HDAR] = dar;
 769        env->spr[SPR_HDSISR] = dsisr;
 770    } else {
 771        cs->exception_index = POWERPC_EXCP_DSI;
 772        env->spr[SPR_DAR] = dar;
 773        env->spr[SPR_DSISR] = dsisr;
 774   }
 775    env->error_code = 0;
 776}
 777
 778
 779static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
 780{
 781    hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 16;
 782
 783    if (cpu->vhyp) {
 784        PPCVirtualHypervisorClass *vhc =
 785            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 786        vhc->hpte_set_r(cpu->vhyp, ptex, pte1);
 787        return;
 788    }
 789    base = ppc_hash64_hpt_base(cpu);
 790
 791
 792    /* The HW performs a non-atomic byte update */
 793    stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
 794}
 795
 796static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
 797{
 798    hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 15;
 799
 800    if (cpu->vhyp) {
 801        PPCVirtualHypervisorClass *vhc =
 802            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 803        vhc->hpte_set_c(cpu->vhyp, ptex, pte1);
 804        return;
 805    }
 806    base = ppc_hash64_hpt_base(cpu);
 807
 808    /* The HW performs a non-atomic byte update */
 809    stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
 810}
 811
 812static target_ulong rmls_limit(PowerPCCPU *cpu)
 813{
 814    CPUPPCState *env = &cpu->env;
 815    /*
 816     * In theory the meanings of RMLS values are implementation
 817     * dependent.  In practice, this seems to have been the set from
 818     * POWER4+..POWER8, and RMLS is no longer supported in POWER9.
 819     *
 820     * Unsupported values mean the OS has shot itself in the
 821     * foot. Return a 0-sized RMA in this case, which we expect
 822     * to trigger an immediate DSI or ISI
 823     */
 824    static const target_ulong rma_sizes[16] = {
 825        [0] = 256 * GiB,
 826        [1] = 16 * GiB,
 827        [2] = 1 * GiB,
 828        [3] = 64 * MiB,
 829        [4] = 256 * MiB,
 830        [7] = 128 * MiB,
 831        [8] = 32 * MiB,
 832    };
 833    target_ulong rmls = (env->spr[SPR_LPCR] & LPCR_RMLS) >> LPCR_RMLS_SHIFT;
 834
 835    return rma_sizes[rmls];
 836}
 837
 838static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb)
 839{
 840    CPUPPCState *env = &cpu->env;
 841    target_ulong lpcr = env->spr[SPR_LPCR];
 842    uint32_t vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
 843    target_ulong vsid = SLB_VSID_VRMA | ((vrmasd << 4) & SLB_VSID_LLP_MASK);
 844    int i;
 845
 846    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 847        const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
 848
 849        if (!sps->page_shift) {
 850            break;
 851        }
 852
 853        if ((vsid & SLB_VSID_LLP_MASK) == sps->slb_enc) {
 854            slb->esid = SLB_ESID_V;
 855            slb->vsid = vsid;
 856            slb->sps = sps;
 857            return 0;
 858        }
 859    }
 860
 861    error_report("Bad page size encoding in LPCR[VRMASD]; LPCR=0x"
 862                 TARGET_FMT_lx, lpcr);
 863
 864    return -1;
 865}
 866
 867int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
 868                                int rwx, int mmu_idx)
 869{
 870    CPUState *cs = CPU(cpu);
 871    CPUPPCState *env = &cpu->env;
 872    ppc_slb_t vrma_slbe;
 873    ppc_slb_t *slb;
 874    unsigned apshift;
 875    hwaddr ptex;
 876    ppc_hash_pte64_t pte;
 877    int exec_prot, pp_prot, amr_prot, prot;
 878    const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
 879    hwaddr raddr;
 880
 881    assert((rwx == 0) || (rwx == 1) || (rwx == 2));
 882
 883    /*
 884     * Note on LPCR usage: 970 uses HID4, but our special variant of
 885     * store_spr copies relevant fields into env->spr[SPR_LPCR].
 886     * Similarly we filter unimplemented bits when storing into LPCR
 887     * depending on the MMU version. This code can thus just use the
 888     * LPCR "as-is".
 889     */
 890
 891    /* 1. Handle real mode accesses */
 892    if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
 893        /*
 894         * Translation is supposedly "off", but in real mode the top 4
 895         * effective address bits are (mostly) ignored
 896         */
 897        raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
 898
 899        if (cpu->vhyp) {
 900            /*
 901             * In virtual hypervisor mode, there's nothing to do:
 902             *   EA == GPA == qemu guest address
 903             */
 904        } else if (msr_hv || !env->has_hv_mode) {
 905            /* In HV mode, add HRMOR if top EA bit is clear */
 906            if (!(eaddr >> 63)) {
 907                raddr |= env->spr[SPR_HRMOR];
 908            }
 909        } else if (ppc_hash64_use_vrma(env)) {
 910            /* Emulated VRMA mode */
 911            slb = &vrma_slbe;
 912            if (build_vrma_slbe(cpu, slb) != 0) {
 913                /* Invalid VRMA setup, machine check */
 914                cs->exception_index = POWERPC_EXCP_MCHECK;
 915                env->error_code = 0;
 916                return 1;
 917            }
 918
 919            goto skip_slb_search;
 920        } else {
 921            target_ulong limit = rmls_limit(cpu);
 922
 923            /* Emulated old-style RMO mode, bounds check against RMLS */
 924            if (raddr >= limit) {
 925                if (rwx == 2) {
 926                    ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
 927                } else {
 928                    int dsisr = DSISR_PROTFAULT;
 929                    if (rwx == 1) {
 930                        dsisr |= DSISR_ISSTORE;
 931                    }
 932                    ppc_hash64_set_dsi(cs, eaddr, dsisr);
 933                }
 934                return 1;
 935            }
 936
 937            raddr |= env->spr[SPR_RMOR];
 938        }
 939        tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 940                     PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
 941                     TARGET_PAGE_SIZE);
 942        return 0;
 943    }
 944
 945    /* 2. Translation is on, so look up the SLB */
 946    slb = slb_lookup(cpu, eaddr);
 947    if (!slb) {
 948        /* No entry found, check if in-memory segment tables are in use */
 949        if (ppc64_use_proc_tbl(cpu)) {
 950            /* TODO - Unsupported */
 951            error_report("Segment Table Support Unimplemented");
 952            exit(1);
 953        }
 954        /* Segment still not found, generate the appropriate interrupt */
 955        if (rwx == 2) {
 956            cs->exception_index = POWERPC_EXCP_ISEG;
 957            env->error_code = 0;
 958        } else {
 959            cs->exception_index = POWERPC_EXCP_DSEG;
 960            env->error_code = 0;
 961            env->spr[SPR_DAR] = eaddr;
 962        }
 963        return 1;
 964    }
 965
 966skip_slb_search:
 967
 968    /* 3. Check for segment level no-execute violation */
 969    if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
 970        ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
 971        return 1;
 972    }
 973
 974    /* 4. Locate the PTE in the hash table */
 975    ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
 976    if (ptex == -1) {
 977        if (rwx == 2) {
 978            ppc_hash64_set_isi(cs, SRR1_NOPTE);
 979        } else {
 980            int dsisr = DSISR_NOPTE;
 981            if (rwx == 1) {
 982                dsisr |= DSISR_ISSTORE;
 983            }
 984            ppc_hash64_set_dsi(cs, eaddr, dsisr);
 985        }
 986        return 1;
 987    }
 988    qemu_log_mask(CPU_LOG_MMU,
 989                  "found PTE at index %08" HWADDR_PRIx "\n", ptex);
 990
 991    /* 5. Check access permissions */
 992
 993    exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
 994    pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
 995    amr_prot = ppc_hash64_amr_prot(cpu, pte);
 996    prot = exec_prot & pp_prot & amr_prot;
 997
 998    if ((need_prot[rwx] & ~prot) != 0) {
 999        /* Access right violation */
1000        qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
1001        if (rwx == 2) {
1002            int srr1 = 0;
1003            if (PAGE_EXEC & ~exec_prot) {
1004                srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
1005            } else if (PAGE_EXEC & ~pp_prot) {
1006                srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
1007            }
1008            if (PAGE_EXEC & ~amr_prot) {
1009                srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
1010            }
1011            ppc_hash64_set_isi(cs, srr1);
1012        } else {
1013            int dsisr = 0;
1014            if (need_prot[rwx] & ~pp_prot) {
1015                dsisr |= DSISR_PROTFAULT;
1016            }
1017            if (rwx == 1) {
1018                dsisr |= DSISR_ISSTORE;
1019            }
1020            if (need_prot[rwx] & ~amr_prot) {
1021                dsisr |= DSISR_AMR;
1022            }
1023            ppc_hash64_set_dsi(cs, eaddr, dsisr);
1024        }
1025        return 1;
1026    }
1027
1028    qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
1029
1030    /* 6. Update PTE referenced and changed bits if necessary */
1031
1032    if (!(pte.pte1 & HPTE64_R_R)) {
1033        ppc_hash64_set_r(cpu, ptex, pte.pte1);
1034    }
1035    if (!(pte.pte1 & HPTE64_R_C)) {
1036        if (rwx == 1) {
1037            ppc_hash64_set_c(cpu, ptex, pte.pte1);
1038        } else {
1039            /*
1040             * Treat the page as read-only for now, so that a later write
1041             * will pass through this function again to set the C bit
1042             */
1043            prot &= ~PAGE_WRITE;
1044        }
1045    }
1046
1047    /* 7. Determine the real address from the PTE */
1048
1049    raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
1050
1051    tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
1052                 prot, mmu_idx, 1ULL << apshift);
1053
1054    return 0;
1055}
1056
1057hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
1058{
1059    CPUPPCState *env = &cpu->env;
1060    ppc_slb_t vrma_slbe;
1061    ppc_slb_t *slb;
1062    hwaddr ptex, raddr;
1063    ppc_hash_pte64_t pte;
1064    unsigned apshift;
1065
1066    /* Handle real mode */
1067    if (msr_dr == 0) {
1068        /* In real mode the top 4 effective address bits are ignored */
1069        raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
1070
1071        if (cpu->vhyp) {
1072            /*
1073             * In virtual hypervisor mode, there's nothing to do:
1074             *   EA == GPA == qemu guest address
1075             */
1076            return raddr;
1077        } else if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
1078            /* In HV mode, add HRMOR if top EA bit is clear */
1079            return raddr | env->spr[SPR_HRMOR];
1080        } else if (ppc_hash64_use_vrma(env)) {
1081            /* Emulated VRMA mode */
1082            slb = &vrma_slbe;
1083            if (build_vrma_slbe(cpu, slb) != 0) {
1084                return -1;
1085            }
1086        } else {
1087            target_ulong limit = rmls_limit(cpu);
1088
1089            /* Emulated old-style RMO mode, bounds check against RMLS */
1090            if (raddr >= limit) {
1091                return -1;
1092            }
1093            return raddr | env->spr[SPR_RMOR];
1094        }
1095    } else {
1096        slb = slb_lookup(cpu, addr);
1097        if (!slb) {
1098            return -1;
1099        }
1100    }
1101
1102    ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
1103    if (ptex == -1) {
1104        return -1;
1105    }
1106
1107    return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
1108        & TARGET_PAGE_MASK;
1109}
1110
1111void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
1112                               target_ulong pte0, target_ulong pte1)
1113{
1114    /*
1115     * XXX: given the fact that there are too many segments to
1116     * invalidate, and we still don't have a tlb_flush_mask(env, n,
1117     * mask) in QEMU, we just invalidate all TLBs
1118     */
1119    cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
1120}
1121
1122void ppc_store_lpcr(PowerPCCPU *cpu, target_ulong val)
1123{
1124    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1125    CPUPPCState *env = &cpu->env;
1126
1127    env->spr[SPR_LPCR] = val & pcc->lpcr_mask;
1128}
1129
1130void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1131{
1132    PowerPCCPU *cpu = env_archcpu(env);
1133
1134    ppc_store_lpcr(cpu, val);
1135}
1136
1137void ppc_hash64_init(PowerPCCPU *cpu)
1138{
1139    CPUPPCState *env = &cpu->env;
1140    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1141
1142    if (!pcc->hash64_opts) {
1143        assert(!mmu_is_64bit(env->mmu_model));
1144        return;
1145    }
1146
1147    cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1148}
1149
1150void ppc_hash64_finalize(PowerPCCPU *cpu)
1151{
1152    g_free(cpu->hash64_opts);
1153}
1154
1155const PPCHash64Options ppc_hash64_opts_basic = {
1156    .flags = 0,
1157    .slb_size = 64,
1158    .sps = {
1159        { .page_shift = 12, /* 4K */
1160          .slb_enc = 0,
1161          .enc = { { .page_shift = 12, .pte_enc = 0 } }
1162        },
1163        { .page_shift = 24, /* 16M */
1164          .slb_enc = 0x100,
1165          .enc = { { .page_shift = 24, .pte_enc = 0 } }
1166        },
1167    },
1168};
1169
1170const PPCHash64Options ppc_hash64_opts_POWER7 = {
1171    .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1172    .slb_size = 32,
1173    .sps = {
1174        {
1175            .page_shift = 12, /* 4K */
1176            .slb_enc = 0,
1177            .enc = { { .page_shift = 12, .pte_enc = 0 },
1178                     { .page_shift = 16, .pte_enc = 0x7 },
1179                     { .page_shift = 24, .pte_enc = 0x38 }, },
1180        },
1181        {
1182            .page_shift = 16, /* 64K */
1183            .slb_enc = SLB_VSID_64K,
1184            .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1185                     { .page_shift = 24, .pte_enc = 0x8 }, },
1186        },
1187        {
1188            .page_shift = 24, /* 16M */
1189            .slb_enc = SLB_VSID_16M,
1190            .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1191        },
1192        {
1193            .page_shift = 34, /* 16G */
1194            .slb_enc = SLB_VSID_16G,
1195            .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },
1196        },
1197    }
1198};
1199
1200void ppc_hash64_filter_pagesizes(PowerPCCPU *cpu,
1201                                 bool (*cb)(void *, uint32_t, uint32_t),
1202                                 void *opaque)
1203{
1204    PPCHash64Options *opts = cpu->hash64_opts;
1205    int i;
1206    int n = 0;
1207    bool ci_largepage = false;
1208
1209    assert(opts);
1210
1211    n = 0;
1212    for (i = 0; i < ARRAY_SIZE(opts->sps); i++) {
1213        PPCHash64SegmentPageSizes *sps = &opts->sps[i];
1214        int j;
1215        int m = 0;
1216
1217        assert(n <= i);
1218
1219        if (!sps->page_shift) {
1220            break;
1221        }
1222
1223        for (j = 0; j < ARRAY_SIZE(sps->enc); j++) {
1224            PPCHash64PageSize *ps = &sps->enc[j];
1225
1226            assert(m <= j);
1227            if (!ps->page_shift) {
1228                break;
1229            }
1230
1231            if (cb(opaque, sps->page_shift, ps->page_shift)) {
1232                if (ps->page_shift >= 16) {
1233                    ci_largepage = true;
1234                }
1235                sps->enc[m++] = *ps;
1236            }
1237        }
1238
1239        /* Clear rest of the row */
1240        for (j = m; j < ARRAY_SIZE(sps->enc); j++) {
1241            memset(&sps->enc[j], 0, sizeof(sps->enc[j]));
1242        }
1243
1244        if (m) {
1245            n++;
1246        }
1247    }
1248
1249    /* Clear the rest of the table */
1250    for (i = n; i < ARRAY_SIZE(opts->sps); i++) {
1251        memset(&opts->sps[i], 0, sizeof(opts->sps[i]));
1252    }
1253
1254    if (!ci_largepage) {
1255        opts->flags &= ~PPC_HASH64_CI_LARGEPAGE;
1256    }
1257}
1258