qemu/tests/qtest/sse-timer-test.c
<<
>>
Prefs
   1/*
   2 * QTest testcase for the SSE timer device
   3 *
   4 * Copyright (c) 2021 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  14 * for more details.
  15 */
  16
  17#include "qemu/osdep.h"
  18#include "libqtest-single.h"
  19
  20/*
  21 * SSE-123/SSE-300 timer in the mps3-an547 board, where it is driven
  22 * at 32MHz, so 31.25ns per tick.
  23 */
  24#define TIMER_BASE 0x48000000
  25
  26/* PERIPHNSPPC0 register in the SSE-300 Secure Access Configuration block */
  27#define PERIPHNSPPC0 (0x50080000 + 0x70)
  28
  29/* Base of the System Counter control frame */
  30#define COUNTER_BASE 0x58100000
  31
  32/* SSE counter register offsets in the control frame */
  33#define CNTCR 0
  34#define CNTSR 0x4
  35#define CNTCV_LO 0x8
  36#define CNTCV_HI 0xc
  37#define CNTSCR 0x10
  38
  39/* SSE timer register offsets */
  40#define CNTPCT_LO 0
  41#define CNTPCT_HI 4
  42#define CNTFRQ 0x10
  43#define CNTP_CVAL_LO 0x20
  44#define CNTP_CVAL_HI 0x24
  45#define CNTP_TVAL 0x28
  46#define CNTP_CTL 0x2c
  47#define CNTP_AIVAL_LO 0x40
  48#define CNTP_AIVAL_HI 0x44
  49#define CNTP_AIVAL_RELOAD 0x48
  50#define CNTP_AIVAL_CTL 0x4c
  51
  52/* 4 ticks in nanoseconds (so we can work in integers) */
  53#define FOUR_TICKS 125
  54
  55static void clock_step_ticks(uint64_t ticks)
  56{
  57    /*
  58     * Advance the qtest clock by however many nanoseconds we
  59     * need to move the timer forward the specified number of ticks.
  60     * ticks must be a multiple of 4, so we get a whole number of ns.
  61     */
  62    assert(!(ticks & 3));
  63    clock_step(FOUR_TICKS * (ticks >> 2));
  64}
  65
  66static void reset_counter_and_timer(void)
  67{
  68    /*
  69     * Reset the system counter and the timer between tests. This
  70     * isn't a full reset, but it's sufficient for what the tests check.
  71     */
  72    writel(COUNTER_BASE + CNTCR, 0);
  73    writel(TIMER_BASE + CNTP_CTL, 0);
  74    writel(TIMER_BASE + CNTP_AIVAL_CTL, 0);
  75    writel(COUNTER_BASE + CNTCV_LO, 0);
  76    writel(COUNTER_BASE + CNTCV_HI, 0);
  77}
  78
  79static void test_counter(void)
  80{
  81    /* Basic counter functionality test */
  82
  83    reset_counter_and_timer();
  84    /* The counter should start disabled: check that it doesn't move */
  85    clock_step_ticks(100);
  86    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 0);
  87    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
  88    /* Now enable it and check that it does count */
  89    writel(COUNTER_BASE + CNTCR, 1);
  90    clock_step_ticks(100);
  91    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 100);
  92    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
  93    /* Check the counter scaling functionality */
  94    writel(COUNTER_BASE + CNTCR, 0);
  95    writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */
  96    writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */
  97    clock_step_ticks(160);
  98    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 110);
  99    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
 100}
 101
 102static void test_timer(void)
 103{
 104    /* Basic timer functionality test */
 105
 106    reset_counter_and_timer();
 107    /*
 108     * The timer is behind a Peripheral Protection Controller, and
 109     * qtest accesses are always non-secure (no memory attributes),
 110     * so we must program the PPC to accept NS transactions.  TIMER0
 111     * is on port 0 of PPC0, controlled by bit 0 of this register.
 112     */
 113    writel(PERIPHNSPPC0, 1);
 114    /* We must enable the System Counter or the timer won't run. */
 115    writel(COUNTER_BASE + CNTCR, 1);
 116
 117    /* Timer starts disabled and with a counter of 0 */
 118    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 0);
 119    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 0);
 120    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0);
 121
 122    /* Turn it on */
 123    writel(TIMER_BASE + CNTP_CTL, 1);
 124
 125    /* Is the timer ticking? */
 126    clock_step_ticks(100);
 127    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 100);
 128    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0);
 129
 130    /* Set the CompareValue to 4000 ticks */
 131    writel(TIMER_BASE + CNTP_CVAL_LO, 4000);
 132    writel(TIMER_BASE + CNTP_CVAL_HI, 0);
 133
 134    /* Check TVAL view of the counter */
 135    g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 3900);
 136
 137    /* Advance to the CompareValue mark and check ISTATUS is set */
 138    clock_step_ticks(3900);
 139    g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 0);
 140    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
 141
 142    /* Now exercise the auto-reload part of the timer */
 143    writel(TIMER_BASE + CNTP_AIVAL_RELOAD, 200);
 144    writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
 145
 146    /* Check AIVAL was reloaded and that ISTATUS is now clear */
 147    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4200);
 148    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
 149    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
 150
 151    /*
 152     * Check that when we advance forward to the reload time the interrupt
 153     * fires and the value reloads
 154     */
 155    clock_step_ticks(100);
 156    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
 157    clock_step_ticks(100);
 158    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
 159    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4400);
 160    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
 161
 162    clock_step_ticks(100);
 163    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
 164    /* Check that writing 0 to CLR clears the interrupt */
 165    writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
 166    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
 167    /* Check that when we move forward to the reload time it fires again */
 168    clock_step_ticks(100);
 169    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
 170    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600);
 171    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
 172
 173    /*
 174     * Step the clock far enough that we overflow the low half of the
 175     * CNTPCT and AIVAL registers, and check that their high halves
 176     * give the right values. We do the forward movement in
 177     * non-autoinc mode because otherwise it takes forever as the
 178     * timer has to emulate all the 'reload at t + N, t + 2N, etc'
 179     * steps.
 180     */
 181    writel(TIMER_BASE + CNTP_AIVAL_CTL, 0);
 182    clock_step_ticks(0x42ULL << 32);
 183    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 4400);
 184    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0x42);
 185
 186    /* Turn on the autoinc again to check AIVAL_HI */
 187    writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
 188    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600);
 189    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0x42);
 190}
 191
 192static void test_timer_scale_change(void)
 193{
 194    /*
 195     * Test that the timer responds correctly to counter
 196     * scaling changes while it has an active timer.
 197     */
 198    reset_counter_and_timer();
 199    /* Give ourselves access to the timer, and enable the counter and timer */
 200    writel(PERIPHNSPPC0, 1);
 201    writel(COUNTER_BASE + CNTCR, 1);
 202    writel(TIMER_BASE + CNTP_CTL, 1);
 203    /* Set the CompareValue to 4000 ticks */
 204    writel(TIMER_BASE + CNTP_CVAL_LO, 4000);
 205    writel(TIMER_BASE + CNTP_CVAL_HI, 0);
 206    /* Advance halfway and check ISTATUS is not set */
 207    clock_step_ticks(2000);
 208    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
 209    /* Reprogram the counter to run at 1/16th speed */
 210    writel(COUNTER_BASE + CNTCR, 0);
 211    writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */
 212    writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */
 213    /* Advance to where the timer would have fired and check it has not */
 214    clock_step_ticks(2000);
 215    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
 216    /* Advance to where the timer must fire at the new clock rate */
 217    clock_step_ticks(29996);
 218    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
 219    clock_step_ticks(4);
 220    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
 221}
 222
 223int main(int argc, char **argv)
 224{
 225    int r;
 226
 227    g_test_init(&argc, &argv, NULL);
 228
 229    qtest_start("-machine mps3-an547");
 230
 231    qtest_add_func("/sse-timer/counter", test_counter);
 232    qtest_add_func("/sse-timer/timer", test_timer);
 233    qtest_add_func("/sse-timer/timer-scale-change", test_timer_scale_change);
 234
 235    r = g_test_run();
 236
 237    qtest_end();
 238
 239    return r;
 240}
 241