qemu/block/block-copy.c
<<
>>
Prefs
   1/*
   2 * block_copy API
   3 *
   4 * Copyright (C) 2013 Proxmox Server Solutions
   5 * Copyright (c) 2019 Virtuozzo International GmbH.
   6 *
   7 * Authors:
   8 *  Dietmar Maurer (dietmar@proxmox.com)
   9 *  Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 */
  14
  15#include "qemu/osdep.h"
  16
  17#include "trace.h"
  18#include "qapi/error.h"
  19#include "block/block-copy.h"
  20#include "sysemu/block-backend.h"
  21#include "qemu/units.h"
  22#include "qemu/coroutine.h"
  23#include "block/aio_task.h"
  24
  25#define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
  26#define BLOCK_COPY_MAX_BUFFER (1 * MiB)
  27#define BLOCK_COPY_MAX_MEM (128 * MiB)
  28#define BLOCK_COPY_MAX_WORKERS 64
  29#define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
  30
  31static coroutine_fn int block_copy_task_entry(AioTask *task);
  32
  33typedef struct BlockCopyCallState {
  34    /* IN parameters. Initialized in block_copy_async() and never changed. */
  35    BlockCopyState *s;
  36    int64_t offset;
  37    int64_t bytes;
  38    int max_workers;
  39    int64_t max_chunk;
  40    bool ignore_ratelimit;
  41    BlockCopyAsyncCallbackFunc cb;
  42    void *cb_opaque;
  43
  44    /* Coroutine where async block-copy is running */
  45    Coroutine *co;
  46
  47    /* To reference all call states from BlockCopyState */
  48    QLIST_ENTRY(BlockCopyCallState) list;
  49
  50    /* State */
  51    int ret;
  52    bool finished;
  53    QemuCoSleepState *sleep_state;
  54    bool cancelled;
  55
  56    /* OUT parameters */
  57    bool error_is_read;
  58} BlockCopyCallState;
  59
  60typedef struct BlockCopyTask {
  61    AioTask task;
  62
  63    BlockCopyState *s;
  64    BlockCopyCallState *call_state;
  65    int64_t offset;
  66    int64_t bytes;
  67    bool zeroes;
  68    QLIST_ENTRY(BlockCopyTask) list;
  69    CoQueue wait_queue; /* coroutines blocked on this task */
  70} BlockCopyTask;
  71
  72static int64_t task_end(BlockCopyTask *task)
  73{
  74    return task->offset + task->bytes;
  75}
  76
  77typedef struct BlockCopyState {
  78    /*
  79     * BdrvChild objects are not owned or managed by block-copy. They are
  80     * provided by block-copy user and user is responsible for appropriate
  81     * permissions on these children.
  82     */
  83    BdrvChild *source;
  84    BdrvChild *target;
  85    BdrvDirtyBitmap *copy_bitmap;
  86    int64_t in_flight_bytes;
  87    int64_t cluster_size;
  88    bool use_copy_range;
  89    int64_t copy_size;
  90    uint64_t len;
  91    QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
  92    QLIST_HEAD(, BlockCopyCallState) calls;
  93
  94    BdrvRequestFlags write_flags;
  95
  96    /*
  97     * skip_unallocated:
  98     *
  99     * Used by sync=top jobs, which first scan the source node for unallocated
 100     * areas and clear them in the copy_bitmap.  During this process, the bitmap
 101     * is thus not fully initialized: It may still have bits set for areas that
 102     * are unallocated and should actually not be copied.
 103     *
 104     * This is indicated by skip_unallocated.
 105     *
 106     * In this case, block_copy() will query the source’s allocation status,
 107     * skip unallocated regions, clear them in the copy_bitmap, and invoke
 108     * block_copy_reset_unallocated() every time it does.
 109     */
 110    bool skip_unallocated;
 111
 112    ProgressMeter *progress;
 113
 114    SharedResource *mem;
 115
 116    uint64_t speed;
 117    RateLimit rate_limit;
 118} BlockCopyState;
 119
 120static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
 121                                            int64_t offset, int64_t bytes)
 122{
 123    BlockCopyTask *t;
 124
 125    QLIST_FOREACH(t, &s->tasks, list) {
 126        if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
 127            return t;
 128        }
 129    }
 130
 131    return NULL;
 132}
 133
 134/*
 135 * If there are no intersecting tasks return false. Otherwise, wait for the
 136 * first found intersecting tasks to finish and return true.
 137 */
 138static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
 139                                             int64_t bytes)
 140{
 141    BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
 142
 143    if (!task) {
 144        return false;
 145    }
 146
 147    qemu_co_queue_wait(&task->wait_queue, NULL);
 148
 149    return true;
 150}
 151
 152/*
 153 * Search for the first dirty area in offset/bytes range and create task at
 154 * the beginning of it.
 155 */
 156static BlockCopyTask *block_copy_task_create(BlockCopyState *s,
 157                                             BlockCopyCallState *call_state,
 158                                             int64_t offset, int64_t bytes)
 159{
 160    BlockCopyTask *task;
 161    int64_t max_chunk = MIN_NON_ZERO(s->copy_size, call_state->max_chunk);
 162
 163    if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
 164                                           offset, offset + bytes,
 165                                           max_chunk, &offset, &bytes))
 166    {
 167        return NULL;
 168    }
 169
 170    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
 171    bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
 172
 173    /* region is dirty, so no existent tasks possible in it */
 174    assert(!find_conflicting_task(s, offset, bytes));
 175
 176    bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
 177    s->in_flight_bytes += bytes;
 178
 179    task = g_new(BlockCopyTask, 1);
 180    *task = (BlockCopyTask) {
 181        .task.func = block_copy_task_entry,
 182        .s = s,
 183        .call_state = call_state,
 184        .offset = offset,
 185        .bytes = bytes,
 186    };
 187    qemu_co_queue_init(&task->wait_queue);
 188    QLIST_INSERT_HEAD(&s->tasks, task, list);
 189
 190    return task;
 191}
 192
 193/*
 194 * block_copy_task_shrink
 195 *
 196 * Drop the tail of the task to be handled later. Set dirty bits back and
 197 * wake up all tasks waiting for us (may be some of them are not intersecting
 198 * with shrunk task)
 199 */
 200static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
 201                                                int64_t new_bytes)
 202{
 203    if (new_bytes == task->bytes) {
 204        return;
 205    }
 206
 207    assert(new_bytes > 0 && new_bytes < task->bytes);
 208
 209    task->s->in_flight_bytes -= task->bytes - new_bytes;
 210    bdrv_set_dirty_bitmap(task->s->copy_bitmap,
 211                          task->offset + new_bytes, task->bytes - new_bytes);
 212
 213    task->bytes = new_bytes;
 214    qemu_co_queue_restart_all(&task->wait_queue);
 215}
 216
 217static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
 218{
 219    task->s->in_flight_bytes -= task->bytes;
 220    if (ret < 0) {
 221        bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
 222    }
 223    QLIST_REMOVE(task, list);
 224    qemu_co_queue_restart_all(&task->wait_queue);
 225}
 226
 227void block_copy_state_free(BlockCopyState *s)
 228{
 229    if (!s) {
 230        return;
 231    }
 232
 233    bdrv_release_dirty_bitmap(s->copy_bitmap);
 234    shres_destroy(s->mem);
 235    g_free(s);
 236}
 237
 238static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
 239{
 240    return MIN_NON_ZERO(INT_MAX,
 241                        MIN_NON_ZERO(source->bs->bl.max_transfer,
 242                                     target->bs->bl.max_transfer));
 243}
 244
 245BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
 246                                     int64_t cluster_size, bool use_copy_range,
 247                                     BdrvRequestFlags write_flags, Error **errp)
 248{
 249    BlockCopyState *s;
 250    BdrvDirtyBitmap *copy_bitmap;
 251
 252    copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
 253                                           errp);
 254    if (!copy_bitmap) {
 255        return NULL;
 256    }
 257    bdrv_disable_dirty_bitmap(copy_bitmap);
 258
 259    s = g_new(BlockCopyState, 1);
 260    *s = (BlockCopyState) {
 261        .source = source,
 262        .target = target,
 263        .copy_bitmap = copy_bitmap,
 264        .cluster_size = cluster_size,
 265        .len = bdrv_dirty_bitmap_size(copy_bitmap),
 266        .write_flags = write_flags,
 267        .mem = shres_create(BLOCK_COPY_MAX_MEM),
 268    };
 269
 270    if (block_copy_max_transfer(source, target) < cluster_size) {
 271        /*
 272         * copy_range does not respect max_transfer. We don't want to bother
 273         * with requests smaller than block-copy cluster size, so fallback to
 274         * buffered copying (read and write respect max_transfer on their
 275         * behalf).
 276         */
 277        s->use_copy_range = false;
 278        s->copy_size = cluster_size;
 279    } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
 280        /* Compression supports only cluster-size writes and no copy-range. */
 281        s->use_copy_range = false;
 282        s->copy_size = cluster_size;
 283    } else {
 284        /*
 285         * We enable copy-range, but keep small copy_size, until first
 286         * successful copy_range (look at block_copy_do_copy).
 287         */
 288        s->use_copy_range = use_copy_range;
 289        s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
 290    }
 291
 292    QLIST_INIT(&s->tasks);
 293    QLIST_INIT(&s->calls);
 294
 295    return s;
 296}
 297
 298void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
 299{
 300    s->progress = pm;
 301}
 302
 303/*
 304 * Takes ownership of @task
 305 *
 306 * If pool is NULL directly run the task, otherwise schedule it into the pool.
 307 *
 308 * Returns: task.func return code if pool is NULL
 309 *          otherwise -ECANCELED if pool status is bad
 310 *          otherwise 0 (successfully scheduled)
 311 */
 312static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
 313                                            BlockCopyTask *task)
 314{
 315    if (!pool) {
 316        int ret = task->task.func(&task->task);
 317
 318        g_free(task);
 319        return ret;
 320    }
 321
 322    aio_task_pool_wait_slot(pool);
 323    if (aio_task_pool_status(pool) < 0) {
 324        co_put_to_shres(task->s->mem, task->bytes);
 325        block_copy_task_end(task, -ECANCELED);
 326        g_free(task);
 327        return -ECANCELED;
 328    }
 329
 330    aio_task_pool_start_task(pool, &task->task);
 331
 332    return 0;
 333}
 334
 335/*
 336 * block_copy_do_copy
 337 *
 338 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
 339 * s->len only to cover last cluster when s->len is not aligned to clusters.
 340 *
 341 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
 342 *
 343 * Returns 0 on success.
 344 */
 345static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
 346                                           int64_t offset, int64_t bytes,
 347                                           bool zeroes, bool *error_is_read)
 348{
 349    int ret;
 350    int64_t nbytes = MIN(offset + bytes, s->len) - offset;
 351    void *bounce_buffer = NULL;
 352
 353    assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
 354    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
 355    assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
 356    assert(offset < s->len);
 357    assert(offset + bytes <= s->len ||
 358           offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
 359    assert(nbytes < INT_MAX);
 360
 361    if (zeroes) {
 362        ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
 363                                    ~BDRV_REQ_WRITE_COMPRESSED);
 364        if (ret < 0) {
 365            trace_block_copy_write_zeroes_fail(s, offset, ret);
 366            *error_is_read = false;
 367        }
 368        return ret;
 369    }
 370
 371    if (s->use_copy_range) {
 372        ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
 373                                 0, s->write_flags);
 374        if (ret < 0) {
 375            trace_block_copy_copy_range_fail(s, offset, ret);
 376            s->use_copy_range = false;
 377            s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
 378            /* Fallback to read+write with allocated buffer */
 379        } else {
 380            if (s->use_copy_range) {
 381                /*
 382                 * Successful copy-range. Now increase copy_size.  copy_range
 383                 * does not respect max_transfer (it's a TODO), so we factor
 384                 * that in here.
 385                 *
 386                 * Note: we double-check s->use_copy_range for the case when
 387                 * parallel block-copy request unsets it during previous
 388                 * bdrv_co_copy_range call.
 389                 */
 390                s->copy_size =
 391                        MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
 392                            QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source,
 393                                                                    s->target),
 394                                            s->cluster_size));
 395            }
 396            goto out;
 397        }
 398    }
 399
 400    /*
 401     * In case of failed copy_range request above, we may proceed with buffered
 402     * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
 403     * be properly limited, so don't care too much. Moreover the most likely
 404     * case (copy_range is unsupported for the configuration, so the very first
 405     * copy_range request fails) is handled by setting large copy_size only
 406     * after first successful copy_range.
 407     */
 408
 409    bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
 410
 411    ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
 412    if (ret < 0) {
 413        trace_block_copy_read_fail(s, offset, ret);
 414        *error_is_read = true;
 415        goto out;
 416    }
 417
 418    ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
 419                         s->write_flags);
 420    if (ret < 0) {
 421        trace_block_copy_write_fail(s, offset, ret);
 422        *error_is_read = false;
 423        goto out;
 424    }
 425
 426out:
 427    qemu_vfree(bounce_buffer);
 428
 429    return ret;
 430}
 431
 432static coroutine_fn int block_copy_task_entry(AioTask *task)
 433{
 434    BlockCopyTask *t = container_of(task, BlockCopyTask, task);
 435    bool error_is_read = false;
 436    int ret;
 437
 438    ret = block_copy_do_copy(t->s, t->offset, t->bytes, t->zeroes,
 439                             &error_is_read);
 440    if (ret < 0 && !t->call_state->ret) {
 441        t->call_state->ret = ret;
 442        t->call_state->error_is_read = error_is_read;
 443    } else {
 444        progress_work_done(t->s->progress, t->bytes);
 445    }
 446    co_put_to_shres(t->s->mem, t->bytes);
 447    block_copy_task_end(t, ret);
 448
 449    return ret;
 450}
 451
 452static int block_copy_block_status(BlockCopyState *s, int64_t offset,
 453                                   int64_t bytes, int64_t *pnum)
 454{
 455    int64_t num;
 456    BlockDriverState *base;
 457    int ret;
 458
 459    if (s->skip_unallocated) {
 460        base = bdrv_backing_chain_next(s->source->bs);
 461    } else {
 462        base = NULL;
 463    }
 464
 465    ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
 466                                  NULL, NULL);
 467    if (ret < 0 || num < s->cluster_size) {
 468        /*
 469         * On error or if failed to obtain large enough chunk just fallback to
 470         * copy one cluster.
 471         */
 472        num = s->cluster_size;
 473        ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
 474    } else if (offset + num == s->len) {
 475        num = QEMU_ALIGN_UP(num, s->cluster_size);
 476    } else {
 477        num = QEMU_ALIGN_DOWN(num, s->cluster_size);
 478    }
 479
 480    *pnum = num;
 481    return ret;
 482}
 483
 484/*
 485 * Check if the cluster starting at offset is allocated or not.
 486 * return via pnum the number of contiguous clusters sharing this allocation.
 487 */
 488static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
 489                                           int64_t *pnum)
 490{
 491    BlockDriverState *bs = s->source->bs;
 492    int64_t count, total_count = 0;
 493    int64_t bytes = s->len - offset;
 494    int ret;
 495
 496    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
 497
 498    while (true) {
 499        ret = bdrv_is_allocated(bs, offset, bytes, &count);
 500        if (ret < 0) {
 501            return ret;
 502        }
 503
 504        total_count += count;
 505
 506        if (ret || count == 0) {
 507            /*
 508             * ret: partial segment(s) are considered allocated.
 509             * otherwise: unallocated tail is treated as an entire segment.
 510             */
 511            *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
 512            return ret;
 513        }
 514
 515        /* Unallocated segment(s) with uncertain following segment(s) */
 516        if (total_count >= s->cluster_size) {
 517            *pnum = total_count / s->cluster_size;
 518            return 0;
 519        }
 520
 521        offset += count;
 522        bytes -= count;
 523    }
 524}
 525
 526/*
 527 * Reset bits in copy_bitmap starting at offset if they represent unallocated
 528 * data in the image. May reset subsequent contiguous bits.
 529 * @return 0 when the cluster at @offset was unallocated,
 530 *         1 otherwise, and -ret on error.
 531 */
 532int64_t block_copy_reset_unallocated(BlockCopyState *s,
 533                                     int64_t offset, int64_t *count)
 534{
 535    int ret;
 536    int64_t clusters, bytes;
 537
 538    ret = block_copy_is_cluster_allocated(s, offset, &clusters);
 539    if (ret < 0) {
 540        return ret;
 541    }
 542
 543    bytes = clusters * s->cluster_size;
 544
 545    if (!ret) {
 546        bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
 547        progress_set_remaining(s->progress,
 548                               bdrv_get_dirty_count(s->copy_bitmap) +
 549                               s->in_flight_bytes);
 550    }
 551
 552    *count = bytes;
 553    return ret;
 554}
 555
 556/*
 557 * block_copy_dirty_clusters
 558 *
 559 * Copy dirty clusters in @offset/@bytes range.
 560 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
 561 * clusters found and -errno on failure.
 562 */
 563static int coroutine_fn
 564block_copy_dirty_clusters(BlockCopyCallState *call_state)
 565{
 566    BlockCopyState *s = call_state->s;
 567    int64_t offset = call_state->offset;
 568    int64_t bytes = call_state->bytes;
 569
 570    int ret = 0;
 571    bool found_dirty = false;
 572    int64_t end = offset + bytes;
 573    AioTaskPool *aio = NULL;
 574
 575    /*
 576     * block_copy() user is responsible for keeping source and target in same
 577     * aio context
 578     */
 579    assert(bdrv_get_aio_context(s->source->bs) ==
 580           bdrv_get_aio_context(s->target->bs));
 581
 582    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
 583    assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
 584
 585    while (bytes && aio_task_pool_status(aio) == 0 && !call_state->cancelled) {
 586        BlockCopyTask *task;
 587        int64_t status_bytes;
 588
 589        task = block_copy_task_create(s, call_state, offset, bytes);
 590        if (!task) {
 591            /* No more dirty bits in the bitmap */
 592            trace_block_copy_skip_range(s, offset, bytes);
 593            break;
 594        }
 595        if (task->offset > offset) {
 596            trace_block_copy_skip_range(s, offset, task->offset - offset);
 597        }
 598
 599        found_dirty = true;
 600
 601        ret = block_copy_block_status(s, task->offset, task->bytes,
 602                                      &status_bytes);
 603        assert(ret >= 0); /* never fail */
 604        if (status_bytes < task->bytes) {
 605            block_copy_task_shrink(task, status_bytes);
 606        }
 607        if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) {
 608            block_copy_task_end(task, 0);
 609            progress_set_remaining(s->progress,
 610                                   bdrv_get_dirty_count(s->copy_bitmap) +
 611                                   s->in_flight_bytes);
 612            trace_block_copy_skip_range(s, task->offset, task->bytes);
 613            offset = task_end(task);
 614            bytes = end - offset;
 615            g_free(task);
 616            continue;
 617        }
 618        task->zeroes = ret & BDRV_BLOCK_ZERO;
 619
 620        if (s->speed) {
 621            if (!call_state->ignore_ratelimit) {
 622                uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
 623                if (ns > 0) {
 624                    block_copy_task_end(task, -EAGAIN);
 625                    g_free(task);
 626                    qemu_co_sleep_ns_wakeable(QEMU_CLOCK_REALTIME, ns,
 627                                              &call_state->sleep_state);
 628                    continue;
 629                }
 630            }
 631
 632            ratelimit_calculate_delay(&s->rate_limit, task->bytes);
 633        }
 634
 635        trace_block_copy_process(s, task->offset);
 636
 637        co_get_from_shres(s->mem, task->bytes);
 638
 639        offset = task_end(task);
 640        bytes = end - offset;
 641
 642        if (!aio && bytes) {
 643            aio = aio_task_pool_new(call_state->max_workers);
 644        }
 645
 646        ret = block_copy_task_run(aio, task);
 647        if (ret < 0) {
 648            goto out;
 649        }
 650    }
 651
 652out:
 653    if (aio) {
 654        aio_task_pool_wait_all(aio);
 655
 656        /*
 657         * We are not really interested in -ECANCELED returned from
 658         * block_copy_task_run. If it fails, it means some task already failed
 659         * for real reason, let's return first failure.
 660         * Still, assert that we don't rewrite failure by success.
 661         *
 662         * Note: ret may be positive here because of block-status result.
 663         */
 664        assert(ret >= 0 || aio_task_pool_status(aio) < 0);
 665        ret = aio_task_pool_status(aio);
 666
 667        aio_task_pool_free(aio);
 668    }
 669
 670    return ret < 0 ? ret : found_dirty;
 671}
 672
 673void block_copy_kick(BlockCopyCallState *call_state)
 674{
 675    if (call_state->sleep_state) {
 676        qemu_co_sleep_wake(call_state->sleep_state);
 677    }
 678}
 679
 680/*
 681 * block_copy_common
 682 *
 683 * Copy requested region, accordingly to dirty bitmap.
 684 * Collaborate with parallel block_copy requests: if they succeed it will help
 685 * us. If they fail, we will retry not-copied regions. So, if we return error,
 686 * it means that some I/O operation failed in context of _this_ block_copy call,
 687 * not some parallel operation.
 688 */
 689static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
 690{
 691    int ret;
 692
 693    QLIST_INSERT_HEAD(&call_state->s->calls, call_state, list);
 694
 695    do {
 696        ret = block_copy_dirty_clusters(call_state);
 697
 698        if (ret == 0 && !call_state->cancelled) {
 699            ret = block_copy_wait_one(call_state->s, call_state->offset,
 700                                      call_state->bytes);
 701        }
 702
 703        /*
 704         * We retry in two cases:
 705         * 1. Some progress done
 706         *    Something was copied, which means that there were yield points
 707         *    and some new dirty bits may have appeared (due to failed parallel
 708         *    block-copy requests).
 709         * 2. We have waited for some intersecting block-copy request
 710         *    It may have failed and produced new dirty bits.
 711         */
 712    } while (ret > 0 && !call_state->cancelled);
 713
 714    call_state->finished = true;
 715
 716    if (call_state->cb) {
 717        call_state->cb(call_state->cb_opaque);
 718    }
 719
 720    QLIST_REMOVE(call_state, list);
 721
 722    return ret;
 723}
 724
 725int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
 726                            bool ignore_ratelimit)
 727{
 728    BlockCopyCallState call_state = {
 729        .s = s,
 730        .offset = start,
 731        .bytes = bytes,
 732        .ignore_ratelimit = ignore_ratelimit,
 733        .max_workers = BLOCK_COPY_MAX_WORKERS,
 734    };
 735
 736    return block_copy_common(&call_state);
 737}
 738
 739static void coroutine_fn block_copy_async_co_entry(void *opaque)
 740{
 741    block_copy_common(opaque);
 742}
 743
 744BlockCopyCallState *block_copy_async(BlockCopyState *s,
 745                                     int64_t offset, int64_t bytes,
 746                                     int max_workers, int64_t max_chunk,
 747                                     BlockCopyAsyncCallbackFunc cb,
 748                                     void *cb_opaque)
 749{
 750    BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
 751
 752    *call_state = (BlockCopyCallState) {
 753        .s = s,
 754        .offset = offset,
 755        .bytes = bytes,
 756        .max_workers = max_workers,
 757        .max_chunk = max_chunk,
 758        .cb = cb,
 759        .cb_opaque = cb_opaque,
 760
 761        .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
 762    };
 763
 764    qemu_coroutine_enter(call_state->co);
 765
 766    return call_state;
 767}
 768
 769void block_copy_call_free(BlockCopyCallState *call_state)
 770{
 771    if (!call_state) {
 772        return;
 773    }
 774
 775    assert(call_state->finished);
 776    g_free(call_state);
 777}
 778
 779bool block_copy_call_finished(BlockCopyCallState *call_state)
 780{
 781    return call_state->finished;
 782}
 783
 784bool block_copy_call_succeeded(BlockCopyCallState *call_state)
 785{
 786    return call_state->finished && !call_state->cancelled &&
 787        call_state->ret == 0;
 788}
 789
 790bool block_copy_call_failed(BlockCopyCallState *call_state)
 791{
 792    return call_state->finished && !call_state->cancelled &&
 793        call_state->ret < 0;
 794}
 795
 796bool block_copy_call_cancelled(BlockCopyCallState *call_state)
 797{
 798    return call_state->cancelled;
 799}
 800
 801int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
 802{
 803    assert(call_state->finished);
 804    if (error_is_read) {
 805        *error_is_read = call_state->error_is_read;
 806    }
 807    return call_state->ret;
 808}
 809
 810void block_copy_call_cancel(BlockCopyCallState *call_state)
 811{
 812    call_state->cancelled = true;
 813    block_copy_kick(call_state);
 814}
 815
 816BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
 817{
 818    return s->copy_bitmap;
 819}
 820
 821void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
 822{
 823    s->skip_unallocated = skip;
 824}
 825
 826void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
 827{
 828    s->speed = speed;
 829    if (speed > 0) {
 830        ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
 831    }
 832
 833    /*
 834     * Note: it's good to kick all call states from here, but it should be done
 835     * only from a coroutine, to not crash if s->calls list changed while
 836     * entering one call. So for now, the only user of this function kicks its
 837     * only one call_state by hand.
 838     */
 839}
 840