qemu/target/riscv/cpu_helper.c
<<
>>
Prefs
   1/*
   2 * RISC-V CPU helpers for qemu.
   3 *
   4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
   5 * Copyright (c) 2017-2018 SiFive, Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2 or later, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/log.h"
  22#include "qemu/main-loop.h"
  23#include "cpu.h"
  24#include "exec/exec-all.h"
  25#include "tcg/tcg-op.h"
  26#include "trace.h"
  27#include "semihosting/common-semi.h"
  28
  29int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
  30{
  31#ifdef CONFIG_USER_ONLY
  32    return 0;
  33#else
  34    return env->priv;
  35#endif
  36}
  37
  38#ifndef CONFIG_USER_ONLY
  39static int riscv_cpu_local_irq_pending(CPURISCVState *env)
  40{
  41    target_ulong irqs;
  42
  43    target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
  44    target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
  45    target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
  46
  47    target_ulong pending = env->mip & env->mie &
  48                               ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
  49    target_ulong vspending = (env->mip & env->mie &
  50                              (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
  51
  52    target_ulong mie    = env->priv < PRV_M ||
  53                          (env->priv == PRV_M && mstatus_mie);
  54    target_ulong sie    = env->priv < PRV_S ||
  55                          (env->priv == PRV_S && mstatus_sie);
  56    target_ulong hs_sie = env->priv < PRV_S ||
  57                          (env->priv == PRV_S && hs_mstatus_sie);
  58
  59    if (riscv_cpu_virt_enabled(env)) {
  60        target_ulong pending_hs_irq = pending & -hs_sie;
  61
  62        if (pending_hs_irq) {
  63            riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
  64            return ctz64(pending_hs_irq);
  65        }
  66
  67        pending = vspending;
  68    }
  69
  70    irqs = (pending & ~env->mideleg & -mie) | (pending &  env->mideleg & -sie);
  71
  72    if (irqs) {
  73        return ctz64(irqs); /* since non-zero */
  74    } else {
  75        return EXCP_NONE; /* indicates no pending interrupt */
  76    }
  77}
  78#endif
  79
  80bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
  81{
  82#if !defined(CONFIG_USER_ONLY)
  83    if (interrupt_request & CPU_INTERRUPT_HARD) {
  84        RISCVCPU *cpu = RISCV_CPU(cs);
  85        CPURISCVState *env = &cpu->env;
  86        int interruptno = riscv_cpu_local_irq_pending(env);
  87        if (interruptno >= 0) {
  88            cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
  89            riscv_cpu_do_interrupt(cs);
  90            return true;
  91        }
  92    }
  93#endif
  94    return false;
  95}
  96
  97#if !defined(CONFIG_USER_ONLY)
  98
  99/* Return true is floating point support is currently enabled */
 100bool riscv_cpu_fp_enabled(CPURISCVState *env)
 101{
 102    if (env->mstatus & MSTATUS_FS) {
 103        if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
 104            return false;
 105        }
 106        return true;
 107    }
 108
 109    return false;
 110}
 111
 112void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
 113{
 114    uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
 115                            MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
 116                            MSTATUS64_UXL;
 117    bool current_virt = riscv_cpu_virt_enabled(env);
 118
 119    g_assert(riscv_has_ext(env, RVH));
 120
 121    if (current_virt) {
 122        /* Current V=1 and we are about to change to V=0 */
 123        env->vsstatus = env->mstatus & mstatus_mask;
 124        env->mstatus &= ~mstatus_mask;
 125        env->mstatus |= env->mstatus_hs;
 126
 127        env->vstvec = env->stvec;
 128        env->stvec = env->stvec_hs;
 129
 130        env->vsscratch = env->sscratch;
 131        env->sscratch = env->sscratch_hs;
 132
 133        env->vsepc = env->sepc;
 134        env->sepc = env->sepc_hs;
 135
 136        env->vscause = env->scause;
 137        env->scause = env->scause_hs;
 138
 139        env->vstval = env->sbadaddr;
 140        env->sbadaddr = env->stval_hs;
 141
 142        env->vsatp = env->satp;
 143        env->satp = env->satp_hs;
 144    } else {
 145        /* Current V=0 and we are about to change to V=1 */
 146        env->mstatus_hs = env->mstatus & mstatus_mask;
 147        env->mstatus &= ~mstatus_mask;
 148        env->mstatus |= env->vsstatus;
 149
 150        env->stvec_hs = env->stvec;
 151        env->stvec = env->vstvec;
 152
 153        env->sscratch_hs = env->sscratch;
 154        env->sscratch = env->vsscratch;
 155
 156        env->sepc_hs = env->sepc;
 157        env->sepc = env->vsepc;
 158
 159        env->scause_hs = env->scause;
 160        env->scause = env->vscause;
 161
 162        env->stval_hs = env->sbadaddr;
 163        env->sbadaddr = env->vstval;
 164
 165        env->satp_hs = env->satp;
 166        env->satp = env->vsatp;
 167    }
 168}
 169
 170bool riscv_cpu_virt_enabled(CPURISCVState *env)
 171{
 172    if (!riscv_has_ext(env, RVH)) {
 173        return false;
 174    }
 175
 176    return get_field(env->virt, VIRT_ONOFF);
 177}
 178
 179void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
 180{
 181    if (!riscv_has_ext(env, RVH)) {
 182        return;
 183    }
 184
 185    /* Flush the TLB on all virt mode changes. */
 186    if (get_field(env->virt, VIRT_ONOFF) != enable) {
 187        tlb_flush(env_cpu(env));
 188    }
 189
 190    env->virt = set_field(env->virt, VIRT_ONOFF, enable);
 191}
 192
 193bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
 194{
 195    if (!riscv_has_ext(env, RVH)) {
 196        return false;
 197    }
 198
 199    return get_field(env->virt, FORCE_HS_EXCEP);
 200}
 201
 202void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
 203{
 204    if (!riscv_has_ext(env, RVH)) {
 205        return;
 206    }
 207
 208    env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
 209}
 210
 211bool riscv_cpu_two_stage_lookup(int mmu_idx)
 212{
 213    return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
 214}
 215
 216int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
 217{
 218    CPURISCVState *env = &cpu->env;
 219    if (env->miclaim & interrupts) {
 220        return -1;
 221    } else {
 222        env->miclaim |= interrupts;
 223        return 0;
 224    }
 225}
 226
 227uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
 228{
 229    CPURISCVState *env = &cpu->env;
 230    CPUState *cs = CPU(cpu);
 231    uint32_t old = env->mip;
 232    bool locked = false;
 233
 234    if (!qemu_mutex_iothread_locked()) {
 235        locked = true;
 236        qemu_mutex_lock_iothread();
 237    }
 238
 239    env->mip = (env->mip & ~mask) | (value & mask);
 240
 241    if (env->mip) {
 242        cpu_interrupt(cs, CPU_INTERRUPT_HARD);
 243    } else {
 244        cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
 245    }
 246
 247    if (locked) {
 248        qemu_mutex_unlock_iothread();
 249    }
 250
 251    return old;
 252}
 253
 254void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
 255                             uint32_t arg)
 256{
 257    env->rdtime_fn = fn;
 258    env->rdtime_fn_arg = arg;
 259}
 260
 261void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
 262{
 263    if (newpriv > PRV_M) {
 264        g_assert_not_reached();
 265    }
 266    if (newpriv == PRV_H) {
 267        newpriv = PRV_U;
 268    }
 269    /* tlb_flush is unnecessary as mode is contained in mmu_idx */
 270    env->priv = newpriv;
 271
 272    /*
 273     * Clear the load reservation - otherwise a reservation placed in one
 274     * context/process can be used by another, resulting in an SC succeeding
 275     * incorrectly. Version 2.2 of the ISA specification explicitly requires
 276     * this behaviour, while later revisions say that the kernel "should" use
 277     * an SC instruction to force the yielding of a load reservation on a
 278     * preemptive context switch. As a result, do both.
 279     */
 280    env->load_res = -1;
 281}
 282
 283/*
 284 * get_physical_address_pmp - check PMP permission for this physical address
 285 *
 286 * Match the PMP region and check permission for this physical address and it's
 287 * TLB page. Returns 0 if the permission checking was successful
 288 *
 289 * @env: CPURISCVState
 290 * @prot: The returned protection attributes
 291 * @tlb_size: TLB page size containing addr. It could be modified after PMP
 292 *            permission checking. NULL if not set TLB page for addr.
 293 * @addr: The physical address to be checked permission
 294 * @access_type: The type of MMU access
 295 * @mode: Indicates current privilege level.
 296 */
 297static int get_physical_address_pmp(CPURISCVState *env, int *prot,
 298                                    target_ulong *tlb_size, hwaddr addr,
 299                                    int size, MMUAccessType access_type,
 300                                    int mode)
 301{
 302    pmp_priv_t pmp_priv;
 303    target_ulong tlb_size_pmp = 0;
 304
 305    if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
 306        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 307        return TRANSLATE_SUCCESS;
 308    }
 309
 310    if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
 311                            mode)) {
 312        *prot = 0;
 313        return TRANSLATE_PMP_FAIL;
 314    }
 315
 316    *prot = pmp_priv_to_page_prot(pmp_priv);
 317    if (tlb_size != NULL) {
 318        if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
 319            *tlb_size = tlb_size_pmp;
 320        }
 321    }
 322
 323    return TRANSLATE_SUCCESS;
 324}
 325
 326/* get_physical_address - get the physical address for this virtual address
 327 *
 328 * Do a page table walk to obtain the physical address corresponding to a
 329 * virtual address. Returns 0 if the translation was successful
 330 *
 331 * Adapted from Spike's mmu_t::translate and mmu_t::walk
 332 *
 333 * @env: CPURISCVState
 334 * @physical: This will be set to the calculated physical address
 335 * @prot: The returned protection attributes
 336 * @addr: The virtual address to be translated
 337 * @fault_pte_addr: If not NULL, this will be set to fault pte address
 338 *                  when a error occurs on pte address translation.
 339 *                  This will already be shifted to match htval.
 340 * @access_type: The type of MMU access
 341 * @mmu_idx: Indicates current privilege level
 342 * @first_stage: Are we in first stage translation?
 343 *               Second stage is used for hypervisor guest translation
 344 * @two_stage: Are we going to perform two stage translation
 345 */
 346static int get_physical_address(CPURISCVState *env, hwaddr *physical,
 347                                int *prot, target_ulong addr,
 348                                target_ulong *fault_pte_addr,
 349                                int access_type, int mmu_idx,
 350                                bool first_stage, bool two_stage)
 351{
 352    /* NOTE: the env->pc value visible here will not be
 353     * correct, but the value visible to the exception handler
 354     * (riscv_cpu_do_interrupt) is correct */
 355    MemTxResult res;
 356    MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
 357    int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
 358    bool use_background = false;
 359
 360    /*
 361     * Check if we should use the background registers for the two
 362     * stage translation. We don't need to check if we actually need
 363     * two stage translation as that happened before this function
 364     * was called. Background registers will be used if the guest has
 365     * forced a two stage translation to be on (in HS or M mode).
 366     */
 367    if (!riscv_cpu_virt_enabled(env) && two_stage) {
 368        use_background = true;
 369    }
 370
 371    /* MPRV does not affect the virtual-machine load/store
 372       instructions, HLV, HLVX, and HSV. */
 373    if (riscv_cpu_two_stage_lookup(mmu_idx)) {
 374        mode = get_field(env->hstatus, HSTATUS_SPVP);
 375    } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
 376        if (get_field(env->mstatus, MSTATUS_MPRV)) {
 377            mode = get_field(env->mstatus, MSTATUS_MPP);
 378        }
 379    }
 380
 381    if (first_stage == false) {
 382        /* We are in stage 2 translation, this is similar to stage 1. */
 383        /* Stage 2 is always taken as U-mode */
 384        mode = PRV_U;
 385    }
 386
 387    if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
 388        *physical = addr;
 389        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 390        return TRANSLATE_SUCCESS;
 391    }
 392
 393    *prot = 0;
 394
 395    hwaddr base;
 396    int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
 397
 398    if (first_stage == true) {
 399        mxr = get_field(env->mstatus, MSTATUS_MXR);
 400    } else {
 401        mxr = get_field(env->vsstatus, MSTATUS_MXR);
 402    }
 403
 404    if (first_stage == true) {
 405        if (use_background) {
 406            base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
 407            vm = get_field(env->vsatp, SATP_MODE);
 408        } else {
 409            base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
 410            vm = get_field(env->satp, SATP_MODE);
 411        }
 412        widened = 0;
 413    } else {
 414        base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
 415        vm = get_field(env->hgatp, HGATP_MODE);
 416        widened = 2;
 417    }
 418    /* status.SUM will be ignored if execute on background */
 419    sum = get_field(env->mstatus, MSTATUS_SUM) || use_background;
 420    switch (vm) {
 421    case VM_1_10_SV32:
 422      levels = 2; ptidxbits = 10; ptesize = 4; break;
 423    case VM_1_10_SV39:
 424      levels = 3; ptidxbits = 9; ptesize = 8; break;
 425    case VM_1_10_SV48:
 426      levels = 4; ptidxbits = 9; ptesize = 8; break;
 427    case VM_1_10_SV57:
 428      levels = 5; ptidxbits = 9; ptesize = 8; break;
 429    case VM_1_10_MBARE:
 430        *physical = addr;
 431        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 432        return TRANSLATE_SUCCESS;
 433    default:
 434      g_assert_not_reached();
 435    }
 436
 437    CPUState *cs = env_cpu(env);
 438    int va_bits = PGSHIFT + levels * ptidxbits + widened;
 439    target_ulong mask, masked_msbs;
 440
 441    if (TARGET_LONG_BITS > (va_bits - 1)) {
 442        mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
 443    } else {
 444        mask = 0;
 445    }
 446    masked_msbs = (addr >> (va_bits - 1)) & mask;
 447
 448    if (masked_msbs != 0 && masked_msbs != mask) {
 449        return TRANSLATE_FAIL;
 450    }
 451
 452    int ptshift = (levels - 1) * ptidxbits;
 453    int i;
 454
 455#if !TCG_OVERSIZED_GUEST
 456restart:
 457#endif
 458    for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
 459        target_ulong idx;
 460        if (i == 0) {
 461            idx = (addr >> (PGSHIFT + ptshift)) &
 462                           ((1 << (ptidxbits + widened)) - 1);
 463        } else {
 464            idx = (addr >> (PGSHIFT + ptshift)) &
 465                           ((1 << ptidxbits) - 1);
 466        }
 467
 468        /* check that physical address of PTE is legal */
 469        hwaddr pte_addr;
 470
 471        if (two_stage && first_stage) {
 472            int vbase_prot;
 473            hwaddr vbase;
 474
 475            /* Do the second stage translation on the base PTE address. */
 476            int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
 477                                                 base, NULL, MMU_DATA_LOAD,
 478                                                 mmu_idx, false, true);
 479
 480            if (vbase_ret != TRANSLATE_SUCCESS) {
 481                if (fault_pte_addr) {
 482                    *fault_pte_addr = (base + idx * ptesize) >> 2;
 483                }
 484                return TRANSLATE_G_STAGE_FAIL;
 485            }
 486
 487            pte_addr = vbase + idx * ptesize;
 488        } else {
 489            pte_addr = base + idx * ptesize;
 490        }
 491
 492        int pmp_prot;
 493        int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
 494                                               sizeof(target_ulong),
 495                                               MMU_DATA_LOAD, PRV_S);
 496        if (pmp_ret != TRANSLATE_SUCCESS) {
 497            return TRANSLATE_PMP_FAIL;
 498        }
 499
 500        target_ulong pte;
 501        if (riscv_cpu_is_32bit(env)) {
 502            pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
 503        } else {
 504            pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
 505        }
 506
 507        if (res != MEMTX_OK) {
 508            return TRANSLATE_FAIL;
 509        }
 510
 511        hwaddr ppn = pte >> PTE_PPN_SHIFT;
 512
 513        if (!(pte & PTE_V)) {
 514            /* Invalid PTE */
 515            return TRANSLATE_FAIL;
 516        } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
 517            /* Inner PTE, continue walking */
 518            base = ppn << PGSHIFT;
 519        } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
 520            /* Reserved leaf PTE flags: PTE_W */
 521            return TRANSLATE_FAIL;
 522        } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
 523            /* Reserved leaf PTE flags: PTE_W + PTE_X */
 524            return TRANSLATE_FAIL;
 525        } else if ((pte & PTE_U) && ((mode != PRV_U) &&
 526                   (!sum || access_type == MMU_INST_FETCH))) {
 527            /* User PTE flags when not U mode and mstatus.SUM is not set,
 528               or the access type is an instruction fetch */
 529            return TRANSLATE_FAIL;
 530        } else if (!(pte & PTE_U) && (mode != PRV_S)) {
 531            /* Supervisor PTE flags when not S mode */
 532            return TRANSLATE_FAIL;
 533        } else if (ppn & ((1ULL << ptshift) - 1)) {
 534            /* Misaligned PPN */
 535            return TRANSLATE_FAIL;
 536        } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
 537                   ((pte & PTE_X) && mxr))) {
 538            /* Read access check failed */
 539            return TRANSLATE_FAIL;
 540        } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
 541            /* Write access check failed */
 542            return TRANSLATE_FAIL;
 543        } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
 544            /* Fetch access check failed */
 545            return TRANSLATE_FAIL;
 546        } else {
 547            /* if necessary, set accessed and dirty bits. */
 548            target_ulong updated_pte = pte | PTE_A |
 549                (access_type == MMU_DATA_STORE ? PTE_D : 0);
 550
 551            /* Page table updates need to be atomic with MTTCG enabled */
 552            if (updated_pte != pte) {
 553                /*
 554                 * - if accessed or dirty bits need updating, and the PTE is
 555                 *   in RAM, then we do so atomically with a compare and swap.
 556                 * - if the PTE is in IO space or ROM, then it can't be updated
 557                 *   and we return TRANSLATE_FAIL.
 558                 * - if the PTE changed by the time we went to update it, then
 559                 *   it is no longer valid and we must re-walk the page table.
 560                 */
 561                MemoryRegion *mr;
 562                hwaddr l = sizeof(target_ulong), addr1;
 563                mr = address_space_translate(cs->as, pte_addr,
 564                    &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
 565                if (memory_region_is_ram(mr)) {
 566                    target_ulong *pte_pa =
 567                        qemu_map_ram_ptr(mr->ram_block, addr1);
 568#if TCG_OVERSIZED_GUEST
 569                    /* MTTCG is not enabled on oversized TCG guests so
 570                     * page table updates do not need to be atomic */
 571                    *pte_pa = pte = updated_pte;
 572#else
 573                    target_ulong old_pte =
 574                        qatomic_cmpxchg(pte_pa, pte, updated_pte);
 575                    if (old_pte != pte) {
 576                        goto restart;
 577                    } else {
 578                        pte = updated_pte;
 579                    }
 580#endif
 581                } else {
 582                    /* misconfigured PTE in ROM (AD bits are not preset) or
 583                     * PTE is in IO space and can't be updated atomically */
 584                    return TRANSLATE_FAIL;
 585                }
 586            }
 587
 588            /* for superpage mappings, make a fake leaf PTE for the TLB's
 589               benefit. */
 590            target_ulong vpn = addr >> PGSHIFT;
 591            *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
 592                        (addr & ~TARGET_PAGE_MASK);
 593
 594            /* set permissions on the TLB entry */
 595            if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
 596                *prot |= PAGE_READ;
 597            }
 598            if ((pte & PTE_X)) {
 599                *prot |= PAGE_EXEC;
 600            }
 601            /* add write permission on stores or if the page is already dirty,
 602               so that we TLB miss on later writes to update the dirty bit */
 603            if ((pte & PTE_W) &&
 604                    (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
 605                *prot |= PAGE_WRITE;
 606            }
 607            return TRANSLATE_SUCCESS;
 608        }
 609    }
 610    return TRANSLATE_FAIL;
 611}
 612
 613static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
 614                                MMUAccessType access_type, bool pmp_violation,
 615                                bool first_stage, bool two_stage)
 616{
 617    CPUState *cs = env_cpu(env);
 618    int page_fault_exceptions;
 619    if (first_stage) {
 620        page_fault_exceptions =
 621            get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
 622            !pmp_violation;
 623    } else {
 624        page_fault_exceptions =
 625            get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
 626            !pmp_violation;
 627    }
 628    switch (access_type) {
 629    case MMU_INST_FETCH:
 630        if (riscv_cpu_virt_enabled(env) && !first_stage) {
 631            cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
 632        } else {
 633            cs->exception_index = page_fault_exceptions ?
 634                RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
 635        }
 636        break;
 637    case MMU_DATA_LOAD:
 638        if (two_stage && !first_stage) {
 639            cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
 640        } else {
 641            cs->exception_index = page_fault_exceptions ?
 642                RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
 643        }
 644        break;
 645    case MMU_DATA_STORE:
 646        if (two_stage && !first_stage) {
 647            cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
 648        } else {
 649            cs->exception_index = page_fault_exceptions ?
 650                RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
 651        }
 652        break;
 653    default:
 654        g_assert_not_reached();
 655    }
 656    env->badaddr = address;
 657    env->two_stage_lookup = two_stage;
 658}
 659
 660hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 661{
 662    RISCVCPU *cpu = RISCV_CPU(cs);
 663    CPURISCVState *env = &cpu->env;
 664    hwaddr phys_addr;
 665    int prot;
 666    int mmu_idx = cpu_mmu_index(&cpu->env, false);
 667
 668    if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
 669                             true, riscv_cpu_virt_enabled(env))) {
 670        return -1;
 671    }
 672
 673    if (riscv_cpu_virt_enabled(env)) {
 674        if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
 675                                 0, mmu_idx, false, true)) {
 676            return -1;
 677        }
 678    }
 679
 680    return phys_addr & TARGET_PAGE_MASK;
 681}
 682
 683void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 684                                     vaddr addr, unsigned size,
 685                                     MMUAccessType access_type,
 686                                     int mmu_idx, MemTxAttrs attrs,
 687                                     MemTxResult response, uintptr_t retaddr)
 688{
 689    RISCVCPU *cpu = RISCV_CPU(cs);
 690    CPURISCVState *env = &cpu->env;
 691
 692    if (access_type == MMU_DATA_STORE) {
 693        cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
 694    } else {
 695        cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
 696    }
 697
 698    env->badaddr = addr;
 699    env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
 700                            riscv_cpu_two_stage_lookup(mmu_idx);
 701    riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
 702}
 703
 704void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
 705                                   MMUAccessType access_type, int mmu_idx,
 706                                   uintptr_t retaddr)
 707{
 708    RISCVCPU *cpu = RISCV_CPU(cs);
 709    CPURISCVState *env = &cpu->env;
 710    switch (access_type) {
 711    case MMU_INST_FETCH:
 712        cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
 713        break;
 714    case MMU_DATA_LOAD:
 715        cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
 716        break;
 717    case MMU_DATA_STORE:
 718        cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
 719        break;
 720    default:
 721        g_assert_not_reached();
 722    }
 723    env->badaddr = addr;
 724    env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
 725                            riscv_cpu_two_stage_lookup(mmu_idx);
 726    riscv_raise_exception(env, cs->exception_index, retaddr);
 727}
 728#endif /* !CONFIG_USER_ONLY */
 729
 730bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 731                        MMUAccessType access_type, int mmu_idx,
 732                        bool probe, uintptr_t retaddr)
 733{
 734    RISCVCPU *cpu = RISCV_CPU(cs);
 735    CPURISCVState *env = &cpu->env;
 736#ifndef CONFIG_USER_ONLY
 737    vaddr im_address;
 738    hwaddr pa = 0;
 739    int prot, prot2, prot_pmp;
 740    bool pmp_violation = false;
 741    bool first_stage_error = true;
 742    bool two_stage_lookup = false;
 743    int ret = TRANSLATE_FAIL;
 744    int mode = mmu_idx;
 745    /* default TLB page size */
 746    target_ulong tlb_size = TARGET_PAGE_SIZE;
 747
 748    env->guest_phys_fault_addr = 0;
 749
 750    qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
 751                  __func__, address, access_type, mmu_idx);
 752
 753    /* MPRV does not affect the virtual-machine load/store
 754       instructions, HLV, HLVX, and HSV. */
 755    if (riscv_cpu_two_stage_lookup(mmu_idx)) {
 756        mode = get_field(env->hstatus, HSTATUS_SPVP);
 757    } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
 758               get_field(env->mstatus, MSTATUS_MPRV)) {
 759        mode = get_field(env->mstatus, MSTATUS_MPP);
 760        if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
 761            two_stage_lookup = true;
 762        }
 763    }
 764
 765    if (riscv_cpu_virt_enabled(env) ||
 766        ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
 767         access_type != MMU_INST_FETCH)) {
 768        /* Two stage lookup */
 769        ret = get_physical_address(env, &pa, &prot, address,
 770                                   &env->guest_phys_fault_addr, access_type,
 771                                   mmu_idx, true, true);
 772
 773        /*
 774         * A G-stage exception may be triggered during two state lookup.
 775         * And the env->guest_phys_fault_addr has already been set in
 776         * get_physical_address().
 777         */
 778        if (ret == TRANSLATE_G_STAGE_FAIL) {
 779            first_stage_error = false;
 780            access_type = MMU_DATA_LOAD;
 781        }
 782
 783        qemu_log_mask(CPU_LOG_MMU,
 784                      "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
 785                      TARGET_FMT_plx " prot %d\n",
 786                      __func__, address, ret, pa, prot);
 787
 788        if (ret == TRANSLATE_SUCCESS) {
 789            /* Second stage lookup */
 790            im_address = pa;
 791
 792            ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
 793                                       access_type, mmu_idx, false, true);
 794
 795            qemu_log_mask(CPU_LOG_MMU,
 796                    "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
 797                    TARGET_FMT_plx " prot %d\n",
 798                    __func__, im_address, ret, pa, prot2);
 799
 800            prot &= prot2;
 801
 802            if (ret == TRANSLATE_SUCCESS) {
 803                ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
 804                                               size, access_type, mode);
 805
 806                qemu_log_mask(CPU_LOG_MMU,
 807                              "%s PMP address=" TARGET_FMT_plx " ret %d prot"
 808                              " %d tlb_size " TARGET_FMT_lu "\n",
 809                              __func__, pa, ret, prot_pmp, tlb_size);
 810
 811                prot &= prot_pmp;
 812            }
 813
 814            if (ret != TRANSLATE_SUCCESS) {
 815                /*
 816                 * Guest physical address translation failed, this is a HS
 817                 * level exception
 818                 */
 819                first_stage_error = false;
 820                env->guest_phys_fault_addr = (im_address |
 821                                              (address &
 822                                               (TARGET_PAGE_SIZE - 1))) >> 2;
 823            }
 824        }
 825    } else {
 826        /* Single stage lookup */
 827        ret = get_physical_address(env, &pa, &prot, address, NULL,
 828                                   access_type, mmu_idx, true, false);
 829
 830        qemu_log_mask(CPU_LOG_MMU,
 831                      "%s address=%" VADDR_PRIx " ret %d physical "
 832                      TARGET_FMT_plx " prot %d\n",
 833                      __func__, address, ret, pa, prot);
 834
 835        if (ret == TRANSLATE_SUCCESS) {
 836            ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
 837                                           size, access_type, mode);
 838
 839            qemu_log_mask(CPU_LOG_MMU,
 840                          "%s PMP address=" TARGET_FMT_plx " ret %d prot"
 841                          " %d tlb_size " TARGET_FMT_lu "\n",
 842                          __func__, pa, ret, prot_pmp, tlb_size);
 843
 844            prot &= prot_pmp;
 845        }
 846    }
 847
 848    if (ret == TRANSLATE_PMP_FAIL) {
 849        pmp_violation = true;
 850    }
 851
 852    if (ret == TRANSLATE_SUCCESS) {
 853        tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
 854                     prot, mmu_idx, tlb_size);
 855        return true;
 856    } else if (probe) {
 857        return false;
 858    } else {
 859        raise_mmu_exception(env, address, access_type, pmp_violation,
 860                            first_stage_error,
 861                            riscv_cpu_virt_enabled(env) ||
 862                                riscv_cpu_two_stage_lookup(mmu_idx));
 863        riscv_raise_exception(env, cs->exception_index, retaddr);
 864    }
 865
 866    return true;
 867
 868#else
 869    switch (access_type) {
 870    case MMU_INST_FETCH:
 871        cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
 872        break;
 873    case MMU_DATA_LOAD:
 874        cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
 875        break;
 876    case MMU_DATA_STORE:
 877        cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
 878        break;
 879    default:
 880        g_assert_not_reached();
 881    }
 882    env->badaddr = address;
 883    cpu_loop_exit_restore(cs, retaddr);
 884#endif
 885}
 886
 887/*
 888 * Handle Traps
 889 *
 890 * Adapted from Spike's processor_t::take_trap.
 891 *
 892 */
 893void riscv_cpu_do_interrupt(CPUState *cs)
 894{
 895#if !defined(CONFIG_USER_ONLY)
 896
 897    RISCVCPU *cpu = RISCV_CPU(cs);
 898    CPURISCVState *env = &cpu->env;
 899    bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
 900    uint64_t s;
 901
 902    /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
 903     * so we mask off the MSB and separate into trap type and cause.
 904     */
 905    bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
 906    target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
 907    target_ulong deleg = async ? env->mideleg : env->medeleg;
 908    bool write_tval = false;
 909    target_ulong tval = 0;
 910    target_ulong htval = 0;
 911    target_ulong mtval2 = 0;
 912
 913    if  (cause == RISCV_EXCP_SEMIHOST) {
 914        if (env->priv >= PRV_S) {
 915            env->gpr[xA0] = do_common_semihosting(cs);
 916            env->pc += 4;
 917            return;
 918        }
 919        cause = RISCV_EXCP_BREAKPOINT;
 920    }
 921
 922    if (!async) {
 923        /* set tval to badaddr for traps with address information */
 924        switch (cause) {
 925        case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
 926        case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
 927        case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
 928            force_hs_execp = true;
 929            /* fallthrough */
 930        case RISCV_EXCP_INST_ADDR_MIS:
 931        case RISCV_EXCP_INST_ACCESS_FAULT:
 932        case RISCV_EXCP_LOAD_ADDR_MIS:
 933        case RISCV_EXCP_STORE_AMO_ADDR_MIS:
 934        case RISCV_EXCP_LOAD_ACCESS_FAULT:
 935        case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
 936        case RISCV_EXCP_INST_PAGE_FAULT:
 937        case RISCV_EXCP_LOAD_PAGE_FAULT:
 938        case RISCV_EXCP_STORE_PAGE_FAULT:
 939            write_tval  = true;
 940            tval = env->badaddr;
 941            break;
 942        default:
 943            break;
 944        }
 945        /* ecall is dispatched as one cause so translate based on mode */
 946        if (cause == RISCV_EXCP_U_ECALL) {
 947            assert(env->priv <= 3);
 948
 949            if (env->priv == PRV_M) {
 950                cause = RISCV_EXCP_M_ECALL;
 951            } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
 952                cause = RISCV_EXCP_VS_ECALL;
 953            } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
 954                cause = RISCV_EXCP_S_ECALL;
 955            } else if (env->priv == PRV_U) {
 956                cause = RISCV_EXCP_U_ECALL;
 957            }
 958        }
 959    }
 960
 961    trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
 962                     riscv_cpu_get_trap_name(cause, async));
 963
 964    qemu_log_mask(CPU_LOG_INT,
 965                  "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
 966                  "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
 967                  __func__, env->mhartid, async, cause, env->pc, tval,
 968                  riscv_cpu_get_trap_name(cause, async));
 969
 970    if (env->priv <= PRV_S &&
 971            cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
 972        /* handle the trap in S-mode */
 973        if (riscv_has_ext(env, RVH)) {
 974            target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
 975
 976            if (env->two_stage_lookup && write_tval) {
 977                /*
 978                 * If we are writing a guest virtual address to stval, set
 979                 * this to 1. If we are trapping to VS we will set this to 0
 980                 * later.
 981                 */
 982                env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
 983            } else {
 984                /* For other HS-mode traps, we set this to 0. */
 985                env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
 986            }
 987
 988            if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
 989                !force_hs_execp) {
 990                /* Trap to VS mode */
 991                /*
 992                 * See if we need to adjust cause. Yes if its VS mode interrupt
 993                 * no if hypervisor has delegated one of hs mode's interrupt
 994                 */
 995                if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
 996                    cause == IRQ_VS_EXT) {
 997                    cause = cause - 1;
 998                }
 999                env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1000            } else if (riscv_cpu_virt_enabled(env)) {
1001                /* Trap into HS mode, from virt */
1002                riscv_cpu_swap_hypervisor_regs(env);
1003                env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1004                                         env->priv);
1005                env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1006                                         riscv_cpu_virt_enabled(env));
1007
1008                htval = env->guest_phys_fault_addr;
1009
1010                riscv_cpu_set_virt_enabled(env, 0);
1011                riscv_cpu_set_force_hs_excep(env, 0);
1012            } else {
1013                /* Trap into HS mode */
1014                env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1015                htval = env->guest_phys_fault_addr;
1016            }
1017        }
1018
1019        s = env->mstatus;
1020        s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1021        s = set_field(s, MSTATUS_SPP, env->priv);
1022        s = set_field(s, MSTATUS_SIE, 0);
1023        env->mstatus = s;
1024        env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1025        env->sepc = env->pc;
1026        env->sbadaddr = tval;
1027        env->htval = htval;
1028        env->pc = (env->stvec >> 2 << 2) +
1029            ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1030        riscv_cpu_set_mode(env, PRV_S);
1031    } else {
1032        /* handle the trap in M-mode */
1033        if (riscv_has_ext(env, RVH)) {
1034            if (riscv_cpu_virt_enabled(env)) {
1035                riscv_cpu_swap_hypervisor_regs(env);
1036            }
1037            env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1038                                     riscv_cpu_virt_enabled(env));
1039            if (riscv_cpu_virt_enabled(env) && tval) {
1040                env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1041            }
1042
1043            mtval2 = env->guest_phys_fault_addr;
1044
1045            /* Trapping to M mode, virt is disabled */
1046            riscv_cpu_set_virt_enabled(env, 0);
1047            riscv_cpu_set_force_hs_excep(env, 0);
1048        }
1049
1050        s = env->mstatus;
1051        s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1052        s = set_field(s, MSTATUS_MPP, env->priv);
1053        s = set_field(s, MSTATUS_MIE, 0);
1054        env->mstatus = s;
1055        env->mcause = cause | ~(((target_ulong)-1) >> async);
1056        env->mepc = env->pc;
1057        env->mbadaddr = tval;
1058        env->mtval2 = mtval2;
1059        env->pc = (env->mtvec >> 2 << 2) +
1060            ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1061        riscv_cpu_set_mode(env, PRV_M);
1062    }
1063
1064    /* NOTE: it is not necessary to yield load reservations here. It is only
1065     * necessary for an SC from "another hart" to cause a load reservation
1066     * to be yielded. Refer to the memory consistency model section of the
1067     * RISC-V ISA Specification.
1068     */
1069
1070    env->two_stage_lookup = false;
1071#endif
1072    cs->exception_index = EXCP_NONE; /* mark handled to qemu */
1073}
1074