qemu/target/sparc/ldst_helper.c
<<
>>
Prefs
   1/*
   2 * Helpers for loads and stores
   3 *
   4 *  Copyright (c) 2003-2005 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "tcg/tcg.h"
  23#include "exec/helper-proto.h"
  24#include "exec/exec-all.h"
  25#include "exec/cpu_ldst.h"
  26#include "asi.h"
  27
  28//#define DEBUG_MMU
  29//#define DEBUG_MXCC
  30//#define DEBUG_UNALIGNED
  31//#define DEBUG_UNASSIGNED
  32//#define DEBUG_ASI
  33//#define DEBUG_CACHE_CONTROL
  34
  35#ifdef DEBUG_MMU
  36#define DPRINTF_MMU(fmt, ...)                                   \
  37    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
  38#else
  39#define DPRINTF_MMU(fmt, ...) do {} while (0)
  40#endif
  41
  42#ifdef DEBUG_MXCC
  43#define DPRINTF_MXCC(fmt, ...)                                  \
  44    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
  45#else
  46#define DPRINTF_MXCC(fmt, ...) do {} while (0)
  47#endif
  48
  49#ifdef DEBUG_ASI
  50#define DPRINTF_ASI(fmt, ...)                                   \
  51    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
  52#endif
  53
  54#ifdef DEBUG_CACHE_CONTROL
  55#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
  56    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
  57#else
  58#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
  59#endif
  60
  61#ifdef TARGET_SPARC64
  62#ifndef TARGET_ABI32
  63#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
  64#else
  65#define AM_CHECK(env1) (1)
  66#endif
  67#endif
  68
  69#define QT0 (env->qt0)
  70#define QT1 (env->qt1)
  71
  72#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
  73/* Calculates TSB pointer value for fault page size
  74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
  75 * UA2005 holds the page size configuration in mmu_ctx registers */
  76static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
  77                                       const SparcV9MMU *mmu, const int idx)
  78{
  79    uint64_t tsb_register;
  80    int page_size;
  81    if (cpu_has_hypervisor(env)) {
  82        int tsb_index = 0;
  83        int ctx = mmu->tag_access & 0x1fffULL;
  84        uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
  85        tsb_index = idx;
  86        tsb_index |= ctx ? 2 : 0;
  87        page_size = idx ? ctx_register >> 8 : ctx_register;
  88        page_size &= 7;
  89        tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
  90    } else {
  91        page_size = idx;
  92        tsb_register = mmu->tsb;
  93    }
  94    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
  95    int tsb_size  = tsb_register & 0xf;
  96
  97    uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
  98
  99    /* move va bits to correct position,
 100     * the context bits will be masked out later */
 101    uint64_t va = mmu->tag_access >> (3 * page_size + 9);
 102
 103    /* calculate tsb_base mask and adjust va if split is in use */
 104    if (tsb_split) {
 105        if (idx == 0) {
 106            va &= ~(1ULL << (13 + tsb_size));
 107        } else {
 108            va |= (1ULL << (13 + tsb_size));
 109        }
 110        tsb_base_mask <<= 1;
 111    }
 112
 113    return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
 114}
 115
 116/* Calculates tag target register value by reordering bits
 117   in tag access register */
 118static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
 119{
 120    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
 121}
 122
 123static void replace_tlb_entry(SparcTLBEntry *tlb,
 124                              uint64_t tlb_tag, uint64_t tlb_tte,
 125                              CPUSPARCState *env)
 126{
 127    target_ulong mask, size, va, offset;
 128
 129    /* flush page range if translation is valid */
 130    if (TTE_IS_VALID(tlb->tte)) {
 131        CPUState *cs = env_cpu(env);
 132
 133        size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
 134        mask = 1ULL + ~size;
 135
 136        va = tlb->tag & mask;
 137
 138        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
 139            tlb_flush_page(cs, va + offset);
 140        }
 141    }
 142
 143    tlb->tag = tlb_tag;
 144    tlb->tte = tlb_tte;
 145}
 146
 147static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
 148                      const char *strmmu, CPUSPARCState *env1)
 149{
 150    unsigned int i;
 151    target_ulong mask;
 152    uint64_t context;
 153
 154    int is_demap_context = (demap_addr >> 6) & 1;
 155
 156    /* demap context */
 157    switch ((demap_addr >> 4) & 3) {
 158    case 0: /* primary */
 159        context = env1->dmmu.mmu_primary_context;
 160        break;
 161    case 1: /* secondary */
 162        context = env1->dmmu.mmu_secondary_context;
 163        break;
 164    case 2: /* nucleus */
 165        context = 0;
 166        break;
 167    case 3: /* reserved */
 168    default:
 169        return;
 170    }
 171
 172    for (i = 0; i < 64; i++) {
 173        if (TTE_IS_VALID(tlb[i].tte)) {
 174
 175            if (is_demap_context) {
 176                /* will remove non-global entries matching context value */
 177                if (TTE_IS_GLOBAL(tlb[i].tte) ||
 178                    !tlb_compare_context(&tlb[i], context)) {
 179                    continue;
 180                }
 181            } else {
 182                /* demap page
 183                   will remove any entry matching VA */
 184                mask = 0xffffffffffffe000ULL;
 185                mask <<= 3 * ((tlb[i].tte >> 61) & 3);
 186
 187                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
 188                    continue;
 189                }
 190
 191                /* entry should be global or matching context value */
 192                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
 193                    !tlb_compare_context(&tlb[i], context)) {
 194                    continue;
 195                }
 196            }
 197
 198            replace_tlb_entry(&tlb[i], 0, 0, env1);
 199#ifdef DEBUG_MMU
 200            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
 201            dump_mmu(env1);
 202#endif
 203        }
 204    }
 205}
 206
 207static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
 208                                   uint64_t sun4v_tte)
 209{
 210    uint64_t sun4u_tte;
 211    if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
 212        /* is already in the sun4u format */
 213        return sun4v_tte;
 214    }
 215    sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
 216    sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
 217    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
 218    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
 219    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
 220    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
 221                             TTE_SIDEEFFECT_BIT);
 222    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
 223    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
 224    return sun4u_tte;
 225}
 226
 227static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
 228                                 uint64_t tlb_tag, uint64_t tlb_tte,
 229                                 const char *strmmu, CPUSPARCState *env1,
 230                                 uint64_t addr)
 231{
 232    unsigned int i, replace_used;
 233
 234    tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
 235    if (cpu_has_hypervisor(env1)) {
 236        uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
 237        uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
 238        uint32_t new_ctx = tlb_tag & 0x1fffU;
 239        for (i = 0; i < 64; i++) {
 240            uint32_t ctx = tlb[i].tag & 0x1fffU;
 241            /* check if new mapping overlaps an existing one */
 242            if (new_ctx == ctx) {
 243                uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
 244                uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
 245                if (new_vaddr == vaddr
 246                    || (new_vaddr < vaddr + size
 247                        && vaddr < new_vaddr + new_size)) {
 248                    DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
 249                                new_vaddr);
 250                    replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 251                    return;
 252                }
 253            }
 254
 255        }
 256    }
 257    /* Try replacing invalid entry */
 258    for (i = 0; i < 64; i++) {
 259        if (!TTE_IS_VALID(tlb[i].tte)) {
 260            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 261#ifdef DEBUG_MMU
 262            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
 263            dump_mmu(env1);
 264#endif
 265            return;
 266        }
 267    }
 268
 269    /* All entries are valid, try replacing unlocked entry */
 270
 271    for (replace_used = 0; replace_used < 2; ++replace_used) {
 272
 273        /* Used entries are not replaced on first pass */
 274
 275        for (i = 0; i < 64; i++) {
 276            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
 277
 278                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 279#ifdef DEBUG_MMU
 280                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
 281                            strmmu, (replace_used ? "used" : "unused"), i);
 282                dump_mmu(env1);
 283#endif
 284                return;
 285            }
 286        }
 287
 288        /* Now reset used bit and search for unused entries again */
 289
 290        for (i = 0; i < 64; i++) {
 291            TTE_SET_UNUSED(tlb[i].tte);
 292        }
 293    }
 294
 295#ifdef DEBUG_MMU
 296    DPRINTF_MMU("%s lru replacement: no free entries available, "
 297                "replacing the last one\n", strmmu);
 298#endif
 299    /* corner case: the last entry is replaced anyway */
 300    replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
 301}
 302
 303#endif
 304
 305#ifdef TARGET_SPARC64
 306/* returns true if access using this ASI is to have address translated by MMU
 307   otherwise access is to raw physical address */
 308/* TODO: check sparc32 bits */
 309static inline int is_translating_asi(int asi)
 310{
 311    /* Ultrasparc IIi translating asi
 312       - note this list is defined by cpu implementation
 313    */
 314    switch (asi) {
 315    case 0x04 ... 0x11:
 316    case 0x16 ... 0x19:
 317    case 0x1E ... 0x1F:
 318    case 0x24 ... 0x2C:
 319    case 0x70 ... 0x73:
 320    case 0x78 ... 0x79:
 321    case 0x80 ... 0xFF:
 322        return 1;
 323
 324    default:
 325        return 0;
 326    }
 327}
 328
 329static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
 330{
 331    if (AM_CHECK(env1)) {
 332        addr &= 0xffffffffULL;
 333    }
 334    return addr;
 335}
 336
 337static inline target_ulong asi_address_mask(CPUSPARCState *env,
 338                                            int asi, target_ulong addr)
 339{
 340    if (is_translating_asi(asi)) {
 341        addr = address_mask(env, addr);
 342    }
 343    return addr;
 344}
 345
 346#ifndef CONFIG_USER_ONLY
 347static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
 348{
 349    /* ASIs >= 0x80 are user mode.
 350     * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
 351     * ASIs <= 0x2f are super mode.
 352     */
 353    if (asi < 0x80
 354        && !cpu_hypervisor_mode(env)
 355        && (!cpu_supervisor_mode(env)
 356            || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
 357        cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
 358    }
 359}
 360#endif /* !CONFIG_USER_ONLY */
 361#endif
 362
 363static void do_check_align(CPUSPARCState *env, target_ulong addr,
 364                           uint32_t align, uintptr_t ra)
 365{
 366    if (addr & align) {
 367#ifdef DEBUG_UNALIGNED
 368        printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
 369               "\n", addr, env->pc);
 370#endif
 371        cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
 372    }
 373}
 374
 375void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
 376{
 377    do_check_align(env, addr, align, GETPC());
 378}
 379
 380#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
 381    defined(DEBUG_MXCC)
 382static void dump_mxcc(CPUSPARCState *env)
 383{
 384    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 385           "\n",
 386           env->mxccdata[0], env->mxccdata[1],
 387           env->mxccdata[2], env->mxccdata[3]);
 388    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 389           "\n"
 390           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 391           "\n",
 392           env->mxccregs[0], env->mxccregs[1],
 393           env->mxccregs[2], env->mxccregs[3],
 394           env->mxccregs[4], env->mxccregs[5],
 395           env->mxccregs[6], env->mxccregs[7]);
 396}
 397#endif
 398
 399#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
 400    && defined(DEBUG_ASI)
 401static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
 402                     uint64_t r1)
 403{
 404    switch (size) {
 405    case 1:
 406        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
 407                    addr, asi, r1 & 0xff);
 408        break;
 409    case 2:
 410        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
 411                    addr, asi, r1 & 0xffff);
 412        break;
 413    case 4:
 414        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
 415                    addr, asi, r1 & 0xffffffff);
 416        break;
 417    case 8:
 418        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
 419                    addr, asi, r1);
 420        break;
 421    }
 422}
 423#endif
 424
 425#ifndef CONFIG_USER_ONLY
 426#ifndef TARGET_SPARC64
 427static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
 428                                  bool is_write, bool is_exec, int is_asi,
 429                                  unsigned size, uintptr_t retaddr)
 430{
 431    SPARCCPU *cpu = SPARC_CPU(cs);
 432    CPUSPARCState *env = &cpu->env;
 433    int fault_type;
 434
 435#ifdef DEBUG_UNASSIGNED
 436    if (is_asi) {
 437        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
 438               " asi 0x%02x from " TARGET_FMT_lx "\n",
 439               is_exec ? "exec" : is_write ? "write" : "read", size,
 440               size == 1 ? "" : "s", addr, is_asi, env->pc);
 441    } else {
 442        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
 443               " from " TARGET_FMT_lx "\n",
 444               is_exec ? "exec" : is_write ? "write" : "read", size,
 445               size == 1 ? "" : "s", addr, env->pc);
 446    }
 447#endif
 448    /* Don't overwrite translation and access faults */
 449    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
 450    if ((fault_type > 4) || (fault_type == 0)) {
 451        env->mmuregs[3] = 0; /* Fault status register */
 452        if (is_asi) {
 453            env->mmuregs[3] |= 1 << 16;
 454        }
 455        if (env->psrs) {
 456            env->mmuregs[3] |= 1 << 5;
 457        }
 458        if (is_exec) {
 459            env->mmuregs[3] |= 1 << 6;
 460        }
 461        if (is_write) {
 462            env->mmuregs[3] |= 1 << 7;
 463        }
 464        env->mmuregs[3] |= (5 << 2) | 2;
 465        /* SuperSPARC will never place instruction fault addresses in the FAR */
 466        if (!is_exec) {
 467            env->mmuregs[4] = addr; /* Fault address register */
 468        }
 469    }
 470    /* overflow (same type fault was not read before another fault) */
 471    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
 472        env->mmuregs[3] |= 1;
 473    }
 474
 475    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
 476        int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
 477        cpu_raise_exception_ra(env, tt, retaddr);
 478    }
 479
 480    /*
 481     * flush neverland mappings created during no-fault mode,
 482     * so the sequential MMU faults report proper fault types
 483     */
 484    if (env->mmuregs[0] & MMU_NF) {
 485        tlb_flush(cs);
 486    }
 487}
 488#else
 489static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
 490                                  bool is_write, bool is_exec, int is_asi,
 491                                  unsigned size, uintptr_t retaddr)
 492{
 493    SPARCCPU *cpu = SPARC_CPU(cs);
 494    CPUSPARCState *env = &cpu->env;
 495
 496#ifdef DEBUG_UNASSIGNED
 497    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
 498           "\n", addr, env->pc);
 499#endif
 500
 501    if (is_exec) { /* XXX has_hypervisor */
 502        if (env->lsu & (IMMU_E)) {
 503            cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
 504        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
 505            cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
 506        }
 507    } else {
 508        if (env->lsu & (DMMU_E)) {
 509            cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
 510        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
 511            cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
 512        }
 513    }
 514}
 515#endif
 516#endif
 517
 518#ifndef TARGET_SPARC64
 519#ifndef CONFIG_USER_ONLY
 520
 521
 522/* Leon3 cache control */
 523
 524static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
 525                                   uint64_t val, int size)
 526{
 527    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
 528                          addr, val, size);
 529
 530    if (size != 4) {
 531        DPRINTF_CACHE_CONTROL("32bits only\n");
 532        return;
 533    }
 534
 535    switch (addr) {
 536    case 0x00:              /* Cache control */
 537
 538        /* These values must always be read as zeros */
 539        val &= ~CACHE_CTRL_FD;
 540        val &= ~CACHE_CTRL_FI;
 541        val &= ~CACHE_CTRL_IB;
 542        val &= ~CACHE_CTRL_IP;
 543        val &= ~CACHE_CTRL_DP;
 544
 545        env->cache_control = val;
 546        break;
 547    case 0x04:              /* Instruction cache configuration */
 548    case 0x08:              /* Data cache configuration */
 549        /* Read Only */
 550        break;
 551    default:
 552        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
 553        break;
 554    };
 555}
 556
 557static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
 558                                       int size)
 559{
 560    uint64_t ret = 0;
 561
 562    if (size != 4) {
 563        DPRINTF_CACHE_CONTROL("32bits only\n");
 564        return 0;
 565    }
 566
 567    switch (addr) {
 568    case 0x00:              /* Cache control */
 569        ret = env->cache_control;
 570        break;
 571
 572        /* Configuration registers are read and only always keep those
 573           predefined values */
 574
 575    case 0x04:              /* Instruction cache configuration */
 576        ret = 0x10220000;
 577        break;
 578    case 0x08:              /* Data cache configuration */
 579        ret = 0x18220000;
 580        break;
 581    default:
 582        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
 583        break;
 584    };
 585    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
 586                          addr, ret, size);
 587    return ret;
 588}
 589
 590uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
 591                       int asi, uint32_t memop)
 592{
 593    int size = 1 << (memop & MO_SIZE);
 594    int sign = memop & MO_SIGN;
 595    CPUState *cs = env_cpu(env);
 596    uint64_t ret = 0;
 597#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
 598    uint32_t last_addr = addr;
 599#endif
 600
 601    do_check_align(env, addr, size - 1, GETPC());
 602    switch (asi) {
 603    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
 604    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
 605        switch (addr) {
 606        case 0x00:          /* Leon3 Cache Control */
 607        case 0x08:          /* Leon3 Instruction Cache config */
 608        case 0x0C:          /* Leon3 Date Cache config */
 609            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
 610                ret = leon3_cache_control_ld(env, addr, size);
 611            }
 612            break;
 613        case 0x01c00a00: /* MXCC control register */
 614            if (size == 8) {
 615                ret = env->mxccregs[3];
 616            } else {
 617                qemu_log_mask(LOG_UNIMP,
 618                              "%08x: unimplemented access size: %d\n", addr,
 619                              size);
 620            }
 621            break;
 622        case 0x01c00a04: /* MXCC control register */
 623            if (size == 4) {
 624                ret = env->mxccregs[3];
 625            } else {
 626                qemu_log_mask(LOG_UNIMP,
 627                              "%08x: unimplemented access size: %d\n", addr,
 628                              size);
 629            }
 630            break;
 631        case 0x01c00c00: /* Module reset register */
 632            if (size == 8) {
 633                ret = env->mxccregs[5];
 634                /* should we do something here? */
 635            } else {
 636                qemu_log_mask(LOG_UNIMP,
 637                              "%08x: unimplemented access size: %d\n", addr,
 638                              size);
 639            }
 640            break;
 641        case 0x01c00f00: /* MBus port address register */
 642            if (size == 8) {
 643                ret = env->mxccregs[7];
 644            } else {
 645                qemu_log_mask(LOG_UNIMP,
 646                              "%08x: unimplemented access size: %d\n", addr,
 647                              size);
 648            }
 649            break;
 650        default:
 651            qemu_log_mask(LOG_UNIMP,
 652                          "%08x: unimplemented address, size: %d\n", addr,
 653                          size);
 654            break;
 655        }
 656        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
 657                     "addr = %08x -> ret = %" PRIx64 ","
 658                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
 659#ifdef DEBUG_MXCC
 660        dump_mxcc(env);
 661#endif
 662        break;
 663    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
 664    case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
 665        {
 666            int mmulev;
 667
 668            mmulev = (addr >> 8) & 15;
 669            if (mmulev > 4) {
 670                ret = 0;
 671            } else {
 672                ret = mmu_probe(env, addr, mmulev);
 673            }
 674            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
 675                        addr, mmulev, ret);
 676        }
 677        break;
 678    case ASI_M_MMUREGS: /* SuperSparc MMU regs */
 679    case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
 680        {
 681            int reg = (addr >> 8) & 0x1f;
 682
 683            ret = env->mmuregs[reg];
 684            if (reg == 3) { /* Fault status cleared on read */
 685                env->mmuregs[3] = 0;
 686            } else if (reg == 0x13) { /* Fault status read */
 687                ret = env->mmuregs[3];
 688            } else if (reg == 0x14) { /* Fault address read */
 689                ret = env->mmuregs[4];
 690            }
 691            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
 692        }
 693        break;
 694    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
 695    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
 696    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
 697        break;
 698    case ASI_KERNELTXT: /* Supervisor code access */
 699        switch (size) {
 700        case 1:
 701            ret = cpu_ldub_code(env, addr);
 702            break;
 703        case 2:
 704            ret = cpu_lduw_code(env, addr);
 705            break;
 706        default:
 707        case 4:
 708            ret = cpu_ldl_code(env, addr);
 709            break;
 710        case 8:
 711            ret = cpu_ldq_code(env, addr);
 712            break;
 713        }
 714        break;
 715    case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
 716    case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
 717    case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
 718    case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
 719        break;
 720    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
 721    {
 722        MemTxResult result;
 723        hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
 724
 725        switch (size) {
 726        case 1:
 727            ret = address_space_ldub(cs->as, access_addr,
 728                                     MEMTXATTRS_UNSPECIFIED, &result);
 729            break;
 730        case 2:
 731            ret = address_space_lduw(cs->as, access_addr,
 732                                     MEMTXATTRS_UNSPECIFIED, &result);
 733            break;
 734        default:
 735        case 4:
 736            ret = address_space_ldl(cs->as, access_addr,
 737                                    MEMTXATTRS_UNSPECIFIED, &result);
 738            break;
 739        case 8:
 740            ret = address_space_ldq(cs->as, access_addr,
 741                                    MEMTXATTRS_UNSPECIFIED, &result);
 742            break;
 743        }
 744
 745        if (result != MEMTX_OK) {
 746            sparc_raise_mmu_fault(cs, access_addr, false, false, false,
 747                                  size, GETPC());
 748        }
 749        break;
 750    }
 751    case 0x30: /* Turbosparc secondary cache diagnostic */
 752    case 0x31: /* Turbosparc RAM snoop */
 753    case 0x32: /* Turbosparc page table descriptor diagnostic */
 754    case 0x39: /* data cache diagnostic register */
 755        ret = 0;
 756        break;
 757    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
 758        {
 759            int reg = (addr >> 8) & 3;
 760
 761            switch (reg) {
 762            case 0: /* Breakpoint Value (Addr) */
 763                ret = env->mmubpregs[reg];
 764                break;
 765            case 1: /* Breakpoint Mask */
 766                ret = env->mmubpregs[reg];
 767                break;
 768            case 2: /* Breakpoint Control */
 769                ret = env->mmubpregs[reg];
 770                break;
 771            case 3: /* Breakpoint Status */
 772                ret = env->mmubpregs[reg];
 773                env->mmubpregs[reg] = 0ULL;
 774                break;
 775            }
 776            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
 777                        ret);
 778        }
 779        break;
 780    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
 781        ret = env->mmubpctrv;
 782        break;
 783    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
 784        ret = env->mmubpctrc;
 785        break;
 786    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
 787        ret = env->mmubpctrs;
 788        break;
 789    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
 790        ret = env->mmubpaction;
 791        break;
 792    case ASI_USERTXT: /* User code access, XXX */
 793    default:
 794        sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
 795        ret = 0;
 796        break;
 797
 798    case ASI_USERDATA: /* User data access */
 799    case ASI_KERNELDATA: /* Supervisor data access */
 800    case ASI_P: /* Implicit primary context data access (v9 only?) */
 801    case ASI_M_BYPASS:    /* MMU passthrough */
 802    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
 803        /* These are always handled inline.  */
 804        g_assert_not_reached();
 805    }
 806    if (sign) {
 807        switch (size) {
 808        case 1:
 809            ret = (int8_t) ret;
 810            break;
 811        case 2:
 812            ret = (int16_t) ret;
 813            break;
 814        case 4:
 815            ret = (int32_t) ret;
 816            break;
 817        default:
 818            break;
 819        }
 820    }
 821#ifdef DEBUG_ASI
 822    dump_asi("read ", last_addr, asi, size, ret);
 823#endif
 824    return ret;
 825}
 826
 827void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
 828                   int asi, uint32_t memop)
 829{
 830    int size = 1 << (memop & MO_SIZE);
 831    CPUState *cs = env_cpu(env);
 832
 833    do_check_align(env, addr, size - 1, GETPC());
 834    switch (asi) {
 835    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
 836    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
 837        switch (addr) {
 838        case 0x00:          /* Leon3 Cache Control */
 839        case 0x08:          /* Leon3 Instruction Cache config */
 840        case 0x0C:          /* Leon3 Date Cache config */
 841            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
 842                leon3_cache_control_st(env, addr, val, size);
 843            }
 844            break;
 845
 846        case 0x01c00000: /* MXCC stream data register 0 */
 847            if (size == 8) {
 848                env->mxccdata[0] = val;
 849            } else {
 850                qemu_log_mask(LOG_UNIMP,
 851                              "%08x: unimplemented access size: %d\n", addr,
 852                              size);
 853            }
 854            break;
 855        case 0x01c00008: /* MXCC stream data register 1 */
 856            if (size == 8) {
 857                env->mxccdata[1] = val;
 858            } else {
 859                qemu_log_mask(LOG_UNIMP,
 860                              "%08x: unimplemented access size: %d\n", addr,
 861                              size);
 862            }
 863            break;
 864        case 0x01c00010: /* MXCC stream data register 2 */
 865            if (size == 8) {
 866                env->mxccdata[2] = val;
 867            } else {
 868                qemu_log_mask(LOG_UNIMP,
 869                              "%08x: unimplemented access size: %d\n", addr,
 870                              size);
 871            }
 872            break;
 873        case 0x01c00018: /* MXCC stream data register 3 */
 874            if (size == 8) {
 875                env->mxccdata[3] = val;
 876            } else {
 877                qemu_log_mask(LOG_UNIMP,
 878                              "%08x: unimplemented access size: %d\n", addr,
 879                              size);
 880            }
 881            break;
 882        case 0x01c00100: /* MXCC stream source */
 883        {
 884            int i;
 885
 886            if (size == 8) {
 887                env->mxccregs[0] = val;
 888            } else {
 889                qemu_log_mask(LOG_UNIMP,
 890                              "%08x: unimplemented access size: %d\n", addr,
 891                              size);
 892            }
 893
 894            for (i = 0; i < 4; i++) {
 895                MemTxResult result;
 896                hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
 897
 898                env->mxccdata[i] = address_space_ldq(cs->as,
 899                                                     access_addr,
 900                                                     MEMTXATTRS_UNSPECIFIED,
 901                                                     &result);
 902                if (result != MEMTX_OK) {
 903                    /* TODO: investigate whether this is the right behaviour */
 904                    sparc_raise_mmu_fault(cs, access_addr, false, false,
 905                                          false, size, GETPC());
 906                }
 907            }
 908            break;
 909        }
 910        case 0x01c00200: /* MXCC stream destination */
 911        {
 912            int i;
 913
 914            if (size == 8) {
 915                env->mxccregs[1] = val;
 916            } else {
 917                qemu_log_mask(LOG_UNIMP,
 918                              "%08x: unimplemented access size: %d\n", addr,
 919                              size);
 920            }
 921
 922            for (i = 0; i < 4; i++) {
 923                MemTxResult result;
 924                hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
 925
 926                address_space_stq(cs->as, access_addr, env->mxccdata[i],
 927                                  MEMTXATTRS_UNSPECIFIED, &result);
 928
 929                if (result != MEMTX_OK) {
 930                    /* TODO: investigate whether this is the right behaviour */
 931                    sparc_raise_mmu_fault(cs, access_addr, true, false,
 932                                          false, size, GETPC());
 933                }
 934            }
 935            break;
 936        }
 937        case 0x01c00a00: /* MXCC control register */
 938            if (size == 8) {
 939                env->mxccregs[3] = val;
 940            } else {
 941                qemu_log_mask(LOG_UNIMP,
 942                              "%08x: unimplemented access size: %d\n", addr,
 943                              size);
 944            }
 945            break;
 946        case 0x01c00a04: /* MXCC control register */
 947            if (size == 4) {
 948                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
 949                    | val;
 950            } else {
 951                qemu_log_mask(LOG_UNIMP,
 952                              "%08x: unimplemented access size: %d\n", addr,
 953                              size);
 954            }
 955            break;
 956        case 0x01c00e00: /* MXCC error register  */
 957            /* writing a 1 bit clears the error */
 958            if (size == 8) {
 959                env->mxccregs[6] &= ~val;
 960            } else {
 961                qemu_log_mask(LOG_UNIMP,
 962                              "%08x: unimplemented access size: %d\n", addr,
 963                              size);
 964            }
 965            break;
 966        case 0x01c00f00: /* MBus port address register */
 967            if (size == 8) {
 968                env->mxccregs[7] = val;
 969            } else {
 970                qemu_log_mask(LOG_UNIMP,
 971                              "%08x: unimplemented access size: %d\n", addr,
 972                              size);
 973            }
 974            break;
 975        default:
 976            qemu_log_mask(LOG_UNIMP,
 977                          "%08x: unimplemented address, size: %d\n", addr,
 978                          size);
 979            break;
 980        }
 981        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
 982                     asi, size, addr, val);
 983#ifdef DEBUG_MXCC
 984        dump_mxcc(env);
 985#endif
 986        break;
 987    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
 988    case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
 989        {
 990            int mmulev;
 991
 992            mmulev = (addr >> 8) & 15;
 993            DPRINTF_MMU("mmu flush level %d\n", mmulev);
 994            switch (mmulev) {
 995            case 0: /* flush page */
 996                tlb_flush_page(cs, addr & 0xfffff000);
 997                break;
 998            case 1: /* flush segment (256k) */
 999            case 2: /* flush region (16M) */
1000            case 3: /* flush context (4G) */
1001            case 4: /* flush entire */
1002                tlb_flush(cs);
1003                break;
1004            default:
1005                break;
1006            }
1007#ifdef DEBUG_MMU
1008            dump_mmu(env);
1009#endif
1010        }
1011        break;
1012    case ASI_M_MMUREGS: /* write MMU regs */
1013    case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1014        {
1015            int reg = (addr >> 8) & 0x1f;
1016            uint32_t oldreg;
1017
1018            oldreg = env->mmuregs[reg];
1019            switch (reg) {
1020            case 0: /* Control Register */
1021                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1022                    (val & 0x00ffffff);
1023                /* Mappings generated during no-fault mode
1024                   are invalid in normal mode.  */
1025                if ((oldreg ^ env->mmuregs[reg])
1026                    & (MMU_NF | env->def.mmu_bm)) {
1027                    tlb_flush(cs);
1028                }
1029                break;
1030            case 1: /* Context Table Pointer Register */
1031                env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1032                break;
1033            case 2: /* Context Register */
1034                env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1035                if (oldreg != env->mmuregs[reg]) {
1036                    /* we flush when the MMU context changes because
1037                       QEMU has no MMU context support */
1038                    tlb_flush(cs);
1039                }
1040                break;
1041            case 3: /* Synchronous Fault Status Register with Clear */
1042            case 4: /* Synchronous Fault Address Register */
1043                break;
1044            case 0x10: /* TLB Replacement Control Register */
1045                env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1046                break;
1047            case 0x13: /* Synchronous Fault Status Register with Read
1048                          and Clear */
1049                env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1050                break;
1051            case 0x14: /* Synchronous Fault Address Register */
1052                env->mmuregs[4] = val;
1053                break;
1054            default:
1055                env->mmuregs[reg] = val;
1056                break;
1057            }
1058            if (oldreg != env->mmuregs[reg]) {
1059                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1060                            reg, oldreg, env->mmuregs[reg]);
1061            }
1062#ifdef DEBUG_MMU
1063            dump_mmu(env);
1064#endif
1065        }
1066        break;
1067    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1068    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1069    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1070        break;
1071    case ASI_M_TXTC_TAG:   /* I-cache tag */
1072    case ASI_M_TXTC_DATA:  /* I-cache data */
1073    case ASI_M_DATAC_TAG:  /* D-cache tag */
1074    case ASI_M_DATAC_DATA: /* D-cache data */
1075    case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1076    case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1077    case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1078    case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1079    case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1080        break;
1081    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1082        {
1083            MemTxResult result;
1084            hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1085
1086            switch (size) {
1087            case 1:
1088                address_space_stb(cs->as, access_addr, val,
1089                                  MEMTXATTRS_UNSPECIFIED, &result);
1090                break;
1091            case 2:
1092                address_space_stw(cs->as, access_addr, val,
1093                                  MEMTXATTRS_UNSPECIFIED, &result);
1094                break;
1095            case 4:
1096            default:
1097                address_space_stl(cs->as, access_addr, val,
1098                                  MEMTXATTRS_UNSPECIFIED, &result);
1099                break;
1100            case 8:
1101                address_space_stq(cs->as, access_addr, val,
1102                                  MEMTXATTRS_UNSPECIFIED, &result);
1103                break;
1104            }
1105            if (result != MEMTX_OK) {
1106                sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1107                                      size, GETPC());
1108            }
1109        }
1110        break;
1111    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1112    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1113                  Turbosparc snoop RAM */
1114    case 0x32: /* store buffer control or Turbosparc page table
1115                  descriptor diagnostic */
1116    case 0x36: /* I-cache flash clear */
1117    case 0x37: /* D-cache flash clear */
1118        break;
1119    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1120        {
1121            int reg = (addr >> 8) & 3;
1122
1123            switch (reg) {
1124            case 0: /* Breakpoint Value (Addr) */
1125                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1126                break;
1127            case 1: /* Breakpoint Mask */
1128                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1129                break;
1130            case 2: /* Breakpoint Control */
1131                env->mmubpregs[reg] = (val & 0x7fULL);
1132                break;
1133            case 3: /* Breakpoint Status */
1134                env->mmubpregs[reg] = (val & 0xfULL);
1135                break;
1136            }
1137            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1138                        env->mmuregs[reg]);
1139        }
1140        break;
1141    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1142        env->mmubpctrv = val & 0xffffffff;
1143        break;
1144    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1145        env->mmubpctrc = val & 0x3;
1146        break;
1147    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1148        env->mmubpctrs = val & 0x3;
1149        break;
1150    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1151        env->mmubpaction = val & 0x1fff;
1152        break;
1153    case ASI_USERTXT: /* User code access, XXX */
1154    case ASI_KERNELTXT: /* Supervisor code access, XXX */
1155    default:
1156        sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1157        break;
1158
1159    case ASI_USERDATA: /* User data access */
1160    case ASI_KERNELDATA: /* Supervisor data access */
1161    case ASI_P:
1162    case ASI_M_BYPASS:    /* MMU passthrough */
1163    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1164    case ASI_M_BCOPY: /* Block copy, sta access */
1165    case ASI_M_BFILL: /* Block fill, stda access */
1166        /* These are always handled inline.  */
1167        g_assert_not_reached();
1168    }
1169#ifdef DEBUG_ASI
1170    dump_asi("write", addr, asi, size, val);
1171#endif
1172}
1173
1174#endif /* CONFIG_USER_ONLY */
1175#else /* TARGET_SPARC64 */
1176
1177#ifdef CONFIG_USER_ONLY
1178uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1179                       int asi, uint32_t memop)
1180{
1181    int size = 1 << (memop & MO_SIZE);
1182    int sign = memop & MO_SIGN;
1183    uint64_t ret = 0;
1184
1185    if (asi < 0x80) {
1186        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1187    }
1188    do_check_align(env, addr, size - 1, GETPC());
1189    addr = asi_address_mask(env, asi, addr);
1190
1191    switch (asi) {
1192    case ASI_PNF:  /* Primary no-fault */
1193    case ASI_PNFL: /* Primary no-fault LE */
1194    case ASI_SNF:  /* Secondary no-fault */
1195    case ASI_SNFL: /* Secondary no-fault LE */
1196        if (page_check_range(addr, size, PAGE_READ) == -1) {
1197            ret = 0;
1198            break;
1199        }
1200        switch (size) {
1201        case 1:
1202            ret = cpu_ldub_data(env, addr);
1203            break;
1204        case 2:
1205            ret = cpu_lduw_data(env, addr);
1206            break;
1207        case 4:
1208            ret = cpu_ldl_data(env, addr);
1209            break;
1210        case 8:
1211            ret = cpu_ldq_data(env, addr);
1212            break;
1213        default:
1214            g_assert_not_reached();
1215        }
1216        break;
1217        break;
1218
1219    case ASI_P: /* Primary */
1220    case ASI_PL: /* Primary LE */
1221    case ASI_S:  /* Secondary */
1222    case ASI_SL: /* Secondary LE */
1223        /* These are always handled inline.  */
1224        g_assert_not_reached();
1225
1226    default:
1227        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1228    }
1229
1230    /* Convert from little endian */
1231    switch (asi) {
1232    case ASI_PNFL: /* Primary no-fault LE */
1233    case ASI_SNFL: /* Secondary no-fault LE */
1234        switch (size) {
1235        case 2:
1236            ret = bswap16(ret);
1237            break;
1238        case 4:
1239            ret = bswap32(ret);
1240            break;
1241        case 8:
1242            ret = bswap64(ret);
1243            break;
1244        }
1245    }
1246
1247    /* Convert to signed number */
1248    if (sign) {
1249        switch (size) {
1250        case 1:
1251            ret = (int8_t) ret;
1252            break;
1253        case 2:
1254            ret = (int16_t) ret;
1255            break;
1256        case 4:
1257            ret = (int32_t) ret;
1258            break;
1259        }
1260    }
1261#ifdef DEBUG_ASI
1262    dump_asi("read", addr, asi, size, ret);
1263#endif
1264    return ret;
1265}
1266
1267void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1268                   int asi, uint32_t memop)
1269{
1270    int size = 1 << (memop & MO_SIZE);
1271#ifdef DEBUG_ASI
1272    dump_asi("write", addr, asi, size, val);
1273#endif
1274    if (asi < 0x80) {
1275        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1276    }
1277    do_check_align(env, addr, size - 1, GETPC());
1278
1279    switch (asi) {
1280    case ASI_P:  /* Primary */
1281    case ASI_PL: /* Primary LE */
1282    case ASI_S:  /* Secondary */
1283    case ASI_SL: /* Secondary LE */
1284        /* These are always handled inline.  */
1285        g_assert_not_reached();
1286
1287    case ASI_PNF:  /* Primary no-fault, RO */
1288    case ASI_SNF:  /* Secondary no-fault, RO */
1289    case ASI_PNFL: /* Primary no-fault LE, RO */
1290    case ASI_SNFL: /* Secondary no-fault LE, RO */
1291    default:
1292        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1293    }
1294}
1295
1296#else /* CONFIG_USER_ONLY */
1297
1298uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1299                       int asi, uint32_t memop)
1300{
1301    int size = 1 << (memop & MO_SIZE);
1302    int sign = memop & MO_SIGN;
1303    CPUState *cs = env_cpu(env);
1304    uint64_t ret = 0;
1305#if defined(DEBUG_ASI)
1306    target_ulong last_addr = addr;
1307#endif
1308
1309    asi &= 0xff;
1310
1311    do_check_asi(env, asi, GETPC());
1312    do_check_align(env, addr, size - 1, GETPC());
1313    addr = asi_address_mask(env, asi, addr);
1314
1315    switch (asi) {
1316    case ASI_PNF:
1317    case ASI_PNFL:
1318    case ASI_SNF:
1319    case ASI_SNFL:
1320        {
1321            TCGMemOpIdx oi;
1322            int idx = (env->pstate & PS_PRIV
1323                       ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1324                       : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1325
1326            if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1327#ifdef DEBUG_ASI
1328                dump_asi("read ", last_addr, asi, size, ret);
1329#endif
1330                /* exception_index is set in get_physical_address_data. */
1331                cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1332            }
1333            oi = make_memop_idx(memop, idx);
1334            switch (size) {
1335            case 1:
1336                ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
1337                break;
1338            case 2:
1339                if (asi & 8) {
1340                    ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
1341                } else {
1342                    ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
1343                }
1344                break;
1345            case 4:
1346                if (asi & 8) {
1347                    ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
1348                } else {
1349                    ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
1350                }
1351                break;
1352            case 8:
1353                if (asi & 8) {
1354                    ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
1355                } else {
1356                    ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
1357                }
1358                break;
1359            default:
1360                g_assert_not_reached();
1361            }
1362        }
1363        break;
1364
1365    case ASI_AIUP:  /* As if user primary */
1366    case ASI_AIUS:  /* As if user secondary */
1367    case ASI_AIUPL: /* As if user primary LE */
1368    case ASI_AIUSL: /* As if user secondary LE */
1369    case ASI_P:  /* Primary */
1370    case ASI_S:  /* Secondary */
1371    case ASI_PL: /* Primary LE */
1372    case ASI_SL: /* Secondary LE */
1373    case ASI_REAL:      /* Bypass */
1374    case ASI_REAL_IO:   /* Bypass, non-cacheable */
1375    case ASI_REAL_L:    /* Bypass LE */
1376    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1377    case ASI_N:  /* Nucleus */
1378    case ASI_NL: /* Nucleus Little Endian (LE) */
1379    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1380    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1381    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1382    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1383    case ASI_TWINX_REAL:   /* Real address, twinx */
1384    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1385    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1386    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1387    case ASI_TWINX_N:  /* Nucleus, twinx */
1388    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1389    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1390    case ASI_TWINX_P:  /* Primary, twinx */
1391    case ASI_TWINX_PL: /* Primary, twinx, LE */
1392    case ASI_TWINX_S:  /* Secondary, twinx */
1393    case ASI_TWINX_SL: /* Secondary, twinx, LE */
1394        /* These are always handled inline.  */
1395        g_assert_not_reached();
1396
1397    case ASI_UPA_CONFIG: /* UPA config */
1398        /* XXX */
1399        break;
1400    case ASI_LSU_CONTROL: /* LSU */
1401        ret = env->lsu;
1402        break;
1403    case ASI_IMMU: /* I-MMU regs */
1404        {
1405            int reg = (addr >> 3) & 0xf;
1406            switch (reg) {
1407            case 0:
1408                /* 0x00 I-TSB Tag Target register */
1409                ret = ultrasparc_tag_target(env->immu.tag_access);
1410                break;
1411            case 3: /* SFSR */
1412                ret = env->immu.sfsr;
1413                break;
1414            case 5: /* TSB access */
1415                ret = env->immu.tsb;
1416                break;
1417            case 6:
1418                /* 0x30 I-TSB Tag Access register */
1419                ret = env->immu.tag_access;
1420                break;
1421            default:
1422                sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1423                ret = 0;
1424            }
1425            break;
1426        }
1427    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1428        {
1429            /* env->immuregs[5] holds I-MMU TSB register value
1430               env->immuregs[6] holds I-MMU Tag Access register value */
1431            ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1432            break;
1433        }
1434    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1435        {
1436            /* env->immuregs[5] holds I-MMU TSB register value
1437               env->immuregs[6] holds I-MMU Tag Access register value */
1438            ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1439            break;
1440        }
1441    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1442        {
1443            int reg = (addr >> 3) & 0x3f;
1444
1445            ret = env->itlb[reg].tte;
1446            break;
1447        }
1448    case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1449        {
1450            int reg = (addr >> 3) & 0x3f;
1451
1452            ret = env->itlb[reg].tag;
1453            break;
1454        }
1455    case ASI_DMMU: /* D-MMU regs */
1456        {
1457            int reg = (addr >> 3) & 0xf;
1458            switch (reg) {
1459            case 0:
1460                /* 0x00 D-TSB Tag Target register */
1461                ret = ultrasparc_tag_target(env->dmmu.tag_access);
1462                break;
1463            case 1: /* 0x08 Primary Context */
1464                ret = env->dmmu.mmu_primary_context;
1465                break;
1466            case 2: /* 0x10 Secondary Context */
1467                ret = env->dmmu.mmu_secondary_context;
1468                break;
1469            case 3: /* SFSR */
1470                ret = env->dmmu.sfsr;
1471                break;
1472            case 4: /* 0x20 SFAR */
1473                ret = env->dmmu.sfar;
1474                break;
1475            case 5: /* 0x28 TSB access */
1476                ret = env->dmmu.tsb;
1477                break;
1478            case 6: /* 0x30 D-TSB Tag Access register */
1479                ret = env->dmmu.tag_access;
1480                break;
1481            case 7:
1482                ret = env->dmmu.virtual_watchpoint;
1483                break;
1484            case 8:
1485                ret = env->dmmu.physical_watchpoint;
1486                break;
1487            default:
1488                sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1489                ret = 0;
1490            }
1491            break;
1492        }
1493    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1494        {
1495            /* env->dmmuregs[5] holds D-MMU TSB register value
1496               env->dmmuregs[6] holds D-MMU Tag Access register value */
1497            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1498            break;
1499        }
1500    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1501        {
1502            /* env->dmmuregs[5] holds D-MMU TSB register value
1503               env->dmmuregs[6] holds D-MMU Tag Access register value */
1504            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1505            break;
1506        }
1507    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1508        {
1509            int reg = (addr >> 3) & 0x3f;
1510
1511            ret = env->dtlb[reg].tte;
1512            break;
1513        }
1514    case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1515        {
1516            int reg = (addr >> 3) & 0x3f;
1517
1518            ret = env->dtlb[reg].tag;
1519            break;
1520        }
1521    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1522        break;
1523    case ASI_INTR_RECEIVE: /* Interrupt data receive */
1524        ret = env->ivec_status;
1525        break;
1526    case ASI_INTR_R: /* Incoming interrupt vector, RO */
1527        {
1528            int reg = (addr >> 4) & 0x3;
1529            if (reg < 3) {
1530                ret = env->ivec_data[reg];
1531            }
1532            break;
1533        }
1534    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1535        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1536            /* Hyperprivileged access only */
1537            sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1538        }
1539        /* fall through */
1540    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1541        {
1542            unsigned int i = (addr >> 3) & 0x7;
1543            ret = env->scratch[i];
1544            break;
1545        }
1546    case ASI_MMU: /* UA2005 Context ID registers */
1547        switch ((addr >> 3) & 0x3) {
1548        case 1:
1549            ret = env->dmmu.mmu_primary_context;
1550            break;
1551        case 2:
1552            ret = env->dmmu.mmu_secondary_context;
1553            break;
1554        default:
1555          sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1556        }
1557        break;
1558    case ASI_DCACHE_DATA:     /* D-cache data */
1559    case ASI_DCACHE_TAG:      /* D-cache tag access */
1560    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1561    case ASI_AFSR:            /* E-cache asynchronous fault status */
1562    case ASI_AFAR:            /* E-cache asynchronous fault address */
1563    case ASI_EC_TAG_DATA:     /* E-cache tag data */
1564    case ASI_IC_INSTR:        /* I-cache instruction access */
1565    case ASI_IC_TAG:          /* I-cache tag access */
1566    case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1567    case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1568    case ASI_EC_W:            /* E-cache tag */
1569    case ASI_EC_R:            /* E-cache tag */
1570        break;
1571    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1572    case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1573    case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1574    case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1575    case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1576    case ASI_INTR_W:              /* Interrupt vector, WO */
1577    default:
1578        sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1579        ret = 0;
1580        break;
1581    }
1582
1583    /* Convert to signed number */
1584    if (sign) {
1585        switch (size) {
1586        case 1:
1587            ret = (int8_t) ret;
1588            break;
1589        case 2:
1590            ret = (int16_t) ret;
1591            break;
1592        case 4:
1593            ret = (int32_t) ret;
1594            break;
1595        default:
1596            break;
1597        }
1598    }
1599#ifdef DEBUG_ASI
1600    dump_asi("read ", last_addr, asi, size, ret);
1601#endif
1602    return ret;
1603}
1604
1605void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1606                   int asi, uint32_t memop)
1607{
1608    int size = 1 << (memop & MO_SIZE);
1609    CPUState *cs = env_cpu(env);
1610
1611#ifdef DEBUG_ASI
1612    dump_asi("write", addr, asi, size, val);
1613#endif
1614
1615    asi &= 0xff;
1616
1617    do_check_asi(env, asi, GETPC());
1618    do_check_align(env, addr, size - 1, GETPC());
1619    addr = asi_address_mask(env, asi, addr);
1620
1621    switch (asi) {
1622    case ASI_AIUP:  /* As if user primary */
1623    case ASI_AIUS:  /* As if user secondary */
1624    case ASI_AIUPL: /* As if user primary LE */
1625    case ASI_AIUSL: /* As if user secondary LE */
1626    case ASI_P:  /* Primary */
1627    case ASI_S:  /* Secondary */
1628    case ASI_PL: /* Primary LE */
1629    case ASI_SL: /* Secondary LE */
1630    case ASI_REAL:      /* Bypass */
1631    case ASI_REAL_IO:   /* Bypass, non-cacheable */
1632    case ASI_REAL_L:    /* Bypass LE */
1633    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1634    case ASI_N:  /* Nucleus */
1635    case ASI_NL: /* Nucleus Little Endian (LE) */
1636    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1637    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1638    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1639    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1640    case ASI_TWINX_REAL:   /* Real address, twinx */
1641    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1642    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1643    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1644    case ASI_TWINX_N:  /* Nucleus, twinx */
1645    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1646    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1647    case ASI_TWINX_P:  /* Primary, twinx */
1648    case ASI_TWINX_PL: /* Primary, twinx, LE */
1649    case ASI_TWINX_S:  /* Secondary, twinx */
1650    case ASI_TWINX_SL: /* Secondary, twinx, LE */
1651        /* These are always handled inline.  */
1652        g_assert_not_reached();
1653    /* these ASIs have different functions on UltraSPARC-IIIi
1654     * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1655     */
1656    case 0x31:
1657    case 0x32:
1658    case 0x39:
1659    case 0x3a:
1660        if (cpu_has_hypervisor(env)) {
1661            /* UA2005
1662             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1663             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1664             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1665             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1666             */
1667            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1668            env->dmmu.sun4v_tsb_pointers[idx] = val;
1669        } else {
1670            helper_raise_exception(env, TT_ILL_INSN);
1671        }
1672        break;
1673    case 0x33:
1674    case 0x3b:
1675        if (cpu_has_hypervisor(env)) {
1676            /* UA2005
1677             * ASI_DMMU_CTX_ZERO_CONFIG
1678             * ASI_DMMU_CTX_NONZERO_CONFIG
1679             */
1680            env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1681        } else {
1682            helper_raise_exception(env, TT_ILL_INSN);
1683        }
1684        break;
1685    case 0x35:
1686    case 0x36:
1687    case 0x3d:
1688    case 0x3e:
1689        if (cpu_has_hypervisor(env)) {
1690            /* UA2005
1691             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1692             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1693             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1694             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1695             */
1696            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1697            env->immu.sun4v_tsb_pointers[idx] = val;
1698        } else {
1699            helper_raise_exception(env, TT_ILL_INSN);
1700        }
1701      break;
1702    case 0x37:
1703    case 0x3f:
1704        if (cpu_has_hypervisor(env)) {
1705            /* UA2005
1706             * ASI_IMMU_CTX_ZERO_CONFIG
1707             * ASI_IMMU_CTX_NONZERO_CONFIG
1708             */
1709            env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1710        } else {
1711          helper_raise_exception(env, TT_ILL_INSN);
1712        }
1713        break;
1714    case ASI_UPA_CONFIG: /* UPA config */
1715        /* XXX */
1716        return;
1717    case ASI_LSU_CONTROL: /* LSU */
1718        env->lsu = val & (DMMU_E | IMMU_E);
1719        return;
1720    case ASI_IMMU: /* I-MMU regs */
1721        {
1722            int reg = (addr >> 3) & 0xf;
1723            uint64_t oldreg;
1724
1725            oldreg = env->immu.mmuregs[reg];
1726            switch (reg) {
1727            case 0: /* RO */
1728                return;
1729            case 1: /* Not in I-MMU */
1730            case 2:
1731                return;
1732            case 3: /* SFSR */
1733                if ((val & 1) == 0) {
1734                    val = 0; /* Clear SFSR */
1735                }
1736                env->immu.sfsr = val;
1737                break;
1738            case 4: /* RO */
1739                return;
1740            case 5: /* TSB access */
1741                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1742                            PRIx64 "\n", env->immu.tsb, val);
1743                env->immu.tsb = val;
1744                break;
1745            case 6: /* Tag access */
1746                env->immu.tag_access = val;
1747                break;
1748            case 7:
1749            case 8:
1750                return;
1751            default:
1752                sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1753                break;
1754            }
1755
1756            if (oldreg != env->immu.mmuregs[reg]) {
1757                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1758                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1759            }
1760#ifdef DEBUG_MMU
1761            dump_mmu(env);
1762#endif
1763            return;
1764        }
1765    case ASI_ITLB_DATA_IN: /* I-MMU data in */
1766        /* ignore real translation entries */
1767        if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1768            replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1769                                 val, "immu", env, addr);
1770        }
1771        return;
1772    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1773        {
1774            /* TODO: auto demap */
1775
1776            unsigned int i = (addr >> 3) & 0x3f;
1777
1778            /* ignore real translation entries */
1779            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1780                replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1781                                  sun4v_tte_to_sun4u(env, addr, val), env);
1782            }
1783#ifdef DEBUG_MMU
1784            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1785            dump_mmu(env);
1786#endif
1787            return;
1788        }
1789    case ASI_IMMU_DEMAP: /* I-MMU demap */
1790        demap_tlb(env->itlb, addr, "immu", env);
1791        return;
1792    case ASI_DMMU: /* D-MMU regs */
1793        {
1794            int reg = (addr >> 3) & 0xf;
1795            uint64_t oldreg;
1796
1797            oldreg = env->dmmu.mmuregs[reg];
1798            switch (reg) {
1799            case 0: /* RO */
1800            case 4:
1801                return;
1802            case 3: /* SFSR */
1803                if ((val & 1) == 0) {
1804                    val = 0; /* Clear SFSR, Fault address */
1805                    env->dmmu.sfar = 0;
1806                }
1807                env->dmmu.sfsr = val;
1808                break;
1809            case 1: /* Primary context */
1810                env->dmmu.mmu_primary_context = val;
1811                /* can be optimized to only flush MMU_USER_IDX
1812                   and MMU_KERNEL_IDX entries */
1813                tlb_flush(cs);
1814                break;
1815            case 2: /* Secondary context */
1816                env->dmmu.mmu_secondary_context = val;
1817                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1818                   and MMU_KERNEL_SECONDARY_IDX entries */
1819                tlb_flush(cs);
1820                break;
1821            case 5: /* TSB access */
1822                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1823                            PRIx64 "\n", env->dmmu.tsb, val);
1824                env->dmmu.tsb = val;
1825                break;
1826            case 6: /* Tag access */
1827                env->dmmu.tag_access = val;
1828                break;
1829            case 7: /* Virtual Watchpoint */
1830                env->dmmu.virtual_watchpoint = val;
1831                break;
1832            case 8: /* Physical Watchpoint */
1833                env->dmmu.physical_watchpoint = val;
1834                break;
1835            default:
1836                sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1837                break;
1838            }
1839
1840            if (oldreg != env->dmmu.mmuregs[reg]) {
1841                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1842                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1843            }
1844#ifdef DEBUG_MMU
1845            dump_mmu(env);
1846#endif
1847            return;
1848        }
1849    case ASI_DTLB_DATA_IN: /* D-MMU data in */
1850      /* ignore real translation entries */
1851      if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1852          replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1853                               val, "dmmu", env, addr);
1854      }
1855      return;
1856    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1857        {
1858            unsigned int i = (addr >> 3) & 0x3f;
1859
1860            /* ignore real translation entries */
1861            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1862                replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1863                                  sun4v_tte_to_sun4u(env, addr, val), env);
1864            }
1865#ifdef DEBUG_MMU
1866            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1867            dump_mmu(env);
1868#endif
1869            return;
1870        }
1871    case ASI_DMMU_DEMAP: /* D-MMU demap */
1872        demap_tlb(env->dtlb, addr, "dmmu", env);
1873        return;
1874    case ASI_INTR_RECEIVE: /* Interrupt data receive */
1875        env->ivec_status = val & 0x20;
1876        return;
1877    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1878        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1879            /* Hyperprivileged access only */
1880            sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1881        }
1882        /* fall through */
1883    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1884        {
1885            unsigned int i = (addr >> 3) & 0x7;
1886            env->scratch[i] = val;
1887            return;
1888        }
1889    case ASI_MMU: /* UA2005 Context ID registers */
1890        {
1891          switch ((addr >> 3) & 0x3) {
1892          case 1:
1893              env->dmmu.mmu_primary_context = val;
1894              env->immu.mmu_primary_context = val;
1895              tlb_flush_by_mmuidx(cs,
1896                                  (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1897              break;
1898          case 2:
1899              env->dmmu.mmu_secondary_context = val;
1900              env->immu.mmu_secondary_context = val;
1901              tlb_flush_by_mmuidx(cs,
1902                                  (1 << MMU_USER_SECONDARY_IDX) |
1903                                  (1 << MMU_KERNEL_SECONDARY_IDX));
1904              break;
1905          default:
1906              sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1907          }
1908        }
1909        return;
1910    case ASI_QUEUE: /* UA2005 CPU mondo queue */
1911    case ASI_DCACHE_DATA: /* D-cache data */
1912    case ASI_DCACHE_TAG: /* D-cache tag access */
1913    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1914    case ASI_AFSR: /* E-cache asynchronous fault status */
1915    case ASI_AFAR: /* E-cache asynchronous fault address */
1916    case ASI_EC_TAG_DATA: /* E-cache tag data */
1917    case ASI_IC_INSTR: /* I-cache instruction access */
1918    case ASI_IC_TAG: /* I-cache tag access */
1919    case ASI_IC_PRE_DECODE: /* I-cache predecode */
1920    case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1921    case ASI_EC_W: /* E-cache tag */
1922    case ASI_EC_R: /* E-cache tag */
1923        return;
1924    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1925    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1926    case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1927    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1928    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1929    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1930    case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1931    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1932    case ASI_INTR_R: /* Incoming interrupt vector, RO */
1933    case ASI_PNF: /* Primary no-fault, RO */
1934    case ASI_SNF: /* Secondary no-fault, RO */
1935    case ASI_PNFL: /* Primary no-fault LE, RO */
1936    case ASI_SNFL: /* Secondary no-fault LE, RO */
1937    default:
1938        sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1939        return;
1940    }
1941}
1942#endif /* CONFIG_USER_ONLY */
1943#endif /* TARGET_SPARC64 */
1944
1945#if !defined(CONFIG_USER_ONLY)
1946
1947void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1948                                     vaddr addr, unsigned size,
1949                                     MMUAccessType access_type,
1950                                     int mmu_idx, MemTxAttrs attrs,
1951                                     MemTxResult response, uintptr_t retaddr)
1952{
1953    bool is_write = access_type == MMU_DATA_STORE;
1954    bool is_exec = access_type == MMU_INST_FETCH;
1955    bool is_asi = false;
1956
1957    sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1958                          is_asi, size, retaddr);
1959}
1960#endif
1961
1962#if !defined(CONFIG_USER_ONLY)
1963void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1964                                                 MMUAccessType access_type,
1965                                                 int mmu_idx,
1966                                                 uintptr_t retaddr)
1967{
1968    SPARCCPU *cpu = SPARC_CPU(cs);
1969    CPUSPARCState *env = &cpu->env;
1970
1971#ifdef DEBUG_UNALIGNED
1972    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
1973           "\n", addr, env->pc);
1974#endif
1975    cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
1976}
1977#endif
1978